®

Check for
updates

Decomposing Data Structure
Commutativity Proofs with
mn-Differencing

Eric Koskinen!®) and Kshitij Bansal?

! Stevens Institute of Technology, Hoboken, USA
eric.koskinen@stevens.edu
2 QGoogle, Inc., Menlo Park, USA

Abstract. Commutativity of data structure methods is of ongoing inter-
est in contexts such as parallelizing compilers, transactional memory,
speculative execution and software scalability. Despite this interest, we
lack effective theories and techniques to aid commutativity verification.

In this paper, we introduce a novel decomposition to improve the task
of verifying method-pair commutativity conditions from data structure
implementations. The key enabling insight—called mn-differencing—
defines the precision necessary for an abstraction to be fine-grained
enough so that commutativity of method implementations in the abstract
domain entails commutativity in the concrete domain, yet can be less pre-
cise than what is needed for full-functional correctness. We incorporate
this decomposition into a proof rule, as well as an automata-theoretic
reduction for commutativity verification. Finally, we discuss our sim-
ple proof-of-concept implementation and experimental results showing
that mn-differencing leads to more scalable commutativity verification
of some simple examples.

1 Introduction

For an object o, with state o and methods m, n, etc., let £ and 3 denote argument
vectors and m(z) /7 denote a method signature, including a vector of correspond-
ing return values 7. Commutativity of two methods, denoted m(Z)/7 <1 n(g)/s,
are circumstances where operations m and n, when applied in either order, lead
to the same final state and agree on the intermediate return values 7 and s. A
commutativity condition is a logical formula ¢? (o, Z,7) indicating, for a given
state o, whether the methods will always commute, as a function of parameters.

Commutativity conditions are typically much smaller than full specifications,
yet they are powerful: it has been shown that they are an enabling ingredient
in correct, efficient concurrent execution in the context of parallelizing com-
pilers [39], optimistic parallelism [33], transactional memory [16,24,29,30,36],
race detection [17], speculative execution, features [13], layered concurrent pro-
grams [31], etc. More broadly, a paper from the systems community [15] found

E. Koskinen—Supported in part by NSF award #1813745 and #2008633.

© Springer Nature Switzerland AG 2021
F. Henglein et al. (Eds.): VMCAI 2021, LNCS 12597, pp. 81-103, 2021.
https://doi.org/10.1007/978-3-030-67067-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67067-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-67067-2_5

82 E. Koskinen and K. Bansal

that, when software fragments are implemented so that they commute, better
scalability is achieved. Commutativity captures independence and when com-
bined with linearizability proofs (e.g., [12,43]) enables concurrent execution.
Naturally, it is important that commutativity be correct and, in recent years,
growing effort has been made toward reasoning about commutativity conditions
automatically. At present, these works are either unsound [4,21] or else they rely
on data structure specifications as intermediaries [7,27] which, interestingly, can
lead to unsound commutativity conclusions (see Sect. 2).

Our goal in this paper is to improve the task of verifying a commutativ-
ity property o directly from the data-structure source code of methods m
and n. Toward this goal, we first provide a straight-forward way to formulate
the problem as a multi-trace (2-safety) question, i.e., relating the behaviors in
one circumstance with those in another. This first automata-theoretic reduction
(called REDUCEY,) is a product program, but with the pre-condition strength-
ened by only considering reachable data-structure states and the post-condition
weakened to observational equivalence. Although REDUCE], is sound, it does not
employ any commutativity-specific abstractions and, thus, reachability solvers
struggle to verify the resulting encoding, for lack of the ability to decompose the
problem in a manner suitable to commutativity.

The key idea of this paper is a decomposition geared toward improving com-
mutativity verification. We introduce the concept of an mn-differencing abstrac-
tion (o, Ry) which gives a requirement for how precise an abstraction a must be
so that one can reason in that abstract domain and relate abstract post-states
with R,, and yet entail return value agreement in the concrete domain. Intu-
itively, R, captures the differences between the behavior of pairs of operations
when applied in either order (e.g. how push and pop effect the top element of
stack), while abstracting away state reads or mutations that would be the same,
regardless of the order in which they are applied (e.g. those elements deeper
in the stack that are untouched). R, relations capture return value agreement,
but they do not quite capture commutativity. We show the pieces fit together
by combining R, with a relation C' that tracks the unmodified, cloned portion
of the state and an ADT-specific observational equivalence relation /3. Proving
that Iz is an observational equivalence relation is then done using a separate
ADT-specific abstraction 3.

We then return to algorithms, introducing a second reduction DAREDUCE},
that exploits mn-differencing. DAREDUCE], emits two reachability tasks:
automata Aa (m,n, e, I) and Ag(I), thus allowing reachability analyses to
synthesize separate abstractions (a, Ry) and C for Aa(m,n, ¢, I) and g for
Ag(I). Moreover, Ag (1) is independent of m, n and ¢, so it can be proved safe
once and then reused for every subsequent ¢}, query.

We implement our reductions in a simple prototype tool called CITYPROVER,
on top of Ultimate [22] and CPAchecker [10]. CITYPROVER takes as input simple
data structures in C (with integers, structs, arrays) and a candidate formula ¢, .
It then uses the reductions to discover a proof that ¢}, is a valid commutativity
condition or else produce a counterexample. We report encouraging preliminary
results verifying commutativity properties of some simple data structures such as
a memory cell, counter, two-place Set, array stack, array queue and rudimentary

Decomposing Data Structure Commutativity Proofs with mn-Differencing 83

hash table. In all examples, CITYPROVER was able to discover «, R, C and (3
automatically. In some cases we manually provided simple I relations. Since we
reduce to automaton reachability, there was no need for any other user input (such
as invariants, preconditions, predicates, lemmas, etc.). We further consider the
merits of users providing I relations as opposed to the pre/post-specifications in
prior work [7,27], and discuss benefits pertaining to soundness, automation, sim-
plicity and usability. Finally, our experiments show that mn-differencing improves
commutativity verification. DAREDUCE], performs better than REDUCE]) : it is
typically faster and suffers from timeouts less frequently.

Contributions. In summary, our contributions are:

— A reduction REDUCE], that strengthens the pre-condition to reachable ADT
states and weakens the post-condition to observational equivalence. (Sect. 4)

— A decomposition of commutativity reasoning that gives a requirement for how
precise an abstraction must be to entail concrete commutativity. (Sect. 5)

— An improved reduction DAREDUCE],, which exploits mn-differencing and
observational equivalence relations. (Sect. 6)

— A proof-of-concept implementation, that uses these reductions to verify can-
didate commutativity conditions. (Sect. 7)

— Preliminary experiments showing that DAREDUCE?, out-performs REDUCEY,
on some simple numeric data structures such as a memory cell, counter, two-
place Set, array stack, array queue and rudimentary hash table. (Sect. 7)

Some results have been abridged. An extended version is available [28].

