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A MODIFIED PRIMAL-DUAL WEAK GALERKIN FINITE
ELEMENT METHOD FOR SECOND ORDER ELLIPTIC
EQUATIONS IN NON-DIVERGENCE FORM

CHUNMEI WANG

Abstract. A modified primal-dual weak Galerkin (M-PDWG) finite element method is designed
for the second order elliptic equation in non-divergence form. Compared with the existing PDWG
methods proposed in [6], the system of equations resulting from the M-PDWG scheme could be
equivalently simplified into one equation involving only the primal variable by eliminating the dual
variable (Lagrange multiplier). The resulting simplified system thus has significantly fewer degrees
of freedom than the one resulting from existing PDWG scheme. Optimal order error estimates
are derived for the numerical approximations in the discrete H2-norm, H!-norm and L2-norm
respectively. Extensive numerical results are demonstrated for both the smooth and non-smooth
coefficients on convex and non-convex domains to verify the accuracy of the theory developed in
this paper.
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condition, polyhedral meshes.

1. Introduction

In this paper, we consider the second order elliptic equation in non-divergence
form which seeks an unknown function u = u(z) such that

d
aij0fu=f, inQ,
(1) i; Y

u =0, on 01,

where @ C R%(d = 2,3) is an open bounded domain with Lipschitz continuous
boundary 952, the load function f € L?*(Q), and the coefficient tensor a = (ai;)axa €
[L>°(£2)]9*? is symmetric, uniformly bounded and positive definite in the sense that
there exist constants C7; > 0 and C5 > 0 such that

(2) Ci€Te <€Tat < CpeTe,  VeEeRY, zeq.

For the simplicity of notation, denote by L := Zd

ij=1 Qij ij the second order partial
differential operator.

The second order elliptic problem in non-divergence form arises in various ap-
plications such as probability and stochastic processes [2]. This type of problem
also plays an important role in the research of fully nonlinear partial differential
equations in conjunction with linearization techniques (e.g., the Newton’s iterative
method) [1, 3]. In such applications, the coefficient tensor a(z) is often hardly
smooth. Therefore, it is crucial to develop effective numerical methods for the
model problem (1) with nonsmooth coefficient tensor. Readers are referred to [6]
for more details of recent work developed for the model problem (1) . f The goal of
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this paper is to develop a modified primal-dual weak Galerkin (M-PDWG) scheme
for the second order elliptic problem in nondivergence form (1), which is different
from and advantageous over the one proposed in [6]. The system of equations aris-
ing from the M-PDWG scheme could be equivalently simplified into one equation
by eliminating its dual variable (Lagrange multiplier). The simplified system in-
volves only the primal variable and thus has significantly fewer degrees of freedom
compared to the PDWG scheme proposed in [6]. The main contribution of the
present paper is that the numerical scheme admists a simplified form with reduced
computational complexity. Our theory for the M-PDWG method is based on two
assumptions: (1) the H?2-regularity of the exact solution of the model problem (1);
and (2) the coefficient tensor a(x) is piecewise continuous and satisfies the uni-
form ellipticity condition (2). Optimal order error estimates are established for the
primal variable in a discrete H2-norm and for the dual variable in the L2-norm.
Moreover, the convergence theory is derived for the primal variable in the H'! norm
and L? norm under some smoothness assumptions for the coefficient tensor a(z).
Numerical examples are presented to illustrate the accuracy of the theory developed
for the M-PDWG method.

The paper is organized as follows. In Section 2, we present the weak formulation
for the model problem (1). Section 3 is devoted to a review of weak second order
differential operator and its discretization. In Section 4, we describe the M-PDWG
finite element method for the model problem (1). Section 5 presents a simplified
system resulting form the M-PDWG method proposed in Section 4. Section 6 is
devoted to a stability analysis for the M-PDWG scheme. Section 7 presents the error
equations for the numerical scheme. In Section 8, we derive an optimal order error
estimate for the M-PDWG method in a discrete H? norm. Section 9 establishes
some error estimates in the usual H! norm and L? norm for the primal variable. In
Section 10, the numerical experiments are presented for the M-PDWG scheme for
smooth and non-smooth coefficient tensor a(x) on convex and non-convex domains.

2. Variational Formulations

We shall briefly review the weak formulation of the second order elliptic model
problem (1) in non-divergence form [6].

Theorem 2.1. [4] Assume (1) Q C R? is a bounded convex domain; (2) the coef-
ficient tensor a = (a;;) € [L>(2)]4*? satisfies the ellipticity condition (2); and (3)
the Cordés condition holds true; i.e., there exists an € € (0,1] such that

d
D=1 a?j < 1
(Zd 2" d—1+¢

i=1 Qii

(3) in Q.

There exists a unique strong solution u € H?(Q) N HE(Q) of the model problem (1)
satisfying

(4) l[ullz < CI[f[lo,

for any given f € L*(Q), where C is a constant depending on d, the diameter of (,
Cl, CQ and €.

Throughout this paper, we assume the model problem (1) has a unique strong
solution in H2(2) N H}(Q) with a priori estimate (4).
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The variational formulation of the model problem (1) seeks u € X = H?(Q) N
H () such that

b(u,0) = (f,0) Yo e Y = L*(9),
where
(5) b(u,0) = (Lu, o).

The regularity assumption (4) implies that the bilinear form b(-,-) satisfies the
inf-sup condition

b
wp 00)

> aally,
veEX,v#£0 HUHX

for all 0 € Y, where « is a generic constant related to the constant C in the
H? regularity estimate (4), || - ||x and || - ||y are the H? norm and the L? norm,
respectively.

3. Discrete Weak Second Order Partial Derivative

This section will briefly review the weak second order partial derivative and its
discrete version [5, 6].

Let T be a polygonal or polyhedral domain with boundary 07. Denote by
v = {wo, v, vy} the weak function on the element 7', where vy € L?(T) and v, €
L2(dT) are the values of v in the interior and on the boundary of T; and v, =
(Vg1,- -+, vg4) € [L*(OT)]¢ is the value of Vv on the boundary of T. Note that v,
and v, may not necessarily be related to the traces of vy and Vvg on 9T. It is
feasible to take v, as the trace of vy and leave v, completely free or vice versa.

Let W (T') be the local space of the weak functions on T i.e.,
6)  W(T) = {v={vo,vp,vy}:v0 € L*(T),vp € L*(3T), v, € [L*(OT)]"}.

