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Multi-Robot Dynamical Source Seeking in Unknown Environments
Bin Du†, Kun Qian‡, Hassan Iqbal‡, Christian Claudel‡, and Dengfeng Sun†

Abstract— This paper presents an algorithmic framework for
the distributed on-line source seeking, termed as DoSS, with
a multi-robot system in an unknown dynamical environment.
Our algorithm, building on a novel concept called dummy con-
fidence upper bound (D-UCB), integrates both estimation of
the unknown environment and task planning for the multiple
robots simultaneously, and as a result, drives the team of
robots to a steady state in which multiple sources of interest
are located. Unlike the standard UCB algorithm in the context
of multi-armed bandits, the introduction of D-UCB significantly
reduces the computational complexity in solving subproblems
of the multi-robot task planning. This also enables our DoSS
algorithm to be implementable in a distributed on-line manner.
The performance of the algorithm is theoretically guaranteed
by showing a sub-linear upper bound of the cumulative regret.
Numerical results on a real-world methane emission seeking
problem are also provided to demonstrate the effectiveness of
the proposed algorithm.

I. INTRODUCTION

Over the past decades, source seeking has been a funda-
mentally crucial problem and attracted increasing attentions,
due to its various applications including surveillance [1], [2],
environment and health monitoring [3]–[6], to name a few.
Source seeking involves locating one or several positions, as-
sociated with measurements maxima, in a possibly unknown
and noisy environment. In this paper, we are particularly
interested in solving the problem of source seeking with a
multi-robot system, in which a team of robots are deployed
and expected to cooperatively locate as many local max-
ima sources as possible, by leveraging the communications
among different robots. In addition, we consider that the
environment is not only unknown but also changing dynam-
ically as the robots acquire knowledge from it. Under this
circumstance, the team of robots needs to track the moving
sources in real-time. We remark that these two settings, i.e.,
the multi-robot system and dynamical environment, make our
problem significantly challenging to solve.

A large number of algorithms have been developed in the
literature [6]–[10] for solving the source seeking problem
within different setups. In particular, a very recent approach
devises an on-line scheme that suits the need of source seek-
ing with mobile robots, This approach is called AdaSearch,
and proposed in [10], by leveraging the notion of UCB in the
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Fig. 1: Visualization of the DoSS setup: the lower layer corre-
sponds to the unknown environment that needs to be explored; the
upper layer depicts the D-UCB which determines the multi-robot’s
task planning. Robots exchange information with their immediate
neighbors and cooperatively estimate the unknown environment.

study of multi-armed bandits problems. This AdaSearch
algorithm maintains a set of candidate points which are
likely to be the sources of interest, and let the robot repeat
a predetermined trajectory so that it can adaptively collect
information from the unknown environment and iteratively
update the candidate set. Consequently, the robot will be
able to eventually identify the desired sources after suffi-
cient information is acquired. However, we should remark
that there are two potential drawbacks of the AdaSearch
scheme: i) it requires the robot to follow the pre-determined
trajectory, which might be inefficient at the later stage of the
algorithm; and ii) it is not applicable in our source seeking
problem setup when considering the multi-robot system and
dynamical environment.

In the present paper, we propose the DoSS algorithm
in which the above two drawbacks are addressed. Inspired
by [10], we also develop an on-line adaptive framework
by integrating the estimation of unknown environment and
task planning for multi-robot simultaneously. Nevertheless,
in contrast to the AdaSearch algorithm, we here let the
robots cooperatively determine their paths by themselves,
and introduce the novel concept of D-UCB which greatly
helps reduce the computational complexity in solving multi-
robot task planning problems. These two points also make
our DoSS algorithm implementable in both distributed and
real-time manner. In addition, other differences between this
paper and [10] are also noteworthy: 1) while the measure-
ment noise is assumed to follow a Poisson process in [10], we
consider the Gaussian distributed noise; see Sec. II-B; and
2) the AdaSearch scheme utilizes both lower and upper
confidence bounds to guide the robot decision, in contrast,
we only need to compute the upper bound with DoSS. The
mechanism of the DoSS algorithm is illustrated in Fig. 1.
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It is worth mentioning that the idea of UCB has also
been commonly adopted in solving the problems of environ-
ment monitoring [11]–[13] and sensor coverage [14]–[16].
In these problems, the environment is often modeled as a
Gaussian process [17]. However, as suggested in [10], the
Gaussian process may not be able to reflect some specific
scenarios of the source seeking problem. On this basis, we
apply a state-space model for the dynamical environment; see
details in Sec. III-C. This also makes our work significantly
different with other literature relying on Gaussian processes.