Our verified commutativity conditions can be used with existing concurrent
implementations (compilers [39], graph algorithms [33,36], STM [16,24], etc.).
Moreover, with some further research, they could be combined with lineariz-
ability proofs and used inside parallelizing compilers. We believe this to be a
promising direction for future work.

Limitations. mn-differencing is defined semantically and could be applied to a
wide range of programs, parametric data-structures, etc. Our implementation
relies on underlying reachability solvers which are typically limited to programs
with simple arrays and simple pointers, with limited support for quantified
invariants. Thus, although mn-differencing and DAREDUCE}, support ADTs
with parameterized sizes (such as ArrayStack), our experiments instead com-
pared REDUCE], -vs-DAREDUCE], for (infinite state) ADTs of a fixed size. We
were also limited by these tools’ capability of performing permutation reasoning
(e.g. limited disjunctive power).

2 Overview

Motivating Examples. Consider the SimpleSet data structure shown at the left
of Fig. 1. This data structure is a simplification of a Set, capable of storing up to
two natural numbers using private integers a and b. Value —1 is reserved to
indicate that nothing is stored in the variable. Method add(z) checks to see if

84 E. Koskinen and K. Bansal

class SimpleSet {
private int a, b, sz;
SimpleSet() { a=b=-1; sz=0; }
void add(uint x) {
if (sz == 0) { a=x; sz++; ret; }
if (a==x || b==x) { ret; }

class ArrayStack {
private int A[MAX], top;
ArrayStack() { top = —1; }
bool push(int x) {
if (top==MAX-1) ret false;
Aftop++] = x; ret true;

if (a==—1) { a=x; sz++; ret; }
if (b==—1) { b=x; sz++; ret; } int pop() {

ret; if (top == —1) ret —1;
else ret Aftop——]; }
bool isin (uint y) { ret (a==y||b==y);} bool isempty() { ret (top==-1); }
int getsize () { ret sz; }

void clear () { a=—1; b=—1;sz=0; }

Fig. 1. On the left, a SimpleSet data structure, capable of storing up to two natural
numbers (using integer fields a and b) and tracking the size sz of the Set. On the right,
a simple ArrayStack, that implements a stack using an array A and a top index.

there is space available and that z is not already in the Set, and then stores x in
an open slot (either a or b). ret means return. Methods isin (y), getsize () and
clear () are straightforward.

A commutativity condition, written as a logical formula ¢, describes the
conditions under which two methods m(Z) and n(§) commute, in terms of the
argument values and the state of the data structure o. Two methods isin (x)
and isin (y) always commute because neither modifies the ADT, so we say

:2::8’6; = true. The commutativity condition of methods add(z) and isin (y)

is more involved: QD;Z'S(%) =z #yV@=yNa=2x)V(=yAb=u2x).
This condition specifies three situations (disjuncts) in which the two opera-
tions commute. In the first case, the methods are operating on different values.
Method isin (y) is a read-only operation and since y # x, it is not affected by an
attempt to insert x. Moreover, regardless of the order of these methods, add(x)
will either succeed or not (depending on whether space is available) and this
operation will not be affected by isin (y). In the other disjuncts, the element
being added is already in the Set, so method invocations will observe the same
return values regardless of the order and no changes (that could be observed
by later methods) will be made by either of these methods. Note that there
can be multiple concrete ways of representing the same semantic data struc-
ture state: a = 5 A b = 3 is the same as a = 3 A b = 5. Other commutativity

conditions include: aplcs'fna'(y) =@#yAb#y), “pi?rtfi(z;) = true, w;é?{z) = false,
flzt;:ze =sz=0and gofj;?:; =a=xaVb= $\/(a 7& rAa 7& —1Ab 7& Ab 7& 71)'

As a second running example, let us consider an array based implementation
of Stack, given at the right of Fig. 1. ArrayStack maintains array A for data,
a top index to indicate end of the stack, and has operations push and pop.

Decomposing Data Structure Commutativity Proofs with mn-Differencing 85

The capacity of ArrayStack, MAX is parametric. The commutativity condition
‘szsh(m) = top > —1 A Aftop] = z A top < MAX captures that they commute
provided that there is at least one element in the stack, the top value is the
same as the value being pushed and that there is enough space to push.

The above examples illustrate that commutativity conditions, even for small
data-structures, can quickly become tricky to reason about. Nonetheless, cor-
rectness of these conditions is important to avoid unsafe concurrency when they
are used in parallelization strategies [13,15,16,24,31,33,36]. Some prior works
have described unsound methods for verifying commutativity [4,21] and oth-
ers [7,27] have built upon ADT specifications which, as we discuss below, can
lead to unsound commutativity conditions.

What’s Hard About This Problem? Toward proving that a candidate ¢}, is a
commutativity condition for m(Z) < n(g), one can begin by posing the problem
as 2-safety [14], perhaps using Hoare quadruple notation [44] below on the left:

g {;an 01)/7\012202} ~ < {szsrszx)/\(fl:@}

e T’rln = m(a); 7’5 = n(b); g‘ rl = push(z);|r? := pop();

5 Tn T n(b); |ry, == m(a); £ rl:=pop(); |rZ = push(z);
S {rm =rm AT =T N0 = 03] Bl =2 Arl =12 Ao = o))

Intuitively, this Hoare quadruple (similar to a product program [8] or self-
composition [9,41]) involves two copies of the program, shown on either side of
the vertical bar. The pre-condition is a relation on the states of these two pro-
grams, as is the post-condition. For commutativity, we start by letting the pre-
condition require that the commutativity condition] holds and that the two pro-
grams begin in the same ADT states. Meanwhile, the post condition asserts that
return values will agree and that the post-states are equivalent. Above on the right

is an example: ArrayStack with @ESZE%I) = Aftop] = z Atop > 1 A top < MAX.
Running an existing tool (e.g. a product program [8] and Ultimate [22]) yields
a counterexample, with starting state: A = [z,y,z,a] A top = 2. The coun-
terexample shows that in this case the post states are different. Depending on the
order methods are applied, one reaches either A = [z,y,z,a] A top = 2 or else
A = [z,y,z,z] A top = 2. Our knowledge of stack semantics tells us that these
are the same state (because the value in the 3rd array slot does not matter), but
automated tools do not know these states are equivalent: concrete equality is too

strict. Similarly, for SimpleSet @ijggg = x # y we would obtain a counterexample

complaining that (a =z A b = y) is different from (a = y A b = z).

It appears we need a better notion of equality for the post-states. We might
then be tempted to exploit specifications, as is done in prior work [7,27]. Then
we can ask whether Post,,(Post,(c)) = Post,(Post,(c))*. Unfortunately, it is
unclear what precision is appropriate for commutativity. Let’s take, for exam-
ple, a coarse specification such as {true}push(x){true}. Using this in our Hoare

! Note: as discussed in Sect. 3, we employ the technique discussed in Sect. 4 of Bansal
et al. [7] to avoid the need for under-approximation or quantifier alternation.