The weak second order partial derivative of the weak function v € W(T'), denoted
by 02 v, is defined as a bounded linear functional on the Sobolev space H?(T)

1J,Ww
satisfying
(7) (82'2_]',11)”3 QO)T = (UO, 6321()0)T - <Ubnia 8j‘P>8T + <v9ia @nj>BT7
for any ¢ € H?(T), where n = (ny,--- ,ng) is the unit outward normal direction
on 0T

Denote by P.(T) the space of polynomials with degree no more than r > 0

on T. A discrete version of 97; v, denoted by 07, ,.7v, is defined as the unique

polynomial in P.(T) such that

(8) (0 .rrvs 0)T = (V0,05:0)T — (von4, 8j0) o1 + (vgi, onj)or, Ve € Pu(T).

Applying the usual integration by parts to the first term on the right-hand side of
(8) yields

(9) (a?j,w,r,Tva QD)T = (aizjvov LP)T - <(,Ub - Uo)niv aj80>8T + <vgi - (’91-1;0, Son]‘>3T7

for all ¢ € P,.(T), provided that vy € H?(T).
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4. Primal-Dual Weak Galerkin

Denote by 7T, a finite element partition of the domain 2 into polygons in 2D
or polyhedra in 3D which is shape regular as described in [7]. Denote by &, the set
of all edges or flat faces in T;, and &) = &, \ 99 the set of all interior edges or flat
faces. Denote by hr the diameter of the element T € 7;, and h = maxypey;, hr the
meshsize of the partition 7j.

Let k > 2. Denote by Wy (T') the local space of discrete weak functions; i.e.,
(10)  Wi(T) := {v = {vo,vp, vy} € Pe(T) x Pi(e) x [Po_1(e)]?, e € T NELY.

Patching Wy (T') over all the elements T' € T, through common value for v, on the
interior interface &) gives the weak finite element space; i.e.,

Wh,k: = {{'Uo,’l)b,vg} : {'UO»'UbvngT S VV]@(T)7 T e 777,}
Let W}?  be the subspace of W}, ,, with vanishing boundary value for vy on 0%; i.e.,

W,?JC = {{vo, vp, Vg} € Wi, vple =0,e C 0Q}.

We further introduce the finite element space
Vh,k = {0’: O‘|T c Vk(T>7 T e 771}7

where Vi (T) is chosen as either P,_o(T) or P,_1(T), as appropriate. The choice of
Vie(T) = Pr—2(T) has fewer degrees of freedom, while the choice Vi (T) = Pi—1(T)
results in more accurate M-PDWG solution.

For simplicity of notation, denote by 8%@1) the discrete weak second order
partial differential operator defined by (8) with V,.(T') = Vi (T) on each element T}
ie.,

(0500 = 03 (WD), v E Wi

We introduce the bilinear forms

(11) bh(’U,U) = Z bT(UaO-)a (S Wh,k; o€ Vh,ka

TETh
(12) Sh(u7 ’U) = Z ST(U, U)a U,V € Wh,k7

TeTh
where

d
(13) br(v,o) = Y (a0 ,0,0)1,
ij=1

(14)  sp(u,v) = hz*(uo — up, vo — ve)or + hz' (Vug — ug, Vg — vg)or.

We further introduce a symmetric and nonnegative continuous bilinear form
Ch(-, ) : Vh,k X Vh,k — R,

satisfying the continuity property; i.e., there exists a constant C' such that

(15) cn(A ) < ChH N2l 2

for any A\, u € Vi k, where || - |5, is a discrete H? norm with partial derivatives
taken locally on each element. From the usual inverse inequality, we have

(16) en(Xs 1) < Cl Aol llo,

for any A, pu € Vi, i, where || - || is the Ly norm.
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Algorithm 4.1. (M-PDWG Finite Element Method) A modified primal-dual weak
Galerkin scheme for solving the second order elliptic problem (1) in non-divergence
form seeks (up; Ap) € ng,k X Vi1 satisfying

(17) sp(up,v) +bp(v,Ap) = 0, You € W}?,kv

(].8) —ch()\h,a)—l—bh(uh,a) = (f,o), Yo € Vh,ko

Here uy, is the primal variable and Ay, is the dual variable or Lagrange multiplier.
5. M-PDWG Finite Element Methods

In order to greatly reduce the degrees of freedom and the computational com-
plexity of the M-PDWG method (17)-(18), we shall eliminate the dual variable A,
from the M-PDWG system resulting in a simplified system involving the primal
variable uj, only.

Deonte by (-,-) the duality pairing between the two spaces. For the bilinear
forms sp(-, ), bu(-,-) and cp(-,-), we associate the operators S € L(W} ; (W) )"),
Be LW Vi) and C € L(Vyx; VY, ) defined by

(Su,v) = sp(u,v), Vu,v € Wy,
<Bua /U'> = bh(uhu')v Vu € Wl(m),kv,uf € Vh,ka
(CX, ) = ep(\ ), VA 1€ Vig,

where we assume c;(+,-) is suitably constructed so that (15) is satisfied and the
matrix C is invertible. As a specific example, for any p,o € V3 1, we may use

d
(19) cn(p,o) =Y W< (p,0)r+ (Vp,Vo)r + Y (9p,050)r
TET i,j=1

Let B’ € L(Vix; (W ,)') be the dual operator of B; i.e.,
(B'p,u) = (Bu, p) = by (u, ), Yu € W,?,k,,u € Vi
The M-PDWG scheme (17)-(18) can be equivalently rewritten as follows: Find
(up; An) € W,?yk x Vi, i satisfying
(20) Sup+B'Xy = 0, in (WP,),
(21) —CA, + Buy, £ i (Vi)'

where (W}?,k)' and (Vj, )" are the dual spaces of Wi?,k and V}, j, respectively. Note
that C is invertible. Using (21), we have

n=—C'(f — Buy),

which, combined with (20), leads to a simplified system as follows: Find wu, € W,?) >
such that

(22) (S+B'C 'B)u, =B'C'f.

Compared with the PDWG scheme for the second order elliptic problem in
nondivergence form proposed in [6], the M-PDWG scheme admits a simplified form
(22) involving only the primal variable uwy. The idea of M-PDWG method can
be generalized to PDWG methods for other model PDEs by adding appropriately
chosen ¢y, (-, -) terms.
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6. Stability and Solvability

We shall demonstrate the existence and uniqueness for the M-PDWG solution
arising from Algorithm 4.1 through an inf-sup condition for the bilinear form by (-, )

Let £ > 2. On each element T', denote by Qg the L? projection onto Py (7). On
each edge or face e C 7', denote by Q and Q; = (Qg1, - - -, Qga) the L? projections
onto Py (e) and [Py_1(e)]?, respectively. For any function w € H?(Q), denote by
Qnw the L? projection onto the weak finite element space Wh,r such that on each
element T', we have

(23) Qnrw = {Qow, Qyw, Q,(Vw)}.
Denote by Qj, the L? projection onto the space Vj, .

