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Parallelized Active Information Gathering Using
Multisensor Network for Environment Monitoring

Bin Du , Kun Qian , Christian Claudel, and Dengfeng Sun , Member, IEEE

Abstract— Motivated by the application of environment mon-
itoring, this article studies a novel algorithmic framework for
solving, in a parallelized manner, the problem of multisensor
active information gathering. Unlike the existing methods relying
on the fully connected sensor network and sequential processing,
our approach builds on the generic network topology and enables
individual sensors to simultaneously make their decisions by
communicating with the immediate neighbors. Leveraging the
cooperation among the multisensor network, we show that the
computational complexity of the proposed parallelized algorithm
can be greatly reduced compared to the sequential updating
schemes, and meanwhile, the suboptimality of obtained solutions
is guaranteed. The interconnection between the algorithm com-
plexity and solution quality is explicitly established with respect to
the network topology. Based on such interconnection, we further
provide the approach to design the optimal sensor network by the
given time budget of the algorithm execution. Finally, numerical
simulations on a methane emission monitoring scenario are
presented to validate the effectiveness of our approach.

Index Terms— Distributed algorithms, environment
monitoring, motion planning, multi-sensor network.

I. INTRODUCTION

RECENTLY, mobile sensors, due to their remarkable
features, such as mobility, flexibility, and accessibil-

ity, have found various applications, including surveillance
[1], [2], coverage control [3], [4], environment, and health
monitoring [5]–[7]. In particular, it typically provides superior
coverage if a team of mobile sensors, rather than a single one,
is employed. For instance, as suggested in [8], considering that
the cooperation among the multiple sensors enables the scaling
up of sources of the observations in both time and space, more
informative viewpoints might be obtained through the team
of sensors. Such a coordinated team also has the potential to
accomplish missions whose total computational workload goes
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beyond the capability of every single one. On this account,
the cooperation protocol among the multisensor team is sup-
posed to be specifically devised to achieve the advantages.

In this article, we focus on the application of environ-
ment monitoring and are particularly interested in solving
the multisensor active information gathering problem. As a
motivating example, let us consider a real-world methane
emission monitoring scenario, which is illustrated in Fig. 1
and will be further simulated in the numerical simulations
(see Section VI). In order to actively monitor the unknown
dynamical methane field (subject to process noise), we deploy
a team of mobile sensors whose dynamics are assumed to be
known. More specifically, our goal here is to determine the
optimal control inputs for all involved mobile sensors such
that the generated trajectories allow them to take measure-
ments on the unknown environment, which provides as much
information as possible. Consider that each mobile sensor
can only measure the environment within a limited sensing
range, depending on its real-time position and orientation.
Therefore, in order to gather the most amount of information,
the multiple sensors are expected to spatially approach the
distinct leaking sources, as shown in the figure. To avoid the
potential conflict, one will have to take into account the peer-
to-peer communication within the sensor network. When it
comes to the cooperation between different sensors, the con-
sidered problem becomes undoubtedly more complicated than
the single sensor case due to the coupling of multiple sensors’
trajectories and their measurements on the environment. On
the other hand, however, such multiple sources of observa-
tions also provide more informative viewpoints for perceiving
the unknown environment. Thus, given both the challenges
and advantages, the multisensor active information gathering
problem has attracted increasingly significant attention in the
works of recent years.

A. Literature Review

The problem of active information gathering has been
broadly studied in the literature [8]–[19]. For the sake of
completeness, we start the literature review by first mentioning
the centralized approaches [9], [10], which are proposed when
only single sensor is involved. Building on the assumptions
that the sensor’s measurement is linear with respect to the
environment states and sensing noises have the white Gaussian
nature, the sensor trajectory optimization problem can be
reformulated into a deterministic optimal control problem via
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Fig. 1. Real-world methane emission monitoring scenario.

the technique of the Kalman filter. Subsequently, to solve the
resulting deterministic problem, the well-known forward value
iteration (FVI) method is applied in [9] by leveraging the fact
that the sensor can only select its control input from a finite
set at each time step. In this sense, the baseline of such an
FVI-based method is to construct a search tree of all possible
control sequences and then to find the sensor’s optimal tra-
jectory that gives the maximum/minimum objective function
value. Considering that every possible control sequence needs
to be evaluated to obtain the optimal trajectory, a critical
concern of this approach is its exponential complexity in terms
of the time horizon although it guarantees optimality of the
obtained solution. Based on this, the idea of discarding unnec-
essary nodes in the search tree is adopted [10]. It is shown
that the proposed reduced value iteration (RVI) algorithm
has lower computational complexity, while its performance
remains comparable to the FVI-based method.

Despite the fact that the RVI algorithm could decrease the
computational amount (with respect to the time horizon) for
the problem with multiple sensors as well, however, the size
of the set of possible control inputs still scales exponentially
with respect to the number of sensors. In this sense, such
an RVI algorithm is not applicable for the problem with the
sensor network, and thus, the decentralized variant of the RVI
algorithm is studied in [11] by utilizing the idea of coordinate
descent. While the coordinate descent scheme is capable of
reducing the computational complexity from exponential to
linear (with a suboptimal solution), we remark that such
scheme inherently relies on the specific network topology and,
meanwhile, requires the multiple sensors to sequentially make
their decisions (see details in Section II-B). Starting from these
two issues, Schlotfeldt et al. [12] attempt to fix the first one by
using the technique of distributed Kalman filter [14]; however,
the second one remains unsolved and could lead to critical
concerns. Considering that, when one sensor is making its own
decision, all others in the network need to be idled and wait for
it, this is essentially a waste of resources in the perspective of
parallel computing. Motivated by this, we here aim to develop
a parallelized framework, in which multiple sensors perform
the computation in parallel over the generic network. By doing
so, the computational complexity of our parallelized algorithm
is expected to be primarily reduced compared to the existing
sequential updating schemes.

It is also worth noting that, while the coordinate descent
scheme is highly related to the Gauss–Seidel iteration [20],

our algorithm is essentially based on the colored Gauss–Seidel
method [21], which enables parallel computing at each itera-
tion. As a counterpart of the Gauss–Seidel iteration, the Jacobi
method can be naturally parallelized in shared-memory com-
puting architecture and, thus, has been widely studied in the
area of parallel/distributed processing [22], [23]. Nevertheless,
we emphasize that the Jacobi method is not applicable for
solving our problem here, since the sensor network is assumed
to follow the generic topology and the optimization problem
in our setup is essentially considered in the discrete domain.

Besides the above-reviewed approaches that are mainly
focused on the problem of active information gathering,
another noteworthy line of works has also been found in the
literature [24]–[30] which solves the standard (multi)target
tracking problem. Although these two types of problems are
related in which the unknown states of the target(s) or envi-
ronment are expected to be estimated by utilizing the sensors’
measurements, we remark that they are significantly distin-
guishable in the following sense. While the target tracking
problem typically assumes a set of static sensors and more
focuses on the development of state estimation techniques,
the problem of interest in this article couples the unknown
state estimation with a sophisticated control or optimization
procedure, which plans the optimal trajectory for each of the
dynamical sensors. In this sense, one major challenge of our
problem is to solve for the sensors’ optimal control inputs that
have the combinatorial nature as explained above.

B. Summary of Contributions

We summarize the contributions of this article as follows.

1) Building on the generic sensor network topology, a par-
allelized algorithm is developed for solving the active
information gathering problem. As distinct from the
existing methods [11], [12] that rely on sequential
processing, the proposed algorithm enables simultaneous
updates over the multisensor network.

