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Abstract

Recently decentralized optimization attracts much attention in
machine learning because it is more communication-efficient
than the centralized fashion. Quantization is a promising
method to reduce the communication cost via cutting down
the budget of each single communication using the gradi-
ent compression. To further improve the communication ef-
ficiency, more recently, some quantized decentralized algo-
rithms have been studied. However, the quantized decentral-
ized algorithm for nonconvex constrained machine learning
problems is still limited. Frank-Wolfe (a.k.a., conditional gra-
dient or projection-free) method is very efficient to solve
many constrained optimization tasks, such as low-rank or
sparsity-constrained models training. In this paper, to fill the
gap of decentralized quantized constrained optimization, we
propose a novel communication-efficient Decentralized Quan-
tized Stochastic Frank-Wolfe (DQSFW) algorithm for non-
convex constrained learning models. We first design a new
counterexample to show that the vanilla decentralized quan-
tized stochastic Frank-Wolfe algorithm usually diverges. Thus,
we propose DQSFW algorithm with the gradient tracking tech-
nique to guarantee the method will converge to the stationary
point of non-convex optimization safely. In our theoretical
analysis, we prove that the DQSFW algorithm achieves the
gradient complexity of O(e~*) to obtain an e-stationary point,
which is the same as the standard stochastic Frank-Wolfe and
centralized Frank-Wolfe algorithms, but has much less com-
munication cost. Experiments on matrix completion and model
compression applications demonstrate the efficiency of our
new algorithm.

Introduction

Nowadays, many machine learning tasks have been deployed
on distributed systems that enable computations in parallel,
especially for large-scale models such as deep neural net-
works (DNNs). Recently, the centralized distribution struc-
ture has been used often. However, the centralized learning
scheme has a key bottleneck of communication, where the
communication burden of the central server becomes larger
as the number of nodes grows. For example, when the sys-
tem has M workers, it will suffer from the communication
complexity of O(M). Thus, the decentralized distribution
structure recently has attracts much attention in machine
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learning due to its communication efficiency compared with
the centralized fashion. Specifically, decentralized optimiza-
tion adopts a pattern that each node maintains its own local
data and model and only communicates with its neighbors. In
fact, the communication complexity of decentralized system
at each iteration is dependent on the degree of graph topology
(usually not dependent on the number of nodes) and data
locality is allowed.

Recently, the decentralized learning becomes a popular re-
search topic in machine learning and has been widely studied.
For example, it was first studied to solve problems of com-
puting aggregates among clients or be used for the sake of
data locality and privacy (Ram, Nedié, and Veeravalli 2010;
Yan et al. 2012), where centralized structure is not allowed. A
general decentralized algorithm can be traced back to (Nedic¢
and Ozdaglar 2017) that combines gradient descent method
and Gossip-type consensus step. Subsequently, a degenerated
case of decentralization that achieves huge success is feder-
ated optimization (Konecny et al. 2016), which adopts star
topology but enables data to be drawn from non-iid distribu-
tion. Besides, many other previous fully decentralized works
such as (Lian et al. 2017; Tang et al. 2018) that based on gen-
eral network topology have shown that decentralized method
is able to achieve more efficient communication without sacri-
ficing the training result, indicating that decentralization is be-
coming competitive and advantageous in distributed learning
rather than just an alternate of centralization when centraliza-
tion is not allowed. Lian et al. (2017) presented an important
decentralized optimization work to verify that the decentral-
ized method can outperform its centralized counterpart. Lian
et al. (2017) proposed an algorithm named Decentralized
Parallel Stochastic Gradient Descent (D-PSGD) to directly
compute the averaging value among each node with exact
communication, which has the same convergence rate as cen-
tralized SGD in nonconvex optimization with non-identical
data distribution.

