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Abstract
The compositional minimax problem covers plenty
of machine learning models such as the distribu-
tionally robust compositional optimization prob-
lem. However, it is yet another understudied prob-
lem to optimize the compositional minimax prob-
lem. In this paper, we develop a novel efficient
stochastic compositional gradient descent ascent
method for optimizing the compositional minimax
problem. Moreover, we establish the theoretical
convergence rate of our proposed method. To the
best of our knowledge, this is the first work achiev-
ing such a convergence rate for the compositional
minimax problem. Finally, we conduct extensive
experiments to demonstrate the effectiveness of our
proposed method.

1 Introduction
In recent years, minimax optimization has attracted increas-
ing attention in the community of machine learning. This is
mainly due to the fact that a broad range of machine learn-
ing models can be formulated as the minimax optimization
problem, including generative adversarial networks [Good-
fellow et al., 2014], adversarial training of deep neural net-
works [Madry et al., 2017], and distributionally robust ma-
chine learning models [Chen et al., 2017]. In the meanwhile,
numerous machine learning models can be formulated as the
compositional optimization problem, such as policy evalua-
tion in reinforcement learning [Sutton and Barto, 2018], risk-
averse portfolio optimization [Rockafellar, 2007], and sparse
additive models [Wang et al., 2017a]. Given the growing im-
portance of the compositional minimax problem in machine
learning, in this paper, we are interested in optimizing the
compositional minimax problem as follows:

min
x∈X

max
y∈Y

f(g(x), y) , Eζf(Eξ[g(x; ξ)], y; ζ) , (1)

where g(·) : X → Rp, f(·, ·) : (Rp,Y) → R, X and Y
are convex and compact sets. In particular, f(g(x), y) is a
strongly concave function with respect to y for all x ∈ X , and
f(g(x), y) is a nonconvex compositional function regarding x
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for all y ∈ Y . A typical example of this kind of compositional
minimax problem is the distributionally robust compositional
optimization problem:

min
x∈X

max
y∈Y

{
n∑
i=1

(
yifi

( 1

m

m∑
j=1

gj(x)
)
− (yi −

1

n
)2

)}
,

(2)
where X = Rd and Y = {y ∈ Rn|

∑n
i=1 yi = 1, yi ≥ 0,∀i}.

The loss function for each sample fi
(

1
m

∑m
j=1 gj(x)

)
is a

compositional function, and y ∈ Rn weights each sample to
handle noisy data to learn a robust model. The goal of this
paper is to develop efficient algorithms to solve the composi-
tional minimax optimization problem in Eq. (1).

A lot of efforts [Lin et al., 2020; Luo et al., 2020;
Xu et al., 2020; Huang et al., 2020; Chen et al., 2020;
Zhang et al., 2020; Tran-Dinh et al., 2020; Yan et al., 2020]
have been recently made to develop efficient algorithms to op-
timize the minimax optimization problem. For instance, [Lin
et al., 2020] proposed a stochastic gradient descent ascent
method for the nonconvex-strongly-concave minimax prob-
lem. [Luo et al., 2020; Xu et al., 2020] developed a variance
reduced stochastic gradient descent ascent (SGDA) method
to accelerate the convergence speed of SGDA. [Huang et al.,
2020] studied an optimization method for the minimax prob-
lem on Riemannian manifold. [Chen et al., 2020] presented
a projection-free approach for the convex-strongly-concave
constrained minimax problem. However, all of these ap-
proaches only focus on the non-compositional machine learn-
ing model where a stochastic gradient is an unbiased estima-
tion of the full gradient. Thus, these methods are not ap-
plicable to optimize the compositional minimax optimization
problem in Eq. (1).