2) While suboptimality guarantee might be compromised
for the obtained solutions, the computational complexity
of our parallelized algorithm is primarily reduced against
the sequential updating schemes. Considering the trade-
off between the complexity of the algorithm and the
quality of solutions, their interconnection is explicitly
established in terms of the sensor network topology.

3) Moreover, in order to achieve the best suboptimality
guarantee of the obtained solution, the approach to
design an optimal network topology is further provided
by the given time budget of algorithm execution.

The rest of this article is organized as follows. Section II
presents the formulation of the multisensor active informa-
tion gathering problem and introduces the coordinate descent
scheme. Our parallelized algorithm is developed in Section III.
Section IV establishes the performance analysis of the pro-
posed algorithm. Section IV provides the approach to design
the optimal network topology. Section VI demonstrates the
effectiveness of our algorithm via numerical simulations on
a real-world methane emission monitoring scenario. The con-
clusion of this article is presented in Section VII.
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II. PROBLEM STATEMENT

Let us consider a network of n mobile sensors and assume
that each sensor i ∈ I := {1, 2, . . . , n} obeys the dynamics

xi,t+1 = fi
(
xi,t , ui,t

)
. (1)

Here, xi,t ∈ R
dx represents the state of the i th sensor at the

discrete time step t; ui,t ∈ Ui,t denotes the control input; and
Ui,t ⊂ R

du is a finite set of the control inputs that the senor i
can possibly take.

Suppose that the goal of such a sensor network is to monitor
the unknown dynamical environment. For instance, as shown
in the motivating example (see Fig. 1), the environment
corresponds to the unknown methane filed in which multiple
moving leaking sources might be present. Note that, here,
we are interested in the model of the whole methane filed,
rather than the individual leaking sources. It is further assumed
that the environment state follows the linear dynamics:

yt+1 = At yt + wt , wt ∼ N (0, Wt ) (2)

where At ∈ R
dy×dy is the system parameter and the process

noise wt ∈ R
dy follows the Gaussian distribution with covari-

ance Wt ∈ R
dy×dy . To monitor the unknown environment

state yt , we assume that each sensor has the following mea-
surement model:

zi,t = Hi,t
(
xi,t

)
yt + vi,t

(
xi,t

)
, vi,t ∼ N

(
0, Vi,t

(
xi,t

))
. (3)

Here, zi,t ∈ R
dz denotes the data measured by the i th sensor;

Hi,t(xi,t ) ∈ R
dz×dy is the sensing matrix; and vi,t (xi,t) ∈ R

dz is
the sensing noise following Gaussian distribution with zero
mean and covariance Vi,t (xi,t) ∈ R

dz×dz . We note that the
measurement model (3) is assumed to be linear with respect
to the environment state yt , and such a requirement can be
relaxed by linearizing the potential nonlinear model around
the estimated state [12]. In addition, both the sensing matrix
and noise are assumed to be dependent on the sensor’s state
xi,t , as the measurement might be related to the sensor’s
position and/or orientation. Nevertheless, for simplicity, short-
hand notations Hi,t , vi,t and Vi,t are later used to denote
the sensing matrix, noise, and covariance, respectively, where
we take the dependence on xi,t into consideration implicitly.
Besides, we assume that the noise vi,t is uncorrelated for
different sensors.

A. Centralized Active Information Gathering

Let us start with a centralized perspective and consider
that the local information tuple (xi,t , zi,t) can be collected
and utilized globally. Thus, we denote the collected global
information as xI

t ∈ R
ndx and zIt ∈ R

ndz , which stacks all
local xi,t ’s and zi,t ’s, respectively. Note that the superscript I,
representing the entire sensor network, is used to denote the
collected information. Given that the sensing noise is assumed
to be uncorrelated for distinct sensors, thus, the measurement
model for the network can be simply written as

zIt = HI
t yt + vI

t (4)

where the overall measurement matrix HI
t ∈ R

ndz×dy stacks
each Hi,t and also the global sensing noise vI

t ∈ R
ndz follows

the Gaussian distribution N (0, V I
t ) with the covariance being:

V I
t := diag

{
V1,t , V2,t , . . . , Vn,t

} ∈ R
ndz×ndz . (5)

On this account, the centralized active information gathering
problem can be formulated as the following optimization:(

PI
0

) : max{u1:n,t}t∈T
I
(
yT+1;

{
z1:n,t

}
t∈T

)
(6a)

s.t. xi,t+1 = fi
(
xi,t , ui,t

)
(6b)

yt+1 = At yt + wt (6c)

zIt = HI
t yt + vI

t (6d)

ui,t ∈ Ui,t , i ∈ I, t ∈ T . (6e)

The objective function I(yT+1; {z1:n,t}t∈T) denotes the
mutual information, where {z1:n,t}t∈T represents the set of
measurements within the time horizon T := {0, 1, . . . , T −1}.
As distinct from the target tracking problem which primarily
focuses on the estimation of the unknown environment state,
we emphasize that (PI

0 ) here aims to find the optimal control
sequences {u1:n,t }t∈T such that the mutual information between
the environment state yT+1 and all sensors’ measurements
{z1:n,t}t∈T is maximized. For this purpose, it is natural that
the multiple sensors, as shown in the motivating example (see
Fig. 1), will intend to approach the distinct targets.

In fact, such (centralized) active information gather-
ing problem has been widely studied in the literature,
e.g., [10] and [9]. An early attempt [10] reduces the original
problem with stochasticity into the following deterministic
optimization:

max{u1:n,t}t∈T
log det

(
�I

T

)
(7a)

s.t. xi,t+1 = fi
(
xi,t , ui,t

)
(7b)

�I
t+1 = At

(
�I

t

)−1
A�t +Wt (7c)

�I
t+1 =

(
HI

t+1

)�(
V I

t+1

)−1
HI

t+1 +
(
�I

t+1

)−1
(7d)

ui,t ∈ Ui,t , i ∈ I, t ∈ T . (7e)

Note that the constraints (7c) and (7d) are due to the
information form of the Kalman filter. As a consequence of the
above formulation (7), the FVI algorithm is developed in [9]
by constructing a search tree of all possible control sequences
and then finding the optimal one, which gives the maximum
objective function value. Although this approach guarantees
the global optimality of the obtained solution, however, since
multiple sensors are involved in the problem setup, it is clear
that the size of the search tree will grow exponentially as
the number of sensors increasing. Thus, to further reduce the
algorithm complexity in the multisensor setting, an idea of the
coordinate descent, also known as the Gauss–Seidel iteration,
is proposed in [11]. The parallelized algorithm proposed in this
article is also inspired by such a coordinate descent scheme.

