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Abstract

Computerized adaptive testing (CAT) refers to a
form of tests that are personalized to every stu-
dent/test taker. CAT methods adaptively select the
next most informative question/item for each stu-
dent given their responses to previous questions,
effectively reducing test length. Existing CAT
methods use item response theory (IRT) models
to relate student ability to their responses to ques-
tions and static question selection algorithms de-
signed to reduce the ability estimation error as
quickly as possible; therefore, these algorithms
cannot improve by learning from large-scale stu-
dent response data. In this paper, we propose BOB-
CAT, a Bilevel Optimization-Based framework for
CAT to directly learn a data-driven question se-
lection algorithm from training data. BOBCAT is
agnostic to the underlying student response model
and is computationally efficient during the adaptive
testing process. Through extensive experiments on
five real-world student response datasets, we show
that BOBCAT outperforms existing CAT methods
(sometimes significantly) at reducing test length.

1 Introduction

One important feature of computerized/online learning plat-
forms is computerized adaptive testing (CAT), which refers to
tests that can accurately measure the ability/knowledge of a
student/test taker using few questions/items, by using an algo-
rithm to adaptively select the next question for each student
given their response to previous questions [van der Linden
and Glas, 2000; Luecht and Sireci, 2011]. An accurate and
efficient estimate of a student’s knowledge levels helps com-
puterized learning platforms to deliver personalized learning
experiences for every learner.

A CAT system generally consists of the following compo-
nents: an underlying psychometric model that links the ques-
tion’s features and the student’s features to their response to
the question, a bank of questions with features learned from
prior data, and an algorithm that selects the next question for
each student from the question bank and decides when to stop
the test; see [Han, 2018] for an overview. Most commonly

used response models in CAT systems are item response the-
ory (IRT) models, with their simplest form (1PL) given by

p(Yi,j = 1) = σ(θi − bj), (1)

where Yi,j is student i’s binary-valued response to question j,
where 1 denotes a correct answer, σ(·) is the sigmoid/logistic
function, and θi ∈ R and bj ∈ R are scalars corresponding
to the student’s ability and the question’s difficulty, respec-
tively [Lord, 1980; Rasch, 1993]. More complex IRT models
use additional question features such as the scale and guess-
ing parameters or use multidimensional student features, i.e.,
their knowledge levels on multiple skills [Reckase, 2009].

Most commonly used question selection algorithms in CAT
systems select the most informative question that minimizes
the student feature measurement error; see [van der Linden
and Pashley, 2009] for an overview. Specifically, in each step
of the adaptive testing process (indexed by t) for student i,
they select the next question as

j
(t)
i = argmax

j∈Ω
(t)
i

Ij(θ̂
(t−1)
i ), (2)

where Ω
(t)
i is the set of available questions to select for

this student at time step t (the selected question at each

time step is removed afterwards), θ̂
(t−1)
i is the current es-

timate of their ability parameter given previous responses
Y
i,j

(1)
i

, . . . , Y
i,j

(t−1)
i

, and Ij(·) is the informativeness of ques-

tion j. In the context of 1PL IRT models, most informative-
ness metrics will select the question with difficulty closest to
the current estimate of the student’s ability, i.e., selecting the
question that the student’s probability of answering correctly
is closest to 50%. This criterion coincides with uncertainty
sampling [Lewis and Gale, 1994] for binary classification, a
commonly used method in active learning [Settles, 2012] that
is deployed in real-world CAT systems [Settles et al., 2020].

Despite the effectiveness of existing CAT methods, two
limitations hinder their further improvement. First, most
question selection algorithms are specifically designed for
IRT models (1). The highly structured nature of IRT mod-
els enables theoretical characterization of question informa-
tiveness but limits their ability to capture complex student-
question interactions compared to more flexible, deep neu-
ral network-based models [Cheng et al., 2019; Wang et al.,
2020a]. This limitation is evident on large-scale student re-
sponse datasets (often with millions of responses) that have





The outer-level optimization problem (blue box in Fig-
ure 1) minimizes the binary cross-entropy loss, `(·), on the
meta question sets across all students to learn both the global
response model and the question selection algorithm; L(·)
corresponds to the sum of this loss over questions each stu-
dent responded to in the meta question set. The inner-level
optimization problem (green box in Figure 1) minimizes
L′(·), the cross-entropy loss on a small number of questions
selected for each student on the training question set to adapt
the global response model to each local student, resulting in
a student-specific parameter θ∗

i ; R(γ,θi) is a regularization
term that penalizes large deviations of the local parameters
from their global values. Note that θ∗

i is a function of the
global parameters γ and φ, reflected through both the reg-
ularization term in (4) and the question selection algorithm
through questions it selects for this student in (5).