To reduce the communication cost in distributed system,
gradient quantization (Seide et al. 2014) is another effec-
tive method. Recently, many quantized gradient algorithms,
such as QSGD (Alistarh et al. 2017), signSGD (Bernstein
et al. 2018a) and its variant (Bernstein et al. 2018b), were
developed and showed excellent performance. In these algo-
rithms, the number of bits transmitted in each communication
round is reduced by packing and unpacking gradients. Alis-



tarh et al. (2017) proposed an unbiased quantization scheme
and proved it is capable to converge under convex and non-
convex conditions. However, for other quantization method
like 1-bit quantization or signSGD, the unbiased assump-
tion is not always satisfied. Karimireddy et al. (2019) proved
that when applying signSGD with a scalar factor and error-
feedback technique, the algorithm is guaranteed to converge
in non-convex optimization. More recently, to further achieve
communication-efficiency, multiple quantized decentralized
algorithms (Doan, Maguluri, and Romberg 2018; Reisizadeh
et al. 2019a,b; Tang et al. 2019; Koloskova et al. 2020) have
been introduced. However, to the best of our knowledge, the
existing quantized decentralized algorithm for constrained
problem is still very limited. In fact, the large-scale con-
strained optimization problems are popular in many machine
learning applications, such as matrix completion and deep
neural network compression.

To address this challenging issue, in this paper, we focus
on studying the quantized decentralized algorithm for solving
the following constraint optimization problem:

min M Z fila (1

where f;(x) is a nonconvex smooth loss function, 2 is a con-
vex and compact constraint set, M is the number of worker
nodes. f;(z) is the objective function on node ¢ and could
have the stochastic expectation or finite sum formulations:
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where D; is the data distributed on ¢-th node. Apparently,
finite-sum objective function is a particular case of stochastic
problem where D; consists of finite samples. We allow dis-
tributions D; to be non-identical, which is more adaptive to
general tasks in machine learning and is assumed in many
previous decentralized analyses (Lian et al. 2017; Tang et al.
2018; Lian et al. 2018).

To solve the above constrained optimization, the Frank-
Wolfe (a.k.a, conditional gradient or projection-free) method
is one of the most efficient and popular algorithms, because
the Frank-Wolfe method only requires to compute a linear
oracle instead of the expensive projection operator applied
in proximal gradient methods (Ghadimi, Lan, and Zhang
2016) and alternating direction method of multipliers (Huang,
Chen, and Huang 2019). In this paper, thus, we focus on de-
signing the communication-efficient quantized decentralized
Frank-Wolfe algorithm to solve the above problem (1). It
is nontrivial to design such an algorithm. We first provide
a counterexample to show that the vanilla quantized decen-
tralized Frank-Wolfe algorithm usually diverges (please see
the following Counterexample section). Thus, there exists an
important research problems to be addressed:

Can we design a communication-efficient quantized
decentralized Frank-Wolfe algorithm with convergence
guarantee for non-convex optimization ?

In the paper, we answer the above challenging question
with positive solution and propose a novel Decentralized
Quantized Stochastic Frank-Wolfe (DQSFW) algorithm to
solve the problem (1) using the gradient tracking technique
to guarantee the DQSFW can safely and fast converge to the
stationary point in non-convex optimization. Specifically, our
DQSFW algorithm uses 1-bit gradient quantization scheme.
In summary, the main contributions of this paper are given
as follows:

(1) We propose a novel efficient Decentralized Quantized
Stochastic Frank-Wolfe (DQSFW) method to solve the
problem (1) with less communication cost but still good
convergence speed.

(2) We derive the rigorous theoretical analysis for our DQSFW
algorithm, and prove that our DQSFW algorithm has the
same gradient complexity O(e~*) as the SFW (Reddi et al.
2016) (the sequential algorithm) and QFW (Zhang et al.
2019) (the centralized algorithm), but with much less com-
munication cost.

(3) We provide a new intuitive counterexample to show that
the decentralized optimization involving non-linear projec-
tion of gradient could lead to a potential divergent problem
which also exists in many cases where we generalize other
non-Frank-Wolfe methods to decentralized algorithms. To
tackle this challenge, we utilize the gradient tracking tech-
nique to guarantee the convergence of our decentralized
quantized Frank-Wolfe algorithm.

Notations

|| - |l1 denotes one norm of vector. ||-||2 denotes spectral norm
of matrix. ||-|| 7 denotes Frobenius norm of matrix. ||| de-
notes trace norm of matrix. Let 1 be the column vector, each
entry of which is one. Given a network with M nodes, we
define a mixing matrix W = (w;;) € RM*M that represents
the weights of neighbors in the communication round. For
example, in D-PSGD (Lian et al. 2017), the consensus step
on i-th node is formulated as

M .
i) = 3wyl
i=1

Generally, W is a symmetric doubly stochastic matrix that
satisfies W7 = W and W1 = 1. In the experiment section,
we will consider a uniformly weighted ring-based network,
whose mixing matrix is shown as Eq. (3).