Due to the two-level stochasticity in the compositional loss
function, a stochastic gradient is a biased estimation of the
full gradient. It is much more challenging to optimize the
minimax problem in Eq. (1). Although there exist some
works studying how to deal with the two-level stochastic-
ity in optimizing the compositional minimization problem,
these prior work is not applicable for the minimax problem
in Eq. (1). For instance, [Wang et al., 2017a] proposed a
stochastic compositional gradient descent (SCGD) method to
handle the two-level stochasticity. After that, a string of vari-
ance reduced variants [Yuan et al., 2019; Yang and Hu, 2020;



Zhang and Xiao, 2019b] have been proposed to accelerate
the convergence speed. However, for these methods, it is
not clear how to optimize the maximization subproblem in
Eq. (1). Thus, it is necessary and important to design new
optimization methods for Eq. (1).

In this study, to address the aforementioned challenges, we
develop a novel stochastic compositional gradient descent as-
cent (SCGDA) method for optimizing Eq. (1). In particular,
when optimizing the minimization subproblem, we use a new
strategy to estimate the inner function value g(x) and its gra-
dient ∇g(x), which helps to control the estimation variance
of the stochastic compositional gradient. Meanwhile, when
optimizing the maximization problem, we employ the stan-
dard stochastic gradient ascent method to update y. Our the-
oretical result indicates that SCGDA can achieve the conver-
gence rate of O(κ4/ε4), where κ is the condition number of
the loss function. To the best of our knowledge, this is the
first work achieving such a convergence rate. Additionally,
our experimental results confirm the effectiveness of the pro-
posed optimization algorithm. The contributions of this work
are summarized as follows:

• We proposed a new optimization algorithm to optimize
the compositional minimax optimization problem. This
is the first work studying how to optimize this kind of
minimax compositional problem.

• We theoretically proved that our proposed algorithm en-
joys a convergence rate of O(κ4/ε4). This is the first
work achieving such a convergence rate.

• We conducted extensive experiments and our experi-
mental results confirm the effectiveness of the proposed
algorithm.

2 Related Works
In this section, we briefly revisit related works to motivate our
proposed approaches.

Minimax optimization problem The minimax optimiza-
tion problem is an important type of models in machine
learning, which motivates numerous efforts to develop effi-
cient algorithms to solve the problem. Currently, the basic
idea for minimax optimization is to alternatively optimize the
minimization and maximization subproblems. For instance,
based on the regular SGD method, [Lin et al., 2020] devel-
oped the stochastic gradient descent ascent (SGDA) method,
which uses stochastic gradient to alternatively update the
two subproblems. [Luo et al., 2020; Xu et al., 2020] ap-
plied a recursive variance reduction technique [Fang et al.,
2018] for SGDA to improve the convergence rate of SGDA.
[Yan et al., 2020] provided an epoch-wise stochastic gra-
dient descent ascent method for strongly-convex-strongly-
concave problems. Moreover, [Huang et al., 2020] proposed
the Riemannian stochastic gradient descent ascent method
and some variants for the Riemannian minimax optimization
problem. [Qiu et al., 2020] reformulated nonlinear Temporal-
Difference (TD) learning as a minimax optimization problem
and proposed the single-timescale stochastic gradient descent
ascent method. [Chen et al., 2020] developed a stochastic
Frank-Wolfe method to optimize the constrained minimax

problem. All of these methods fail to handle the composi-
tional structure in the compositional minimax optimization
problem shown in Eq. (1).

Compositional minimization problem The composi-
tional optimization problem is defined as follows:

min
x
f(g(x)) , Eζf(Eξ[g(x; ξ)]; ζ) . (3)

A typical challenge to optimize the compositional minimiza-
tion problem is that the stochastic gradient is not an unbiased
estimation of the full gradient. To address this issue, various
methods have been proposed in recent years. For instance,
[Wang et al., 2017a] uses the stochastic gradient for the in-
ner function and uses a momentum-like method to compute
the inner function value when computing the stochastic gra-
dient. However, its convergence rate is as slow as O(1/ε8)
for nonconvex problems, which is much worse than the reg-
ular SGD method. Consequently, some accelerated variants
[Wang et al., 2017a; Wang et al., 2017b] have been proposed
to improve the convergence rate. However, their convergence
rates are still inferior to that of the regular SGD method.
Recently, based on the variance reduction technique such
as SPIDER [Fang et al., 2018]and STORM [Cutkosky and
Orabona, 2019], a series of methods [Zhang and Xiao, 2019b;
Zhang and Xiao, 2019a; Yuan et al., 2019; Yang and Hu,
2020] have been proposed to further improve the convergence
rate. Nonetheless, these methods can only be applied to the
compositional minimization problem rather than the minimax
problem.