Response Model. The response model g(·) can be taken as
either IRT models or neural network-based models. In the
case of IRT models, the global parameters γ corresponds to
the combination of the question difficulties and the student
ability prior. We adapt these parameters to each local student
through their responses to selected questions in the inner-
level optimization problem. In our experiments, we only use
the global student ability as the prior mean of each local stu-
dent’s ability estimate and keep the question difficulties fixed
in the inner-level optimization problem, following the typi-
cal setup in real-world CAT systems. In the case of neural
network-based models, the parameters are usually not associ-
ated with any specific meaning; following standard practices
in meta-learning [Lee et al., 2019], we fix part of the network
(e.g., all weights and biases, which one can regard as a non-
linear version of question difficulties) and optimize the rest of
the network (e.g., the input vector, which one can regard as
student abilities) in the inner-level optimization problem.

Question Selection Algorithm. The question selection al-
gorithm Π(·) can be either deterministic or probabilistic, i.e.,
it either outputs a single selected question or a probability
distribution over available questions. We define the input
state vector to the question selection algorithm at step t as

x
(t)
i ∈ {−1, 0, 1}Q, where an entry of −1 denotes an incor-

rect response to a past selected question, 1 denotes a correct
response, while 0 denotes questions that have not been se-
lected. We do not include the time step at which a question
is selected in the state vector since in CAT settings, the stu-
dent’s true ability is assumed to be static during the testing
process while an estimate is being updated. Although any
differentiable model architecture can be used for the question
selection algorithm, we use the multi-layer perceptron model
that is invariant to question ordering. For probabilistic ques-
tion selection algorithms, we select a question by sampling

from the output distribution j
(t)
i ∼ Π(x

(t)
i ,Ω

(t)
i ;φ).

2.1 Optimization

We use gradient descent (GD) to solve the inner-level opti-
mization problem for the local response model parameters θ∗

i ,
following model-agnostic meta learning [Finn et al., 2017].
In particular, we let the local student-specific parameter devi-
ate from the global response model parameters by taking K

GD steps from γ, where each step is given as

θi ← θi − α∇θ

n
∑

t=1

`
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)∣

∣

∣

θi

, (6)

where α is the learning rate. We do not explicitly use regular-
ization for GD steps since early stopping (with only a few GD
steps) is equivalent to a form of regularization [Rajeswaran et
al., 2019]. Computing the gradient w.r.t. the global parame-
ters γ requires us to compute the gradient w.r.t. the gradient
in the inner-level optimization problem in (6) (also referred
to as the meta-gradient), which can be computed using auto-
matic differentiation [Paszke et al., 2017]. Computing the ex-
act meta-gradient requires second-order derivatives; however,
we found that first-order approximation works well in prac-
tice and leads to low computational complexity. Similarly, to
learn the selection algorithm parameters φ, we need to com-
pute the gradient of the outer-level objective in (3) w.r.t. φ
through the student-specific parameters θ∗

i (γ,φ), i.e., the so-
lution to the inner-level optimization problem. The gradient
for a single student i (the full gradient sums across all stu-
dents) is given by
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i
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)
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[

L
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(1:n)
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)

,Γi

)]

, (7)

where we replace the dependence of θ∗
i on the parameters of

the question selection algorithm, φ, with the indices of the

selected questions, j
(1:n)
i , which we need to backpropagate

through. The discrete nature of these variables makes them
non-differentiable so that we cannot compute the exact gradi-
ent. Next, we will detail two ways to estimate this gradient.

Unbiased Gradient Estimate

We can use the score function-based identity (
∂ log f(X;φ)

∂φ =
∂f(X;φ)/∂φ

f(X;φ) for any probability distribution f(X;φ)) to esti-

mate the unbiased gradient in (7) [Williams, 1992] as

∇φEj
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,

where bi is a control variable to the reduce the variance of
the gradient estimate. This unbiased gradient resembles re-
inforcement learning-type algorithms for CAT, an idea dis-
cussed in [Nurakhmetov, 2019]. We use proximal policy op-
timization for its training stability with an actor network and a
critic network [Schulman et al., 2017]; we provide details of
these networks in the supplementary material to be released
in the full version of the paper.