86 E. Koskinen and K. Bansal

quadruple, we might conclude a post-relation true, seemingly indicating that all
post-states are related. We would thus be inclined to incorrectly conclude that
any ¢p, is a valid commutativity condition. When specifications are too coarse

like this one, Bansal et al. [7] would incorrectly synthesize commutativity con-

push(y)
push(z)

of push(z) that are relevant to commutativity.

Meanwhile, fine-grained specifications can be close to what is needed for full-
functional correctness and it is not clear that we need this level of granularity:
much of the post-condition is irrelevant to commutativity. When considering
push(z) and pop, the interaction is limited to the top element of the stack (as
well as whether the stack is empty or full), whereas the deeper part of the stack
is the same regardless of the order of these methods.

dition ¢ = true. The problem is that abstraction does not capture effects

Decomposition and Reductions for Commutativity. We now summarize the chal-
lenges and contributions of our work in the context of these examples.

(Section 4). We first observe that we do not strictly need pre/post specifica-
tions for commutativity verification and, instead, can work with observational
equivalence relations. As a simple start, we describe a straight-forward reduction
REDUCE}, from verifying commutativity conditions of an ADT to an automa-
ton reachability problem. REDUCE!, emits an automaton A(¢",) whose safety
entails that ¢}, is a valid commutativity condition for methods m and n. To
this end, the reduction (i) ensures that we only concern ourselves with commu-
tativity from an over-approximation of the reachable states of the object and
(ii) weakens the post-condition to a notion of observational equivalence. While
REDUCEY, is sound, it does not lead to scalable tools: reachability solvers struggle
to decompose the problem.

(Section 5). The main question we ask in this paper is: What is the right
abstraction granularity for commutativity? Not knowing this has hindered prior
works as well as the performance of REDUCE],. First, the necessary precision
depends on methods under consideration. For example, when concerned with
return values arising in commutativity of SimpleSet’s isin (y)/ clear, it is sufficient
to use an abstraction that ignores sz. We only need to reason about whether y
is stored in a or b. We can use, e.g., an abstraction with predicates a = y and
b = y (along with their negations). This also ignores all other possible values
for a and b: for showing return value agreement, the only relevant aspect of the
state is whether or not y is in the set. Similarly, for ArrayStack push(z)/pop(),
we only need to consider the top value and we can abstract away deeper parts of
the stack, that are untouched in either method order. While, on the other hand,
for pop() >t pop(), the second-from-top also matters.

Formally, we give a requirement for an abstraction a and a relation R, in
that domain, that it be precise enough so that reasoning about return value
agreement in the abstract domain faithfully covers reasoning about agreement
in the concrete domain. We call this pair («, R,) an mn-differencing abstraction

Decomposing Data Structure Commutativity Proofs with mn-Differencing 87

and relation. For the SimpleSet example with isin (x)/ clear (), we can define «
to be based on the above mentioned predicates, and then use the relation:

Ru(o1,09)=(a=z)1 V(b=2)1 < (a=1x)3 V(b= 2x)a, (1)

i.e. the relation that tracks whether o1 and o9 agree on those predicates. (Sub-
scripts mean that the predicate holds in the correspondingly numbered state.) R,
is a relation on abstract states and summarizes the possible pairs of post-states
that will have agreed on return values. For methods push(x)/pop on ArrayStack,
we can define an abstraction a with predicates {top > 0, Altop] = x}, and use

R, = (top > 0); = (top > 0)2 A (Aftop] = x); = (Aftop] = x)2 (2)

This abstraction simply tracks that the ArrayStack is non-empty and whether the
top element is x or not. Meanwhile, the remaining portion of the state is identical
between the two states because it came from cloning the reachable initial state.
The equivalence reasoning can easily be tracked with direct, inductive equality: a
cloned & unmodified frame relation C. For this example, C' = Vi < top;. A [i] =
Az[i]. We will later see that our algorithms and tools will be able to synthesize
these («a, R,) mn-differencing abstractions/relations and cloned frame C.

While so far we have addressed return values, states that are related by R,AC
may not necessarily be observationally equivalent. We show the pieces fit together
by working with observational equivalence relations. For reasoning about this
equivalence, we use a separate abstraction (§, more geared toward relational
equivalence, and a relation Ig in that abstract domain. For the ArrayStack and
SimpleSet examples, we can use the following such relations:

[AS(ULO'Q) = top; = top, A (V’LO <1< top; = Al[’L] = AQ[ZD (3)
[55(0’1,0’2) = ((31 =axAb; = b2) vV (31 =by Aby = 32)) N (SZ1 = SZQ) (4)

I4s says that the two states agree on the (ordered) values in the Stack. (top;
means the value of top in o1, etc.) For SimpleSet, Isg specifies that two states are
equivalent provided that they are storing the same values—perhaps in different
ways—and they agree on the size. These observational equivalence relations can
sometimes be inferred and, otherwise, are typically compact. Crucially, however,
unlike pre/post specifications, if I is an observational equivalence relation, then it
is guaranteed to lead to sound commutativity conclusions. Putting it all together,
our decomposition can be posed as a proof rule on the right.

The notation [s,,]!(Z) means
the implementation of method | () : {I6}[sm]' () | [Slm]Q(??){IBQ}
m, under a (standard) transla- | (i) :{RCh/\sz}[F;Z]]lgzg; | %2:}]2((@;);{ch ANC}
tion [8,9,41] to act on the oy | (iii) : (Ra ANC) = Ip
copy of the state, with argu- ©m 1s a commut. cond. for m(Z) < n(y)
ments Z. Premise (i) incorpo-
rates observational equivalence, while (¢4) summarizes mn-differencing. Notice
that premise (¢) does not involve ¢7, R, or C. An outcome of this decomposi-
tion is that automated reasoning about I3 (which pertains to all methods of the
ADT) can be separated from reasoning about R, A C' (which pertains to a given

88 E. Koskinen and K. Bansal

triple m,n, ¢). Consequently, () can be done once globally for the ADT, and
then (4¢) and (4i7) can be done for each new commutativity validity query. Note
also that R, A C is typically stronger than Iz (and hence can imply I3) because
it is more specialized to the m/n method-pair under consideration. Meanwhile,
I is a weaker relation characterizing overall ADT equivalence.

(Section 6). We next describe an improved reduction DAREDUCE!,,
which employs our decomposition. DAREDUCE!, emits a pair of automata
Aa(m,n, ol I) and Ag(I), such that if we prove both are safe then ¢!’, must be
a valid commutativity condition. Again, this separation allows tools to synthesize
(o, Ry) and C separately from 5 and Ig.