Lemma 6.1. [5] For any w € H?(T), the commutative property holds true
(24) 0; 1 (Qnw) = Qn(8w), i,j=1,...,d.

We introduce the semi-norm for the weak finite element space W, i; i.e.,

d
(25) [wl3n =Y 11> Qnlasfwo)l7 + sn(v,v), Vo€ Wy
TeT, i,j=1
Lemma 6.2. [6] Assume that the coefficient matriz a = (a;;) is uniformly piecewise
continuous in  with respect to the finite element partition Ty,. There exists a fized
ho > 0 such that if v = {vo, vy, vy} € W . satisfies |[v]|la,n = 0, then we have v = 0
for h < hyg.

We further introduce another semi-norm for the weak finite element space Wj, j;
i.e., for any v € W, 1,

d
(26) loll3 = > 1 > Qulaidl uv)lI3 + sn(v,v).

TET, i4=1
The two semi-norms defined in (25) and (26) are equivalent, which is stated in

the following lemma.

Lemma 6.3. [6] Assume that the coefficient tensor a = (a;;) is uniformly piecewise
continuous in Q) with respect to the finite element partition Tp,. For any v € Wy i,
there exist a; > 0 and ag > 0 such that

arlvllz,n < lvlly < azllvll2,n-

Lemma 6.4. [6] (inf-sup condition) Assume that the coefficient tensor a = (a;;)
is uniformly piecewise continuous in Q with respect to the finite element partition
Ty. For any o € Vi i, there exists v, € Wi?,k satisfying

1
(27) br(vo,0) > 5”‘7“(2)7

A

(28) lvall3n < Cllolls,

provided that the meshsize h < hg for a sufficiently small, but fixed parameter
ho > 0.
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Theorem 6.5. Assume that the coefficient matriz a = (a;5) is uniformly piecewise
smooth in  with respect to the finite element partition T,. The M-PDWG finite
element scheme (17)-(18) has a unique solution (up;Ap) € WP, X Vi, provided
that the meshsize h < ho holds true for a sufficiently small, but fized parameter
hg > 0.

Proof. Tt suffices to show that the homogeneous problem of (17)-(18) has only the
trivial solution. To this end, assume f = 0. By choosing v = uj, and o = Ay, in
(17)-(18) we arrive at

sh(un, un) + cp(An, An) =0,
which implies sp(upn,up) = 0 and cp(Ap, Ap) = 0. From sp(up,up) = 0, we have
up = up and Vug = u, on each 97T, which gives uj, € C'(Q2). Therefore, from (17),
we have

br(v,Ap) =0, Vv e Wy,.

From Lemma 6.4, for Ay, € V}, i, there exists vy, € W}? i satisfying

0 =bn(vr,, An) > *”/\hHOa

which gives A\, = 0 on each T' € T}, and further A\, = 0 in Q. Substituting A, =0
in  into (18) yields

0= bh(uha U)
d
— Z Z(aijgz?j,wuh’a)T
TET) i,j=1
d
_ Z Z (07 wtin, Qn(aio))r
TeTh i,j=1
d
= > ) (030, Qnlaizo))r — ((w — wo)ni, 0;Qn(ai0))or
TeTh i,j=1
(29) + (ugi = Druo, Qulas;o)ns)or
d
=Y Y (9 uo, Qulaio))r
TETh i,j=1
d
=Y Y (Fuo,aijo)r
TeTh i,j=1
d
— Z (Z aijaizquaU T
TeTh i,j=1
Z (Qn( Z awa U0),
TET i,j=1

for any o € V3, where we used (9) together with uy = up and Vug = u, on each
OT. Letting o = Qh(E:U 1 aij05u0) in (29) gives Qh(zu 1 4i;075u0) = 0 on each
element T' € T,. This implies that Zl =1 awa ug = 0 on each element T € Tj,.

Note that ug € C1(Q2). Thus, we have Z” 1 awal-juo =0 in Q. Since up € Wy,
we have ug = up = 0 on 9. Therefore, ug = 0 in Q2 and further u;, = 0 in Q.
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This completes the proof of the theorem. [l

7. Error Equations

Let (up; An) € Wi?,k X Vi, i be the M-PDWG solution arising from the numerical
scheme (17)-(18). Note that the dual problem b(v, A) = 0 has a trivial solution A = 0
for any v € H?(Q) N H (). The error functions are respectively defined as follows

en =up — Qnru, Yp =Ap — QpA = Ap.

Lemma 7.1. The following error equations for the M-PDWG scheme (17)-(18)
hold true; i.e.,

(30) sn(en,v) +bn(v, ) = —sn(Quu,v), Vo e Wy,
(31) 7Ch(’yh,0) +bh(6h,0) = KU(J), Vo € thk,
where
d
(32) (o) = Z Z ((I — Qn)du, aijo)r.
TeTh 4,j=1

Proof. First, by subtracting s (Qnu,v) from both sides of (17) we obtain
sn(un — Qnu,v) + bp(v, An) = —sn(Qnu, v), Vo e Wi,
which implies
sp(en,v) + bp(v,vh) = —sn(Qnu,v), Yv € W;?’k.
This completes the proof of the first error equation (30).

To derive (31), we use (1) and Lemma 6.1 to obtain

d
bn(Qru, o) = Z (Z ;035 ,Qntt, o)1

TeT i,j=1
d
= Z (Z aithﬁfju,a)T
TETh i,j=1
d d
=2 (D audiuo)r+ 3 (Y aiy(Qu—Ddfu0)r
TeTn i,y=1 TeTy i,j=1
d
:(fa U) + Z Z ((Qh - I)afgua aijO)Ty
TETh i,j=1

for all ¢ € Vj, ;. Now subtracting the above equation from (18) yields the error
equation (31).

This completes the proof of the lemma. (I

8. Error Estimates

Let 7, be a shape-regular finite element partition of the domain 2. For any
T € Ty, the following trace inequality holds true [7]:

(33) lel3r < Clhz'llelt +hrlVell7), Ve e HY(T).
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Furthermore, assume ¢ is a polynomial on the element T" € 7,. Applying the
inverse inequality to (33) gives [7]

(34) lel3r < Chztlloll3-

Lemma 8.1. [7] Assume that Ty, is a shape regular finite element partition of the
domain 0 as specified in [7]. For any 0 < s <2 and 1 < m < k, there holds

(35) > hPllu—Qoullr < CRHI |,
TETh
d
(36) S W= Quully < ORIl
TeTh i,j=1
d
(37) oD nEloGu— Qudfulie < CRIT Il
TETh 1,j=1

We are ready to present the critical error estimates for the M-PDWG scheme
(17)-(18), which is the main contribution of this paper.