We observe that this unbiased gradient estimate updates the
question selection algorithm parameters through the selected
questions only, without including observations on the avail-
able but not selected questions, resulting in slow empirical
convergence in practice. However, incorporating information
on unselected questions into the gradient computation may



lead to lower variance in the gradient and stabilize the train-
ing process. Next, we detail a biased approximation to the
gradient using all the available training questions.

Approximate Gradient Estimate

We can rewrite the gradient in (7) as

∇φL
(

θ∗
i

(

γ,φ
)

,Γi

)

= ∇θ∗

i
L
(

θ∗
i ,Γi

)

∇φθ
∗
i

(

γ,φ
)

. (9)

The gradient w.r.t. θ∗
i can be computed exactly; next, we dis-

cuss the computation of ∇φθ
∗
i

(

γ,φ
)

in detail for a single
time step t. We can rewrite the inner-level optimization in (4)

by splitting the current question index j
(t)
i from previously

selected question indices j
(1)
i , · · · , j

(t−1)
i as

θ∗
i =argmin

θi
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`
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Y
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)
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+
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wj(φ)`
(

Yi,j , g(j;θi)
)

, (10)

where wj(φ) = 1 if j = j
(t)
i and wj(φ) = 0 for all other

available questions. In (10), we can compute the derivative
dθ∗

i

dwj(φ) for all available question indices in Ω
(t)
i regardless of

whether they are selected at time step t, using the implicit
function theorem [Cook and Weisberg, 1982] as

dθ∗
i

dwj(φ)
= −

(

∇2
θi
L′
i

)−1

∇θi
`
(

Yi,j , g(j;θi)
)∣

∣

∣

θ∗

i

.

This gradient can be computed without explicitly comput-
ing the inverse Hessian matrix using automatic differentia-
tion in a way similar to that for the global response model pa-

rameters γ. However, we still need to compute
∂wj(φ)

∂Π(j|x
(t)
i

;φ)
,

which is not differentiable; since wj(φ) = Π(j|x
(t)
i ;φ) holds

when the selection algorithm network puts all the probabil-
ity mass on a single question, we can use the approximation

wj(φ) ≈ Π(j|x
(t)
i ;φ). From (9) and (10), it turns out that

under this approximation, the full gradient with respect to

a single question,
∂L(θ∗

i ,Γi)

∂Π(j|x
(t)
i

;φ)
, is the widely used influence

function score [Koh and Liang, 2017]:

−∇θi
L(θi,Γi)

(

∇2
θi
L′
i

)−1

∇θì

(

Yi,j , g(j;θi)
)
∣

∣

∣

θ∗

i

:=Ii(j), (11)

where Ii(j), the influence function score of question j, com-
putes the change in the loss on the meta question set under
small perturbations in the weight of this question, wj(φ), in
(10). Intuitively, we would want to select available training
questions with gradients that are similar to the gradient on
the meta question set, i.e., those with the most information on
meta questions; the approximation enables us to learn such
a question selection algorithm by backpropagating the influ-
ence score as gradients through all available questions in the
training question set. In contrast, for the unbiased gradient

in (8),
∂L(θ∗

i ,Γi)

∂Π(j|x
(t)
i

;φ)
equals zero for all unselected questions

Algorithm 1 BOBCAT training process

1: Initialize global parameters γ,φ, learning rates η1, η2, α,
and number of GD steps at the inner-level, K.

2: while not converged do
3: Randomly sample a mini-batch of students B with

training and meta question sets {Ω
(1)
i ,Γi}i∈B.

4: for t ∈ 1 . . . n do
5: Encode the student’s current state x

(t)
i based on their

responses to previously selected questions.

6: Select question j
(t)
i ∼ Π(x

(t)
i ;φ) for each student.

7: Optimize θ∗
i in Eq. 6 using learning rate α and K

GD steps on observed responses {Y
i,j

(1:t)
i

}.

8: Estimate the unbiased (or the approximate) gradient
∇φL(θ

∗
i ,Γi) using Eq. 8 (or Eq. 11).

9: Update φ: φ← φ− η2

|B|

∑

i∈B∇φL(θ
∗
i ,Γi).

10: end for

11: Update γ: γ←γ− η1

|B|

∑

i∈B∇γL
(

θ∗
i (γ,φ),Γi

)

.

12: end while

and equals −(L(θ∗
i ,Γi) − bi) logΠ(j

(t)
i |x

(t)
i ;φ) for the se-

lected question j
(t)
i . This biased approximation (often known

as the straight-through estimator) has been successfully ap-
plied in previous research for neural network quantization and
leads to lower empirical variance [Bengio et al., 2013]. Al-
gorithm 1 summarizes BOBCAT’s training process.