/3 1/3 0 -~ 0 1/3
1/3 1/3 1/3 0 - 0
0 1/3 1/3 1/3 0
W= . .. .. - (3)
0 - 0 1/3 1/3 1/3
/3 0 -~ 0 1/3 1/3
Related Works

Decentralized Frank-Wolfe

Decentralized Frank-Wolfe algorithm (DeFW) (Wai et al.
2017) is recently proposed to apply deterministic Frank-
Wolfe method in decentralized structure. It is guaranteed



Table 1: Comparison of related works.

Algorithm DeFW QFW DQSFW
Decentralized Vv X Vv

Stochastic X v v

Quantized X

Reference  (Wai et al. 2017) (Zhang et al. 2019) | Ours

to converge in both convex and non-convex problems. The
authors compute net averaging on parameters and gradients.
In previous work about decentralization such as (Lian et al.
2017), they do not have to calculate the averaging of gradients.
Compared with DeFW, our DQSFW changes the determin-
istic algorithm to a stochastic one, which is more adaptive
to large scale machine learning tasks. When the number of
samples is very large, the full gradient is too expensive to
calculate. Besides, we also take advantage of the technique
of gradient quantization, which will further reduce the cost
of communication.

Quantized Frank-Wolfe

Quantized Frank-Wolfe algorithm (QFW) (Zhang et al. 2019)
is recently proposed to solve the centralized distributed prob-
lems. It uses the the following momentum scheme as gradient
estimator:

Gt = (1 = p)Gi—1 + pege @

which is also used in (Locatello et al. 2019) as a way to
decrease the noise of gradient. In our algorithm, we combine
this momentum scheme with the Gossip method. For gradient
compressing, they adopt the s-Partition Encoding Scheme,
which encodes the i-th coordinates g; into an element from
set {£1,+2=L ... +1 0}. It requires log,(s + 1) bits to
transfer each coordinate of the gradient. A scalar factor ||g|| oo
is also transmitted thus the total bits of quantized gradient is
32+d-log,(s+1) where d is the dimension of gradient. When
s is large, the variance of this compressor will become small
(Zhang et al. 2019), which means the quantized gradient is
more precise, but costs more bits. In this paper, we use 1-
bit signSGD scheme with a scalar factor (Karimireddy et al.
2019; Koloskova, Stich, and Jaggi 2019) shown as following:

O(w) = 17 ign(a )

where d is the dimension of z. Notice that here signSGD is
only a representative of feasible compressors. We can also
use other compressor as long as it satisfies the Compressor
Assumption in section 4, which is an important assumption
in many theoretical analysis of related work about gradient
quantization. For example, we can also use top-k SGD, which
is a gradient sparsification method that automatically satisfies
the Compressor Assumption. We consider signSGD because
it is efficient and convenient to implement.

The comparisons between DeFW, QFW and our DQSFW
are summarized in Table 1. We can see that our DQSFW
algorithm is the first work to incorporate stochastic gradient
descent and gradient quantization in decentralized Frank-
Wolfe type algorithm.

gradient direction

4 -1.6 -08

converged point

stationary point

Figure 1: A graph to demonstrate the counter-example.

Counterexample

In this section, we provide an intuitive counterexample that
indicates the divergent trap if Frank-Wolfe method is simply
generalized to the decentralized algorithm without making
consensus on gradient when data at different nodes are drawn
from non-identical distributions.

Given f(x) = f1(x)+f2(x), wherex € Q = {(z,y)|z*+
y? < 1}, f1(x) = z and fo(x) = /3y (See Figure 1). We
can calculate gradients v; = (1,0), vo = (0,v3), v =
(1,4/3). Since the gradient is never equal to 0, according to

the Frank-Wolfe gap (see Eq. (9)), the only stationary point
is (—3, 7@) (blue point), where the tangent of unit ball
is vertical to direction (1, v/3). However, if we update x by
Frank-Wolfe algorithm on each node separately, the linear
oracle will yield d; = (—1,0) and d3 = (0,—1). Then
we make consensus on x and get iteration formula x; 1 =
(1=7)x;+~(— %, —%) Sequence x; eventually converges to
point (—3, —%) (red point), which is not a stationary point.

