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Abstract—We revisit the classical spectrum allocation (SA) 
problem, a fundamental subproblem in optical network design, 
and make three contributions. First, we show how some SA 
problem instances may  be  decomposed into  smaller  instances 
that may be solved independently without loss of optimality. 
Second,  we  prove  an  optimality  property  of  the  well-known 
first-fit (FF) heuristic. Finally, we leverage this property to 
develop a recursive algorithm that applies the FF heuristic to 
find an optimal solution efficiently. This recursive first-fit (Rec- 
FF) algorithm complements our recent algorithm that recursively 
searches the routing space, and may be combined with it to solve 
large routing and spectrum allocation (RSA) problem instances 
to optimality. 

 
 

I.  IN TRO D U CTIO N 

Spectrum/wavelength allocation (SA/WA) is a problem un- 
derlying a range of optical network design problems [1], 
including routing and wavelength allocation (RWA) [2]–[5], 
routing and spectrum allocation (RSA) [6], [7], traffic groom- 
ing [8], [9], and network survivability [10]. The SA and WA 
problems are NP-hard in networks of general topology [11]. 
Consequently, since the early days of optical network research 
a wide range of heuristic algorithms have been developed, 
including first-fit, best-fit, most-used, and least-loaded [12], 
to  select  which  wavelength or  spectrum slots  to  assign  to 
each traffic demand. These heuristics represent a variety of 
design choices in terms of algorithmic complexity and the 
amount  of  network  state  information  considered.  First-fit, 
one of the earliest and simplest heuristics that requires no 
global knowledge, has been shown to perform well across 
various network topologies and sets of traffic demands [2], 
[13], and is one of the most commonly used algorithms for 
spectrum/wavelength assignment. 

Motivated by  the  observation that  many  network design 
problems encompass two tasks, routing and resource allo- 
cation, recently we have shown [14] that it is possible to 
optimally decouple these two aspects and tackle each sep- 
arately. Accordingly, we developed a recursive algorithm to 
search  the  routing  space  exhaustively  yet  effciently.  This 
work complements our earlier results in [14] by developing 
an optimal recursive algorithm for the spectrum allocation 
problem. 

The  remainder of  the  paper  is  organized as  follows.  In 
Section II, we define the SA problem we consider in this work 
and show how large problem instances may be decomposed 
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optimally into smaller ones. In Section III we prove an 
optimality property of the FF heuristic, and in Section IV 
we leverage this property to develop an optimal recursive 
algorithm for the SA problem. We evaluate the algorithm in 
Section V, and we conclude the paper in Section VI. 
 

II.  THE SPECTRUM ALLOCATION (SA) PRO BLEM 

We consider an optical network with a topology described 
by graph G = (V, A),  where V  is the set of vertices (nodes) 
and A is the set of arcs (directed fiber links) in the network. Let 
N  = |V | be the number of nodes and L = |A| be the number 
of directed links; without loss of generality, we assume that if 
there is a fiber link from some node A to some other node B in 
the network, then there is a fiber link in the opposite direction, 
from node B to node A. We are given a set T  = {Ti } of traffic 
requests, and each request is a tuple Ti  = (si , di , pi , ti ), where: 

•  si and di   are the source and destination nodes, respec- 
tively, of the request, 

•  pi  is the (fixed and pre-determined) physical path between 
nodes si  and di   in the network over which the request 
must be routed, and 

•  ti is the amount of spectrum (e.g., in units of spectrum 
slots) required to carry the traffic from si to di . 

We consider the following basic definition of the spectrum 
allocation (SA) problem: 

Definition 2.1 (SA): Given a graph G = (V, A)  and a set 
T   =  {Ti   =  (si , di , pi , ti )}  of  traffic  requests,  assign  ti 
spectrum slots along the physical path pi   for each request 
Ti    so  as  to  minimize  the  total  amount  of  spectrum  used 
on any link in the network, under three constraints: 1) each 
request Ti  is assigned a block of ti contiguous spectrum slots 
(contiguity constraint), 2) each request is assigned the same 
block of spectrum slots along all links of its path pi  (spectrum 
continuity constraint), and 3) requests whose paths share a link 
are assigned nonoverlapping spectrum slots (nonoverlapping 
spectrum constraint). 