Theorem 8.2. Assume that the coefficient tensor a = (ai;) is uniformly piecewise
continuous in 0 with respect to the finite element partition Ty,. Let u be the exact
solution of (1) and (up; A\n) € Wy . X Vi be the M-PDWG solution of (17)-(18),
respectively. Assume that the exact solution u of (1) is sufficiently reqular such that
u € H*Y(Q). There exists a constant C' such that

(38) un — Quullo.n + [ Mnllo + enAns An) T < CR*ul|jsr,

provided that the meshsize h < hg holds true for a sufficiently small, but fixed
hg > 0.

Proof. From (30), we have
(39) b (v, yn) = —sn(Qnu,v) — sn(en,v).

Recall that

sn(Qnu,v) = Y hp*(Qou — Quu,vo — vy)or

TeTh

+ Z h;1<VQ0u - Q,(Vu), Vg — vg)ar.
TeTh

(40)

The first term on the right-hand side of (40) can be estimated by using the Cauchy-
Schwarz inequality, the trace inequality (33), and the estimate (35) with m = k as
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follows
> hr(Qou — Quu, vo — vy)ar
TETh
= Z h7*(Qou — u,vo — vp)ar
Teﬂl
(41) 3 2 \® 3 2 \*
<('3 nztlle = Qoulldr) " (D2 hzllvo — wli3r)
TeTh TeTh

1

<C(( Y2 b7 (lu = Qoull} + b lu = Qoull? 1)) " (sn(v,v))2
TETh

<O Jullps1 (sn(v,0)) 2.

509

Similarly, the second term on the right-hand side of (40) has the following estimate

(42) > hi (VQou — Q,(Vu), Vg — vy)ar| < CHF = ulljst (sn(v,v)) .
TeTh

Combining (40) - (42) gives

(43) |5 (Qnt, v)| < CHFJu[geg1 (s (v, 0)) 2.

Using Cauchy-Schwarz inequality, it is easy to obtain
(44) Isn (ens 0)] < (sn(ensen))? (sn(v,0)) 2.
Substituting (43)-(44) into (39) gives
b (0, 7)| < (CRF "l + (snens en)) ) (s (v,0)) 2,
which from Lemma 6.4, for v, € Vj, 1, there exists v,, € Wl?,k such that
Sl <lo1(v20 )

<(CREY[ull g1 + (snens en)) )0 ll2,n

<(CP* Yullrg1 + (snlensen))

N

Nnllo-
Therefore, we have

(45) [vallo < CR* Hlullksr + (snlen,en))?.

[V

From (31), we have

(46) br(en, o) = Ly(o) + cn(vn, o).

Using (32) and the estimate (37) with m = k we have

d
eu(o)l =] > D (= Qu)dFu,aio)r

TETh i,5=1

d
< D llaggllze 11 = Qn)dZullo llollo

ij=1
< CR* Hullksallolo-
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Substituting (47) into (46), we have
[bw(en, o) < C(h*ullkss + llymllo) oo,
where we used (16). Taking o = E?,j:l Qn(a;;0?

7.weh) in the above equation gives

1

d =
(48) (1D Qulaudduen)ld) < COF T lulle + o).

TET, i,j=1

Letting v = e, in (30) and o = 7, in (31) gives
(49) sn(enen) + cn(Yn, vn) = —sn(Qnu, en) — Lu(yn)-
Substituting (43), (45) and (47) into (49) yields

sn(en,en) + cn(Yn, vn)
<CP*Mullira ((snlens en))? + lmllo)
50 _ 1 _
(50) <CF*=ullisr ((snlens en))® + CHF = ulljsr)
1

SOR a4y + Ol + Ces(en )

where we used Young’s inequality with € being sufficiently small such that 1 —Ce >
0, which gives
(1= Ce)snlen, en) + cn(ynm) < ChP*2|ullf 4y,

which gives

(51) sn(ens en) + cn(ym, 1) < Ch*F72fullE 4.

Using (51), (45) gives

(52) lynllo < CREHlull1,

which, from (48) and (51), gives

(53) llenlly < CR* ks

Combining (52) and (53) and using Lemma 6.3 completes the proof of the theorem.

O
9. Error Estimates in H! and L2

In this section, we shall establish the error estimates in H' and L? norm for
the M-PDWG solution arising from the scheme (17)-(18).

Lemma 9.1. [6] There exists a constant C' such that for any v € Wi (T), we have
(54) 107 woll7 < C (I195v0ll7: + s7(v,v)) -

©j,w

Consider an auxiliary problem: Find w satisfying

d
(55) Z 8]2i(a¢jw) = 9, in Q,
i,j=1

(56) w =0, on 04,

where 0 is a given function. The variational formulation for (55)-(56) seeks w €
L?(2) such that

(57) b(v,w) = (0, v), Yo € H*(Q) N H (Q),
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where the bilinear form b(-,-) is given by (5).

The problem (55)-(56) is assumed to be H!**-regular (s € [0,1]) in the sense
that for any 0 € H*~1(Q), there exists a unique w € H***(2) N HE () satisfying
(57) and a priori estimate:

(58) [wlli4s < CJ0]]5-1-

Lemma 9.2. [6] Assume that the coefficient tensor a = (a;;) € [C1(Q)]9*<. For
any v = {vo, vy, vy} € W) ., there holds

d
(v0,0) = Y Y (4507 v, w)r — ((vgi — Dvo)n, (Qn — I)(aijw))or

TET irj=1
+ ((vp — vo)ni, 0;(Qn — I)(aijw))or-

(59)

Lemma 9.3. [6] Assume that the coefficient matriz a = (a;;) € [llpep;, W (T)]4*4.
There exists a constant C' such that for any v € Wy ., we have

d
(60) | > > ((vgi — Bivo)ny, (Qn — D(aijw))or| < Ch|[v]|2nll6] -1,
TETh i,j=1
d
61) [ D D ((0p—v0)ni, 0;(Qn — D(aijw))or| < Ch |[v]|2nll0] -1,
TETh iyj=1

provided that the dual problem (57) has the regularity estimate (58) with s = 0.

Lemma 9.4. Assume that the coefficient matriz a = (a;;) € Uper, W2 (T)]4*4
and Py (T) C Vi(T) for each element T € Ty. There exists a constant C' such that
for any v € W,?,k, we have

d
62) | Y > ((vgi — wo)ny, (Qu — Dagw))or| < Ch* [[v]lan]0]o,

TETh i,j=1

d
63) | D> > (v —vo)ni, 05(Qn — Dagw))ar| < CA* [[v]lan]0]o,

TETh 1,5=1

provided that the reqularity estimate (58) holds true with s = 1.