We summarize the contributions of this paper as follows:
1) A novel DoSS algorithm is proposed for solving the

source seeking problem with the multi-robot system,
and its performance is theoretically guaranteed by
evaluating the asymptotic no-regret.

2) A new notion of D-UCB is introduced which enables
the DoSS algorithm to be implementable in both
distributed and real-time manner.

3) The DoSS algorithm is further adapted with the sce-
nario of a dynamical environment. To the best of our
knowledge, this is the first work that considers the
source seeking problem in the setting of both multi-
robot system and dynamical environment.

II. DISTRIBUTED SOURCE SEEKING

In this section, we formalize the problem of distributed
source seeking with the multi-robot system. For the sake of
presentation, let us first concentrate on a basic version of
the problem, i.e., assuming that the state of the environment
is static and readily known. Later on, this scenario will be
extended to a situation in which the state is unknown and
thus has to be estimated by the robots noisy measurements.

A. Problem Statement: A Basic Version

Let us consider a bounded and obstacle-free environment,
in which sources of interest are present. In particular, we
specify the considered environment by a set of points S with
each element s ∈ S representing the position of the point.
Since the environment has been assumed to be bounded, it is
easy to see that the set S is finite. We denote N the number
of points in the set, i.e., N = |S|. For each point s in S, there
exists a real-valued function φ0(·) : S → R+ that maps the
point’s positional information s to a positive quantity φ0(s)
indicating the level of emission of the source. Naturally,
in order to locate the sources, our objective is to deploy
the multiple robots to the points with the highest quantities
φ0(s). More specifically, let us employ a team of I robots
which are capable of moving among S and communicating
with other connected robots, and expect them to locate as
many sources as possible. Furthermore, we denote p[i] ∈ S
the position of the robot i ∈ I := {1, 2, · · · , I}, and assume
that each robot has perfect knowledge of the state φ0(s) for
each point s. On this account, it is clear to see that the sources
can be easily located by deploying the robots to the points
which have the highest φ0

(
p[i]
)
.

Nevertheless, redundancies might be present when as-
signing the multi-robot system to the multiple sources. To

elaborate on this, let us suppose that there is no cooperation
between any pair of two robots, then each robot i in the
team will tend to locate the same target s? which has the
maximum φ0(s?), i.e., p[i] = s?,∀i ∈ I. This is obviously
not appealing when the multi-robot system is employed. In
contrast, we shall expect that the team of I robots can locate
as many sources as possible, e.g., the (locally) highest I
quantities φ0(s), by leveraging the communications between
the connected robots. In order to achieve such a goal, we
formalize the problem of distributed source seeking with the
multi-robot system as the following optimization,

maximize
p[i]∈S, i∈I

F (p[1],p[2], · · · ,p[I]) =
∑

s∈∪I
i=1p[i]

φ0(s).

(1)
The objective function F (·) : SI → R+ maps the positions
of I robots to a positive scalar that sums all distinct measured
quantities. Throughout this paper, we assume that the maxi-
mizer of problem (1) is unique and express it as a compact
form p? = [p?[1],p?[2], · · · ,p?[I]] ∈ SI .

It should be noted that, since the set S is finite, the above
maximization problem can be naively solved by assigning the
i-th robot to the point p[i] which has the i-th largest quantity
φ0
(
p[i]
)
. However, such a naive scheme inherently assumes

each robot to be aware of its exclusive global ID which is a
restrictive requirement in a fully distributed architecture [18].
As an alternative way to solve the optimization problem (1),
we shall remark that the problem can be viewed as a special
case of the monotone submodular maximization, and thus
can be solved by the distributed algorithm proposed in
our previous work [19]. The key idea of this algorithm is
to find the equilibrium solution, and interestingly, it can
be verified that the problem (1) has a unique equilibrium
which is coincident with the optimal solution. We refer
the interested reader to our work [19] for details on the
distributed algorithm.