In earlier work [11] we have shown that the SA problem 
is NP-hard even for chain (i.e., single-path) networks with 
four or more links. When all the spectrum demands are equal, 
i.e., ti  = t 8i, the SA problem reduces to the wavelength 
allocation (WA) problem that can be solved in polynomial time 
for chain networks but remains NP-hard for rings or networks 
of a general topology [15]. In the next subsection, we show 
that under certain conditions, a large SA problem instance 
may be decomposed into smaller instances that can be solved 
independently. 
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   is O(KL log(L)),  where K is the number of requests in T 
A   lgorithm 1 Request Partition Algorithm 
Input: 

G = (V, A):  network topology 
T  = {Ti = (si , di , pi , ti }: set of traffic requests 

Output: 
A partition of T  into subsets that pairwise use disjoint 
sets of links 

1:  {Make a singleton set for each link} 
2:  for each link lj  2	A do 
3: `j = {lj }; 
4:  end for 
5:  for each Ti  2	T  do 
6: {include all links of the path into the same up-tree, i.e., 

link subset} 
7: Fi ;	
8: for each lj  2	pi  do 
9: Fi U nion(Fi , F ind(lj )) 

10: end for 
11:  end for 
12:  for each distinct non-empty subset Fi  do 
13: return the set of requests with paths using links in Fi 

 14:  end for 
 
 
 

A. Exact Decomposition 

and L is the number of links in the network. 
Without loss of generality, in the remainder of this paper we 

assume that the request set T  cannot be further decomposed 
into smaller independent request sets using Algorithm 1. 
 

III.  THE OPTIMALITY PROPERTY OF THE FF HEU RISTIC 

Consider  the  SA  problem  on  graph  G  and  request  set 
T   = {Ti , i  = 1, · · · , K }.  Let  P  be  a  permutation  (i.e., 
an ordering) of the traffic requests Ti . We say that P  is a 
partial (respectively, complete) permutation if only a subset of 
(respectively, all K ) requests in T  appear in P . Let SOL(P ) 
denote the solution to the SA problem obtained by the FF 
heuristic by considering each traffic request in the order 
implied by the permutation P . If P is a complete permutation, 
then SOL(P ) is a feasible solution to the SA problem, but 
if P  is a partial permutation, then SOL(P ) is only a partial 
solution to the SA problem. 

Let OP T denote the objective value of an optimal solution 
to  the  SA  problem.  A  lower  bound  LB   on  the  optimal 
objective value may be obtained by ignoring any spectrum 
fragmentation that may result from enforcing the spectrum 
contiguity and continuity constraints, and simply accounting 
for the fact that each link l 2	A  must use at least as many 
spectrum slots as to carry all the traffic demands whose path 
includes this link: 

 

Consider a request set T  that can be partitioned into, say, 
two sets T1   and T2 , such that the paths of requests in T1 
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(1) 

use only links in set A1    ⇢	A,  the paths of requests in T2 
l2A :

T i 2T :l2pi       
; 

use only links in set A2    ⇢	 A,  and the corresponding link 
sets  are  disjoint,  i.e.,  A1   \	A2    = ;.  In  this  case,  it  can 
be seen that allocation of spectrum to requests in T1   does 
not affect the allocation of spectrum to requests in T2 , and 
vice versa. Therefore, the original SA problem on set T  is 
decomposed exactly into two smaller SA instances on request 
sets T1 and T2 , respectively, that may be solved independently; 
the solution to the original problem is simply the maximum 

Clearly, for any complete permutation P of the traffic requests 
we have that: 

LB  		OP T  		SOL(P ).  (2) 

We now prove the following optimality property of the FF 
heuristic with respect to the SA problem. 

Lemma 3.1 (FF Optimality Property): There exists a per- 
mutation P ?  of the traffic requests such that applying the FF 

of the solutions to the two smaller instances. 
Algorithm 1 uses up-tree structures and Union-Find opera-

 heuristic to the requests in the order implied by P ? 

optimal solution to the SA problem, i.e., SOL(P ?
 yields an 

 
tions [16] to partition the set T  of requests into subsets whose 
paths use pairwise disjoint sets of links. The algorithm starts 

 
 
Proof. By construction. 

F F ) = OP T . 

by creating singleton sets `j , each consisting of one network 
link lj   2	A.  The algorithm then considers the requests in T 
one by one, in arbitrary order. For each request Ti , it performs 
a Find operation on each link lj  of the path pi  of Ti  to locate 
the up-tree to which link lj  belongs; initially, the up-tree is the 
singleton set `j . Then, the algorithm forms the Union of the 
up-trees to which the links of Ti  belong. As a result, at the end 
of Line 11, the non-empty up-trees represent a partition of the 
link set A such that each link subset (i.e., up-tree) corresponds 
to a subset of the request set T  whose paths only use links in 
that up-tree. 