It is reasonable to credit the divergence to the non-
commutative relation between linear oracle and addition. For
SGD based decentralized learning algorithms, they can con-
verge well because of the commutative property of addition.
The above divergence problem is also likely to happen to
other variant algorithms of SGD that involves non-linear map
of gradients in decentralized system, not just Frank-Wolfe
type methods. For example, adaptive gradient method is a
family of algorithms that adjust the learning rate according to
the magnitude of gradient. The Decentralized ADAM algo-
rithm (DADAM) (Nazari, Tarzanagh, and Michailidis 2019)
was proved to converge under the criterion named local regret.
Nonetheless, local regret probably leads to a result that each
node converges to its own local stationary point, while they
do not cooperate well enough as an entire system. This phe-
nomenon reminds us when we generalize an algorithm with
steps that are not commutative to addition, similar divergence
problem is likely to come out.

In DeFW (Wai et al. 2017), the gradients can be averaged
directly by gradient tracking, a technique to accelerate con-
sensus in distributed optimization (Xu et al. 2015; Nedic,
Olshevsky, and Shi 2017). DIGing also considers the in-
crement of gradient when averaging the non-quantized full
gradient. However, in this paper we have to face the variance
of stochastic gradient and the noise of quantization. These
issues do not occur in DeFW. Therefore, we have to use a
new strategy to let them make consensus gradually.



New Decentralized Quantized Stochastic
Frank-Wolfe Algorithm

In this section, we propose a novel efficient Decentralized
Quantized Stochastic Frank-Wolfe (DQSFW) algorithm to
solve the problem (1) by using the gradient tracking technique
(Xu et al. 2015; Wai et al. 2017). The DQSFW algorithm is
given in Algorithm 1.

In Algorithm 1, xgl) is a column vector that denote the
model parameter on ¢-th node at iteration t. We use upper
case X, to represent the matrix

Xy = [V 2P e

geeey

Inspired by Choco-Gossip algorithm (Koloskova, Stich, and
Jaggi 2019), we also define a replicated £\ of 2\ on each
node. The reason is when we apply gossip update, the exact
value of model parameter on other nodes are unknown since

there exists quantization and the communication is inexact.

The replica x( ?) is an estimation of x( 2 , which is also updated
at each iteration. And the consensus step is formulated as line

8 in Algorithm 1. According to the update of igi) (line 9 and

line 10 in Algorithm 1), on all neighbors of the i-th node, the
replica is added by an indentical transmitted message zt(z),
which implies the values igz) on all neighbors of the i-th node

POK

are the same. Therefore, replica 2, ’ is well-defined. Similar

to X;, we also define matrices

X, = ",2® 200,
X = (BT, 7]

_ _ M 3
where Z; represent the mean value: Ty = 77 >, x§’>.
(@) 4

g; ~ 1s a stochastic gradient on i-th node calculated by

selected samples and v( ) is our key estimation of the gra-
dient on ¢-th node Wthh is defined as Eq. (6) with a kind

of momentum scheme Here vt( " is the replica of vt( 2 (see

snnllar concept of Z; )) For initialization, we set ¥ A( ) =0

and 117 = g((] ") The definition and role of By will be dis-

cussed later in Remark 2. Our convergence analysis shows
that though our gradient estimator in line 4 is biased, the
gradients on all nodes are getting close to the full gradient
uniformly. To make consensus on gradient and parameter, we
adopt the gossip update (Koloskova, Stich, and Jaggi 2019)
in line 4 and line 8 respectively.

vt(i):(l 5)% 1+5t9 +04wa ”t 1 ’[’§ )1) (©6)

In line 5 and line 9 of Algorithm 1, we apply a gradient
quantization method that satisfies the Compressor Assump-
tion. As mentioned previously, the quantization scheme is
not limited to the signSGD used in this paper. Line 7 is the

typical linear oracle in Frank-Wolfe method to get a direction

d( ' In vanilla Frank-Wolfe algorithm, the update of a:,g D

should be ch_zl = xlg Dy i (diz - IE )). For convenience,

Algorithm 1 Decentralized Quantized Stochastic Frank-
Wolfe (DQSFW)

Input: restricted domain €2, matrix W, initial point
Xo=Xp € Q

Parameter: 1, v, Bt, o, T

Output: Zz;, where t is chosen uniformly from

{0,1,...,T}

1: On i-th node:

2: fort=0,1,..., 7 —1do

3:  Compute an estimation of the grad1ent g( 2

4 Update v = (1 — Bv?y + Bugl” +

oY wi (0 — o2
5. Compute ¢ = C(v\" — 5{”,) and communicate
with neighbors

() (4)