B. Source Seeking via Estimation on the Environment

Notice that the problem considered in the previous subsec-
tion is somewhat trivial, since we assumed that each robot
perfectly knows the state φ0(s) of the entire environment.
This is unrealistic for the real-world applications. We next
let the team of robots cooperatively estimate the environment
based on the local noisy measurements, and in the following,
we first introduce the measurement model.

Suppose that the vector φ0 ∈ RN
+ stacks each individual

state φ0(s) for all points s in the environment S. We consider
the following stochastic measurement model for each robot i,

zi = Hi
(
p[i]
)
φ0 + ni, (2)

where the vector zi ∈ Rmi represents the obtained mea-
surement of dimension mi; Hi

(
p[i]
)
∈ Rmi×N denotes the

measurement matrix depending on the robot’s position p[i];
and ni ∈ Rmi is corresponding to the measurement noise. In
addition, we assume that the noise ni follows the indepen-
dent and identically distributed Gaussian distribution with
zero-mean and covariance V i = vi · I ∈ Rmi×mi where I
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denotes the identity matrix with appropriate dimensions.
Particularly, we denote v̄ = maxi∈I v

i and
¯
v = mini∈I v

i.
Remark 1: We note that the measurement matrix Hi

(
p[i]
)

is not specified in the above model (2). In fact, it can be
defined by various means based on the robot’s position. One
of the simplest way is to let Hi

(
p[i]
)

= e>l where el ∈ RN

is an unit vector, i.e., the l-th column of the identity matrix,
and l ∈ {1, 2, · · · , N} denotes the index of the position
p[i] in the environment S. This means that the robot only
measures the quantity at the point where it currently is.
Such a choice of Hi

(
p[i]
)

is actually adopted in [10] as
the so-called point-wise sensing model. Besides, some other
specifications of the measurement matrix are also used in
the existing works. For instance, a circular sensing area with
radius ri is applied in [20], which implies that,

Hi(p[i]) =
[
el
]>
l∈Ci , (3)

where the set Ci := {l | ‖sl − p[i]‖ ≤ ri} includes the
indices of all points sl that fall into the disk which is centered
at p[i] and has radius ri.

Based on the measurement model (2), one should no-
tice that the true value of φ0 can be estimated by many
techniques, such as least-squares, classical Kalman filter, to
name a few, when some mild conditions on the measurement
matrices are satisfied. Therefore, the problem of distributed
source seeking with an unknown environment can be ad-
dressed by a simple approach which contains the following
two phases separately: i) let the team of robots move around
the environment and obtain an accurate enough estimation
of the state; and ii) specify the robots’ target positions by
solving the maximization problem (1) based on the estimated
states. However, this is essentially an off-line approach, since
the robots do not have specific targets when estimating the
environment in the phase i) and the phase ii) cannot be started
until an accurate enough estimate is obtained. Motivated by
this, in the next section, we aim to integrate the above two
phases together and propose an adaptive on-line framework
– the DoSS algorithm. That is, the robots recursively update
their target positions; meanwhile, measure and estimate the
unknown environment, until the steady state is reached in
which the team of I robots manages to identify the top I
sources.

III. AN ADAPTIVE ON-LINE FRAMEWORK

Before proceeding to the development of the DoSS al-
gorithm, let us first introduce some additional notations.
Considering that our on-line approach is developed in a
recursive manner, we denote pk[i] as the i-th robot current
position at iteration k ∈ N+. Accordingly, the measurement
model (2) is adapted into

zik = Hi(pk[i])φ0 + ni
k. (4)

Note that here zik ∈ Rmi and ni
k ∈ Rmi follow the

same definitions as zi and ni in model (2). In addition, we
further assume that the measurement noise ni

k is independent
and identically (Gaussian) distributed for each individual
robot i, with zero mean and covariance matrix V i. With

the help of the above adapted measurement model (4), we
can now specify the technique for estimating the unknown
environment.