Computational Complexity. At training time, we need to
solve the full BOBCAT bilevel optimization problem, which
is computationally intensive on large datasets. However, at
test time, when we need to select the next question for each
student, we only need to use their past responses as input to
the learned question selection algorithm Π(·;φ) to get the se-
lected question as output; this operation is more computation-
ally efficient than existing CAT methods that require updates
to the student’s ability estimate after every question.

3 Experiments

We now detail both quantitative and qualitative experiments
we conducted on five real-world student response datasets to
validate BOBCAT’s effectiveness.

Datasets, Training, Testing and Evaluation Metric. We
use five publicly available benchmark datasets: EdNet2,
Junyi3, Eedi-1, Eedi-24, and ASSISTments5. In Table 3, we
list the number of students, the number of questions, and
the number of interactions. We provide preprocessing de-
tails and additional background on each dataset in the sup-
plementary material. We perform 5-fold cross validation for
all datasets; for each fold, we use 60%-20%-20% students
for training, validation, and testing, respectively. For each

2https://github.com/riiid/ednet
3https://www.kaggle.com/junyiacademy/learning-activity-

public-dataset-by-junyi-academy
4https://eedi.com/projects/neurips-education-challenge
5https://sites.google.com/site/assistmentsdata/home/assistment-

2009-2010-data



Dataset n IRT-Active BiIRT-Active BiIRT-Unbiased BiIRT-Approx BiNN-Approx

EdNet

1 70.08 70.92 71.12 71.22 71.22
3 70.63 71.16 71.3 71.72 71.82
5 71.03 71.37 71.45 71.95 72.17

10 71.62 71.75 71.79 72.33 72.55

Junyi

1 74.52 74.93 74.97 75.11 75.1
3 75.19 75.48 75.53 75.76 75.83
5 75.64 75.79 75.75 76.11 76.19

10 76.27 76.28 76.19 76.49 76.62

Eedi-1

1 66.92 68.22 68.61 68.82 68.78
3 68.79 69.45 69.81 70.3 70.45
5 70.15 70.28 70.47 70.93 71.37

10 71.72 71.45 71.57 72.0 72.33

Eedi-2

1 63.75 64.83 65.22 65.3 65.65
3 65.25 66.42 67.09 67.23 67.79
5 66.41 67.35 67.91 68.23 68.82

10 68.04 68.99 68.84 69.47 70.04

ASSIST
ments

1 66.19 68.69 69.03 69.17 68.0
3 68.75 69.54 69.78 70.21 68.73
5 69.87 69.79 70.3 70.41 69.03

10 71.04 70.66 71.17 71.14 69.75

Table 1: Average predictive accuracy on the meta question set across
folds on all datasets. Best methods are shown in bold font. For
standard deviations and results on all methods, refer to Figure 2 and
Tables in the supplementary material.

fold, we use the validation students to perform early stopping
and tune the parameters for every method. For BOBCAT, we
partition the questions responded to by each student into the

training (Ω
(1)
i , 80%) and meta (Γi, 20%) question sets. To

prevent overfitting, we randomly generate these partitions in
each training epoch. We use both accuracy and the area un-
der the receiver operating characteristics curve (AUC) as met-
rics to evaluate the performance of all methods on predicting
binary-valued student responses on the meta set Γi. We im-
plement all methods in PyTorch and run our experiments in
a NVIDIA TitanX/1080Ti GPU.

Methods and Baselines. For existing CAT methods, we
use IRT-Active, the uncertainty sampling-based [Lewis and
Gale, 1994] active learning question selection algorithm,
which selects the next question with difficulty closest to a
student’s current ability estimate, as a baseline [Settles et al.,
2020]. This method coincides with the question information-
based CAT methods under the 1PL IRT model. We also use
an additional baseline that selects the next question randomly,
which we dub IRT-Random. For BOBCAT, we consider the
cases of using IRT models (which we dub as BiIRT) and neu-
ral networks (which we dub as BiNN) as the response model.
For both BiIRT and BiNN, we use four question selection al-
gorithms: in addition to the -Active and -Random algorithms
above, we also use learned algorithms with the -Unbiased
gradient (8) and the approximate (-Approx) gradient (11) on
the question selection algorithm parameters φ.