6:  Update replica 9, = @ﬁj_)l + ¢, for neighbor j

Calculate linear oracle dgi) such that dii) =
arg maxqeq(d, —vt(l)>

8:  Update $§21 = (1 - Ut)JC,Ei) + Utdgi) +

Tt Z Wy (i”gj) fgl))
9:  Compute z( D= C( t+1 - wg )) and communicate

with nelghbors

(J)

10:  Update replica £,7; = (j ) 4 ztj ) for neighbor j

11: end for

we define matrices

Vi = o),
Vo= oo o),
Vi = [0t,04,...,0,
D = (@4, dM"),
Dy = |[di,dy,. .. dy

where ¥, and d; are mean values

M M
_ (1) 7o (2)

By the doubly stochastic property of W, we have

X1 = (1—n) X + 0Dy (7)

It is easy to verify that when xg € Q, T; € 2 for Vt. Hence
the constraint is always satisfied. Here we should notice that
we do not have to store all the replica in practice.

We can regard ) w; (&9 — 2
iteration formula

~(7)
wa xt+1 = &y4q)

as a term, and obtain
Z wi; (& (J) :?:ﬁi))

+ Z wij (2 (J) ti)). (8)
Therefore, we only need one buffer with the size of z; to

compute this term. So it is with 3 ; w; (3, 5 — 5. We will
use Eq. (8) to save memory in our experiments.



Convergence Analysis

In this section, we study the convergence properties of our
DQSFW algorithm. All proofs can be found in Supplemen-
tary Material. We begin with introducing some mild assump-
tions and the definition of Frank-Wolfe gap (Jaggi 2013):

G(a) = max(v - v, -V f(z) ©

The convergence criteria is E[G(x)] < e.

Assumption 1. (Lipschitz Gradient) There is a constant L
such that for¥i € {1,2,..., M}, we have

IVfi(z) = Vi)l < Lllz =yl (10)

Assumption 2. (Compact Domain) There is a diameter D
of domain €.

Assumption 3. (Lower Bound) Function f(x) has the lower
bound inf,cq f(z) = f~ > —c0.

Assumption 4. (Spectral Gap) Given the symmetric dou-
bly stochastic matrix W, we define \1, \a, ..., Ay to be its
eigenvalues in descending order. Then max{|Az|, [Apr]} < 1.
Let p = max{| Xz, | Ap|} and { =1 — Ay

Assumption 5. (Compressor Assumption) Compressor C(-)
satisfies ||C(x) — z||?> < (1 = 9)||z||%, where 0 < § < 1.

Assumption 6. (Bounded Gradient and Bounded Variance)

The genemted gradlent esnmator g( R satisfies E[ggi)] =

V6l?), Blal? VA < 0% IVFOEL ) <

Based on above assumptions, we demonstrate three lem-
mas of our DQSFW algorithm. Lemma 1 and lemma 2 es-
timate the consensus between model parameter X; and gra-
dient V; respectively. Lemma 3 implies that our gradient
estimator Eq. (6) on different node approaches the value of
full gradient uniformlly and gradually. The detailed proof of
lemmas can be found in supplementary material section A.
Lemma 1. Let 6o = 1 —V/1-462%, 6, = 1 — (1 — 62)%

= =~ =min{l, % 2, 1252)51 boep = (1—p)y, ca =4,
ey =min{ U 1 A = (1+e)(1-(1-p)y)?+(1-

8)(1+2)y 242 —( S+ )(1+c2>(1+v<)2

Let Q = 8(1 + i)(A + B) Set ny = 716(1+%)(A+B) and
n = (1&17(1)9 0 < 0 < 1. Then there exists a constant R,
satisfying
— . QR MD?
1Xe = Xell B+ 1K — Xel[7 < U+ 1)
Lemma 2. Let cy = c3, By = B(i‘jf“) and fy = @ﬁ%
Then there exists constant Ry such that
—o Ao QRyMG?
IV = VRl Vi = Vil < (s

Lemma 3. Denote v; = ) There exists constant

S such that

El|o; — — Z Viilx

MZvl

H2 L
(t+1)2073

Next, we will propose the main theorem of our conver-
gence analysis. Please check the detailed proof in supplemen-
tary material section B.