To sum up, the aforementioned minimax optimization al-
gorithms and compositional minimization algorithms cannot
be applied to optimize the compositional minimax problem
defined in Eq. (1). Therefore, in this study, we will de-
velop new optimization algorithms to optimize this challeng-
ing problem.

Algorithm 1 The Stochastic Compositional Gradient Descent
Ascent Method (SCGDA)

Initialization: x1, y1 = y∗(x1), u′1 = ∇g(x1), u1 = g(x1),
w1 = ∇yf(u1, y1), v1 = (u′t)

Tw1, α > 0, γ > 0,
λ > 0, ηt > 0

1: for t = 1, · · · , T do
2: Update x:

xt+1 = xt − γηtvt
3: Update y:

ỹt+1 = P(yt + λwt)
yt+1 = yt + ηt(ỹt+1 − yt)

4: Randomly sample a subset Bξ,t+1, compute
∇g(xt+1;Bξ,t+1) and g(xt+1;Bξ,t+1),
ut+1 = (1− αηt)ut + αηtg(xt+1;Bξ,t+1)
u′t+1 = (1− αηt)u′t + αηt∇g(xt+1;Bξ,t+1)

5: Randomly sample a subset Bζ,t+1,
compute ∇gf(ut+1, yt+1;Bζ,t+1) and
∇yf(ut+1, yt+1;Bζ,t+1),
vt+1 = (u′t+1)T∇gf(ut+1, yt+1;Bζ,t+1)
wt+1 = ∇yf(ut+1, yt+1;Bζ,t+1)

6: end for



3 Stochastic Compositional Gradient Descent
Ascent Method

In this section, we present the details of our proposed algo-
rithm and provide its theoretical convergence rate.

In Algorithm 1, we propose a stochastic compositional gra-
dient descent ascent (SCGDA) method to optimize the com-
positional minimax problem defined in Eq. (1). Here, a key
challenge is that the stochastic gradient regarding x is NOT an
unbiased estimation of the full compositional gradient shown
as follows:
Eξ,ζ [∇g(x; ξ)T∇gf(g(x; ξ), y; ζ)] 6= ∇g(x)T∇gf(g(x), y) .

(4)
To alleviate this issue, when optimizing the compositional
minimization problem, [Wang et al., 2017a] employs the fol-
lowing strategy1 to estimate the compositional gradient:

ut = (1− αηt−1)ut−1 + αηt−1g(xt;Bξ,t) ,

vt = ∇g(xt;Bξ,t)
T∇gf(ut;Bζ,t) ,

(5)

where g(xt;Bξ,t) = 1
|Bξ,t|

∑
j∈Bξ,t gj(xt), ∇g(xt;Bξ,t) =

1
|Bξ,t|

∑
j∈Bξ,t ∇gj(xt) , α > 0, and ηt > 0. Here, ut es-

timates g(x) and vt is the estimation of ∇g(x)T∇gf(g(x)).
With the strategy in Eq. (5), ut is supposed to have a smaller
estimation variance than g(xt;Bξ,t). In fact, this strategy
of controlling variance is also used in the stochastic Frank-
Wolfe method [Mokhtari et al., 2020] and TD learning [Qiu
et al., 2020]. However, theoretical results in [Wang et
al., 2017a] indicate that its convergence rate is as slow as
O(1/ε8).