Networks and Hyper-parameters. We train IRT models
using logistic regression with l2-norm regularization. For
IRT-Active, we compute the student’s current ability esti-
mate with l2-norm regularization to penalize deviation from
the mean student ability parameter. For BiNN, we use a
two-layer, fully-connected network (with 256 hidden nodes,
ReLU nonlinearity, 20% dropout rate, and a final sigmoid out-

Dataset n IRT-Active BiIRT-Active BiIRT-Unbiased BiIRT-Approx BiNN-Approx

EdNet

1 73.58 73.82 74.14 74.34 74.41
3 74.14 74.21 74.49 75.26 75.43
5 74.6 74.56 74.77 75.68 76.07

10 75.35 75.21 75.39 76.35 76.74

Junyi

1 74.92 75.53 75.67 75.91 75.9
3 76.06 76.52 76.71 77.11 77.16
5 76.82 77.07 77.07 77.69 77.8

10 77.95 77.95 77.86 78.45 78.6

Eedi-1

1 68.02 70.22 70.95 71.34 71.33
3 71.63 72.47 73.26 74.21 74.44
5 73.69 73.97 74.54 75.47 76.0

10 76.12 75.9 76.34 77.07 77.51

Eedi-2

1 69.0 70.15 70.64 70.81 71.24
3 71.11 72.18 73.11 73.37 73.88
5 72.42 73.21 74.19 74.55 75.2

10 74.36 75.17 75.37 75.96 76.63

ASSIST
ments

1 69.14 70.55 71.0 71.33 70.12
3 71.17 71.6 72.35 73.16 71.57
5 72.26 71.65 73.1 73.71 72.14

10 73.62 72.52 74.38 74.66 73.59

Table 2: Average AUC on the meta question set across folds on all
datasets. For standard deviations and results on all methods, refer to
Figures and Tables in the supplementary material.

Dataset EdNet Junyi Eedi-1 Eedi-2 ASSISTments

Students 312K 52K 119K 5K 2.3K
Questions 13K 25.8K 27.6K 1K 26.7K

Interactions 76M 13M 15M 1.4M 325K

Table 3: Dataset statistics.

put layer) [Goodfellow et al., 2016] as the response model,
with a student-specific, 256-dimensional ability vector as in-
put. We use another fully-connected network (with two hid-
den layers, 256 hidden nodes, Tanh nonlinearity, and a fi-
nal softmax output layer) [Goodfellow et al., 2016] as the
question selection algorithm. For BiNN/IRT-Unbiased, we
use another fully-connected critic network (two hidden lay-
ers, 256 hidden nodes, Tanh nonlinearity) in addition to the
question selection actor network. For BiIRT and BiNN, we
learn the global response model parameters γ and question
selection algorithm parameters φ using the Adam optimizer
[Kingma and Ba, 2015] and learn the response parameters
adapted to each student (in the inner-level optimization prob-
lem) using the SGD optimizer [Goodfellow et al., 2016]. We
provide specific hyper-parameter choices and batch sizes for
each dataset in the supplementary material. For all methods,
we select n ∈ {1, 3, 5, 10} questions for each student.

3.1 Results and Discussion

In Table 1, we list the mean accuracy numbers across all folds
for selected BOBCAT variants and IRT-Active on all datasets;
in Table 2, we do the same using the AUC metric. In the sup-
plementary material, we provide results for all methods men-
tioned above and also list the standard deviations across folds.
Using a neural network-based response model, BiNN-Approx
outperforms other methods in most cases. Using an IRT re-
sponse model, BiIRT-Approx performs similarly to BiNN-
Approx and outperforms other methods. All BOBCAT vari-
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Supplementary Material

5 Unbiased Gradient Full Objective

We will use the term reward to denote the negative loss value
−L. In (8), the gradient is computed based on the loss on
the meta question set and the selected question probability.
In practice, we can use an actor-critic network, where the
actor network computes the question selection probabilities

Π(·|x
(t)
i ;φ) and the critic network predicts a scalar expected

reward value V (x
(t)
i ). The advantage value for the selected

question j
(t)
i is defined as,

A(x
(t)
i , j

(t)
i ) = −(L(θ∗

i ,Γi)− bi)− V (x
(t)
i ).