Theorem 1. Let Q, Ry, Ro and S be the constants defined
in Lemma 1 to Lemma 3. Step size 1, is set as Lemma 1. Then
we have

Elg(@)] < B[ L - GEN Dﬁ(é : ﬁfjg”m)
DmG 7715L2D2

(t+1)0/3 2

Theorem 2. Suppose T iterations have been completed.
Let t is chosen randomly with identical probability from
{0,1,...,T}. Set6 = %. Then by Theorem 1 we can obtain

1
T1/4)'

Remark 1. Theorem 2 shows that our DQSFW algorithm
reach a gradient complexity of O(e=*) to achieve e-accuracy
stationary point. And the Frank-Wolfe gap is asymptotic to
0, rather than a neighborhood of which the size is dependent
on €. This is because all parameters in our algorithm are
independent of €, while in SFW, step size and number of
iterations are ﬁmctions of €.

Remark 2. 60 = 2 is the best trade-off between consensus
and stepsize. If 5t is too large, the noise of quantization and
the variance of stochastic gradient will cause bad consensus
and then affect the convergence. If By is too small, the stepsize
should also be small. Otherwise the averaged gradient can-
not catch up with the changing of x, which will cause slow
convergence. This trade-off is the challenge and intuition to
define our gradient estimator as Eq. (6).

E[G(zy)] = O(

Remark 3. From the proof in supplementary material we
can see the theoretical framework does not only work for
signSGD, but also all compressors that satisfy Assumption 5.

Experimental Results

To validate the efficiency of our new DQSFW algorithm, we
conduct the experiments on two constrained machine learning
applications: matrix completion and model compression.

Decentralized Low-Rank Matrix Completion

Low-rank matrix completion is a model to solve a broad range
of learning tasks, such as collaborative filtering (Koren, Bell,
and Volinsky 2009) and multi-label learning (Xu, Jin, and
Zhou 2013). The loss function of low-rank matrix completion
problem has the following form:

min E
XeERMXN (b i U

(3,5)€Q

st || X, <C

where ¢ : R — R is the potential non-convex empirical loss
function. Y is the target matrix and (2 is the set of observed
entries. (Wai et al. 2017) also conducts this experiment with
MSE loss function and robust Gaussian loss function. In our
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Figure 2: The experimental results of decentralized low-rank matrix completion for dataset MovieLens 100k and MovieLens 1m.
Figure (a), (b) and (c) show the training loss with respect to bits transferred on MovieLens 100k with 20, 40 and 60 workers
respectively. Figure (d), (e) and (f) show the training loss with respect to bits transferred on MovieLens 1m with 20, 40 and 60

workers respectively.

Table 2: Descriptions of MovieLens Datasets.

NAME USER MOVIE RECORD
MOVIELENS 100K 943 1682 100000
MOVIELENS 1M 6040 3952 1000209

experiment, to verify that our algorithm works well for non-
convex objective functions, we adopt the robust Gaussian
loss function

2

g0 z

#(2) = (1~ exp(- 1)) an
In our experiment, parameter oy is fixed to be 2. We run
our experiment on two benchmark datasets, MovieLens 100k
and MovieLens 1m (Harper and Konstan 2015). Both of
two datasets are records of movie ratings from plenty of
users, and are usually used to train recommendation systems.
The descriptions of these two datasets are shown in Table 2.
MovieLens 100k has 943 users, 1682 movies, and 100000
rating records. MovieLens 1M has 6040 users, 3952 movies,
and 1000209 rating records. All ratings vary from 0 to 5. We
scale them to interval [0, 1]. The rating records can be con-
verted into matrix, where row represents user id and column
represents movie id. Each record serves as an observation.
As our purpose is to verify the performance of optimization

algorithm, we take all data for training.

For both datasets, we deploy our experiment on M =
20,40, 60 MPI worker nodes respectively by mpidpy. Each
node is an Intel Xeon E5-2660 machine within an infiniband
network. We assign 1/M of the rating records to each worker.
For MovieLens 100k, we set C' = 2000 while for MovieLens
Im we set C' = 5000.

In this task, the linear oracle can be obtained by singular

value decomposition (SVD). Let the SVD of vt(l) beU-S-VT.
Then the linear oracle d = —C' - u - v7 where u and v are
the singular vectors corresponding to the largest singular
value (also named leading vectors of SVD). In practice, we
only need to compute the leading vectors, while in projected
algorithms we have to do the completed SVD.