B. Coordinate Descent Scheme

Let us first simplify the formulation of optimization (7) by
introducing the notion of reachable set. It is observed that the
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objective function, as shown in (7d), is mainly determined by
the key terms (HI

t+1)
�(V I

t+1)
−1 HI

t+1. Thus, we introduce a new
variable �I

t ∈ R
ndz×ndz , called information matrix, to denote

such terms, i.e.,

�I
t :=

(
HI

t

)�(
V I

t

)−1
HI

t , t ∈ T . (8)

In addition, we refer to the set {�I
t }t∈T as the information

trajectory, which contains all information matrices within the
time horizon. Note that this information trajectory is decided
by the sensors’ states {xI

t }t∈T or inherently their control
inputs {u1:n,t}t∈T . Thus, we further define RI

t ⊆ R
ndz×ndz

as the reachable set of the information matrix �I
t at the

time step t , given that each sensor’s initial state is xi,0’s,
i.e.,

RI
t :=

{(
HI

t

)�(
V I

t

)−1
HI

t

∣∣ xi,τ+1 = fi
(
xi,τ , ui,τ

)
,

ui,τ ∈ Ui,τ , τ ∈ {0, 1, . . . , t − 1}, i ∈ I
}
. (9)

As a result, the deterministic optimization model (7) can be
equivalently rewritten into

(
PI) : max{u1:n,t}t∈T

log det
(
�I

T

)
(10a)

s.t. �I
t+1 =

(
At

(
�I

t

)−1
A�t +Wt

)−1 + �I
t+1

(10b)

�I
t+1 ∈ RI

t+1, t ∈ T . (10c)

Note that, with a slight abuse of the notation, we have
absorbed the decision variables {ui :n,t }t∈T into the reach-
able sets RI

t , and it can be interpreted as follows. The
entire sensor network aims at finding the optimal infor-
mation trajectory {�I

t }t∈T from the reachable sets such
that the objective function is optimized; at the same time,
the reachable sets are determined by the sensors’ control
sequences {ui :n,t }t∈T . It should be emphasized that we are
still standing in the centralized perspective when considering
the problem (PI) since the reachable set RI

t combines all
information from the entire network. Next, those couplings
will be decomposed by leveraging the idea of coordinate
descent.

Since the sensing covariance V I
t is in the form of block

diagonal, as shown in (5), by defining the local information
matrix �i,t := H�

i,t V
−1
i,t Hi,t ∈ R

ndz , then the global �I
t

admits the equation �I
t = ∑n

i=1 �i,t . Keeping this in mind,
the coordinate descent scheme performs the following sequen-
tial computing where each sensor only takes charge of its own
decision. Precisely, let us assume, without loss of generality,
that the multiple sensors make their decisions on the control
sequences in the ascending order. In other words, when the i th
sensor starts its own computation, the first i − 1 sensors have
decided their control sequences {ucj,t}t∈T , j = 1, 2, . . . , i − 1,
as shown in Fig. 2. Suppose that these i−1 prior decisions are
immediately available for the i th sensor; then, the coordinate
descent scheme produces the i th sensor’s control sequences

Fig. 2. Underlying topology of the coordinate descent scheme.

{uci,t }t∈T by solving the following local optimization (Pi):

(Pi) : max{ui,t}t∈T
log det

(
�i,T

)
(11a)

s.t. �i,t+1 =
(

At�
−1
i,t A�t + Wt

)−1

+
i−1∑
j=1

�c
j,t+1 + �i,t+1 (11b)

�i,t+1 ∈ Ri,t+1, t ∈ T (11c)

where Ri,t ⊆ R
ndz×ndz is the reachable set of the local

information matrix �i,t , following the similar definition as (9):

Ri,t :=
{
�i,t

∣∣∣ xi,τ+1 = fi
(
xi,τ , ui,τ

)
, ui,τ ∈ Ui,τ ,

τ ∈ {0, 1, . . . , t − 1}
}
. (12)

Remark 1: In fact, the procedure of the above coordinate
descent scheme can be viewed from another perspective. That
is, each sensor i considers the first i −1 sensors as the virtual
obstacles when making its own decision and then creates an
additional virtual obstacle for the next sensor. In this sense,
it is clear to see that the first sensor has the most freedom, and
the last one has the most restriction to plan their trajectories.

III. PARALLELIZED SOLUTION METHOD

Before proceeding to the development of our parallelized
approach, let us first make a few remarks on the above coor-
dinate descent scheme. It should be noted that the local prob-
lem (Pi ) can be still approached by the FVI-based method,
and its complexity has been primarily reduced compared to
the centralized problem (PI) since (Pi) is only involved
with the single sensors decision. Precisely, the coordinate
descent scheme reduces the complexity from exponential
(O(|∏n

1 Ui )|T ) to linear (O(
∑n

i=1 |Ui)|T ), by decomposing
the interconnections among the multiple sensors. Furthermore,
based on the analysis in [11], another remarkable result of
the coordinate descent scheme is that the generated solution
achieves 50%-suboptimality in the sense of maximizing the
mutual information, i.e.,

I

(
yT+1;

{
zc1:n,t

}
t∈T

)
≥ 1

2
· I

(
yT+1;

{
zopt1:n,t

}
t∈T

)
. (13)

Here, {zc1:n,t}t∈T represents the set of sensors’ measurements
resulted from the generated control sequences {uc1:n,t }t∈T , and
{zopt1:n,t}t∈T corresponds to the optimal solution obtained by
solving the centralized problem (7) directly. Although the
50%-suboptimal solution is guaranteed, we remark that the
scheme has critical drawbacks in the following two aspects.

1) Given that the subproblems (Pi) need to be solved
sequentially, thus, the multisensor structure is not inher-
ently utilized in the sense of parallel computing.
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2) As shown in Fig. 2, a specific network topology (similar
to a fully connected graph) is required to perform the
sequential updating. However, as shown in the motivat-
ing example, the general connections among the sensors
can hardly obey the specific topology.

In light of these two issues regarding the network topology
and parallel computing, this article aims to develop a paral-
lelized approach building on the generic sensor network. Next,
we start with a general model of the network topology.

A. Sensor Network Topology

Let us consider the sensor network as a general fixed
undirected graph G = (I, E). Here, I = {1, 2, . . . , n} is the
set of n nodes and E ⊂ I × I represents the set of undirected
edges. An edge connecting the node i ∈ I and node j ∈ I,
denoted by (i, j) ∈ E , implies that there is a communication
channel between the corresponding two sensors. Each node’s
self-loop is excluded from the set of edges; that is, (i, i) /∈
E ∀i ∈ I. It is emphasized that here we do not assume
the network to be fully connected but consider a generally
connected graph, stated as the following assumption.

Assumption 1: The time-invariant undirected graph G is
assumed to be connected, i.e., there exists at least one path
connecting every pair of two distinct nodes.

In addition, once the nodes of graph are indexed by their
labels {1, 2, . . . , n}, we restrict, by convention, the information
flow from node i to j to satisfy with i < j . In this sense,
we have actually reduced the original undirected graph G into
a new directed one, denoted by G+ = (I, E+), where the
set of directed edges is defined as E+ := {(i, j) | (i, j) ∈
E, i < j}. Furthermore, we use the set N+

i := { j |( j, i) ∈ E+}
to represent the neighbors of the i th node, meaning that
the sensor i receives information from sensors in the set
N+

i . Finally, to establish the performance analysis for our
parallelized approach, we will need the following important
notions in graph theory. A subset of nodes in the undirected
graph G is said to be a clique if there exists an edge between
every two distinct nodes in the subset. Also, a clique cover is a
partition of the nodes in the graph G if each set of the partition
forms a clique. We use α(G) ∈ Z+, called clique cover number
of the undirected graph G, to denote the minimum number of
sets that are needed to form a clique cover.

B. Parallelized Algorithm

With the topology of the generic sensor network specified,
we are now in the position to present our parallelized solution
method. Let us recall that the original centralized active
information gathering problem has been simplified into the
deterministic optimization (PI); subsequently, the idea of
coordinate descent inherently considers the first i − 1 sensors
as the virtual obstacles when the sensor i makes its own
decision (see Remark 1). Next, we leverage the similar idea
and introduce a new notion called partial active information
gathering problem. Instead of involving the first i−1 sensors’
decisions in the i th sensor’s computation, we here take its
neighbors N+

i into consideration. In other words, the virtual
obstacles are generated based on the neighbors’ information

Fig. 3. Parallelized execution over a generic network.