For convenience of analysis, in what follows of this paper, for any p,o € V1,
we shall employ the specific ¢y, (p, o) define in (19).

Theorem 9.5. Let up, = {uo, up,uy} € W,?k be the M-PDWG solution arising from
the numerical scheme (17)-(18). Assume that a = (a;;) € [C*(Q)]¥*¢ and the ezact

solution of the model problem (1) is sufficiently reqular such that v € H*T1(Q).
There exists a constant C such that

1
2
(64) ( D IVuy — Vull%) < Ch* a1,

TeTh

provided that the meshsize h is sufficiently small and the dual problem (55)-(56)
has H'-regularity estimate (58) with s = 0.
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Proof. Given § = —V -1 with n € [C1(2)]? satisfying n = 0 on &), assume w is the
solution of the dual problem (55)-(56). Taking v = e, in Lemma (9.2) yields

(65)
—(e0,V-m) = Z ai;03; wen, w)r — ((egi — Dieo)ny, (Qn — I)(azjw))or
TETh 4,5=1
+ ((ev — eo)ni, 0;(Qn — I)(aijw))or
=1 — I + Is,

where I;(j = 1,2,3) are defined accordingly. Due to 7 = 0 on &, using the
integration by parts to (65) gives

(66) (Veo,n) = Iy — Iy + I3.

From Lemma 9.3 and H!-regularity estimate (58) with s = 0, the terms I and I3
are bounded as follows

(67) || + |I3] <

llenllz,n-
Regarding to the term I3, from the error equation (31), we have

d
Il = Z Z (aijaau}eh,w)T

T€eTh i,5=1

d
= Z Z (007 wen, Quw)r + (ai; 05 en, (I — Qp)w)r

TeT) i,j=1

d
= Z Z (O Qh)ﬁfjuvazj Qrw)r + cn(Yh, Qnw)

TeTh i,j=1

d
+ Z Z (aijaizj,weh, (I — Qn)w)r

TETh 1,5=1
=J1 + Jo + J3,

where J; for i = 1,2, 3 are defined accordingly. As to the term J, from the Cauchy-
Schwarz inequality, we have

il =| (0 - Q)02 u,ai; Quw)e|
TeETh
=| > (U~ Q). (I~ QuayQuuw)r |
(69) TETh
(X 10 —enazult)’ (X I - Quay @l
T€ETh T€eTh

<Ch||(I — Qn) % ull||lw]x.

As to the term Js, using the Cauchy-Schwarz inequality, the inverse inequality and
(19) gives

(70) |Ja| = |en(vh, Qnw)| < CR*
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As to the term J3, using the Cauchy-Schwarz inequality and (54), we have

| J3] ‘ Z Z Qi z]weh? (I = Qn)w)r ’

TETh i,j=1
d
:‘ >0 (g —ai) wen, (T - Qh)w)T’
(71) e 1 1
<22 3 Mg — alm 03 wenld)” (0 10— Quywl})
TETh i,j=1 TETh
d 1
<Chllulls( Y2 3 (b)) (103 colly + sr(ensen)))
TET i,j=1

where @;; is the average of a;; on the element T and e(hr) — 0 as b — 0. Substi-
tuting (69) - (71) into (68) yields

(72)
L] <Ch((h)[V2eo o + =(h Menlln+ 3 1 - 1) )0 ullo + I llo ) o]

7,]1

<C((Veollo + he(h)enllon + A 50— Quitullo + Al il

4,j=1
where we used the inverse inequality and the estimate |w|;1 < C||0]|-1 < Cln]lo-
Substituting (72) and (67) into (66) gives

[(Veo, )| <C (eI Veollo + h(1 + (b)) llenlla,n
d
Z (1 = @n)ullo + Bllvnllo) Inllo-

Note that the set of all such 7 is dense in L?(Q2). The above inequality implies

d
I¥eollo < C (= Veollo + (1 +e()llenllzn +h D (T = Qu)oZullo +Allwll )

ij=1

Therefore, we have

d
(73) I¥eollo < Ch(llenllon + 3 (T = Qu)dZullo + 1l )

ij=1

provided that the meshsize h is sufficiently small such that 1 — Ce(h) > 0 and
¢(h) — 0. The inequality (73), the error estimate (38), and the estimate (37) with
m = k completes the proof of the estimate (64) using the usual triangle inequality
and the estimate (35) with m = k. O

We further present the L? error estimate for the primal variable uy,.

Theorem 9.6. Assume that (1) the coefficients a;; € C(Q) N [Wypeq, W2 (T)]
fori,j =1,---,d; (2) the dual problem (55)-(56) satisfies H?-regularity estimate
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(58) with s = 1; and (3) Py(T) C Vi(T) for any T € Tp. There exists a constant
C such that

(74) luo — ullo < CR*Mjulks,
provided that the meshsize h is sufficiently small.

Proof. Let w be the solution of the dual problem (55)-(56) for a given 6 € L?().
Choosing v = ep, in Lemma 9.2 yields

d
(e0,0) = > > (i85 yen,w)r — ((egi — Dieo)ny, (Qn — I)(aijw))or
(75) TETh i,5=1

+ ((ep — eo)ni, 0;(Qn — I)(ai;w))or
=J; — Jo+ Js,

where J; are defined accordingly for i = 1,2,3. Using Lemma 9.4, we obtain
(76) | J2] + [J3] < CR?(|6]lollenl2,n-
As to the term Jq, using the error equation (31) gives rise to

d
Ji = Z Z (aij 0 pen, w)r

TeTh i,j=1

d
= Z Z (aijafj@@h, Qnw)r + (aijafj@eh, (I — Qn)w)r

T€eTh i,5=1

d
=Y (T = Qn)dfu, aij Quw)T + cn(yn, Quw)

TeTy i,j=1

d
+ Z Z (aij6?j7w6ha (I = Qn)w)r
TeT, i,j=1
=1 + Iy + I3,

where I;(i = 1,2, 3) are defined accordingly. Recall that P, (T") C Vi (T') and Qy, is
the L? projection onto Vi (T). As to the term I, using Cauchy-Schwarz inequality
gives

d
Ll = 30 D (- Qud3uai;Quw)r |

TETh i,j=1
d
= > 3 (- andEu, (1 - Qua; Quw)r|
(78) e , . ,
<(> Y- anazuld) (0 D I - Qua Quwll)”
TET i,j=1 TeTH i,j=1

d
<CR* Y I = Qu)dZullofw]s-

1,j=1
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As to the term Iy, using Cauchy-Schwarz inequality, the inverse inequality and
(19) gives

d
L= h5 < (v Quw)r + (Vn, VQuw)r + > (0490, 05 Qnw)r
(79) TETH i,j=1
<Ch?|lynllollwll2,
As to the term I3, using (54) yields
d
Is] =1 > > (0305 wens (I — Qu)w)r|
TET) i,j=1
d
= 1Y > ((aij — ai)3}; en, (I — Qun)w)r|
(30) rem 1 1
_ 3 2\ 2
<D0 D Masg = il 193 wenld) (D2 10T = Quyuwlly)
TET;, ij=1 TET;,
d 1
< W fwla( Y2 D7 163 eollf + srlensen))
TETh i,j=1

where @;; is the average of a;; on the element T' € T, such that ||a;; — @ijl| Lo (1) <
hr.