We choose two other projection-free methods DeFW (Wai
etal. 2017) and QFW (Zhang et al. 2019) as baseline methods.
For decentralized algorithms, we use a ring-based topology
as the communication network because it is convenient to
implement and achieves linear speedup in communication
(Lian et al. 2017). For QFW, s of the s-partition encoding
is set to be 1. For all of the three algorithms, we set step
size n; = t~075, The results of low-rank matrix completion
on MovieLens 100k and MovieLens 1m are shown in Fig-
ure 2. As many previous quantization work did (including
QFW), we analyze the experimental results with respect to
bits transferred, which means the number of bits sent or re-
ceived on the busiest node. For decentralized algorithms it
can be any node and for centralized algorithm it is the master
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Figure 3: The experimental result of decentralized model compression for VGG11 neural network on dataset Cifar 10. Figure (a)
shows the training loss against time. Figure (b) shows the training loss against the number of bits transferred

node. The number is divided by the size of x since it is always
proportional to the size of x.

From the experimental results we can see that our DQSFW
algorithm achieves the best performance on both datasets.
Moreover, we can see that our algorithm becomes more com-
petitive as the number of workers becomes larger, which
verifies the scalability of our method. With more workers,
more sample gradients can be computed, but the number of
gradients computed by DeFW keeps the same.

Model Compression

Deep neural networks (DNNs) have achieved remarkable
performance in many fields at recent years. But one of its
shortages is the high cost of a large number of parameters.
Thus, many attempts have been made to reduce the number
of parameters in DNNGs, such as dropout and pruning. Among
these methods, one solution is to add constraint on parameters
to make them sparse compulsively (Liu et al. 2015; Bietti
et al. 2019). In (Bietti et al. 2019), one popular method was
proposed via adding the spectral norm constraint as follows:

Willz < 7 12)

for each layer [. Because the model compression is attract-
ing increasing attentions in both machine learning research
and applications, in this experiment, we solve the model
compression problem using the decentralized learning set-
ting, and validate the performance of different decentralized
quantized algorithms on this task. Here the linear oracle is
d=—7-U-VT, where U -S- V7 is the SVD of v\". This
result can be achieved easily by the fact that trace norm and
spectral norm are dual norms.

In our experiment, we run this task to compress VGG11
network on Cifar 10 dataset, which has 50000 training sam-
ples and 10 labels, with constraint (12). We conduct this task
on decentralized settings where data are distributed on dif-
ferent nodes to verify our algorithms. Following (Bietti et al.
2019), we use cross-entropy loss function as the criterion and
set 7 = 0.8. The experiment is implemented on 8 GTX1080
GPUs by Pytorch. Each GPU is treated as a single worker.
The communication is based on NVIDIA NCCL.

We consider DeFW and QFW as baseline methods and
ring-based topology as communication network. For DeFW
and our DQSFW, the decentralized system is uniform weight
ring network. For QFW, s is set to be 1. For all three algo-
rithms, step size is chosen as 7, = %t*(”‘r’. Because of the
limitation of CUDA memory, we cannot compute the full gra-
dient for DeFW. We calculate 1/5 of the full gradient instead.
This issue also indicates the limitation of DeFW algorithm.

The experimental results are visualized in Figure 3. To
validate the efficiency of our algorithm, we compare the loss
with respect to the bits transmitted. Similar to the matrix
completion experiment, the number of bits transferred is di-
vided by the size of parameter. For decentralized algorithms,
the number is counted on any node, while for centralized
algorithm it is counted on master node. According to the
results, we can see that DeFW is almost infeasible for this
task. From the view of time, QFW and DQSFW have similar
performance. From the view of bits transferred, our DQSFW
has the best performance among the three algorithms, which
verifies the superior performance of our new algorithm.

Conclusion

In this paper, we proposed a new Decentralized Quantized
Stochastic Frank-Wolfe (DQSFW) algorithm to solve the
non-convex constrained optimization problem. We revealed
a potential divergence problem that is likely to occur in the
general decentralized training, not just for Frank-Wolfe type
methods, and also provided a solution by making consensus
on gradient. We derived the new theoretical analysis to prove
that our algorithm can achieve the same gradient complexity
O(e=*) as the Stochastic Frank-Wolfe (SFW) method with
much less communication cost, and the Frank-Wolfe gap is
asymptotic to 0. The experimental results on two machine
learning applications, matrix completion and deep neural
network compression, validate the superior performance of
our new algorithm.
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