A. Kalman Consensus Filter

Let us begin by rewriting the measurement model (4) into
the following compact form:

zk = Hkφ0 + nk. (5)

Here, zk = [(z1k)>, (z2k)>, · · · , (zIk)>]> ∈ RM denotes the
measurements obtained by all robots with M =

∑I
i=1mi;

Hk = [H1(p1
k)>, H2(p2

k)>, · · · , HI(pI
k)>]> ∈ RM×N

stacks all local measurement matrices as a collective global
one1; and nk = [(n1

k)>, (n2
k)>, · · · , (nI

k)>]> ∈ RM is the
zero-mean Gaussian noise whose covariance is expressed as

V := Diag{V 1, V 2, · · · , V I} ∈ RM×M . (6)

Subsequently, the centralized Kalman filter for estimating the
mean φ̂k ∈ RN and covariance Σk ∈ RN×N performs the
following recursions,

Σk+1 =
(

Σ−1k + Yk

)−1
; (7a)

φ̂k+1 = φ̂k + Σk+1(yk − Ykφ̂k), (7b)

where the two variables Yk := H>k V
−1Hk ∈ RN×N and

yk := H>k V
−1zk ∈ RN , often referred to as the new

information, incorporate the measurements into the updates.
One should notice that the above recursion (7) is slightly
different with the standard Kalman filter since it only serves
as the correction step and the prediction step is absent. This
is due to the fact that the environment is assumed to be static.
Later on, the predict step of the Kalman filter will show up,
when we deal with the dynamical environment in Sec. III-C.

It is also worth mentioning that the Kalman filter (7)
readily estimates the unknown environment in an on-line
manner, i.e., the team of I robots moves to new positions,
obtains the new measurements, and updates their estimations.
However, we should note that two issues may arise: i) the
statistical property of the classical Kalman filter may no
longer hold due to the sequential decision process; ii) such
an on-line procedure is performed in a centralized way,
since the new information Yk and yk are involved with the
data obtained/maintained by all robots. In order to devise a
distributed scheme to run the Kalman filter (7), many existing
works, e.g., [21]–[23], leverage the special structure of the
noise covariance V . Considering the diagonal structure of
the matrix V , as shown in (6), the new information can be
further expressed as

Yk =
I∑

i=1

Hi(pi
k)(V i)−1Hi(pi

k)>; (8a)

yk =
I∑

i=1

Hi(pi
k)(V i)−1zik, (8b)

1When writing Hk , with slight abuse of notation, we have absorbed the
dependency on the robots’ positions pi

k’s into the index k.
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which means that Yk and yk can be computed by simply
summing all the local information together. This motivates
the development of Kalman consensus filter, in which each
robot first carries out an average/sum consensus procedure
to fuse local information and then performs (7).

B. The DoSS Algorithm

In the previous subsection, we focused on the estimation
of the unknown environment. Our question now becomes:
how to integrate the estimation together with the robots
decision-making process. A naive idea here would be using
the estimated state φ̂k at each iteration k, and then solving

pk ∈ arg max
p[i]∈S, i∈I

∑
s∈∪I

i=1p[i]

φ̂k(s). (9)

Here, we use φ̂k(s) ∈ R to denote one component of
the vector φ̂k which corresponds to the point s in the
environment. It should be emphasized that such a scheme
cannot guarantee the team of robots to locate the sources with
the highest true φ0(s)’s. An undesired but possible scenario
is that the robots significantly underestimate the maximum
value φ0(s?) at the initial stage, i.e., φ̂(s?) � φ0(s?), and
as a result, the robots will never have another chance to
visit the key point s?. On this account, it can been seen that
merely utilizing the estimated mean is insufficient to drive
the team of robots to the desired positions. To address this,
we next take advantage of both the estimated mean φ̂k and
covariance Σk to develop our DoSS algorithm.

Based on φ̂k and Σk, let us introduce an additional
variable µk ∈ RN , which we refer to as D-UCB,

µk := φ̂k + βk(δ) · diag1/2(Σk). (10)

Note that the operator diag1/2(·) : RN×N → RN maps the
square root of the matrix diagonal elements to a vector, and
the parameter βk(δ) > 0 depending on the critical confidence
level δ will be specified later on. In fact, the intuition behind
this notion of D-UCB is straightforward: each µk provides
a probabilistic upper bound of the true value φ0 by utilizing
the current mean and covariance. Next, we formalize, with
the following lemma, how the true value φ0 is upper bounded
by the D-UCB µk with the probability related to δ. Note that
Lemma 1 is a special case of the subsequent Lemma 2 and
we refer the proof to the complete version of this paper [24].