(Section 7). Finally, we describe a proof-of-concept implementation of
REDUCE], and DAREDUCE},, and employing Ultimate and CPAchecker as
reachability solvers. We report experiments comparing the performance of
the two reductions, when applied to some simple ADTs including the
above SimpleSet, ArrayStack, Queue and a rudimentary HashTable. While
DAREDUCE}, has some initial overhead, its use of mn-differencing abstractions

appears to enable it to perform better than REDUCE]

m*

3 Preliminaries

We work with a simple model of a (sequential) object-oriented language. We will
denote an object by 0. Objects can have member fields o.a and, for the purposes
of this paper, we assume them to be integers, structs or integer arrays. Methods
are denoted 0.m(Z),0.n(g),... where Z is a vector of the arguments. We often
will omit the o. We use the notation m(z)/7 to refer to the return variables r.
We use a to denote a vector of argument values, @ to denote a vector of return
values and m(a)/@ or n(b)/v to denote a corresponding invocation of a method
which we call an action. Methods’ source code is parsed from C into control-flow
automata (CFA) [23] using assume to represent branching and loops. (See [28] for
details on our CFA-based implementation.) Edges are labeled with straight-line
ASTs consisting of assume, assignment, and sequential composition. We use s,,
to refer to the source code of object method m. For simplicity, we assume that
one object method cannot call another, and that all object methods terminate.

Commutativity and Commutativity Conditions. We fix a single object o, denote

that object’s concrete state space X', and assume decidable equality. We denote
o ROTLN o’ for the big-step semantics in which the arguments are provided,

the entire method is reduced and return values given in u. For lack of space,
we omit the small-step semantics [s] of individual statements. For the big-step
semantics, we assume that such a successor state o’ is always defined (total) and
is unique (determinism). Programs can be transformed so these conditions hold,
via wrapping [7] and prophecy variables? [3], respectively.

2 For example, we can use prophecy variables to translate a method such as int m(a)
{ if (nondet()) x := a; } into one that has does not have nondeterminism in its
transition system: int m(a, rho) { if (rho) x := a; }.

Decomposing Data Structure Commutativity Proofs with mn-Differencing 89

Definition 1 (Observational equivalence for commutativity (e.g. [29]).
We define relation ~C X' x X as the following greatest fixpoint

_ m(a)/m m(a)/ 72 = 7
Vm(a) € M. 01 ——— 0} 09 ——— 0y T1 =Ty 0} >0}

g1 >~ 029

The above co-inductive definition expresses that two states o1 and oy of an
object are observationally equivalent ~ provided that, when any given method
invocation m(a) is applied to both oy and o9, then the respective return values
agree. Moreover, the resulting post-states maintain the ~ relation. A (logical)
observational equivalence relation I is a formula such that [I] =~. I4¢ from
the previous section is one such relation. A counterexample to observational
equivalence is a finite sequence of method operations my(ay), ..., my (@) applied
to both o and o9 such that for my(ay), the return values disagree, i.e., f’f #+ F’Q“.

We next use observational equivalence to define commutativity. As is typ-
ical [7,17] we define commutativity first at the layer of an action, which are
particular values, and second at the layer of a method, which includes a quan-
tification over all of the possible values for the arguments and return variables.

Definition 2 (Commutativity of m and n). For values a,b, we say actions

m(a) and n(b) commute, denoted m(a) > n(b), if for all o,ty, Uy, V1, V2, O,
m(a)/ i n(b)/01 n(b) /2 m(a) /s
OnyOmn, Onm Such that o Om Omn and o o

Onm, then (41 = Ugs A U1 = U3 A Omn = Onm). Methods m and n commute

denoted m 1 n provided that Ya b. m(a) < n(b).

The quantification Va b, etc. means vectors of all possible argument values. Our
work extends to a more fine-grained notion of commutativity: an asymmetric
version called left-movers and right-movers [34], where a method commutes in
one direction and not the other.

We will work with commutativity conditions for methods m and n as logical
formulae over initial states and the arguments of the methods. We denote a
logical commutativity formula as ¢}, and assume a computable interpretation
of formulae: [p] : (0,Z,5) — B. (We tuple the arguments for brevity.) The
first argument is the initial state. Commutativity post- and mid-conditions can
also be written over return values [27] but here, for simplicity, we focus on
commutativity pre-conditions. We may write [¢,] as ¢}, when it is clear from
context that ¢}, is meant to be interpreted.

Definition 3 (Commutativity Condition). Logical formula ¢}, is a commu-
tativity condition for m and n provided that Vo a b. [¢lh] o ab = m(a) > n(b).

4 One-Shot Reduction to Reachability

We now take a first stab at the goal of reducing commutativity verification to
reachability (i.e., verifying non-reachability of an error location). The problems

90 E. Koskinen and K. Bansal

do not exactly align because commutativity verification is instead defined over an
object implementation, method pairs, a formula ¢, and a notion of equivalence
for objects. We thus pose commutativity as reachability intuitively as follows:

oy.init();

while(*){[s]!(@); where m(a) chosen nondeterministically }

n

Pre-condition : assume(™ (01, @, b)):

rl o= [s,]4(@);]r? = [5,)%(D)
Product : m PN oyl
{T’Ill = [5,]1(0); |ro, = [5m]?(@);
assert(rl, =12 Arl =1r2);

Post-condition - wh|Ie(>k)[{ for any m(a) chosen nondetermistically:

T = Sm]l(a)”? = [SmP(a);
assert(r; =rq); }

(A formalization can be found in the extended version [28].) Ignoring the pre/-
post conditions, in the above quadruple, we have used a product program [§],
which encodes two programs (one for each order of method implementations s,,
and s,,), each applied to a replica of the state o, similar to self-composition and
other techniques [6,8,9,18-20,40,41].

Strengthening the Pre-condition for Reachable ADT States o1 and o2. Above the
pre-condition: (i) loops, symbolically applying an arbitrary number of method
implementations on oy, (ii) assumes @7, of the resulting state and (iii) duplicates
that state to oo. This has the effect that o1 and oy will be identical, restricted
to only reachable ADT states, and]y will hold. That is, the precondition can
be thought of as: {Reachable(d;) A ¢ (c1,a,b) A 01 = 03}. Verification tools
will typically over-approximate Reachable.

Weakening the Post-condition to Observational Equivalence. Meanwhile, the
post-condition asserts return value agreement, and then loops, symbolically exe-
cuting a nondeterministically chosen method and argument values on both o
and o2, and then asserting that return values agree. Thus the post-condition
ensures return value agreement and that there is no sequence of methods that
could be applied to both of them, witnessing further disagreement. That is, the
postcondition can be thought of as: {rl, =r2 Arl =r2 A ObsEq(o1,02)}.
Formally, REDUCEY, (¢, m,n, M) is a transformation over an input object
implementation CFA to an output CFA automaton A(¢?,) with an error state
ger- We prove that if ¢, is unreachable in the output encoding A(¢?,), then 7,
is a valid commutativity condition for m and n. That is, if A(¢?,) is safe, then

o is a commutativity condition. (Detail in the extended version [28]).