Using (78)-(80), the inverse inequality and the regularity assumption (58) for
s =1, we have

d
2+ 1Y T = Qu)dZullo + B2 {lymllo)[wll2
i,j=1
d
<C(h?||Veollo + B?[lenllzn + b D (I = Qn)dZullo + k2|l llo)10]lo-

ij=1

1] <C(h*[[V2eollo + h°llen
(81)

Substituting (81) and (76) into (75) gives

d
|(e0,0)| < CR*(||Veollo + llenll2,n + Z (I = Qn)0Zullo + [Iallo) 116]]0-

ij=1
This indicates
d
leollo <Ch*([Veollo + llenllzn + Y 1T = Qn)d5ullo + [1vallo)
Q=1
d
<Ch||Veqllo + Ch*(llenllzn + > (I = Qn)dZullo + vallo),
i,j=1

where we used the inverse inequality, which gives

d
an+ Y, (T =Qn)d%ullo + nllo),

i,j=1

(82) lleollo < Ch*([len
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provided that the meshsize h is sufficiently small. Combining (82), (38), and (37)
with m = k, completes the proof of the theorem. O

Remark 9.1. [6] The optimal order error estimate (74) is based on the assumption
that Py (T) C Va(T ), which is used to derive (76) and (78)-(80). When it comes
to the case of Pi(T) € Vo(T), those inequalities are modified by replacing ||w2,7
by hptwll1r. The concluswn is stated as follows: We assume (1) the coefficients
a;j € CY(Q) fori,j =1,---,d, (2) the meshsize h is sufficiently small, and (3)
the dual problem (55)-(56) satisfies the H*-regularity estimate (58) for s = 0. The
sub-optimal order error estimate holds true

[uo = ullo < CR* [[ulj1-

We introduce the following norms for the two boundary components u; and ug;

ie.,
el = (3 hrllenlie) . lleglo = (3 hrley )’

TETh TETh

Theorem 9.7. [6] Under the assumptions of Theorem 9.6, there exists a constant
C such that

lup — Quullo < CR* Hjul|js1,
<

lug — Qs Vulo Ch* |[ul| 41

10. Numerical Experiments

A series of the numerical results are illustrated to verify the accuracy of the
theory developed for the M-PDWG method (17)-(18).

We shall take the lowest order WG element with £ = 2 on triangular parti-
tions as an example in the implementation. The finite element spaces are thus
respectively given by

Who ={v={vo,v,Vg}: vg € Po(T),vs € Pa(€), vy € [Pl(e)]zﬁ’T € Th,e € &},

Ve ={0: olr € o(T), VYT € Tp},

where both V5(T) = Py(T) and Vo(T) = Py(T) are considered. A finite element
function v € Wy, 2 is named C°-type if v, = vg|or for each element T. The C°-
type WG element leads to a linear system with less computational complexity
compared with the general WG elements. However, the C° continuity does not
permit the availability of polygonal elements. Note that the theoretical results
developed in this paper could be generalized to C%-type triangular elements with-
out any difficulty. The C%-type WG element with Va(T) = Py(T) is called the
Py(T)/[P(dT))?/P1(T) element; and the CO-type WG element with Vo (T) = Py(T)
is called the Py(T)/[P1(0T)]?/Po(T) element.

Three domains are used in our numerical experiments: (1) the unit square
domain Q7 = (0,1)%; (2) the square domain Q5 = (—1,1)?; and (3) the non-convex
L-shaped domain Q3 with vertices Ag = (0,0), A; = (2,0), A2 = (1,1), A3 =
(1,2), and A4 = (0,2). Starting from a given initial coarse triangulation of the
domain, the triangular partition is obtained by successively dividing each coarse
level triangle into four congruent sub-triangles through connecting the mid-points
on each edge of each triangle.
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Let up, = {ug,ug} € Wy 2 and Ay, € Vj, 2 be the M-PDWG solution arising from
the scheme (17)-(18). Recall that the exact solution of Lagrange multiplier is A = 0.
These numerical solutions are compared with the interpolants of the corresponding
exact solutions; i.e.,

en = {eo,eg} = {uo — Inu, ug =L, (Vu)}, n = A —0,

where Iju is the Lagrange interpolation of the exact solution u on each triangular
element using three vertices and three mid-points on the edges, and I,(Vu) is the
linear interpolant of Vu on each edge e € &,. The following L? norms are employed
to measure the errors:

feolo = (30 [ teoar)"leglo = (3 hr [ leyas)”.
TeTh TeT;

lnllo = (3 / nl?ar)’

TETh

Test Case 1. Find u such that

2
2 .

Z a;j0ju=f, inf,

(83) Py

u =g, on 0,

where Q = Q;(i = 1,3), the coefficients are a;; = 3, a12 = a21 = 1 and age = 2,
and the exact solution is given by u = sin(z1) sin(xz).

Tables 1-2 show the numerical results for the M-PDWG method (17)-(18) for
the test problem (83) when the CO-Py(T)/[P1(0T)]?/ Py (T) element is applied. We
observe from Tables 1-2 that the convergence rates for ey in the discrete L2-norm
are of orders O(h*) and O(h3%) on the unit square domain €2; and on the L-
shaped domain €23, respectively. The convergence rates for e, and +y, in the discrete
L? norm are of orders O(h?) and O(h) on both Q; and Q3 respectively. Note
that the expected optimal convergence rates for ey, e, and 7, in the discrete L2
norm on the convex domain 4 are of orders O(h3), O(h?) and O(h), respectively.
When it comes to the non-convex L-shaped domain 23, the theoretical order of
convergence for ey in the discrete L?-norm should be between O(h?) and O(h?)
due to the lack of H?-regularity required for the dual problem (55)-(56). However,
the theoretical rates of convergence for e, and -y, remain to be of orders O(h?) and
O(h), respectively. It is clear that the numerical results are greatly consistent with
the theory for e, and 7, in the discrete L2-norm, and outperform the theory for e
in the discrete L2-norm for the case of smooth solutions with smooth coefficients
on uniform triangular partitions.