Lemma 1: Suppose that the state estimates φ̂k and Σk are
generated by the Kalman (consensus) filter (7)–(8) with the
initialization φ̂0 and

¯
σ · I ≤ Σ0 ≤ σ̄ · I, then it holds that,

P
(∣∣φ̂k − φ0

∣∣ � βk(δ) · diag1/2(Σk)
)
≥ 1− δ, (11)

where | · | and � are defined element-wise, the probability
P(·) is taken on random noises (n0,n1, · · · ,nk), and the
sequence {βk(δ)}k∈N+ is non-decreasing satisfying

βk(δ) ≥ N3/2C1 +N2C2 ·
√

log
( σ̄/

¯
σ + σ̄ · k/

¯
v2

δ2/N

)
,

(12)

with C1 = ‖φ̂0 − φ0‖/
√

¯
σ and C2 = v̄2

√
max{2, 2/

¯
v}.

The above Lemma 1 inherently constructs a polytope cen-
tered at φ̂k such that the true value φ0 falls into it with
probability at least 1− δ. Based on the polytope defined by
the inequality in (11), it can be seen that the D-UCB µk

takes the upper bounds marginally and each element µk(s)
is guaranteed to have µk(s) ≥ φ0(s) with probability at
least 1 − δ. Next, we use the defined D-UCB µk to update
the robots target positions online, by solving the following
maximization problem:

pk ∈ arg max
p[i]∈S, i∈I

∑
s∈∪I

i=1p[i]

µk(s). (13)

We now summarize the DoSS algorithm in the following
Algorithm 1 and establish its performance with the following
theorem. Likewise, we refer the proof of Theorem 1, as a
special case of Theorem 2, to our complete version [24].

Algorithm 1: Distributed on-line Source Seeking

Initialization: Each agent i initializes its own estimates
φ̂0 and Σ0, and computes the target position pi

1. Set the
confidence level δ and also {βk(δ)}k∈N+ . Let k = 1.

while the stopping criteria is NOT satisfied do
Each sensor i simultaneously performs

Step 1 (Measuring): Obtain the measurement
zik based on the measurement matrix Hi(pi

k);

Step 2 (Kalman Filtering): Collect information
from neighbors, obtain mean φ̂k and covariance
Σk by Kalman consensus filter (7);

Step 3 (D-UCB Computing): Compute via (10)
the updated D-UCB µk based on φ̂k and Σk;

Step 4 (Target Positions Updating): Assign the
new target position pi

k+1 by solving (13).

Let k ← k + 1, and continue.
end

Theorem 1: Suppose that {pk}k∈N+
is the sequence gen-

erated by Algorithm 1 under the conditions in Lemma 1,
then it holds that, with probability 1− δ, for ∀K ∈ N+,

K∑
k=1

(
F (p?)−F (pk)

)
≤ O

(√
K log(K)

)
. (14)

Remark 2: A significant difference between the Linear
UCB algorithm [25] and our DoSS algorithm is that we
construct the D-UCB, rather than the standard UCB, to
drive the update of pk’s. Due to this difference, one cannot
immediately prove the above Theorem 1 by following exactly
the steps in [25]. A remarkable idea of our proof is to define
a specific vector norm which interplays with the form of D-
UCB and then establish the regret analysis with respect to the
specific norm. This makes our theoretical results non-trivial.
In addition, we should also emphasize that the introduction
of D-UCB helps reducing the computational complexity of
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our DoSS algorithm significantly, when solving the problem
in the multi-robot setting. Since the standard UCB is defined
in a joint sense, when solving the multi-robot maximization
problem (13) with the standard UCB, it is inherently a com-
binatorial optimization and can be extremely complicated
to find the exact solution. In contrast, due to the fact that
the D-UCB takes the upper bounds marginally as mentioned
before, the maximization (13) can be essentially decomposed
and becomes much easier to solve for exact solutions. We
remark this as one of the most important contributions of the
proposed DoSS algorithm.