Example. Figure 2 is a pseudo-code illustration of A(gogzig(gpy))), the output gen-
erated when REDUCE?, is applied to methods add(z) and isin (y) of SimpleSet
from Sect. 2. When a candidate formula @ng(g’)) is supplied and a program anal-
ysis tool for reachability is applied, the tool performs the reasoning necessary for
commutativity. In sum, REDUCE], uses the implementation of the ADT itself

Decomposing Data Structure Commutativity Proofs with mn-Differencing 91

(including other methods such as clear) in order to symbolically represent reach-
able states sl and s2 for the Pre-condition and require that the post-state pairs
be observationally equivalent in the Post-condition.

Multiple Commutations.

X . . 1 SimpleSet s1 = new SimpleSet(); Pre-cond.

Relational reasoning is o % e
ded ¢ stat . 2 while(*) { int t = *; assume (t>0); switch(*) {

needed 1or post=state equiv=| o case 1: [add]'(t); case 2: [isin]!(t);
ale?c'e but, when commu- 4 case 3: [size]*(); case 4: [clear]'(); }}
tativity proofs are used 5intx = * inty =%
in (.most) compilers or 6 assume(@;ZZ‘&?(SLXN));
runtime systems, only 7 SimpleSet s2 = s1.clone();
one method ordering will - - 5 —
actually be executed. The g m = [a.ddl (x); fn = [isin] 2(Y)? Quad.
pair-wise commutativity rn = [isin]*(y); |rm = [add]"(x);

9 assert(rl,=r2, && ri=r2);

proofs generalize to mul-

tiple commutations due Post-cond.
to the fact that each pos- 10 while(true){ int t="*; assume(t>0); switch(*) {
sible post-state in one 11 case 1: assert([add]' (t) == [add]*(t));
pair’s proof is another 12 case 2: assert([isin]l(lt) == [isin]2(2t));
possible reachable initial 13 case 3: assert([clear]" () == [clear]*());

14 case 4: assert([size]' () == [size]*()); } }

state for another pair.
While REDUCE], is

sound we show in Sect. 7 Fig. 2. REDUCE,, applied to add(x)/ isin (y).

that tools don’t scale well

at proving the safety of REDUCE] ’s output. In the next Sect. 5 we describe an

abstraction targeted at proving commutativity to better enable automated rea-

soning. In the subsequent Sect. 6, we employ that abstraction in an improved

reduction DAREDUCE}, .

5 Decomposing Commutativity with mn-differencing

The problem with reductions like REDUCE]) , is that general-purpose reachability
tools do not know how to find the right abstraction for commutativity reason-
ing and those tools end up veering toward searching for unnecessarily intricate
abstractions for full-functional verification. We now present a decomposition to
mitigate this problem.

Consider the ArrayStackpush(x)/pop example and a (symbolic) state such as
[a,b,c] with top = 2 and condition <p§3§h(w) = x = Altop]. When applying a
general-purpose reachability solver to REDUCE},, it will consider deep stack val-
ues such as a and b because those values could be reachable in a post-state after a
further sequence of pop operations. But the solver is actually doing unnecessary
work and is not inherently capable of noticing that those deep stack values will
be the same, regardless of the order that push(z) and pop are applied.

Even with the sophisticated and automatic abstraction techniques available
in today’s tools, we do not currently have a notion of what is the right abstrac-
tion for commutativity and consequently, today’s tools often end up diverging

92 E. Koskinen and K. Bansal

searching for an overly precise abstraction. In this section we address this prob-
lem and answer the question: how coarse-grained can an abstraction be, while
still being fine-grained enough to reason about commutativity?

The idea of mn-differencing can
be visualized via the diagram on
the right. We start with two states L
01 and o9 that are exactly equal.
The product program leads to post 3
states o] and o4. For these post !
states, we require return value =
agreement, denoted X = rl = R —— 2
r2, Arl = r2. Next, we have an ! o
abstraction «, specific to this m/n pair, and a product program in this abstract
domain.

The key idea is that (i) relation R, relates abstract post-states whose return
values agree in the abstract domain, and (ii) « is required to be precise enough
that return values agree for all state pairs in the concretization of R,. We can
then check whether an initial assumption of]!, on o; implies such an R,, ¢.e.,
checking return value agreement using a which is just precise enough to do so.
For isin (z)/ clear, define an abstraction a with predicates {a = x,a # z,b =
x,b # x} that tracks whether x is in the set. Then

Ri(dl,dg) = (a = l’)l \Y (b = (E)l ~ (a = l’)g \Y (b = QC)Q,

i.e. the relation that tracks if o1 and o2 agree on those predicates. Meanwhile,
for pop/pop on ArrayStack, we can define a different « with predicates {top >
1,Aftop — 1] = Altop]}, and use the relation

RZ% = (top > 1)1 = (top > 1)2 A (A[top — 1] = A[top])1 = (A[top — 1] = A[top])2

This relation characterizes state pairs which agree on the stack having at least
two elements, and agree that the top and penultimate elements are the same.
As we will see, these abstractions and relations, although they are quite weak,
are just strong enough so that they capture whether return values will agree.

5.1 Formal Definition

We now formalize mn-differencing. Where noted below, some definitions are
omitted and can be found in the extended version [28]. First, we define a set
of state pairs denoted posts(c,m,a,n,b) to be the set of all pairs of post-states
(each denoted (0.0, Onm) originating from o after the methods are applied in
the two alternate orders:

_ = —’1 E =1 E =2 = —2
posts(o,m,a,n,b) = {(o1,02) | o @/ T o’ O/ oc1No Al o @ Tm

Decomposing Data Structure Commutativity Proofs with mn-Differencing 93

We also define return value agreement denoted rvsagree(o, m,a, n,b) as a predi-
cate indicating that all such post-states originated from o agree on return values:

rvsagree(o,m,a,n,b) =
1 1 2 m(a) /7, n(b)/7;
VL., Fr, T2, 72, such that (o ", o1 s o1 A

~1 —2 —2 —1
Ton =T NTyp = Thp,

n(b)/72 m(a) /72,
o oo 09).y

Definition 4 (mn-differencing Abstraction (o, R,)). For an object with
state space X, and two methods m and n. Let « : X — X be an abstraction
of the states, and v : X* — P(X) the corresponding concretization. A relation
R, C X x X with its abstraction («, Ry) is an mn-differencing abstraction if

Vo, 08 € X* Ro(0f,0%) AVo a b. posts(o,m,a,n,b) € y(of) x v(0§) =
rvsagree(a, m, a,n,b)

The above definition requires that a be a precise enough abstraction so that
R, can discriminate in the abstract domain between pairs of post-states where
return values will have agreed versus disagreed in the concrete domain.