The actor network updates the network φ to improve the re-
ward (or equivalently the advantage value). We use proximal
policy optimization (PPO) for learning the unbiased model.
The PPO model, a off-policy policy gradient method, takes
multiple gradient steps on the parameter φ. Since, after the
first step, the updated model φ is different than the model
φold, used to compute the reward, we need to adjust the im-
portance weights to get the unbiased gradient [Schulman et
al., 2017]. The proximal policy optimization objective at time
step t for the actor network is,

L1 =− E
j
(t)
i

∼Π(φold)

[

min
{ Π(j

(t)
i |x

(t)
i ;φ)

Π(j
(t)
i |x

(t)
i ;φold)

A(x
(t)
i , j

(t)
i ),

(12)

Clip
{ Π(j

(t)
i |x

(t)
i ;φ)

Π(j
(t)
i |x

(t)
i ;φold)

, 1− ε, 1 + ε
}

A(x
(t)
i , j

(t)
i )

}]

,

where the function Clip(r, 1 − ε, 1 + ε) returns min{1 +
ε,max{r, 1 − ε}}; this constraint stabilizes the network by
not taking large gradient steps. In addition, to encourage ex-
ploration, PPO adds an entropy objective based on the actor
output probability distribution,

L2 =
∑

j∈Ω
(t)
i

[

Π(j|x,φ) logΠ(j|x
(t)
i ,φ)

]

. (13)

The critic network updates the parameter based on the MSE
loss between the expected reward and the true reward,

L3 = ||V (x
(t)
i ) + (L(θ∗,Γi)− bi)||

2. (14)

We compute the reward for a student based on the accuracy on
the meta question set. Moreover, we observed that the perfor-
mance of each student differs considerably and the widely-
used single moving average baseline does not perform that
well; thus, we decided to use a different baseline for each
student. We use meta-set performance based on a random
selection algorithm as the baseline for each student. The
baseline computation increases the computational complex-

ity; however, the critic network output V (x
(t)
i ) only needs to

predict how good the actor network is compared to a ran-
dom selection algorithm. This choice of baseline worked
well in all of our experiments. The final objective of PPO
uses a weighted combination of these individual loss terms
(L1 + 0.01L2 + 0.5L3).

Dataset Students Questions Interactions R

EdNet 312,372
(∼0.8M)

13,169 76,489,425
(∼95M)

1

Junyi 52224
(72,758)

25,785 13,603,481
(∼16M)

2

Eedi-1 118,971 27,613 15,867,850 2

Eedi-2 4,918 948 1,382,727 5

ASSISTments 2,313
(4,217)

26,688 325,359
(346,860)

10

Table 5: Full dataset details. Students with < 20 interactions are
removed. In parenthesis, we list the numbers before preprocess-
ing/filtering. R is the repetition number of the training-meta partition
split to reduce variance.

6 Datasets and Preprocessing Details

We compare our models on five benchmark public datasets:
EdNet, Junyi, Eedi-1, Eedi-2, and ASSISTments; the Eedi-2
dataset has been used in [Wang et al., 2020b]. We remove
students having less than 20 interactions; further, in case of
duplicate questions, we keep only the first interaction. In Ta-
ble 5, we list the number of students, the number of questions,
and the number of interactions. We also list the number of
total students and interactions in each dataset in parentheses
(before filtering); we do not need to preprocess Eedi-1 and
Eedi-2 datasets, since they contain single interaction for each
question and maintain more than 50 total interactions for each
student. Following [Wang et al., 2020b], for smaller datasets,
for each students in the validation and testing set, we created

multiple (R) partitions of training (Ω
(1)
i , 80%) and meta set

(Γi, 20%) to reduce the variance in the final estimate; the
number of repetitions (R) for each dataset is added in Ta-
ble 5. The (training-meta question set) partitions for the
validation and testing students are exactly the same for all
models.

7 Networks and Hyper-parameters

For training IRT-Active and IRT-Random, we use l2-norm
regularization λ1 ∈ {10

−3, 10−6, 10−10}. For the IRT-
Active, we compute the student ability parameters us-
ing the responses and a l2-norm regularization λ2 ∈
{10, 1, 10−1, 10−2, 10−4, 0} to penalize deviation from the
mean student ability parameter in the training dataset. For
the BiNN model, the global response model γ consists of
a input vector w ∈ R

256, and a network with one hid-
den layer of 256 nodes with weight W1 ∈ R

256×256, and
a output layer with weight W

2 ∈ R
Q×256 (for simplic-

ity, we are ignoring the biases). The response model com-
putes probability of correctness for question j with student-
specific parameter θi := {wi,W

1
i ,W

2
i } as, g(j,θi) =

σ(W2
i Dropout(ReLU(W1

iwi)))[j], where x[j] represents

the jth dimension of the vector x, and the sigmoid func-
tion σ(·) operates element-wise. We keep part of the net-
work (W1,W2) fixed in the inner-level and only adapt the
student-specific parameter w. We use Adam optimization for
all question specific parameters in BiIRT and BiMLP models