Each Union operation takes O(1) time while each Find 
operation takes time that is logarithmic in the number of 
singleton sets [16], which in this case is equal to the num- 
ber L of links. Therefore, the computational complexity of 
Algorithm 1 is determined by the for loop in Lines 5-11, and 

Consider an optimal solution to the SA problem with 
objective value equal to OP T . Label the slots on each link 
as  1, 2, . . . , OP T .  By  definition, the  optimal  solution  is  a 
feasible solution that satisfies all three constraints of the SA 
problem in that each request Ti   is allocated the same block 
of ti  contiguous spectrum slots on each link along its path 
pi , and no other request whose path shares a link with pi   is 
allocated slots from the same block. Let also fi denote the slot 
with the lowest index within the block of ti slots allocated to 
request Ti . 

Let P ? be the complete permutation in which the requests Ti 

are listed in increasing order of fi in the optimal solution, with 
ties broken arbitrarily. Consider the block of tj  contiguous 
spectrum slots allocated to some request Tj   by the optimal 
solution starting at slot fj . Let us remove this block of tj slots 
from the optimal solution. In the remaining partial solution, 
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it is possible that there exists a block of tj  slots that start bound LB  on the optimal solution OP T using expression (1), 
at  a  lower indexed slot  f 0 <  fj  that are  available on  all and also run the FF heuristic on Pinit   to obtain an initial 
links of path pj . If so, we can allocate the lower-indexed tj 
slots starting with slot f 0    to request Tj   without affecting the 
optimality of the solution. 

Based on this observation, we modify the optimal solution 
by considering the requests one by one, in increasing order 
of fi as listed in permutation P ? . For each request Ti , we 
remove its block of spectrum slots that starts at slot fj from the 
solution, and we allocate to it an equal block of slots starting at 
the lowest possible slot index f 0  in the partial solution, keeping 

feasible solution SOL(Pinit ) which represents an upper bound 
on OP T . The algorithm maintains variable BestSOL that 
indicates the best solution it has found so far; this variable is 
initialized as BestSOL = SOL(Pinit ). Although the recur- 
sive procedure will work with any initial complete permutation 
of requests, our earlier work and other related studies [2], [13] 
indicate that applying the FF heuristic to the requests in the 
order determined by Pinit  yields better (i.e., lower) solutions 
that leave a relatively small gap between LB  and SOL(Pinit ). 

in mind that f 0 may be equal to fj . This modified solution The Rec-FF procedure then searches the permutation space 
must not use more than OP T  slots on any link, since any 
modifications involve the allocation of lower-indexed spectrum 
slots to requests. At the same time, since the starting solution is 
an optimal one, the modified solution may not use fewer than 
OP T  slots on any link. Hence, the modified solution is an 
optimal one with objective value equal to OP T . Importantly, 
by construction the modified solution is such that no request 
may be allocated to a spectrum block that starts at a lower- 
indexed slot. 

to  find the permutation that yields an  optimal solution, as 
Lemma 3.1 suggests. 

Each recursive call takes two arguments: a tentative per- 
mutation P  and a Start index. The recursion builds permu- 
tations by maintaining a Start index that takes the values 
1, 2, · · · , K , and divides an input permutation in two parts: a 
finalized leading sub-permutation (prefix) for which the order 
of requests will not be modified in subsequent recursive calls, 
and a tentative trailing sub-permutation (suffix) for which the 

Let P ? be the complete permutation in which the requests order of requests is subject to change and will be finalized 
are relabeled so that they are listed in increasing order of f 0 

in the modified solution, and let us apply the FF heuristic to 
this permutation. The FF heuristic allocates to each request Ti 
a block of ti  contiguous slots starting at the lowest-indexed 
slot for which such a block is available on all links of path pi . 
Therefore, the FF heuristic will construct an optimal solution 
that is identical to the modified solution above. 

 
This FF optimality property helps explain how so many 

studies  of  the  SA  and  WA  problems  have  found  the  FF 
heuristic to perform quite well in diverse problem instances. 

by later recursive calls. The Start index indicates the start 
of this trailing sub-permutation. Initially, the ordering of all 
requests is tentative, and hence the leading sub-permutation is 
null and all K requests belong to the trailing sub-permutation. 
Accordingly, the first call to Rec-FF is with Start = 1. 