C. DoSS on a Dynamic Environment

Now, we extend our problem setup into a more general and
applicable case, i.e., when the unknown environment follows
some dynamics so that the multiple robots need to track the
moving sources. More specifically, let us consider that the
state of dynamical environment φt ∈ RN

+ , and is governed
by the following linear time-varying model:

φt+1 = At+1φt, (15)

where the subscript t represents the discrete time-step and
At ∈ RN×N denotes the state transition matrix. Now,
since the unknown environment state is changing with time,
the objective of the multiple robots becomes to track the
positions p?

t ∈ SI of the moving sources, which is defined
by the following maximization,

p?
t = arg max

p[i]∈S, i∈I
Ft(p) =

∑
s∈∪I

i=1p[i]

φt(s). (16)

In (16), we use φt(s) ∈ R+ to represent the component of
the vector φt which corresponds to position s, and thus the
objective function Ft(·) : SI → R+ should also depend on
the time-step t. Furthermore, in order to ensure that the above
maximization (16) is well-defined, we assume that φt is
always bounded and also will not vanish to zero as the time-
step t increases. It also means that the sources, characterized
by the maximum components of φt, are always recognizable
for the multiple robots.

In order to achieve the goal of tracking moving sources p?
t ,

we here adopt the same framework as our DoSS algorithm.
However, considering that the environment is subject to the
linear dynamics (15), we will need to incorporate the pre-
diction step into the Kalman consensus filter, as mentioned
in Sec. III-A. Consequently, the updated Kalman consensus
filter reads2,

Σk+1 = Ak+1

(
Σ−1k + Yk

)−1
A>k+1; (17a)

φ̂k+1 = Ak+1

(
φ̂k + (Σ−1k + Yk)−1(yk − Ykφ̂k)

)
, (17b)

where the new information Yk and yk follow the same def-
initions as in Sec. III-A, however, the robot’s measurement
model needs to adapt with the environment dynamics, i.e.,

zik = Hi(pi
k)φk + ni

k. (18)

2It is assumed that the discrete time-step t of the dynamics is consistent
with the iteration index k of our algorithm, and henceforth we use the
index k to replace t in the system model.

Now, the DoSS algorithm for the dynamical environment
runs the same procedure as in Algorithm 1. The following
Lemma 2 and Theorem 2 together establish the convergence
result for the algorithm; see the proof in [24].

Lemma 2: Suppose that the state estimates φ̂k and Σk

are generated by the Kalman (consensus) filter (17) with the
initialization φ̂0 and

¯
σ · I ≤ Σ0 ≤ σ̄ · I, then it holds that,

P
(∣∣φ̂k − φk

∣∣ � βk(δ) · diag1/2(Σk)
)
≥ 1− δ, (19)

where {βk(δ)}k∈N+
is non-decreasing satisfying

βk(δ) ≥ N3/2C1 +N2C2 ·
√

log
( σ̄/

¯
σ + σ̄ · k/

¯
v2

δ2/N

)
,

(20)

with C1 and C2 be defined as in Lemma 1.
Theorem 2: Suppose that {pk}k∈N+

is the sequence gen-
erated by Algorithm 1 with the Kalman filtering step replaced
by (17), and let the conditions in Lemma 2 holds, then one
can have that, with probability 1− δ, for ∀K ∈ N+,

K∑
k=1

(
Fk

(
p?
k

)
− Fk(pk)

)
≤ O

(√
K log(K)

)
. (21)

Remark 3: It is also worth noting that Theorem 2 guar-
antees that the multi-robot system is capable of tracking the
desired sources accurately, even if they are moving around
the unknown environment. This can be achieved primarily
due to the fact that the environment is assumed to be
noise-free. The process noise in the model of environment
dynamics will be considered in future work.

IV. SIMULATION

In this section, we demonstrate the effectiveness of our
DoSS algorithm, by considering a real-world methane leak-
ing source seeking problem. In fact, such a problem has been
broadly studied in the area of robotics; see e.g., [26], [27].
Compared to these existing works, a primary difference here
is that we deploy multiple robots, rather than a single one,
to the target methane field. As a result, we expect that the
individual robots will be able to track the distinct and pos-
sibly moving leaking sources by leveraging the cooperations
among the entire team of robots.