A relation R, may not hold for every initial state . For example, the above
R2 for pop/pop does not hold when the stack is empty. Hence, we need to ask
whether R, holds, under the assumption that ¢! holds in the pre-condition. We
say that o implies (o, Ry) if

Vo ab. ¢ (0,a,b) = Y(o1,09) € posts(a, m,a,n,b) = Ru(a(o1), (o))

For SimpleSet isin () / clear, if we let cpfs'f:’(z) =a# xAb # z, this will imply R}
in the posts. Let’s see why. If this commutativity condition <pf5'ﬁf’(z) holds, then z
will not be in the set. Neither method adds = to the set and an abstract domain,
tracking only whether a = x and b = z hold, will lead to post states that agree
on whether x is in the set and this carries over to the agreeing on whether x is

in the set in the concrete domain.

Cloned and Untouched Frame. The components of the state that are abstracted
away by an mn-differencing abstraction include portions of the state that are
unmodified in either method order (or are both modified in the same way). For
example, the deeper elements of ArrayStack remain untouched regardless of the
order that methods push and pop are applied. We refer to these state components
via a cloning relation C' C X' x X that we use in conjunction with R,,. Because this
relation C(o1, 02) always holds when o1 = 09, and the two method orderings both
begin from the same starting point o, a program analysis can begin with the fact
C(09, 00) and then inductively prove that posts(cq, m, @, n,b) = C. The cloning
relation can instead be thought of as simply a strengthening of R, but we present
it here separately to emphasize that C' captures components of the states that are
directly equal, whereas R, may abstract away unequal components.

94 E. Koskinen and K. Bansal

Post-state Equivalence. R, N C is specific to the method pair under consideration
and, as such, it can exploit the particular specific effects of the method pair. For
example, the R, for SimpleSet clear/clear can simply say that both sets are
empty. On the other hand, these relations alone are not enough to characterize
commutativity. States that are R,-related are not necessarily equivalent. What’s
needed is to show that method-pair-specific R, A C relation on the post-states of
this method is strong enough to imply so that they are observationally equivalent.
We achieve this by using ADT-specific (rather than mmn-specific) logical
observational equivalence relations Ig and separate abstractions I there for.
The standard concept of obser- W (a)/re

vational equivalence relations [11] B i B Uii
is visualized on the right. Impor- / ' (@)/ry o / "
tantly, we can use an abstraction 5 | ! '(3) /2 J/!
here that is separate from «; this 8 72 1 B o=
will become useful in the subse- %;’(a)/ "2 P /

quent sections. Formally, Iz is an
observational equivalence relation iff: V01 ,02 € Xh. Ig(o1) 02) = Vo, € 5(01)
o9 € (5(02). 01 =~ 09. Relations Isg and I4g, defined earlier, are such relations.

5.2 Connecting the Pieces Together

Finally, we connect R, and C with Iz and show that they can be used to reason
about whether ¢} is a valid commutativity condition. The idea is summarized
in the proof rule on the right.
(Soundness of the rule is given in | (%) {[ﬁ}[sm]l(f) | [Sm]2(7){fﬁ}

the extended version [28].) The | (ii) : {Rch/\g@m} .]18;’ | ;:L]]Z(E’;)’{Ra AC}
first judgment (), presented as a | (ii4) : (Ra ANC) = Ip

Hoare quadruple, ensures that I @7 is a commut. cond. for m(z) b n(y)

is an observational equivalence
relation. This judgment can be concluded once per ADT and, subsequently, Ig
can be used repeatedly, whenever we wish to verify a new commutativity condi-
tion via the other judgments. The second judgment (i¢) starts from a reachable
ADT state where the commutativity condition ¢}, holds, and has a post-relation
R, A C consisting of an mn-differencing relation, along with a cloned, untouched
frame C. Finally judgment (iii) combines the mn-differencing abstraction R,
with the cloned aspects of the state C' to imply 5.

Although an R, A C may imply an Ig, this does not mean that R, is itself
an observational equivalence relation. R, A C' is typically stronger than I, but
specific to the method-pair. For clear / clear, R, AC could relate SimpleSet states
that are empty. While this implies the SimpleSet observational equivalence rela-
tion Isg (Eq. 4 in Sect. 2), this R,, is of course not an observational equivalence
relation: as soon as add(z) is added to both states, the relation is violated.
What’s important is simply that R, implies Iz and, separately, that Ig itself is
an observational equivalence relation.

Semantically, this decomposition can always be done because we can use ~
as the notion of observational equivalence and an overly precise R,. Logically,

Decomposing Data Structure Commutativity Proofs with mn-Differencing 95

however, completeness depends on whether a logical observational equivalence
relation exists and can be expressed in the assertion language. We leave delving
into the details of the assertion language (e.g. heap logics) as future work.

6 mn-differencing for Automata-Based Verification

As we show in Sect. 7, REDUCE}, given in Sect. 4 yields encodings for which
general-purpose reachability solvers quickly diverge: the abstractions they search
for become tantamount to what’s needed for full-functional verification. In this
section, we employ mn-differencing to introduce an improved reduction called
DAREDUCE?, that decomposes the reasoning into two phases: (A) finding a
sufficient R, and frame C that implies Ig and then (B) proving that Ig is an
observational equivalence relation. The output of DAREDUCE!, are a pair of
output automata Aa (m,n, ¢, I) and Ag(I), which informally can be thought
of as follows:

Aa(m,n, o 1) As(])
assume(I (o1, 02));
let m(a) chosen nondet. in
ry = o1.m(a);re = o2.m(a);
assert(r; = ro A I(01,09));

o1.init();

while(x){o1.m(a@); where m(a) chosen nondet.}
assume((01,a,b)); o2 = oy.clone();

rl = o1.m(a);|r2 = o9.n(b);

rl=o. n(l_)); rm = o9.m(a);

assert(rl, =72 Arl =712)://R,
assert(I(ahag)),//R NC = 1

IO o

DAREDUCE;, is formalized as a transformation over CFAs in the extended ver-
sion [28]. Unlike REDUCE],, Aa(m,n, ¢!, I) ends early with assertions that
return values agree and that I must hold. Thus, an analysis on Aa (m, n, ¢, I)
will construct an abstraction @ and an mn-differencing relation R,,, as well as a
cloned frame C' such that R, A C = I. Meanwhile, Ag () is designed so that a
safety proof on Ag(]) entails that I is an observational equivalence relation. A
pre-condition that assumes I, and then a nondeterministic choice of any ADT
method m with nondeterministically selected method arguments a. To prove
that I is an observational equivalence relation, a reachability solver will synthe-
size an appropriate abstraction § for I in Ag(I). If both Aa (m,n,¢l,,I) and
Ag(I) are safe, then ¢ is a valid commutativity condition (as shown in the
extended version [28].)