Test Case 2. Find u such that
2

Z(1+6l])| : x] 82 f in Qv

MiECh

u=20 on 012,

(84)

ij=1

where Q3 = (—1,1)2, and the exact solution is u = zyzo(1 —e!~1#11)(1 —el~le21), It
is easy to check the Cordes condition (3) is satisfied for the test problem (84) with
e = 3/5 and the coefficient matrix a = (a;;) is discontinuous across the z;(i = 1,2)
axis.
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TABLE 1. Test Case 1: Convergence rates for C°-C°-
Py(T)/[P1(0T))?/Py(T) element on Q.

1/h | lleollo | order | |egllo |order | [lvallo order
1 ] 0.006248 0.1260 3.36E-04
2 10.001470 | 2.087 | 0.04477 | 1.493 | 6.51E-04 | -0.9546
4 | 1.39E-04 | 3.399 | 0.01157 | 1.952 | 2.84E-04 | 1.195
8 | 1.03E-05 | 3.753 | 0.002843 | 2.025 | 1.32E-04 | 1.102
16 | 6.97E-07 | 3.891 | 7.02E-04 | 2.017 | 6.43E-05 | 1.043
32 | 4.54E-08 | 3.940 | 1.75E-04 | 2.007 | 3.17E-05 | 1.018

TABLE 2. Test Case 1: Convergence rates for C°-
Py(T)/[PL(0T))?/Pi(T) element on Q3.

1/h| lleollo | order | |egllo |order | |yallo | order
1 0.01676 0.4804 0.004498
2 10.002489 | 2.751 | 0.1248 | 1.945 | 0.001956 | 1.201
4 | 2.30E-04 | 3.435 | 0.03100 | 2.009 | 8.76E-04 | 1.160
8 | 1.94E-05 | 3.572 | 0.007674 | 2.014 | 4.13E-04 | 1.082
16 | 1.61E-06 | 3.585 | 0.001907 | 2.008 | 2.02E-04 | 1.035
32 | 1.37E-07 | 3.557 | 4.75E-04 | 2.006 | 9.99E-05 | 1.015

TABLE 3. Test Case 2: Convergence rates for (°-
Py(T)/[PL(dT))?/P1(T) element on Q.

2/h | Jleollo order llegllo order | |[vnllo | order
1 0.6160 2.554 1.000
2 0.4621 | 0.4148 1.676 0.6074 | 0.8970 | 0.1572
4 0.1389 1.734 1.006 | 0.7369 | 3.270 | -1.866
8 0.02019 | 2.782 0.1339 2.909 | 0.6337 | 2.368
16 | 0.006505 | 1.634 | 0.03229 | 2.052 | 0.2249 | 1.494
32 | 0.001640 | 1.988 | 0.007814 | 2.047 | 0.09469 | 1.248

TABLE 4. Test Case 2: Convergence rates for (C°-
Py(T)/[P1(dT))?/Po(T) element on Q.

2/h | leollo order | |legllo | order | |[vnllo | order
1 0.1590 0.7950 0.07950
2 0.2253 | -0.5027 | 1.383 |-0.7982 | 0.3321 | -2.062
4 0.1963 | 0.1984 | 0.7627 | 0.8582 | 0.2444 | 0.4423
8 0.06727 1.545 | 0.2109 1.854 | 0.1349 | 0.8577
16 | 0.01536 | 2.130 | 0.04616 | 2.192 | 0.05452 | 1.307
32 | 0.003276 | 2.230 | 0.01020 | 2.178 | 0.02134 | 1.354

Table 3 presents the numerical performance of the M-PDWG scheme (17)-(18)
for the test problem (84) when the CO-P5(T)/[P1(0T)]?/ Py (T) element is employed.
The numerical results indicate that the convergence rate for e, in the discrete L?
norm is of an expected optimal order O(h?). The convergence rate for the Lagrange
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multiplier in the discrete L? norm seems to be of an order higher than the expected
order O(h). The convergence order for eg in the discrete L? norm seems to be of
an order O(h?). Note that it is not clear to us whether the dual problem (55)-(56)
has the regularity required for the convergence analysis. There are no theoretical
results on the convergence rate for ey in the discrete L? norm. Table 4 shows the
numerical results for the test problem (84) when the C°-Py(T)/[P1(0T)]?/Po(T)
element is applied. We observe from Table 4 that the convergence rates for ey, e,
and 7, in the discrete L? norm seem to be a little higher than the convergence
order corresponding to the case when the CO-Po(T)/[P1(9T))?/P(T) element is
employed.

Figures 1-2 illustrate the numerical error for the Lagrange multiplier \;, when
the CO-Py(T)/[P1(dT)])?/P1(T) element and the CO-Py(T)/[P1(0T))?/Py(T) ele-
ment are employed respectively, compared with the PDWG scheme proposed in

[6].

FIGURE 1. Test Case 2: Numerical error for Lagrange multiplier
when CO-Po(T)/[P1(9T))?/P1(T) element is applied: left figure is
without the term ¢(:, -) proposed in [6]; right figure is with the term
¢(+, ) proposed in this paper.

FIGURE 2. Test Case 2: Numerical error for Lagrange multiplier
when C°-Py(T)/[P1(0T)])?/Py(T) element is applied: left figure is
without the term ¢(-, -) proposed in [6]; right figure is with the term
¢(+, ) proposed in this paper.

Test Case 3. Find u satisfying

2
T;T 4
85 Sij + 215 ) Ofu = in Q; (i=1,2).
(85) Z=(+I+x) Bu=f  nf(i-12)
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For the case of o > 1, the exact solution u = |z|* has H**~7(Q) regularity for
arbitrarily small 7 > 0 and the load function is f = (202 — «)|z|*2. The Cordes
condition holds true with € = 4/5.

TABLE 5. Test Case 3: Convergence rates for C°-
Py(T)/[P1(dT))?/P.(T) element on Q.

1/h | Jleollo |order | |legllo | order | ||ynllo | order
1 0.06193 0.7395 1.408
2 | 0.008210 | 2.915 | 0.1116 | 2.729 | 0.3570 | 1.980
4 10.001760 | 2.222 | 0.04270 | 1.385 | 0.2169 | 0.7190
8 | 4.30E-04 | 2.034 | 0.01483 | 1.526 | 0.1351 | 0.6833
16 | 1.05E-04 | 2.035 | 0.005024 | 1.562 | 0.08752 | 0.6260
32 | 2.55E-05 | 2.042 | 0.001681 | 1.580 | 0.05735 | 0.6098

TABLE 6. Test Case 3: Convergence rates for C°-
Py(T)/[PL(0T))?/Py(T) element on Q.