Algorithm 1 Parallelized Active Information Gathering

when the sensor i makes its decisions. As a result, the partial
active information gathering problem for each sensor i is
defined as the following optimization:(

PN+
i

)
: max{ui,t}t∈T

log det
(
�i,T

)
(14a)

s.t. �i,t+1 =
(

At�
−1
i,t A�t +Wt

)−1

+
∑
j∈Ni

� j,t+1[k]+ �i,t+1 (14b)

�i,t+1 ∈ Ri,t+1, t ∈ T . (14c)

Compared to the previous local problem (Pi) in the coor-
dinate descent scheme, the primary difference here is that
the recursion of variable �i,t+1 in (14b) involves only the
neighbors’ information matrices � j,t+1[k], j ∈ N+

i , rather
than the first i−1 sensors’ information matrices. Note that we
use an additional index k to denote the iterations since, later
on, we will upgrade our approach into an iterative scheme.

It is worth pointing out that such a change into the depen-
dence on the neighbors’ information makes our approach
parallelizable since the information from neighbors can be
immediately obtained given the sensor network topology. For
instance, as shown in the motivating example (see Fig. 1),
the four mobile sensors will be able to simultaneously make
their decisions and then exchange the information through the
existing communication channels. Such parallelism is also the
motivation why we would like to upgrade our scheme to be
iterative. As another illustrative example, Fig. 3 demonstrates,
more precisely, the execution of our parallelized algorithm,
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where a simple network of six sensors is considered. At the
initialization stage of the algorithm, each of the six sensors
in the network greedily solves the partial active information
gathering problem and makes its own decision on the control
sequence, without considering the neighbors’ influence. After
that, the local decisions (in the form of information trajec-
tories) are sent to the neighbors. By doing so, at the next
step, the six sensors can simultaneously update their decisions
based on the received data from neighbors and then send
out the updated decision again. Such a receive-update-send
process will be repeated for a few iterations until the stability
of sensors’ decisions is achieved. Here, stability means that
every sensor in the network will not change its decision if the
iteration of the algorithm continues. Ideally, we expect that
the number of iterations needed to achieve the stability is less
than the number of sensors so that the proposed parallelized
algorithm saves execution time compared to the coordinate
descent scheme. In Section IV, we will rigorously establish
the upper bound of the needed iterations and further show
how good the stable decisions will be, compared to the optimal
solution. At the end of this section, we outline the complete
parallelized approach as Algorithm 1 and make a few remarks
regarding the algorithm implementation.

Remark 2: It should be pointed out that there will be
some fake updates in the execution of Algorithm 1 if we
let every sensor solve the partial problem (PN+

i ) at each
iteration. For example, as shown in Fig. 3, sensor #1 does
not receive any information from the neighbors during the
whole process; thus, its local decision has reached stability
immediately after the initialization. According to this fact,
it will be a waste of computing resources if we still let
the sensor solve and update its decision after it reaches
stability. To fix this issue, the appropriate implementation
of our parallelized algorithm is based on the event-trigger
execution. That is, we let the sensor’s computing process be
triggered by the received data at each iteration. In this sense,
it can be easily verified that the sensor #1 will be idled after
the initialization since it will be never triggered by any input
data. In addition, as another advantage of such event-trigger-
based implementation, the execution of the algorithm can be
realized asynchronously since there is no need to enforce every
sensor to complete its computation simultaneously.

Remark 3: Algorithm 1 is actually based on the directed
graph G+ since each sensor needs to identify the set of
neighbors N+

i by comparing its own label i and the other’s j .
Even though such directed graph G+ can be easily induced by
the original undirected graph G using some labeling strategies,
different labeling of G may lead to different complexities of
the algorithm implementation. In Section IV, we show that
the upper bound of the number of the needed parallel itera-
tions is indeed dependent on the labeling strategy; however,
the suboptimality guarantee of the obtained solution is actually
determined by the original graph G. We should also remark
that, with a fully connected network, arbitrary labeling of the
graph G results in the identical directed G+, as shown in Fig. 2.
As a consequence, our parallelized algorithm will be reduced
to the standard coordinate descent scheme, and thus, the 50%-
suboptimality will be achieved (see details in Section IV).

IV. PERFORMANCE ANALYSIS

In this section, we theoretically analyze the performance
of our parallelized approach over the generic sensor net-
work. In particular, by characterizing the network topology,
we explicitly establish the theory of: 1) the needed number
of parallel iterations to reach the stability of decisions (see
Theorem 1) and 2) the suboptimality guarantee achieved by
the stable decisions (see Theorem 2).

Let us start with showing by the first theorem that the num-
ber of needed parallel iterations to achieve the stable decisions
can be upper bounded in terms of the network topology.

Theorem 1: Suppose that Algorithm 1 is applied to solve
the problem (PI

0 ) over the labeled directed graph G+. Let
{upi,t [k]}t∈T be the i th sensor’s decision on the control
sequence generated at iteration k; then, these decisions will
reach the stability on the sequence {upi,t }t∈T after at most T max

iterations, i.e., ∀i ∈ I, t ∈ T

upi,t [k] = upi,t , k ≥ T max (15)

where T max can be expressed by

T max = δ
(
G+

)
(16)

with δ(G+) being the depth of the directed graph G+.
Proof: See Appendix A.

Note that Theorem 1 proves that the minimum number of
needed parallel iterations to achieve the stability of decisions
can be upper bounded by the graph depth δ(G+). The directed
graph G+ is induced by labeling the original undirected graph
G. Next, we further show that the quality of the stable decisions
can be lower bounded by the original graph G, rather than
the induced G+. It should be remarked that a similar bound is
derived in the context of distributed submodular maximization
by using the notion of fractional independence number (see
[31, Th. 2]). As distinct from the result presented in [31], our
bound is provided in terms of the graph clique cover number
α(G) directly, and furthermore, we build the interconnection
between α(G) and the graph depth δ(G+). It is unknown how
δ(G+) is related to the fractional independence number. Before
proceeding to the theorem, let us first characterize the quality
of solutions by defining the notion called γ -suboptimality.

Recall that {uopt1:n,t }t∈T represents the optimal control
sequence obtained by solving the original problem (PI

0 )
directly; {zopt1:n,t}t∈T is the set of optimal sensor measurements
derived by the solution {uopt1:n,t}t∈T . Let {up1:n,t }t∈T (correspond-
ingly {zp1:n,t}t∈T ) be the solutions generated by our parallelized
algorithm; then, the quality of the solution can be characterized
by the following ratio:

γ =
I

(
yT+1;

{
zp1:n,t

}
t∈T

)

I

(
yT+1;

{
zopt1:n,t

}
t∈T

) . (17)

Since the maximization of mutual information I(·) is con-
sidered in the problem (PI

0 ) originally, it can be verified that
the measure of suboptimality must have γ ≤ 1, and the larger
γ provides the better quality of the solution {zp1:n,t}t∈T .

Theorem 2: Suppose that Algorithm 1 is applied to solve
the problem (PI

0 ) over the original undirected graph G.
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Fig. 4. Undirected graph with colors.

Let {up1:n,t}t∈T (correspondingly {zp1:n,t}t∈T ) be the stable solu-
tions generated after T max iterations; then, it holds that the
generated solution satisfies the γ -suboptimality with

γ ≥ 1

1+ α(G)
(18)

where α(G) is the clique cover number of graph G.
Proof: See Appendix B.