In Algorithm 1, when t > 1, we use the following strategy
to compute ut to estimate the inner function g(xt) and u′t for
its gradient∇g(xt) :

ut = (1− αηt−1)ut−1 + αηt−1g(xt;Bξ,t) ,

u′t = (1− αηt−1)u′t−1 + αηt−1∇g(xt;Bξ,t) .
(6)

In this way, both ut and u′t will have a small estimation vari-
ance, which will be shown in the next section. Based on ut
and u′t , we compute the stochastic compositional gradient
regarding x as follows:

vt = (u′t)
T∇gf(ut, yt;Bζ,t) , (7)

where ∇gf(ut, yt;Bζ,t) = 1
|Bζ,t|

∑
i∈Bζ,t ∇gfi(ut, yt).

Then, we use the following strategy to update x:
xt+1 = xt − γηtvt , (8)

where γ > 0. This strategy can facilitate tightly bounding the
estimation variance E[‖ut−g(xt)‖2] and E[‖u′t−∇g(xt)‖2],
which will be demonstrated in the next section.

To optimize the maximization subproblem regarding
y, we directly compute the stochastic gradient wt =
∇yf(ut, yt;Bζ,t) = 1

|Bζ,t|
∑
i∈Bζ,t ∇yfi(ut, yt) and update

y as follows:
ỹt+1 = PY(yt + λwt) ,

yt+1 = yt + ηt(ỹt+1 − yt) ,
(9)

1Note that this strategy is designed for the compositional mini-
mization problem, not the compositional minimax problem. Here,
we just use it to motivate our method.

where λ > 0, 0 < ηt < 1, and PY(·) is a projection operator
to make sure that ỹt+1 satisfy the constraint Y . Since Y is a
convex set, the combination between ỹt+1 and yt in Eq. (9)
still lies in Y .

In the following, we will investigate the convergence
rate of Algorithm 1. We first introduce some commonly-
used assumptions for compositional optimization. To make
these assumptions easy to follow, we denote ∇f(a, b) =
(∇af(a, b),∇bf(a, b)) for (a, b) ∈ A × B where A =
{g(x)|x ∈ X} and B = Y .
Assumption 1. (Smoothness) For ∀(a1, b1), (a2, b2) ∈ A ×
B, there exists L > 0, such that
‖∇f(a1, b1)−∇f(a2, b2)‖ ≤ L‖(a1, b1)− (a2, b2)‖ .

(10)
For ∀x1, x2 ∈ X , there exists Lg > 0, such that

‖∇g(x1)−∇g(x2)‖ ≤ Lg‖x1 − x2‖ . (11)
Assumption 2. (Bounded gradient) There exist Cg > 0 and
Cf > 0, such that

E[‖∇g(x; ξ)‖2] ≤ C2
g , ∀x ∈ X ,

E[‖∇f(a, b; ζ)‖2] ≤ C2
f , ∀(a, b) ∈ A× B .

(12)

Assumption 3. (Bounded variance) There exist σf > 0,
σg > 0, and σ′g > 0, such that

E[‖∇f(a, b; ζ)−∇f(a, b)‖2] ≤ σ2
f , ∀(a, b) ∈ A× B ,

E[‖∇g(x; ξ)−∇g(x)‖2] ≤ σ2
g′ , ∀x ∈ X ,

E[‖g(x; ξ)− g(x)‖2] ≤ σ2
g , ∀x ∈ X .

(13)
Assumption 4. (Strong concavity) For ∀a ∈ A and ∀b1, b2 ∈
B, there exists µ > 0, such that

f(a, b1) ≤ f(a, b2) + 〈∇bf(a, b2), b1 − b2〉 −
µ

2
‖b1 − b2‖2 .

(14)
Additionally, we introduce two auxiliary func-

tions: Φ(x) = maxy∈Y f(g(x), y) and y∗(x) =
arg maxy∈Y f(g(x), y). Here, Φ(x) is LΦ-smooth where
LΦ = 2C2

gL
2/µ + CfLg . We use Φ∗ to represent the

minimum value of Φ(x). Based on these assumptions and
definitions, we have the following convergence result.
Theorem 1. Given Assumptions 1-4, for Algorithm 1, by set-
ting α = 3, ηt = η ≤ min{ 1

24 ,
1

2γLΦ
}, |Bζt | = |Bξt | = B,

λ < 1
6L , and γ < 1

/(
10CgL

2
√

(1+3C2
g)