DAREDUCE], improves over REDUCE], by decomposing the verification
problem with separate abstraction goals, making it more amenable to automa-
tion (see Sect. 7). Moreover, as in the proof rule (Sect. 5), a proof of safety of
Ag(I) can be done once for the entire ADT. Then, for a given method pair and
candidate condition ¢!, one only needs to prove the safety of Aa(m,n, @, I).

Automation. Synthesis of a, R, C and (3 is automated. The definition of Ag([)
can be amended so that a reachability solver could potentially infer I. The below

96 E. Koskinen and K. Bansal

amended version encodes the search for a (relational) observational equivalence
as the search for a (non-relational) loop invariant.

while(true){let m(a) chosen nondetermistically in
amended Ag(I) : r1 = o1.m(a);ry = o9.m(a);
assert(ry = r2); }

7 Evaluation

Our goals were to evaluate (1) whether mn-differencing abstractions ease com-
mutativity verification, i.e., whether DAREDUCE], outperforms REDUCE}, , and
(2) how automated our strategy can be.

We implemented a proof-of-concept tool called CITYPROVER®. CITYPROVER
takes, as input, C-style source code, using structs for object state. Examples are
included with the CITYPROVER release. We have written them as C macros so
that our experiments focus on commutativity rather than testing existing tools’
inter-procedural reasoning power. Also provided as input to CITYPROVER is a
commutativity condition ¢}, and the method names m and n. CITYPROVER
then implements REDUCE], and DAREDUCE],, via a program transformation.

Ezperiments. We created
some small examples (with
integers, structs and arrays)
and ran CITYPROVER on
them. Our experiments were
run on a Quad-Core Intel(R)
Xeon(R) CPU E3-1220 v6
at 3.00 GHz, inside a QEMU
VM. We began with single-
field objects including: (M)
a Memory cell; (A) an Accu-
mulator with increment, de-
crement, and a check whether
the wvalue is 0; and (C)
a Counter that also has
a clear method. For each
object, we considered some
example method pairs with
both a valid commutativity
condition and an incorrect
commutativity condition (to
check that the tool discovers
a counterexample).

= a REDUCE}, DAREDUCE,,
a Methods gozl((y;l)) ;E cpa ult cpa | ult
M| rdawr [sl.x=y1 |V |14V | 07V |39 vV 1v
M| rd >awr |true x|1.4 x| 0.2 x ||[1.3 x 0.2 x
M| wrawr |y =z vil4v | 05v |39 v [0.8V
M| wrpawr [true x|I1.3 x | 0.3 x ||24 x |04 x
M| rdxard |true vVil4v |06V |39 v 1v
A | decrisz [s1.x > 1 V015 v | 22V 4 v |26V
A | dec < isz |true x|I1.5 x | 0.7 x ||1.2 x 0.6 x
A |decr<inc|sl.x > 1 V15 v | 1.3V |41 v 1.7V
A | dec < inc |true VI[15 v | 1.2V 4 v |15V
Al incisz |sl.x > 1 V15 v | 33V |41 v |29V
A | inc isz [true x||1.6 x | 0.7 x |[1.2 x [0.6 x
A | inc i inc [true Vil4v | 15 v |41 v |16 V
A |dec > dec|true VL5 Vv | 1.5V |39 v [1.6 V
A |decadec|sl.x > 1 V15 Vv | 26V 4 v |19V
A iszisz |true Vil4 v | 43V 4 v |34V
C |dec > dec |true X119 x | 1.5 x [[42 vX |12 x
C|decradec|sl.x > 2 V{15 v |13.0 v ||41 v |59 V
C | dec < inc |true x|I1.6 x | 0.3 x ||[1.4 x |03 x
Cldec<ine [sl.x>1 vil16 v | 68 v |42 v |38V
C | inc < isz [true x|I1.5 x | 0.8 x ||[1.2 x |0.7 x
C|incxisz [sl.x >0 V15 Vv | 53V |41 v |26V
C | incisz [s1.x >0 x||1.9 7 |TO ? |44 x [6.9 x
C | incxclr [true x|I1.3 x | 0.4 x ||25 x |04 x

Fig. 3. Verifying commutativity properties of sim-
ple benchmarks. For each, we report time to use
REDUCE;,, vs. DAREDUCE},. A more detailed table
is in the extended version [28].

3 https://github.com /erickoskinen /cityprover.

https://github.com/erickoskinen/cityprover

Decomposing Data Structure Commutativity Proofs with mn-Differencing 97

The objects, method pairs and commutativity conditions are shown in the
first few columns of Fig. 3, along with the Expected result. We used both
the REDUCE!, (Sect. 4) and DAREDUCE], (Sect. 6) algorithms and, in each
case, compared using CPAchecker [10] and Ultimate [22] as the solver. For
DAREDUCE},, we report the total time taken for both Phase A and Phase
B. A more detailed version of this table can be found in the extended ver-
sion [28]. Benchmarks for which A succeed can all share the results of a single
run of Phase B; meanwhile, when A fails, the counterexample can be found
without needing B. These experiments confirm we can verify commutativity
conditions from source. In one case, CPAchecker returned an incorrect result.
While DAREDUCE?, often takes slightly more time (due to the overhead of start-
ing up a reachability analysis twice), it does not suffer from a timeout (in the
case of Counter inc/isz).

We next turned to simple E Methods &[ReDU7, TDARE,
(- I e

data structures that store and [< [7(@1),n(y1)|¢minn || Ut | Ul
. . SS | isin bdisin [true V{1378 v || 36.7 v
H}anlpulz}te elements. While mn- |qq | i 0a aqd 1 % 41 s sisvll 571 v
differencing and DAREDUCE], |[SS| isinbaadd |true vl 24y | 15
. SS | isin X clear [true x| 2.6 x 1.6 x
support parametrlc/unl?ounded SS | sin o clear |71 £ 11 o 2ax | 16
ADTs, automated reasoning about [SS | isinbaclear [a# 21 Ab#y |x|| 31x | 14 x
. SS | isin > clear |a # x1 A b # x1 V| 14.0v || 193 v
the cloned frame C' typlcauy SS |isin b getsize|true V413 v || 242 v
requires quantified invariants. [AS|push<dpop [Aftop] =z Atop >[V|[MO~ [[95.5 v