The main recursion is the for loop in Lines 10-22 of Algo- 
rithm 2. Essentially, the for loop swaps the first request of the 
trailing sub-permutation (i.e., the request at index Start) with 
all requests in this trailing sub-permutation, including itself 
(i.e., requests at index k = Start, · · · , K ). After making the 
swap for one value of k, the procedure updates the permutation 

However, Lemma 3.1 constructs a permutation P ? on which (Line 16), and increments the Start index (Line 17) to indicate 
the  FF  is  optimal, but  does  so  by  modifying an  unknown that the leading sub-permutation of requests whose order has 
optimal solution and hence P ? is itself unknown. Never- been finalized has increased in size by one. It then makes a 
theless, the FF optimality property suggests a procedure for recursive call (Line 18) to continue swapping requests of the 
finding P ? : enumerate all permutations of requests, run the trailing sub-permutation (which has decreased by one). These 
FF heuristic on each permutation, and select the one with the 
smallest objective value. Assuming there is traffic between all 
node pairs, the size K of the request set is O(N 2 ), where N  is 
the number of nodes. Therefore, any algorithm that considers 
all possible permutations of requests to determine the optimal 
spectrum allocation must take time that is exponential in the 
size of the network, O(N 2 !). 

In the following section we present a recursive procedure 
for searching efficiently the space of request permutations to 
determine this optimal solution. 

 
 

IV.  SCALABLE RECURSIVE FIRST FIT 
 

We have developed a scalable branch-and-bound recursive 
first-fit (Rec-FF) procedure, shown as Algorithm 2, to search 
the entire space of request permutations. We start with a 
complete permutation Pinit   in which the K traffic requests 
Ti , i = 1, · · · , K , are listed in decreasing order of spectrum 
demand ti ,  and  requests with  the  same  demand are  listed 
in decreasing order of path length. We calculate the lower 

recursive calls, if allowed to continue without any restriction, 
will enumerate all possible K ! permutations of the K requests. 

However, not all permutations will lead to a solution that is 
better than the currently best known one, BestSOL. There- 
fore, after making a swap and before making a recursive call, 
in Line 14 the algorithm runs the FF heuristic on the leading 
sub-permutation as it has been expanded after the swap, and 
compares the result to BestSOL. If the result is equal to or 
higher than BestSOL, then it is clear that including more 
requests to this sub-permutation will produce solutions that 
are no better than the best one found so far. In other words, 
continuing further down this subtree of the permutation space 
is  not  productive in  terms  of  finding an  optimal  solution, 
and this part of the search space can be safely eliminated. 
Consequently, as shown in Lines 15-19, a recursive call is 
made only if the FF solution on this leading sub-permutation 
is strictly lower than BestSOL. 

The base case for the recursion is when the order of all 
K requests in an input permutation P  has been finalized. A 
complete finalized permutation is indicated whenever the input 



 

 
Algorithm 2 Recursive First Fit (Rec-FF) 
Input: 

G = (V, A):  network topology 
T  = {Ti = (si , di , pi , ti }: set of traffic requests 
K = |T |: number of traffic requests 
Pinit : initial permutation as discussed in Section IV 
LB:  the lower bound from expression (1) 
BestSOL: best solution so far, initialized to SOL(Pinit ) 
BestP : best permutation so far, initialized to Pinit 

Output: 
Best permutation and corresponding SA solution 

 
Rec-FF(P, Start) 
P : permutation (initial call with P = Pinit ) 
Start : start index of trailing sub-permutation of P  that has 
not been finalized (initial call with Start = 1) 

{Base Case: All K requests finalized in P } 
if Start > K then 

2: S  SOL(P ); {solution obtained by FF on P } 
if S < BestSOL then {Update best known solution} 

4: BestSOL = S;   BestP = P ; 
end if 

6: return; 
end if 

8:  {Main Recursion} 
{Swap P [Start] with all requests that follow it in P } 

10:  for k = Start; k 	K ; k++ do 
Swap P [Start] with P [k]; 

12:       Plead        leading permutation P [1] · · · P [Start]; 
{All requests in Plead  have been finalized} 

14:       leadSOL     SOL(Plead ); 
if leadSOL < BestSOL then 

16:            newP       permutation after the swap at Line 11; 
newStart Start + 1; 

18:            Rec-FF(newP, newStart); 
end if 

20:       {Restore P  and proceed to swap the next request} 
Swap P [Start] with P [k]; 

22:  end for 
 

 
 

index Start > K , and this case is handled in Lines 1-7 of the 
algorithm. Specifically, the algorithm runs the FF heuristic on 
P , and if the solution is strictly better than the best known 
solution, the best solution is appropriately updated in Line 4, 
before the call returns. 