Dataset Sample IRT-Random IRT-Active BiIRT-Random BiIRT-Active BiIRT-Unbiased BiIRT-Approx BiNN-Random BiNN-Active BiNN-Unbiased BiNN-Approx

EdNet

1 73.47±0.01 73.58±0.02 73.71±0.01 73.82±0.02 74.14±0.02 74.34±0.01 73.63±0.01 73.46±0.01 73.96±0.03 74.41±0.01
3 74.03±0.02 74.14±0.02 74.11±0.01 74.21±0.01 74.49±0.01 75.26±0.01 74.2±0.01 74.3±0.02 74.66±0.02 75.43±0.01
5 74.45±0.01 74.6±0.02 74.47±0.01 74.56±0.02 74.77±0.01 75.68±0.01 74.58±0.01 74.72±0.01 74.98±0.02 76.07±0.01
10 75.17±0.01 75.35±0.01 75.13±0.01 75.21±0.01 75.39±0.01 76.35±0.01 75.35±0.01 75.44±0.02 75.59±0.01 76.74±0.01

Junyi

1 74.71±0.05 74.92±0.06 75.35±0.04 75.53±0.04 75.67±0.04 75.91±0.03 75.3±0.04 74.81±0.05 75.72±0.05 75.9±0.02
3 75.71±0.04 76.06±0.06 76.18±0.04 76.52±0.04 76.71±0.04 77.11±0.04 76.09±0.03 76.41±0.04 76.67±0.03 77.16±0.02
5 76.42±0.04 76.82±0.04 76.75±0.05 77.07±0.04 77.07±0.04 77.69±0.04 76.66±0.02 77.03±0.04 77.06±0.02 77.8±0.04
10 77.52±0.03 77.95±0.03 77.68±0.05 77.95±0.03 77.86±0.04 78.45±0.03 77.62±0.02 77.95±0.03 77.87±0.02 78.6±0.04

Eedi-1

1 68.03±0.04 68.02±0.04 70.27±0.04 70.22±0.05 70.95±0.02 71.34±0.04 70.18±0.03 69.7±0.08 71.01±0.02 71.33±0.02
3 71.65±0.04 71.63±0.05 72.64±0.05 72.47±0.04 73.26±0.06 74.21±0.03 72.59±0.03 72.7±0.04 73.2±0.04 74.44±0.03
5 73.72±0.03 73.69±0.05 74.14±0.05 73.97±0.03 74.54±0.03 75.47±0.03 74.01±0.03 74.18±0.03 74.46±0.03 76.0±0.03
10 76.14±0.02 76.12±0.04 76.18±0.02 75.9±0.03 76.34±0.02 77.07±0.03 76.06±0.02 76.34±0.02 76.26±0.02 77.51±0.02

Eedi-2

1 68.95±0.07 69.0±0.08 69.24±0.03 70.15±0.13 70.64±0.05 70.81±0.08 69.49±0.07 70.49±0.1 71.09±0.09 71.24±0.09
3 71.08±0.05 71.11±0.14 71.48±0.07 72.18±0.09 73.11±0.07 73.37±0.08 71.94±0.1 72.88±0.11 73.62±0.06 73.88±0.07
5 72.24±0.16 72.42±0.17 72.74±0.1 73.21±0.18 74.19±0.06 74.55±0.12 73.41±0.07 74.21±0.07 74.77±0.08 75.2±0.06
10 74.12±0.14 74.36±0.17 74.48±0.1 75.17±0.12 75.37±0.13 75.96±0.09 75.18±0.09 75.87±0.09 76.02±0.08 76.63±0.08

ASSISTments

1 68.55±0.17 69.14±0.13 70.52±0.13 70.55±0.16 71.0±0.16 71.33±0.24 69.61±0.17 69.09±0.14 69.81±0.18 70.12±0.25
3 70.48±0.19 71.17±0.1 71.83±0.16 71.6±0.08 72.35±0.19 73.16±0.15 70.24±0.19 69.73±0.14 70.41±0.19 71.57±0.28
5 71.57±0.18 72.26±0.16 72.74±0.14 71.65±0.67 73.1±0.18 73.71±0.19 70.71±0.2 70.38±0.16 71.19±0.18 72.14±0.22
10 73.02±0.17 73.62±0.13 74.07±0.15 72.52±0.81 74.38±0.18 74.66±0.22 71.55±0.2 71.33±0.1 71.88±0.23 73.59±0.44

Table 6: 5-fold mean and standard deviation for all models on all datasets using AUC metric.