λµ2 +
10CgL

2
√

(1+3C2
g)

µ +

6LgCfL
µ

)
, we have

1

T

T∑
t=1

(
E[‖∇Φ(xt)‖+ L‖y∗(xt)− yt‖]

)
≤

2
√

(Φ(x1)− Φ∗)√
γηT

+
2
√

3Cgσf√
B

+
2
√

3Cfσg′√
B

+
5
√

2(1 + 2C2
g )σfL

µ
√
B

+
5
√

2(1 + 3C2
g )σgL

2

µ
√
B

+
6σg′CfL

µ
√
B

.

(15)



From Theorem 1, it can be seen that ηγ = O( 1
κ2 ) where

κ = L/µ. Then, by setting B = T , we can get the con-
vergence rate O( κ√

T
). Hence, to achieve ε-accuracy solution,

the total sample complexity isB×T = O(κ4/ε4). Note that,
although it is incomparable with SCGD [Wang et al., 2017a]
for the compositional minimization problem, we observe that
our sample complexity has a much better dependence on ε.

4 Convergence Analysis
In this section, we present the high-level idea of the conver-
gence analysis for Theorem 1.

As discussed in the last section, our Algorithm 1 results in
a tighter bound for E[‖ut− g(xt)‖2] and E[‖u′t−∇g(xt)‖2],
which makes our algorithm converge faster comparing with
existing work. In particular, we have the following bound for
these two variances.

Lemma 1. Given Assumptions 1-3 for Algorithm 1, by setting
ηt ≤ min{ 1

8α , 1} and |Bζt | = |Bξt | = B, we can get

E[‖ut − g(xt)‖2] ≤ (1− αηt−1)E[‖ut−1 − g(xt−1)‖2]

+
9ηt−1γ

2C2
g

8α
E[‖vt−1‖2] +

α2η2
t−1σ

2
g

B
.

(16)

Lemma 2. Given Assumptions 1-3 for Algorithm 1, by setting
ηt ≤ min{ 1

8α , 1} and |Bζt | = |Bξt | = B, we can get

E[‖u′t −∇g(xt)‖2] ≤ (1− αηt−1)E[‖u′t−1 −∇g(xt−1)‖2]

+
9ηt−1γ

2L2
g

8α
E[‖vt−1‖2] +

α2ηt−1σ
2
g′

B
.

(17)

Note that, [Wang et al., 2017a] employs a similar way to
estimate g(xt) and obtains a similar bound for the estimation
variance. However, our bound is tighter. In particular, for
our bound in Lemma 1, the learning rate ηt < 1 lies in the
nominator of the second term on RHS while it resides in the
denominator in the bound of [Wang et al., 2017a]. Thus, our
bound for the estimation variance is much tighter.

Furthermore, the following two lemmas demonstrate that
controlling the estimation variance of g(x) and ∇g(x) can
benefit controlling the estimation variance of the compo-
sitional gradient ∇xf(g(x), y) and that of the gradient
∇yf(g(x), y).

Lemma 3. Given Assumptions 1-3, for Algorithm 1, by set-
ting |Bζt | = |Bξt | = B, we can get

E[‖vt −∇xf(g(xt), yt)‖2] ≤ 3C2
fE[‖u′t −∇g(xt)‖2]

+
3C2

gσ
2
f

B
+ 3C2

gL
2E[‖ut − g(xt)‖2] .

(18)

Lemma 4. Given Assumptions 1-3, for Algorithm 1, by set-
ting |Bζt | = |Bξt | = B, we can get

E[‖wt −∇yf(g(xt), yt)‖2]

= L2E[‖ut − g(xt)‖2] +
σ2
f

B
.

(19)

Moreover, we need an additional lemma to prove Theo-
rem 1.