It should be noted that the above analysis (see Theorems 1
and 2) is basically consistent with the result of the coordinate
descent scheme for solving the active information gathering
problem. As remarked in Section II-B, the procedure of
coordinate descent inherently assumes a fully connected graph.
In this sense, it takes δ(G+) = n steps to finish algorithm
execution and, thus, achieves 50%-suboptimal solution as
α(G) = 1. We emphasize that the more general results are here
provided: building on the generic sensor network, the proposed
algorithm saves the execution time by leveraging the parallel
computing but with the suboptimality guarantee compromised.
This can be interpreted as a tradeoff between the time com-
plexity and solution accuracy.

In addition, we have also mentioned that, even though
the suboptimal guarantee of the solutions is established with
respect to the undirected graph G, the algorithm implementa-
tion and, thus, its execution time is decided by the labeled
directed graph G+. Since the same graph G may result in
different directed G+’s according to the labeling strategy,
a natural question here is how to obtain an optimal G+ by
given the original undirected graph. We next address this issue
by designing a specific labeling strategy.

V. DESIGN OF THE OPTIMAL NETWORK TOPOLOGY

In this section, the following two questions will be
answered: 1) what is the optimal graph G+ in the sense
of minimum depth δ(G+), given the original graph G and
2) conversely, provided the budget of parallel iterations
T max = δ(G+), what is the optimal sensor network topology
in the sense that solutions are obtained with best suboptimality
guarantee, i.e., minimum clique cover number α(G).

To approach the first question, we build on the technique
called node coloring in the graph theory. Given an undirected
graph G, the node coloring is the procedure of assigning colors
to each node in G such that no adjacent nodes are of the
same color. Let us still take the previous example, as shown
in Figs. 3 and 11. It is clear that the color of nodes can be
assigned as illustrated in Fig. 4 with the requirement satisfied.
As a result of the node coloring, an appropriate labeling
strategy of nodes can be specified based on the assigned colors.
Suppose that, totally, C colors are assigned in the graph G,

and with each color c ∈ {1, 2, . . . , C}, there are Ic nodes.
Subsequently, we label the total

∑C
c=1 Ic nodes in G by the

following procedure: 1) first, label the I1 nodes that have the
same color c = 1 with labels {1, 2, . . . , I1}; 2) label the nodes
in color c = 2 with {I1+1, I1+2, . . . , I1+ I2}; and 3) continue
the process until the last color. Fig. 4 also shows the result
of such labeling procedure. By doing so, it is easy to see
that the depth of the labeled directed graph G+ is equal to
the number of colors. Thus, the problem of seeking minimum
depth δ(G+) is equivalent to finding the minimum number of
colors (termed the chromatic number χ(G)) in the graph G.
Such a minimization problem is also known as the famous
graph coloring problem. Note that, even though the graph
coloring problem is proven to be NP-complete [32], a variety
of algorithms and their applications have been extensively
studied in the literature (see [33] and [34]).

In addition, considering that the suboptimality guarantee of
our algorithm is provided in terms of α(G), we next give a
simple connection between the chromatic number χ(G) and
the clique cover number α(G).

Proposition 1: Consider the generic connected undirected
graph G consisting of n nodes; then, its chromatic number
χ(G) and clique cover number α(G) satisfy

χ(G) ≤ n − α(G)+ 1. (19)

Proof: See Appendix C.
According to the above analysis, we know that the minimum

number of needed parallel iterations for our algorithm is
T max = χ(G), and the chromatic number χ(G) can be
obtained by solving the graph coloring problem. Furthermore,
Proposition 1 tells that, for any undirected graph G, there exists
a labeling strategy such that n − α(G) + 1 parallel iterations
are sufficient to achieve the 1/(1+α(G))-suboptimal solution.

The next question to be answered here is how to design the
optimal network topology in the sense of obtaining the best
suboptimality guarantee for our algorithm when the budget
of parallel iterations T max is given. The previous analysis has
shown that the minimum number of needed parallel iterations
is determined by the chromatic number χ(G). Thus, such a
question is equivalent to asking how to design the network
topology with minimum α(G) when χ(G) is provided.

We first show, in the following proposition, that α(G) can
be lower bounded when the budget T max = χ(G) is given.

Proposition 2: Consider the generic connected undirected
graph G consisting of n nodes; then, its chromatic number
χ(G) and clique cover number α(G) satisfy

α(G) ≥ 
n/χ(G)� (20)

where 
·� is the ceiling function.
Proof: See Appendix D.

Proposition 2 states that the clique cover number of graph
α(G) has to be no less than 
n/χ(G)�. Interestingly, when
we are finishing this work, we noticed that a new paper
[35] appears with the similar result presented. The quantity

n/χ(G)� is interpreted as concurrence in [35], and by doing
so, the optimal network is devised to obtained the best subop-
timality guarantee. In the following, we start from a different
perspective: the obtained network is guaranteed to be optimal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 5. Optimal network topology with fixed χ(G).

in the sense that the lower bound in Proposition 2 is exactly
hit, i.e., α(G) = 
n/χ(G)�. Next, we provide the approach to
design such an optimal network topology.

Let us first partition the n nodes into χ(G) sets, indexed
by i ∈ {1, 2, . . . , χ(G)}, with each of the first S − 1 sets has

n/χ(G)� nodes and the last one has mod+(n, χ(G)) nodes.
Note that here mod+(a, b) means the remainder of a divided
by b, and in particular, mod+(a, b) = a/b if a is a integer
multiple of b. Suppose that we denote each of the sets as Si ;
then, the partition of n nodes can be exactly represented as

Si

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(i− 1)
n/χ(G)� + j | j = 1, 2, . . . , 
n/χ(G)�},
if i ≤ χ(G)− 1{

(i− 1)
n/χ(G)� + j
∣∣ j = 1, 2, . . . ,mod+ (n, χ(G))

}
,

if i = χ(G).

(21)

Next, we connect the n nodes in the graph by following
the subsequent two rules: 1) there is no edge connecting two
nodes in the same individual set Si and 2) each node in Si

connects every node in the prior sets ∪ j<iS j . By doing so, all
nodes in the same set Si can be assigned with the identical
color, and thus, the graph has χ(G) colors. In addition, the set
of nodes Ki = { j |mod+( j, 
n/χ(G)�) = i} forms a clique of
the graph, and thus, the total number of cliques is 
n/χ(G)�.
Fig. 5 provides an illustration of the optimal network topology
with n = 8 and χ(G) = 3. It can be immediately verified that
following a such design of network topology, the resulting
graph has the chromatic number χ(G) and, meanwhile, hits the
lower bound of clique cover number, i.e., α(G) = 
n/χ(G)�.

VI. SIMULATION

In this section, we validate the proposed parallelized algo-
rithm by simulating the methane emission monitoring problem,
which has been previously introduced at the beginning of this
article (see Fig. 1) and also been investigated in [10] and
[36]. As distinct from simulations in [10] and [36], we here
deploy a group of the so-called Gasbots, and suppose that
each of them is equipped with a tunable laser absorption spec-
troscopy (TDLAS) sensor [36], which is capable of measuring
the integral gas concentration over the path of the laser beam.
Our ultimate goal is to plan trajectories of the gasbot team
such that an accurate estimate of the methane field can be
obtained.

A. Simulation Setup

Suppose that the target methane emission field is described
by a dm × dm lattice, as shown in the background of Fig. 6,

Fig. 6. TDLAS sensor measurement.

with each cell l ∈ {1, 2, . . . , d2
m} assigned a value of the

gas concentration yl
t in the unit of parts per million (ppm).