Let us suppose that the target methane field is described by
a D×D lattice, as shown in the background of Fig. 2. Each
cell l ∈ {1, 2, · · · , D2} in the lattice is represented by its
position sl and also the quantity φt(sl) which indicates the
level of methane concentration at the time-step t. Overall, the
N -dimensional vector φt = [φt(s

1), φt(s
2), · · · , φt(sN )]>

with N = D2 characterizes the state of the entire methane
field of interest. More specifically, in this simulation, we set
the size of the methane field as D = 50. The initialized
methane state φ0 is generated through Gaussian kernels
with leaking sources having largest concentrations among
the field, and then we let leaking sources move within the
field so that the time-varying φt is generated. In order to
explore the unknown target methane field and furthermore
track the moving leaking sources, we employ a team of
three robots, each of them equipped with a sensor that is
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(a) Snapshot at iteration k = 100 (b) Snapshot at iteration k = 250

(c) Snapshot at iteration k = 450 (d) Snapshot at iteration k = 600

Fig. 2: Demonstration of three robots’ tracking of the moving
leaking sources in an unknown methane field.

capable of measuring a circular area with radius r = 3; see
the detailed measurement model (18) and the description
of measurement matrix (3) in Remark 1. In particular, we
assume that the sensing noise of each robot is independent
and identically distributed Gaussians with zero-mean and
covariance V i = I, where I denotes the identity matrix
with appropriate dimension. Note that, since the maximum
value of the state φt is set around 5, the noise covariance is
reasonably large so that the overall problem is not trivial to
solve. Besides, it is also assumed that the three robots can
exchange information with their immediate neighbors, and
the communication channels, shown as the red dot lines in
Fig. 2, follow a simple undirected connected graph.

To demonstrate the result of tracking of the moving
leaking sources, four snapshots are taken and shown in Fig. 2
at the iterations k = 100, 250, 450, 600, respectively. It can
be observed that the team of robots is able to locate all three
moving leaking sources at the 600-th iteration. In addition, in
order to show the simulation result quantitatively, Fig. 3 plots
both the regret rk = Fk

(
p?(k)

)
− Fk

(
pk

)
at each iteration

as a blue line, and the cumulative regret
∑k

t=1 rt as a black
line. Note that each line is obtained by the data averaged
from 20 Monte-Carlo trials; the standard deviation is also
reported in the figure. It can be concluded from Fig. 3 that
the regret rk decreases to zero as the number of iterations
grows, which confirms that the team of robots will be able
to track the moving leaking sources. Besides, the cumulative
regret shows a sub-linear increase, which is also consistent
with the theoretical result of Theorem 2.

In order to validate the effectiveness of the proposed
algorithm, we further compare the performance of our
DoSS algorithm with two benchmark schemes: 1) the
AdaSearch algorithm; and 2) a naive approach, termed
as NaiveSearch, in which the robots scan the whole
unknown field repeatedly and determine the position of
leaking sources by the current estimation of the field. Note
that, to evaluate these three scheme fairly, we here only
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Fig. 3: Regret analysis

(a) Cumulative regret (b) Regret at each iteration

Fig. 4: Comparison of the regret with three different schemes

consider a static target methane field. As previously, we
run each of the three schemes for 20 Monte-Carlo trials,
and Fig. 4 shows the simulation results. It can be observed
from this figure that our DoSS algorithm outperforms both
AdaSearch and NaiveSearch algorithms in terms of the
regret descent rate, which means that the our algorithm can
locate the leaking sources more efficiently in an unknown
methane field than the two others.

V. CONCLUSION

In this paper, we proposed a novel algorithmic framework,
termed as DoSS, for solving the multi-robot source seeking
problem in a dynamical unknown environment. Building on
the notion of D-UCB, our algorithm integrates the estimation
of the unknown environment and task planning for multiple
robots. Both theoretical analysis and numerical simulations
show that the DoSS algorithm can drive the team of robots
to a steady state in which multiple sources of interest
are located. They also show that DoSS outperforms other
benchmark algorithms. Future work will focus on a more
general problem setup in which process noise is present in
the environment dynamics.
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