Lemma 5. Given Assumptions 1-3, for Algorithm 1, by set-
ting λ ≤ 1

6L and ηt < 1, we can get

E[‖yt+1 − y∗(xt+1)‖2]

≤ (1− ηtµλ

4
)E[‖y∗(xt)− yt‖2]− 3ηt

4
E[‖ỹt+1 − yt‖2]

+
25ηtλ

6µ
E[‖∇yf(g(xt), yt)− wt‖2]

+
25ηtγ

2L2C2
g

6λµ3
E[‖vt‖2] .

(20)

Based on aforementioned lemmas, we will provide the
main proof for Theorem 1.

Proof. Due to the smoothness of Φ(x), we can get

Φ(xt+1) ≤ Φ(xt)− γηt〈∇Φ(xt), vt〉+
γ2η2

tLΦ

2
‖vt‖2

= Φ(xt)−
γηt
2
‖∇Φ(xt)‖2 +

(γ2η2
tLΦ

2
− γηt

2

)
‖vt‖2

+
γηt
2
‖∇Φ(xt)− vt‖2

≤ Φ(xt)−
γηt
2
‖∇Φ(xt)‖2 +

(γ2η2
tLΦ

2
− γηt

2

)
‖vt‖2

+ γηt‖∇Φ(xt)−∇xf(g(xt), yt)‖2

+ γηt‖∇xf(g(xt), yt)− vt‖2

≤ Φ(xt)−
γηt
2
‖∇Φ(xt)‖2 + γηtC

2
gL

2‖y∗(xt)− yt‖2

+ γηt‖∇xf(g(xt), yt)− vt‖2 −
γηt
4
‖vt‖2 ,

(21)
where the last inequality follows from ηt ≤ 1

2γLΦ
and the

following inequality:

‖∇Φ(xt)−∇xf(g(xt), yt)‖2

= ‖∇xf(g(xt), y
∗(xt))−∇xf(g(xt), yt)‖2

= ‖∇g(xt)
T∇gf(g(xt), y

∗(xt))

−∇g(xt)
T∇gf(g(xt), yt)‖2

≤ C2
gL

2‖y∗(xt)− yt‖2 ,

(22)

where the last inequality follows from Assumptions 1 and 2.
Furthermore, according to Lemma 3 and taking expectation
for both sides, we can get

E[Φ(xt+1)]

≤ E[Φ(xt)]−
γηt
2

E[‖∇Φ(xt)‖2]

+ γηtC
2
gL

2E[‖y∗(xt)− yt‖2]− γηt
4

E[‖vt‖2]

+ 3γηtC
2
fE[‖u′t −∇g(xt)‖2]

+ 3γηtC
2
gL

2E[‖ut − g(xt)‖2] +
3γηtC

2
gσ

2
f

B
.

(23)



Furthermore, define the Lyapunov function

Pt = E[Φ(xt)] +A1E[‖yt − y∗(xt)‖2]

+A2E[‖ut − g(xt)‖2] +A3E[‖u′t −∇g(xt)‖2] ,
(24)

where A1 =
γL2(1+2C2

g)

λµ , A2 =
25γL4(1+3C2

g)

6αµ2 , and A3 =
3γC2

fL
2

αµ2 , then according to Lemmas 1, 2, 4, 5, we get

Pt+1 − Pt
≤ −γηt

2
E[‖∇Φ(xt)‖2] + γηtC

2
gL

2E[‖y∗(xt)− yt‖2]

+ 3γηtC
2
fE[‖u′t −∇g(xt)‖2] +

3γηtC
2
gσ

2
f

B

+ 3γηtC
2
gL

2E[‖ut − g(xt)‖2] +
3γηtC

2
fσ

2
g′

B

− ηtµλA1

4
E[‖y∗(xt)− yt‖2]− 3ηtA1

4
E[‖ỹt+1 − yt‖2]

+
25ηtλA1

6µ
E[‖∇yf(g(xt), yt)− wt‖2]− γηt

4
E[‖vt‖2]

+
25ηtγ

2L2C2
gA1

6λµ3
E[‖vt‖2]− αηtA2E[‖ut − g(xt)‖2]