Finally, we note that the Rec-FF algorithm builds a finalized 
permutation one request at a time. Therefore, when it invokes 
the FF heuristic in Line 14 on the leading sub-permutation 
Plead , it is not necessary to run the heuristic on the entire 
sub-permutation. With appropriate bookkeeping (omitted from 
Algorithm 2 for the sake of clarity and brevity), it is only 
necessary to use FF to allocate spectrum for just the most 
recent request added to the leading sub-permutation in Line 11 
by building upon the solution created by the calling function. 
Similarly, Line 2 of the algorithm does not actually need to run 
the FF heuristic at all, it can simply reuse the solution of the 

 
 
 
 
 
 
 
 
 
 
Fig. 1.     Operation of the Rec-FF procedure on the set of four requests. 
The root of the tree represents the initial call with P  = {A, B, C, D} and 
Start = 1. 
 
 
 
 
calling function which finalized the complete input permuta- 
tion P . This optimization eliminates unnecessary computations 
and significantly speeds up the running time of the recursion. 
 

To illustrate the operation of the Rec-FF procedure, consider 
a set of four requests, {A, B, C, D}.  Figure 1 shows part of 
the tree of recursive calls made, with the root of the entire tree 
representing the initial call with arguments P = {A, B, C, D} 
and Start = 1. The figure is generated by assuming that the 
if condition in Line 15 of the algorithm is not checked, and 
hence all recursive calls are made to generate all 4! = 24 
possible permutations of requests. Also, we use red color to 
indicate the requests in the tentative trailing sub-permutation, 
and green color to indicate the requests in the finalized leading 
sub-permutation whose order has been set. In the initial call, 
all four requests are tentative (and are colored red), and the 
for loop in Lines 10-22 runs four times, each time swapping 
the first request A of P  with each of the four requests in the 
set, A, B, C,  and D,  as indicated in the figure. The first of 
these recursive calls is the root of the leftmost subtree and 
swaps A  with itself; at that point, the order of A  becomes 
fixed (indicated in the figure by a change of color from red to 
green) and does not change for the remaining recursive calls 
in this leftmost subtree. The for loop of the call representing 
the root of the leftmost subtree (Start = 2) runs three times, 
each time swapping the second request B  of the permutation 
passed to it with each of the three requests B, C, and D  in 
the trailing tentative sub-sequence. This continues recursively 
until the six leaves of this leftmost sub-tree are reached, each 
representing one of the six possible permutations with request 
A in the first position of the permutation. The subtrees of the 
other three children of the root are omitted from the figure, 
but are similar in that they generate all 18 permutations with 
B, C or D  in the leftmost position. For instance, the second 
of the recursive calls from the root of the whole tree swaps 
the first request A  of P  with request B.  Subsequent calls in 
this subtree swap the second request with one of A, C, and 
D, as before, and so on, until all six permutations with B  in 
the leftmost position are generated. 
 

We emphasize that, in the worst case, the Rec-FF procedure 
may be forced to generate all, or close to all, possible 
permutations of requests and hence take exponential time to 
complete. 



  
 

  
 

 
 

 
 

                                  

                                  

                                  

                                 

                                  

                                  

V.  SIMULATION STUDY 
 

We now present the results of simulation experiments to 
evaluate the performance of the Rec-FF algorithm on two 
network topologies, the 14-node, 21-link NSFNET and the 32- 
node, 54-link GEANT2 network, with shortest-path routing. 
For each topology, we create SA problem instances by gen- 
erating traffic requests between all node pairs in the network 
as follows. We consider data rates of 10, 40, 100, 400, and 
1000 Gbps. For a given problem instance, we generate a 
random value for the demand between a pair of nodes based on 
one of three distributions: 1) Uniform: each of the five rates is 
selected with equal probability; 2) Skewed low: the rates above 
are selected with probability 0.30, 0.25, 0.20, 0.15, and 0.10, 
respectively; or 3) Skewed high: the five rates are selected with 
probability 0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Once 
the traffic rates between each node pair have been generated, 
we calculate the corresponding spectrum slots by assuming 
that the slot width is 12.5 GHz, and adopting the parameters 
of [17] to determine the number of spectrum slots that each 
demand requires based on its data rate and path length. 