Overall, the state of the methane field yt = [y1
t , y2

t , . . . , y
dy
t ]�

is assumed to have the linear dynamics yt+1 = At yt + wt .
In particular, we consider two different scenarios for this
simulation: 1) a static and noise-free environment, i.e., At ≡
Idy×dy and wt ≡ 0 and 2) a noisy dynamical environment
governed by the diffusion equation (see details in Section VI-
C). Note that the dimension of the environment state is equal
to the number of cells in the methane field, i.e., dy = d2

m .
In order to estimate the unknown environment state yt , each
gasbot i measures a scalar zi,t ∈ R, representing the integral
gas concentration, based on the sensor’s state xi,t at the time
step t

zi,t = H
(
xi,t

)�
yt + vi,t . (22)

Here, the sensor’s state xi,t = [px
i,t, py

i,t , θi,t ]� ∈ R
3 is com-

posed of two components: 1) the position of the gasbot
[px

i,t , py
i,t ]� ∈ R

2 and 2) the orientation of the laser beam θi,t .
Moreover, the sensing parameter H (xi,t) ∈ R

dy is a vector
dependent on the sensor’s state xi,t , where its lth element mea-
sures the distance hl(xi,t ) that is traveled by the laser beam in
the lth cell. In addition, each laser beam is assumed to have a
limited sensing range r . Fig. 6 exemplifies the specification of
elements hl(xi,t)’s in the sensing vector H (xi,t). Consequently,
the sensor’s measurement model can be equivalently expressed
as

zi,t =
dy∑

l=1

hl
(
xi,t

)
yl

t + vi,t (23)

where the sensing noise vi,t follows the Gaussian distribution
N (0, V ) with zero mean and fixed variance V ∈ R indepen-
dent on the sensor and time step.

In this simulation, we consider the methane emission mon-
itoring problem in a 20× 20 lattice. In other words, the state
of environment has dimension dy = 400. We generate the
methane field via Gaussian distributions that are centered at
four distinct leak sources, i.e., [3, 3.5], [3, 18], [17.5, 3.5], and
[16, 16.5]. To explore the unknown methane field, a network
of six gasbots is employed; each of them is capable of
measuring the environment states via (23) and, meanwhile,
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Fig. 7. Comparison of trajectory planning results using different schemes. (a) Independent trajectory planning without sensor communications. (b) Parallelized
trajectory planning over the generic network [see Fig. 8(a)]. (c) Coordinate descent planning over the fully connected network [see Fig. 2].

communicating with its neighbors. Suppose that the TDLAS
sensor in each gasbot measures the integral gas concentration
zi,t within range r = 5 and the sensing noise vi,t is Gaussian
distributed with variance V = 0.01. The team of gasbots
starts from six distinct original positions, i.e., [8, 7], [8, 10],
[8, 12], [11, 7], [11, 10], and [11, 12]. We next specify their
dynamics as follows. At the first time step t = 0, each
gasbot i determines its original orientation θi,0 by choosing
one angle from the set Ui,0 = {0,±π/4,±π/2,±3π/4, π}.
Subsequently, at the next time steps, the gasbot moves one cell
along with the prefixed angle θi,t−1 and, meanwhile, changes
its orientation by rotating ui,t ∈ Ui,t = {0,±π/4}◦, i.e.,

px
i,t = px

i,t−1 + sgn
(
sin

(
θi,t−1

))
(24a)

py
i,t = py

i,t−1 + sgn
(
cos

(
θi,t−1

))
(24b)

θi,t = θi,t−1 + ui,t , ui,t ∈ Ui,t . (24c)

In this sense, at each time step t , each gasbot i only needs
to plan its orientation by determining the angle input ui,t ,
and thus, the size of control input spaces has |Ui,0| = 8 and
|Ui,t | = 3 ∀t > 0.

B. Performance of the Trajectory Planning

The planned trajectories of the team of six gasbots are
demonstrated in Fig. 7 when considering the static and
noise-free environment. We here compare three different
trajectory planning scenarios: 1) each sensor independently
decides its own trajectory without communicating with oth-
ers; 2) the team of sensors cooperatively plans the trajecto-
ries based on our parallelized algorithm, over the network,
as shown in Fig. 8(a); and 3) the coordinate descent scheme
is adopted by assuming the fully connected network topology.
In addition, we assign each sensor with the identical initialized
matrix �i,0 ∈ R

dy×dy for all three planning scenarios. As sim-
ilar to the previous works that focus on the environment state
estimation [37], [38], we initialize the covariance matrix such
that its (m, n)th entry is dependent on the distance between
cells m and n, as well as the scale of the initialized value

of ym
t and yn

t . The intuition behind this is that spatially
close states tend to have stronger correlations, and meanwhile,
the correlation between two states is more likely to be affected
by noises when they are spatially far away from each other.
It should be emphasized that, while, totally, six iterations
are required for the execution of coordinate descent scheme,
our parallelized algorithm only costs three parallel iterations
due to the fact that the considered sensor network has depth
δ(G+) = 3. It can be observed from Fig. 7(a) that the
independent trajectory planning result only explores two out of
four leak sources since each sensor determines its own area of
interest without considering others. On the contrary, Fig. 7(b)
and (c) shows that all four leak sources are covered when the
cooperation among sensors is utilized both in our algorithm
and the coordinate descent scheme. It can be also seen
that fewer overlaps are present in the cooperatively planned
trajectories [see Fig. 7(b) and (c)] compared to the independent
planning result [see Fig. 7(a)]. Furthermore, the trajectories
generated by our parallelized algorithm are very close to the
ones obtained by the coordinate descent scheme, despite the
fact that only one-half of the computing iterations is demanded
for our algorithm.

C. Performance of the Mutual Information Maximization and
State Estimation

To further validate the effectiveness of the proposed
parallelized algorithm, we next quantitatively evaluate the per-
formance of mutual information maximization and state esti-
mation by comparing three different schemes: 1) the myopic
algorithm, also known as the greedy method, in which the six
sensors cooperatively plan their trajectories for only one time
step; 2) the parallelized nonmyopic scheme, where the trajecto-
ries for next five time steps are optimized as a whole, by using
our parallelized algorithm; and 3) the coordinate descent
nonmyopic scheme, i.e., the five-step trajectories are optimized
based on the coordinate descent. Moreover, in order to evaluate
the approach, we propose to design the optimal network
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Fig. 8. Two adopted network topologies. (a) General topology. (b) Optimal
topology.

topology (see Section IV), and the parallelized nonmyopic
scheme is simulated based on two different graphs separately:
1) the general graph that is adopted previously [see Fig 8(a)]
and 2) the designed optimal graph [see Fig. 8(b)]. We empha-
size that both networks have the same depth δ(G+) = 3,
and thus, the number of needed parallel iterations will be
identical. However, the latter one is expected to have the
better performance since it has the smaller clique cover number
α(G) = 2. The performance of these schemes is investigated
in the following two aspects: 1) maximization of the mutual
information and 2) estimation of the unknown environment
states. Note that the mutual information is characterized by
the log-determinant of the matrices �I

t ’s, as shown in the
objective function in optimization problem (7). In addition,
according to the well-known Kalman filter, the state estimation
ŷt ∈ R

dy can be obtained by the following iterations:
ŷt+1 = ŷt +

(
�I

t

)−1
((

HI
t

)�(
V I

t

)−1
zIt − �I

t ŷt

)
(25a)

�I
t+1 = �I

t + �I
t+1. (25b)

Here, the initial guess of the environment state ŷ0 is
generated by imposing random shifts on the positions of
leak sources and also the covariance of the methane spatial
distributions. We note that, such initialization is commonly
adopted in the applications of the Kalman filter. In practice,
this information can be obtained prior by tracking the envi-
ronment for a short period of time.