+
9ηtγ

2C2
gA2

8α
E[‖vt‖2] +

α2ηtσ
2
gA2

B
+
α2ηtσ

2
g′A3

B

− αηtA3E[‖u′t −∇g(xt)‖2] +
9ηtγ

2L2
gA3

8α
E[‖vt‖2]

≤ −γηt
2

E[‖∇Φ(xt)‖2]− 3ηtA1

4
E[‖ỹt+1 − yt‖2]

− (
ηtµλA1

4
− γηtC2

gL
2)E[‖y∗(xt)− yt‖2]

+ (3γηtC
2
gL

2 +
25ηtλL

2A1

6µ
− αηtA2)E[‖ut − g(xt)‖2]

+ (3γηtC
2
f − αηtA3)E[‖u′t −∇g(xt)‖2]

+
(9ηtγ

2C2
gA2

8α
+

25ηtγ
2L2C2

gA1

6λµ3
+

9ηtγ
2L2

gA3

8α

− γηt
4

)
E[‖vt‖2] +

α2ηtσ
2
gA2

B
+
α2ηtσ

2
g′A3

B

+
3γηtC

2
gσ

2
f

B
+

3γηtC
2
fσ

2
g′

B
+

25ηtλσ
2
fA1

6µB
.

(25)

By setting α = 3 and γ < 1
/(

10CgL
2
√

(1+3C2
g)

λµ2 +

10CgL
2
√

(1+3C2
g)

µ +
6LgCfL

µ

)
, we can get

Pt+1 − Pt

≤ −γηt
2

E[‖∇Φ(xt)‖2]− γηtL
2

2
E[‖y∗(xt)− yt‖2]

+
3γηtC

2
gσ

2
f

B
+

3γηtC
2
fσ

2
g′

B
+

25ηtλσ
2
fA1

6µB

+
9ηtσ

2
gA2

B
+

9ηtσ
2
g′A3

B
.

(26)

By summing t over 1, · · · , T and setting ηt = η, we get

1

T

T∑
t=1

(
E[‖∇Φ(xt)‖2 + L2‖y∗(xt)− yt‖2]

)
≤ 2(P1 − PT+1)

γηT
+

6C2
gσ

2
f

B
+

6C2
fσ

2
g′

B

+
50σ2

fL
2(1 + 2C2

g )

6µ2B
+

50σ2
gL

4(1 + 3C2
g )

2µ2B

+
18σ2

g′C
2
fL

2

µ2B
.

(27)

From the initialization condition, it is easy to get

1

T

T∑
t=1

(
E[‖∇Φ(xt)‖2 + L2‖y∗(xt)− yt‖2]

)
≤ 2(Φ(x1)− Φ∗)

γηT
+

6C2
gσ

2
f

B
+

6C2
fσ

2
g′

B

+
50σ2

fL
2(1 + 2C2

g )

6µ2B
+

50σ2
gL

4(1 + 3C2
g )

2µ2B

+
18σ2

g′C
2
fL

2

µ2B
.

(28)

Finally, we can get

1

T

T∑
t=1

(
E[‖∇Φ(xt)‖+ L‖y∗(xt)− yt‖]

)

≤

√√√√ 2

T

T∑
t=1

(
E[‖∇Φ(xt)‖2 + L2‖y∗(xt)− yt‖2]

)
≤

2
√

(Φ(x1)− Φ∗)√
γηT

+
2
√

3Cgσf√
B

+
2
√

3Cfσg′√
B

+
5
√

2(1 + 2C2
g )σfL

µ
√
B

+
5
√

2(1 + 3C2
g )σgL

2

µ
√
B

+
6σg′CfL

µ
√
B

,

(29)

which completes the proof.