Dataset Sample IRT-Random IRT-Active BiIRT-Random BiIRT-Active BiIRT-Unbiased BiIRT-Approx BiNN-Random BiNN-Active BiNN-Unbiased BiNN-Approx

EdNet

1 69.99±0.01 70.08±0.02 70.87±0.01 70.92±0.01 71.12±0.01 71.22±0.01 70.81±0.01 70.76±0.01 71.01±0.02 71.22±0.01
3 70.49±0.01 70.63±0.01 71.07±0.01 71.16±0.0 71.3±0.01 71.72±0.01 71.11±0.01 71.23±0.01 71.4±0.02 71.82±0.01
5 70.84±0.01 71.03±0.01 71.26±0.01 71.37±0.01 71.45±0.01 71.95±0.01 71.32±0.01 71.47±0.01 71.56±0.01 72.17±0.01
10 71.41±0.01 71.62±0.01 71.63±0.01 71.75±0.01 71.79±0.0 72.33±0.01 71.75±0.01 71.87±0.01 71.89±0.01 72.55±0.01

Junyi

1 74.38±0.06 74.52±0.07 74.8±0.06 74.93±0.05 74.97±0.06 75.11±0.05 74.78±0.05 74.55±0.06 75.02±0.06 75.1±0.05
3 74.93±0.06 75.19±0.07 75.24±0.06 75.48±0.07 75.53±0.06 75.76±0.06 75.21±0.06 75.4±0.05 75.55±0.04 75.83±0.05
5 75.33±0.06 75.64±0.06 75.55±0.07 75.79±0.06 75.75±0.05 76.11±0.06 75.52±0.05 75.75±0.06 75.74±0.04 76.19±0.05
10 75.96±0.06 76.27±0.06 76.06±0.06 76.28±0.05 76.19±0.06 76.49±0.06 76.05±0.05 76.29±0.06 76.18±0.06 76.62±0.06

Eedi-1

1 66.8±0.05 66.92±0.05 68.18±0.06 68.22±0.06 68.61±0.04 68.82±0.06 68.11±0.05 67.83±0.08 68.66±0.04 68.78±0.04
3 68.63±0.05 68.79±0.06 69.39±0.05 69.45±0.05 69.81±0.05 70.3±0.05 69.33±0.05 69.53±0.05 69.71±0.05 70.45±0.05
5 69.94±0.04 70.15±0.07 70.21±0.05 70.28±0.05 70.47±0.04 70.93±0.05 70.12±0.04 70.37±0.05 70.39±0.04 71.37±0.05
10 71.48±0.03 71.72±0.05 71.44±0.04 71.45±0.04 71.57±0.05 72.0±0.05 71.32±0.04 71.7±0.05 71.44±0.03 72.33±0.04

Eedi-2

1 63.65±0.12 63.75±0.12 64.16±0.07 64.83±0.12 65.22±0.04 65.3±0.08 64.31±0.07 65.1±0.09 65.55±0.07 65.65±0.06
3 65.24±0.11 65.25±0.19 65.84±0.09 66.42±0.09 67.09±0.09 67.23±0.08 66.15±0.1 66.94±0.1 67.55±0.06 67.79±0.05
5 66.24±0.12 66.41±0.13 66.72±0.1 67.35±0.1 67.91±0.07 68.23±0.09 67.29±0.06 67.98±0.06 68.43±0.07 68.82±0.05
10 67.71±0.1 68.04±0.12 68.04±0.1 68.99±0.09 68.84±0.1 69.47±0.06 68.68±0.07 69.34±0.08 69.47±0.05 70.04±0.04

ASSISTments

1 65.45±0.2 66.19±0.19 68.63±0.24 68.69±0.27 69.03±0.24 69.17±0.3 67.89±0.23 67.44±0.18 67.98±0.25 68.0±0.25
3 67.52±0.25 68.75±0.15 69.42±0.24 69.54±0.21 69.78±0.23 70.21±0.19 68.23±0.24 68.13±0.18 68.33±0.22 68.73±0.25
5 68.55±0.25 69.87±0.21 70.03±0.21 69.79±0.32 70.3±0.26 70.41±0.23 68.52±0.24 68.68±0.19 68.7±0.21 69.03±0.25
10 69.95±0.2 71.04±0.22 70.88±0.2 70.66±0.35 71.17±0.21 71.14±0.24 68.9±0.21 69.24±0.19 69.04±0.24 69.75±0.3

Table 7: 5-fold mean and standard deviation for all models on all datasets using accuracy metric.
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