As distinct from the previous simulation, we here consider
both static and dynamical methane fields. In particular, it is
assumed that the dynamical environment is governed by
the well-known diffusion equation [39], [40], and it can be
discretized by the finite difference discretization [41], which
yields the following dynamics:
yi, j

t+1 = yi, j
t + ρ

(
yi+1, j

t + yi, j+1
t + yi−1, j

t + yi, j−1
t − 4yi, j

t

)
.

(26)

Note that yi, j
t ∈ R denotes the value of gas concentration

on the (i, j)th cell at the time step t , and ρ > 0 repre-
sents the rate of diffusion. By assuming the zero boundary
conditions, the above discretized diffusion equation can be
expressed the compact linear form yt+1 = At yt + wt , where
we additionally consider the process noise wt following the
Gaussian distribution N (0, Wt ). Specifically, we set the rate
of diffusion as ρ = 0.01 and assume the covariance matrix as

Fig. 9. Static case: comparison of different schemes. (a) Mutual information.
(b) State estimation.

Wt = 0.01· Idy×dy . The initial environment state y0 is generated
as the same in Section VI-B.

The obtained numerical results for both static and dynamical
environments are demonstrated in Figs. 9 and 10, in which
each of the three schemes is run for 120 time steps. Since
each scheme is simulated for 20 Monte Carlo trials, both
mean values and variance are reported in the figures. It can
be seen from Figs. 9(a) and 10(a) that the team of sensors
guided by the coordinate descent scheme collects the highest
mutual information, while it also requires the most densely
connected network topology. Although less mutual informa-
tion is gathered by our parallelized algorithm compared to
the coordinate descent, only sparse connections among the
sensors are present, and fewer iterations are required to obtain
the solution. In particular, with the optimally designed net-
work, the mutual information collected by our algorithm is
close to the coordinate descent scheme, and we emphasize
that the computational complexity of our algorithm is only
one-half of the coordinate descent. It is not surprising that
both nonmyopic schemes outperform the greedy method in
terms of the performance on maximizing mutual information.
In addition, the algorithm performances of state estimation
are illustrated in Figs. 9(b) and 10(b). It is observed that
the performances on state estimation are close for the two
nonmyopic schemes; however, the estimation error for the
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Fig. 10. Dynamical case: comparison of different schemes. (a) Mutual
information. (b) State estimation.

myopic scheme is only reduced at the beginning, especially
for the static case. This is because trajectories generated by the
myopic scheme tend to be stuck in the areas that possess high
uncertainties; the two nonmyopic schemes perform similarly
as they can collect more viewpoints on the environment and
will continue to explore more areas. One can also observe
that the estimation error for the dynamical case is, in general,
less than the static case; this is because the methane field
is inherently diffusing; and thus, the overall magnitude of
the gas concentration is decreasing. Finally, the comparison
between parallelized and coordinate descent scheme suggests
that they could achieve comparable estimation performance,
and as expected, the parallelized scheme over the optimal
network performs better than the one with a general graph.

VII. CONCLUSION

This article proposes a parallelized approach for solving the
multisensor active information gathering problem. As distinct
from the coordinate descent-based algorithms, our parallelized
approach enables parallel computing over the sensor network
and is applicable for any generic network topology. As a
result, the computational complexity of our algorithm can
be primarily reduced according to the depth of the sensor
network. Moreover, in order to guarantee the best quality of
obtained solutions, an approach to design the optimal network

topology is further provided by the given time budget of algo-
rithm execution. Simulation results on the methane emission
monitoring problem are present to validate the effectiveness
of the proposed algorithm.

The directions of future work can be considered
from the following two perspectives. First, as a counter-
part of the mutual information, the well-known posterior
Cramér–Rao lower bound (PCRLB) can be also adopted
as a criterion to measure the tracking or monitoring per-
formance. It has been shown that, with less computational
cost, the PCRLB-based source seeking approach achieves
a similar performance compared to the standard mutual
information-based methods. Therefore, our next step is to
explore the possibility of using PCRLB to guide the planning
of the sensors’ trajectories. In addition, consider that the
PCRLB criteria can deal with a more general measurement
model, such as the case in which the sensors may fail to mea-
sure the unknown environment. Thus, we plan to incorporate
the probability of detection into the sensor measurement model
so that a more robust approach can be developed against the
potential sensor failure or other random interruptions.

APPENDIX

A. Proof of Theorem 1

Let us first clarify the definition of the depth of a directed
graph. The distance from the node i to node j , denoted as
d(i, j) ∈ Z+, is defined as the maximum number of directed
edges (longest path) that link the nodes i and j . Note that
d(i, j) = 0 if there is no path from i to j . Subsequently,
the depth of a directed graph G+, denoted as δ(G+) ∈ Z+,
is defined as one plus the maximum distance between any
two linked nodes, i.e., δ(G+) = 1+maxi, j∈I d(i, j).

According to the procedure of Algorithm 1, we next intro-
duce a new notation Is(k) ⊆ I to represent the set of
sensors that have reached the stability of decisions after k
iterations. In addition, we denote ıs(k) = Is(k)\Is(k−1) as
the set of sensors that reach the stability at the kth iteration.
On this account, it is easy to see that the set Is(1)(= ıs(1))
contains the sensors that do not receive any information from
the neighbors; for example, sensor #1 is included in the sets,
as shown in Fig. 3. Furthermore, we also know that ıs(k)
contains the sensors with two properties: 1) the neighbors of
sensor i ∈ ıs(k) must satisfy with N+

i ⊆ Is(k−1) and 2) the
distance from sensor i ∈ ıs(1) to sensor j ∈ ıs(k) must have
d(i, j) = k − 1. As in the previous example, it holds that
ı(2) = {2} and ı(3) = {3, 4, 5, 6}. For the sake of illustration,
the positions of sensors are rearranged, as shown in Fig. 11.

We are now ready to prove the theorem by contradiction.
Suppose that Algorithm 1 does not reach the stability after
T max = δ(G+) iterations. Without loss of generality, we can
assume that the sensor j reaches the stability at (T max + 1)th
iteration, i.e., j ∈ ıs(T max + 1). According to the afore-
mentioned properties of ıs(k), it holds that d(i, j) = T max

∀i ∈ ıs(1), which contradicts the fact T max = δ(G+).

B. Proof of Theorem 2

We begin the proof by introducing the following fact, which
is proven in [11, Lemma 1] and [13, Lemma 2.1].
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Fig. 11. Parallelism in the view of sequential executions.

Lemma 1: In the problem setup of active information gath-
ering, the mutual information function I(yT+1; {z1:n,t}t∈T ) is
monotonically nondecreasing and submodular. That is, if the
sets A and B have A ⊆ B, then the mutual information is
nondescreasing

I
(
yT+1;

{
zA,t

}
t∈T

) ≤ I
(
yT+1;

{
zB,t

}
t∈T

)
(27)

submodular

I
(
yT+1;

{
zA∪C,t

}
t∈T

)− I
(
yT+1;

{
zA,t

}
t∈T

)
≥ I

(
yT+1;

{
zB∪C,t

}
t∈T

)− I
(
yT+1;

{
zB,t

}
t∈T

)
.