The performance measure we consider is the maximum 
number of spectrum slots on any network link as obtained 
by either the FF or Rec-FF algorithms. We let the Rec-FF 
algorithm run until it either reaches the lower bound (in which 
case we know for certain it has found an optimal solution) or 
it reaches a 5-hour limit on running time; while in the latter 
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case we are not certain that the algorithm has found an optimal 
solution, as we discuss shortly, we believe that the solution is 
very close to optimal. For meaningful comparisons between 
problem instances, we  normalize the  solutions returned by 
FF or Rec-FF by dividing with the lower bound LB  for the 
corresponding instance from expression (1). Clearly, the closer 
the normalized value is to 1.0, the better the solution. 

Figures 2 and 3 present results for the NSFNET and 
GEANT2 topologies, respectively. Each figure includes three 
subfigures, one each for demand matrices generated by the 
skewed low, skewed high, and uniform distributions, respec- 
tively. Each subfigure plots the normalized FF solution, the 

Fig. 2.    Normalized solutions to 300 problem instances, NSFNET 

GEANT2 Skewed Low 
Normalized  Lower Bound  Normalized  FF Solution  Normalized  Rec-FF Solution 
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GEANT2 Skewed High 
Normalized  Lower Bound  Normalized  FF Solution  Normalized  Rec-FF Solution 

normalized Rec-FF solution, and the normalized lower bound 
(the last one as a horizontal line at y = 1.0), for each of 100 
random problem instances generated for the stated parameters 
(i.e., network topology and traffic demand distribution). 

We first note that the FF algorithm produces solutions of 
good quality that are within 30% (respectively, 12%) of the 
lower bound for the 300 NSFNET (respectively, GEANT2) 
problem instances. These results are consistent with earlier 
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research  indicating  that  the  FF  algorithm  performs  well.  Re-  
  

GEANT2 Uniform 
Normalized  Lower Bound  Normalized  FF Solution  Normalized  Rec-FF Solution 

garding the Rec-FF algorithm, we observe that it finds better 
solutions than FF in most instances. Table I summarizes the 
average relative performance of the FF and Rec-FF algorithms 
in terms of how far (in percentage) terms their solutions are 
from the lower bound, the number of instances (out of 100 for 
each distribution) that the Rec-FF produces better solutions 
than FF, the number of instances that Rec-FF finds a solution 
equal to the lower bound (i.e., a guranteed optimal solution), 
and the average absolute difference between the FF and Rec- 
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FF solutions, in spectrum slots. For the NSFNET (respectively, Fig. 3.    Normalized solutions to 300 problem instances, GEANT2 
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RE LATIVE  P ER FOR M A NCE  O F  FF A ND  REC -FF AL GOR ITHMS  
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GEANT2) network, Rec-FF improves on the FF solution in 
47-53 (respectively, 71-79) instances, depending on the traffic 
distribution, of which it finds a solution equal to the lower 
bound in 20-26 (respectively, 14-33) instances. Also, although 
the percentage improvement over the FF solution is lower for 
the GEANT2 network, the absolute difference is more than 
twice that for the NSFNET network. In other words, even 
a small improvement in the larger GEANT2 network results 
in significantly larger spectrum savings, especially since it 
applies across many more network links. 

Finally, Figure 4 shows the improvement in the solutions 
found by the Rec-FF algorithm as a function of how long the 
algorithm has run, starting from the FF solution it receives 
as input at time t = 0 until we terminate the algorithm after 
5 hours (note that the time axis is not in linear scale). We 
show two instances, one for NSFNET and one for GEANT2, 
for which Rec-FF finds a solution that is better than FF but 
is higher than the lower bound (hence the algorithm runs for 
the full 5 hours). It takes less than 5 sec (respectively, 45 sec) 
for Rec-FF to find the best solution in the case of NSFNET 
(respectively, GEANT2); in the remaining time the algorithm 
explors solutions that are not better than the best one found in 
the first few seconds. These trends are very similar to the ones 
we observed for all instances of the corresponding networks, 
and indicate that 1) it takes only a few seconds for Rec-FF 
to find its best solution, and 2) even if this solution is not 
optimal, it is likely very close to optimal. 

 
 

VI.  CONCLUDING REM A RK S 
 

We have developed Rec-FF, an algorithm that applies the 
FF heuristic recursively to solve optimally the SA problem. 
The algorithm generally takes less than one minute to produce 
solutions that are very close to the lower bound and which, we 
conjecture, are optimal. We plan to integrate Rec-FF with the 
algorithm in [14] so as to solve large RSA problems efficiently. 
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