5 Experiments
In this section, we conduct experiments to verify the conver-
gence of our proposed SCGDA in Algorithm 1.

In our experiments, we use SCGDA to optimize the distri-
butionally robust linear value function approximation in re-
inforcement learning [Zhang and Xiao, 2019a]. The value
function in reinforcement learning is an important compo-
nent to compute the reward. In detail, given a Markov deci-
sion process (MDP) {S, Pπ, R, r} where S = {1, 2, · · · , S}
represents the state space, Pπs,s′ denotes the transition prob-
ability from state s to state s′ for a given policy π, Rs,s′ is
the reward when state s goes to state s′, and r is the dis-
count factor, then the value function at state s is defined as



V (s) =
∑S

s′=1 P
π
s,s′(Rs,s′ + rV (s′)). To estimate the value

function, a typical choice is to parameterize it with a linear

function: Ṽw(s) = zTs w where zs ∈ R
d is fixed and w ∈ R

d

is the model parameter which needs to be optimized. To ob-
tain the model parameter w, we need to optimize the follow-
ing problem:

min
w

1

S

S∑
s=1

(
Ṽw(s)−

S∑
s′=1

Pπ
s,s′(Rs,s′ + rṼw(s

′))
)2

. (30)

Obviously, the loss function is a compositional function
[Yuan et al., 2019; Zhang and Xiao, 2019c]. Here, we are
interested in its distributionally robust variant, which is de-
fined as follows:

min
w∈Rd

max
y∈Y

1

S

S∑
s=1

ys

(
Ṽw(s)−

S∑
s′=1

Pπ
s,s′(Rs,s′ + rṼw(s

′))
)2

+
d∑

i=1

βw2
i

1 + w2
i

− ‖y − 1

S
‖2 ,

(31)
where w = [wi] ∈ R

d is the model parameter, Y = {y =

[ys] ∈ R
S |∑S

s=1 ys = 1, ys ≥ 0, ∀s}, β > 0. Obviously, it
is nonconvex regarding w and strongly concave regarding y.

Following [Yuan et al., 2019], we generate an MDP which
has 400 states and each state is associated with 10 actions.
Regarding the transition probability, Pπ

s,s′ is drawn from [0, 1]
uniformly. Additionally, to guarantee the ergodicity, we add
10−5 to Pπ

s,s′ . Then, we use SCGDA to optimize Eq. (31) on
this dataset. Note that, our method is the first stochastic com-
positional gradient descent ascent method where there are no
baseline methods to compare with. Thus, we will conduct ex-
periments to show the convergence of our proposed SCGDA
under different conditions.

Figure 1: The convergence of SCGDA with different η.

In our experiments, we set the batch size to 20, α = 3,
β = 10−5. Then, we verify the convergence performance
of SCGDA with different learning rates η. Specifically, in
Figure 1, we fix γ = λ = 0.1 and change η to show the

value function gap 1
S

∑S
s=1

(
Ṽw(s) −

∑S
s′=1 P

π
s,s′(Rs,s′ +

rṼw(s
′))
)2

regarding the number of iterations. It can be seen

that the value function gap decreases with the training going
on for all cases, which confirms that our algorithm is effective

to optimize Eq. (31). Additionally, with a larger learning rate
η = 0.1, our SCGDA method converges much faster than the
other two cases.

Figure 2: The convergence of SCGDA with different λ and γ.

Furthermore, in Figure 2, we fix the learning rate η and
change λ, as well as γ. Here, we set λ = γ to make the min-
imization subproblem and maximization subproblem update
in the single-timescale manner. Similarly, from Figure 2, it
can be seen that the value function gap decreases with the op-
timization going on for all cases, and larger parameters λ, γ
lead to a much faster convergence rate.

Finally, we plot the learned parameter y in Figure 3. Here,
we set η to 0.1 and γ = λ = 0.1. Then, we plot y − 1

S in
Figure 3 for all sates. We observe that our method can learn
different weights for different states, which is consistent with
the idea of the distributionally robust optimization.

Figure 3: The learned y with η = 0.1, γ = 0.1, and λ = 0.1.

6 Conclusions
In this paper, we proposed a novel stochastic compositional
gradient descent ascent method for optimizing the composi-
tional minimax problem. We provided the theoretical con-
vergence rate of the proposed method for the nonconvex-
strongly-concave compositional minimax problem. We then
conducted extensive experimental results that confirmed the
effectiveness of our proposed algorithm.
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