1/h | leollo order llegllo | order | ||vallo order
1 | 0.003403 0.4903 0.0650
2 10.007769 | -1.1911 | 0.1774 | 1.467 | 0.06253 | 0.05684
4 10.002576 | 1.593 | 0.06160 | 1.526 | 0.04782 | 0.3870

oo

7.83E-04 | 1.719 | 0.02099 | 1.554 | 0.03270 | 0.5482
16 | 2.19E-04 | 1.839 | 0.007048 | 1.574 | 0.02183 | 0.5832
32 | 5.84E-05 | 1.906 | 0.002349 | 1.585 | 0.01447 | 0.5930

TABLE 7. Test Case 3: Convergence rates for C°-
Py(T)/[P1(dT))?/ P (T) element on Q.

2/h| lleogllo | order | |legllo | order | ||yallo | order
1 0.8998 1.207 0.4146
2 0.7142 | 0.3333 | 1.808 |-0.5834 | 2.289 | -2.465
4 0.1928 | 1.889 1.244 0.5394 | 4.685 | -1.034
8 10.04503 | 2.098 | 0.0967 | 3.685 | 0.5329 | 3.136
16 | 0.02497 | 0.8506 | 0.05352 | 0.8540 | 0.3078 | 0.7919
32 10.01242 | 1.007 | 0.02806 | 0.9316 | 0.1958 | 0.6526

Tables 5-6 present the numerical results of the M-PDWG scheme on the domain
Q1 = (0,1)2. It is clear that the coefficient matrix a = (@ij)2x2 is continuous in the
interior of the domain €2, but it fails to be continuous at the corner point (0, 0).
Note that the exact solution v = |z|'6 has H?577(Q) regularity for arbitrarily
small 7 > 0. The numerical approximation indicates that the convergence rates for
e, and 7, in the discrete L? norm are of orders O(h'-%) and O(h%®), respectively,
which are consist with the theoretical results. The convergence rate for ey in the
discrete L? norm seems to be of an order O(h?), for which there is no theory
available to apply.
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TABLE 8. Test Case 3: Convergence rates for (°-
Py(T)/[PL(dT))?/Po(T) element on Q.

2/h | Jeollo order | |legllo | order | |yullo | order
1 | 6.82E-01 0.5800 0.1091
2 | 6.13E-01 | 0.1518 | 0.7084 | -0.2884 | 0.08120 | 0.4271
4 | 2.54E-01 | 1.273 | 0.4067 | 0.8004 | 0.05057 | 0.6831
8 | 1.12E-01 | 1.175 | 0.2177 | 0.9018 | 0.04179 | 0.2753
16 | 5.12E-02 | 1.137 | 0.1101 | 0.9829 | 0.02969 | 0.4930
32 | 0.02354 | 1.120 | 0.05402 | 1.028 | 0.02011 | 0.5620

FIGURE 3. Test Case 3: Numerical error for Lagrange multiplier
when C°-Po(T)/[P1(0T))?/Pi(T) element is applied on Qi: left
figure is without the term ¢(, -) proposed in [6]; right figure is with
the term c¢(-, -) proposed in this paper.

FIGURE 4. Test Case 3: Numerical error for Lagrange multiplier
when C°-P(T)/[P1(0T))?/Py(T) element is applied on Qi: left
figure is without the term c¢(+,-) proposed in [6]; right figure is with
the term c¢(-, -) proposed in this paper.

Figures 3-4 shows the numerical error 7, for the CO-Py(T)/[P1(dT))?/Pi(T)
element and the C°-P,(T) /[P (9T))?/Py(T) element on the domain Q4 respectively,
compared with the PDWG scheme proposed in [6].

Tables 7-8 demonstrate the numerical performance of the M-PDWG scheme
(17)-(18) for the test equation (85) in the domain 5 = (—1,1)2. The coefficient
matrix a = (a;j)2x2 is discontinuous at the center point (0,0) of the domain €
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FIGURE 5. Test Case 3: Numerical error for Lagrange multiplier
when CO-Po(T)/[P1(0T))?/Pi(T) element is applied on Qg: left
figure is without the term c(, -) proposed in [6]; right figure is with
the term c(-, ) proposed in this paper.

FIGURE 6. Test Case 3: Numerical error for Lagrange multiplier
when C°-P(T)/[P1(0T))?/Py(T) element is applied on Qy: left
figure is without the term c(, -) proposed in [6]; right figure is with
the term c¢(-, -) proposed in this paper.

so that the duality argument in the convergence theory is not applicable. We
observe from Tables 7-8 that the numerical results are less accurate than the case
of Q1 = (0, 1)? presented in Tables 5-6. The convergence rate for 73 in the L? norm
is of an order O(h"9), which is consistent with the theory; while the convergence
rates for eg and e, in the L? norm are both of an order O(h) or slightly higher.

Figures 5-6 shows the numerical error 7, for the CO-Py(T)/[P(dT))?/Pi(T)
element and the C%-Po(T)/[P1(0T))?/ Po(T) element on the domain 25 respectively,
compared with the PDWG scheme proposed in [6].

Acknowledgement

I would like to express my gratitude to Dr. Junping Wang for his valuable
discussion and suggestions. The research of Chunmei Wang was partially supported
by National Science Foundation Award DMS-1849483.

References

[1] S. C. Brenner, T. Gudi, M. Neilan, and L.-Y. Sung, C° penalty methods for the fully
nonlinear Monge-Ampeére equation, Math. Comp., 80:1979-1995, 2011.



M-PDWG FOR SECOND ORDER ELLIPTIC EQUATIONS 523

[2] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd
ed., Stoch. Model. Appl. Probab. 25, Springer, New York, 2006.

[3] M. Neilan, Convergence analysis of a finite element method for second order non-variational
elliptic problems, J. Numer. Math., DOI: 10.1515/jnma-2016-1017.

[4] 1. Smears and E. Siili, Discontinuous Galerkin finite element approximation of nondivergence
form elliptic equations with Cordes coefficients, SIAM J Numer. Anal., Vol. 51, No. 4, 2013,
pp. 2088-2106.

[5] C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by
weak Galerkin finite element methods on polygonal or polyhedral meshes, available at
arXiv:1303.0927v1. Computers and Mathematics with Applications, 68 (2014), pp. 2314-2330.

[6] C. Wang and J. Wang, A Primal-Dual Weak Galerkin Finite Element Method for Second
Order Elliptic Equations in Non-Divergence form, Math. Comp., Vol. 87, pp. 515-545, 2018.

[7] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic
problems, Math. Comp., 83 (2014), pp. 2101-2126.

Department of Mathematics, University of Florida, Gainesville, FL. 32611, USA; Department
of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA.

E-mail: chunmei.wang@ufl.edu and chunmei.wang@ttu.edu