(28)

Based on Lemma 1, we next define the marginal function
of mutual information as



(
yT+1;

{
zi,t

}
t∈T |

{
zA,t

}
t∈T

)
= I

(
yT+1;

{
zi,t ∪ zA,t

}
t∈T

)− I
(
yT+1;

{
zA,t

}
t∈T

)
. (29)

It can be verified that, if A ⊆ B, then



(
yT+1;

{
zi,t

}
t∈T |

{
zA,t

}
t∈T

)
≥ 


(
yT+1;

{
zi,t

}
t∈T |

{
zB,t

}
t∈T

)
. (30)

Now, we are in the position to prove the theorem. The
following proof follows a similar path as in [31]. For the
sake of notational simplicity, we omit the time index in the
variables, i.e., simplifying the variables yT+1 and {z1:n,t}t∈T
as y and z1:n, respectively. Then, it holds that

I
(
y, zopt1:n

)
(31.a)≤ I

(
y, zopt1:n ∪ zp1:n

)

= I
(
y, zp1:n

)+
n∑

i=1

(
I
(
y, zopt1:i ∪ zp1:n

)− I
(
y, zopt1:i−1 ∪ zp1:n

))

(31.b)= I
(
y, zp1:n

)+
n∑

i=1



(
y, zopti | zopt1:i−1 ∪ zp1:n

)

(31.c)≤ I
(
y, zp1:n

)+
n∑

i=1



(

y, zopti | zp{ j | j∈N+
i }

)
(31)

where (31. a) follows from the nondecreasing property of the
mutual information; (31. b) is by the definition of marginal
function; and (31. c) is due to the inequality (30). Recall
that the variable zp1:n here corresponds to the stable solution
generated by Algorithm 1. We have also shown in the previous
proof that, if the sensor i ∈ ıs(k), meaning that it reaches the
stability at iteration k, then its neighbors must have reached
the stability, i.e., N+

i ⊆ Is(k − 1); see the first property of
the defined stable sets ıs(k) and Is(k − 1). This implies that,
at the kth iteration, we have

I

(
y, zpi ∪ zp{ j | j∈N+

i }
)
≥ I

(
y, zopti ∪ zp{ j | j∈N+

i }
)

(32)

and thus



(

y, zpi | zp{ j | j∈N+
i }

)
≥ 


(
y, zopti | zp{ j | j∈N+

i }
)
. (33)

Therefore, the previous inequality (31) can be continued as

I
(
y, zopt1:n

) ≤ I
(
y, zp1:n

)+
n∑

i=1



(

y, zpi | zp{ j | j∈N+
i }

)
. (34)

Next, we take the original undirected graph G into account.
Suppose that C(G) denotes the set of cliques, which covers
the graph G (with minimum number), and thus, we know that
|C(G)| = α(G). Subsequently, it can be shown that, for any
clique K ∈ C(G), we have∑

i∈K



(
y, zpi | zp{ j | j∈N+

i ∩K}
)
= I

(
y, zpK

)
. (35)

To show this, we assume, without loss of any generality,
that the sensors in the set K are labeled by the numbers from
1 to I , i.e., K = {1, 2, . . . , I }. Since K is a clique, it is easy
to see that N+

i = {1, 2, . . . , i − 1} ∀i ∈ K. Thus, (35) can be
verified by

∑
i∈K



(

y, zpi | zp{ j | j∈N+
i ∩K}

)
=

I∑
i=1



(
y, zpi | zp1:i−1

)

=
I∑

i=1

(
I
(
y, zp1:i

)− I
(
y, zp1:i−1

))

= I
(
y, zpK

)
. (36)

According to (35), the inequality (34) can be further derived
as

I
(
y, zopt1:n

) (37.a)≤ I
(
y, zp1:n

)+ ∑
K∈C(G)

∑
i∈K



(

y, zpi | zp{ j | j∈N+
i }

)

(37.b)≤ I
(
y, zp1:n

)+ ∑
K∈C(G)

∑
i∈K



(

y, zpi | zp{ j | j∈N+
i ∩K}

)

(37.c)= I
(
y, zp1:n

)+ ∑
K∈C(G)

I
(
y, zpK

)

(37.d)≤ I
(
y, zp1:n

)+ ∑
K∈C(G)

I
(
y, zp1:n

)

(37.e)= (1+ α(G)) · I(y, zp1:I
)
. (37)

Note that (37. a) is due to the fact that C(G) forms a
clique cover of the graph; (37. b) and (37. d) follow from
the submodularity and nondecreasing properties of the mutual
information; (37. c) is due to equation (35); and (37. e) is
because of the fact |C(G)| = α(G). Therefore, the proof is
completed.

C. Proof of Proposition 1

We prove this result by mathematical induction. It is clear
that, when the graph has n = 1 node, the inequality can
be immediately verified by the fact that χ(G) = α(G) = 1.
Suppose that the statement is true when the graph has n = k
nodes; it will suffice to show that the inequality holds when
n = k+ 1. Let us denote Gk as the graph having k nodes, and
thus, we know χ(Gk) + α(Gk) ≤ k + 1. In addition, we use
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Gk ⊕ v to denote a new graph obtained by arbitrarily adding
a node v into the graph Gk . Note that there are two cases for
the additional node v: 1) it can be added into a clique of the
original graph Gk such that the clique cover number remains
unchanged, i.e., α(Gk) = α(Gk ⊕ v) and 2) it cannot be added
into the existing clique, and thus, α(Gk ⊕ v) = α(Gk)+ 1. For
the first case, considering that some certain clique is extended
by adding a new node, the chromatic number of graph has
χ(Gk ⊕ v) ≤ χ(Gk) + 1. For the second case, there must
exist a node in the certain clique that is connected with the
node v since the considered graph is connected; meanwhile,
there must exist another node in the same clique that is
disconnected with the node v since v cannot be absorbed
in the clique. On this account, the node v can be assigned
with the same color as the disconnected node; thus, we have
χ(Gk ⊕ v) ≤ χ(Gk). Combining these two cases together, it is
proven that

χ
(
Gk ⊕ v

) + α
(
Gk ⊕ v

) ≤ χ
(
Gk

)+ α
(
Gk

)+ 1 ≤ k + 2.

(38)

Therefore, the proof is completed.

D. Proof of Proposition 2

We prove the proposition by contradiction. Suppose that
there exists a clique cover of the graph G such that the number
of cliques ᾱ has ᾱ ≤ 
n/χ(G)�−1. Since the set of cliques
covers the graph, it is easy to see that the largest clique K has
the number of nodes |K| ≥ 
n/ᾱ�. Meanwhile, considering
that K is a clique, thus, we must have χ(G) ≥ χ(K) = |K|.
Consequently, it holds that

χ(G) ≥ 
n/ᾱ� ≥
⌈

n


n/χ(G)� − 1

⌉
. (39)

Next, let us denote m = 
n/χ(G)�. To prove the contradic-
tion, it will suffice to show that


n/(m − 1)� ≥ χ(G)+ 1. (40)

We prove (40) by contradiction as well. Suppose that (40)
is incorrect, i.e., 
n/(m − 1)� ≤ χ(G). Then, it implies that
n/(m − 1) ≤ χ(G), and thus, n ≤ χ(G) · (m− 1). As a result,
we have


n/χ(G)� ≤ 
χ(G) · (m − 1)/χ(G)� = m − 1 (41)

which contradicts the fact m = 
n/χ(G)�. Therefore, the proof
is completed.
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