s ;- 1Atop <4
Automata reachability tools typi- |, ¢ push 4 pop [true o 22y 1l 20 «
cally do not currently have robust |AS|push > push [true Xl 7.6x | 17.0 X
: _ |AS|push > push |top < 3 x| 3.9 x [[230.7 x
support quantlﬁer-s, SO we eva?lu AS | push b push |1 = 51 sy 173 x
ate these ADTs with a fixed size. |AS|push<push|z; =y Atop<3 || MO - [[155.1 v
. . AS| pop i pop [top = —1 Vi TO- | 38.0 v
We mainly used.Ultlmate as We |yl oo pop |true Wl 21y |1 x
had trouble tuning CPAchecker [Q | engmdenq [true X398 x [35.0 x
y . s |Q | deqiadeq [true x| 3.5 x 3.1 x
.(perhapb .meg to our lim Q | deqixideq |size =0 | TO- |[174.4 v
ited experlence). In some cases |Q | enqr<enq [true x| 27.8 x || 23.3 x
. . : Q | enqenq |r1 =11 x| 63.8 x || 22.6 x
(marked in blue),.Ultlmate failed & | emp ot omp [true ol To X
to produce a timely response |Q | engixdeq |size = 1Az =|v| TO - [472.0 v
: : : Alfront]
for either redgctlon, SO We tried Q | enqoadeq ftrue vo- | 84y
CPAchecker instead. Figure 4 [Q | enqdemp |size >0 J|Mo- || TO =
: Q | eng<emp [true x| MO - 74 x
shows tEC results of app}lylng Q | deq<iemp |[size =0 V|| MO - ||135.8 v
REDUCE], and DAREDUCE], on |Q | deq<emp |true x| MO~ | 65 x
T

these examples. In each exam- Ilg put b put | N 333? \ 1223 N
. . . put > put | Tpp,¢ X 7 ox |[136.9 x
ple, we first list the running tlme HT| putoaput [t Aol |l Tol
for DAREDUCE},’s ADT-specific |HT| putsaput %0 v |566.5 v |[297.5 v
. iq 3 . |HT| put>put [true x| TO - ||102.3 x
Phase B, anc% then h.s:t the times HT| oot o et |koye = 1o o X
for Phases Ai and Aii, as well as |HT| get saget [|true /| TO- || TO -
. HT| get o< get |true V| 50.0v || 56.8 v/
the total tlme.. . HT| et o< put |71 £ 11 /A To- |l To -
For (SS) SimpleSet (Fig. 1), |HT| getoaput |true x| 13 x| 09y

in almost all cases DAREDUCE},

outperformed REDUCE],, with an Fig.4. Results of applying CITYPROVER to

average speedup of 3.88x. For ArrayStack, SimpleSet and Queue. A more
detailed breakdown of DAREDUCE], can be
found in the extended version [28].

98 E. Koskinen and K. Bansal

(AS) ArrayStack (Fig. 1), REDUCE], found some counterexamples quickly. How-
ever, in the other cases REDUCE], ran out of memory, while DAREDUCE], was
able to prove all cases. For (Q) Queue, we implemented a simple array-based
queue and were able to verify all but two commutativity conditions. Finally, we
implemented a rudimentary (HT) HashTable, in which hashing is done only once
and insertion gives up if there is a collision. Some commutativity conditions are

as follows:

1@% =1 # Y1, 2<pgﬂ: = 17 # y1 A tb[x1%cap].k = —1 A tb[y; %cap|.k = —1

Sobut = o1 # y1 A 1 %cap # y1%cap A tb[z%capl.k = —1 A tb[y; %cap].k = —1

For HT, Ultimate timed out on Phase B and in some cases had some trouble
mixing modulus with array reasoning, so we used CPAchecker. We still used
Ultimate in some Phase A cases, because it can report a counterexample in
Phase A even if it timed out in B. We also could use Ultimate for Phase A,
given that CPAchecker already proved Phase B, with the same Ig. We also had
to introduce a prophecy variable to assist the verifiers in knowing that array
index equality distributes over modulus of equal keys.

Overall, for REDUCE], there were 15 cases where it reached the 15-minute
timeout or out-of-memory. DAREDUCE],, performed better: it only reached the
timeout in 6 cases. In 24 cases (out of 37), CITYPROVER returned a proof or
counterexample in under 2min. In summary, these experiments confirm that
DAREDUCE}, improves over REDUCE],: in most cases it is faster, sometimes by
as much as 2x or 3x. In 7 cases, DAREDUCE]) is able to generate an answer,
while REDUCE", suffers from a timeout/memout. (Timeouts typically occurred
during refinement loops.)

In all examples, our implementation inferred «, R,,C and . For those in
Fig. 4, we provided I manually. For the Queue and HashTable, we used (fixed
size versions of) the following:

Io = front; = fronta A rear; = rearz Aszi = sza A Vi € [fronty, rear1].qq [i] = q5[i]
Igr = keysl = key52 AVi € [0, max).tbl.k >0= tbl[i].k = tho Mk‘ A tby [7,]’0 = tbz[i}.’l}

Ig states that the queues have the same size, and that the values agree in
the range of the queue. It is possible to weaken this relation but commutativity
does not need this weakening. For the HashTable, Iy states that the HashTables
have the same number of keys and, in each non-empty slot, they agree on the key
and value. Apart from these I relations (which someday could be inferred) our
technique is otherwise completely automated: a user only provides guesses for the
commutativity conditions and CITYPROVER returns a proof or counterexample.

Working with Observational Equivalence (Obs-Eq) Relations. As compared to
pre/post specifications, observational equivalence relations are simpler to work
with and do not suffer from the potential to lead to unsound commutativity con-
clusions. There are several points to consider. Soundness. If a relation is an obs-
eq relation then it is guaranteed to be precise enough for commutativity proofs
(Thm 5.1). By contrast (see Sect. 2) pre/post specifications run the risk of being
too coarse grained (and then unsound commutativity conclusions) or too fine

Decomposing Data Structure Commutativity Proofs with mn-Differencing 99

grained (accounting for unnecessary detail). Simplicity. With an obs-eq relation,
we only need to reason about the structure of the abstraction described by that
relation. By contrast, pre/post specifications may be superfluous or unnecessar-
ily detailed for commutativity (e.g. post-condition of HashTable.clear). Methods
with branching or loops quickly veer toward detailed disjunctive post-conditions
but, for commutativity, it only matters that an obs-eq relation holds. Even with
Queue.enq, there are three cases, but these are unneeded in the obs-eq relation.
Centralized. Unlike specs, a single obs-eq relation applies to all methods, so they
are more centralized and typically less verbose. Automation. We feel that infer-
ring an obs-eq relation is a more well-defined and achievable goal, akin to how
numerous other verification techniques/tools prefer to synthesize loop invariants
rather than synthesizing specifications. Also, many specification inference tools,
to be tractable, end up with shallow specifications which, for commutativity,
runs the unsoundness risk. Usability. We aim to make commutativity verification
accessible to non-experts and, given the above mentioned unsoundness risk with
imprecise specifications, asking them to write pre/post conditions is perhaps not
the best strategy. Even if the non-expert succeeds in writing a correct pre/post
condition, they can still lead to unsound conclusions about commutativity.

Ezperience. In some cases CITYPROVER caught our mistakes/typos. We also
tried to use CITYPROVER to help us narrow down on a commutativity condi-
tion via repeated guesses. In the HashTable example the successive conditions
’kpgﬂﬁ (defined in the extended version [28].) represent our repeated attempts to
guess commutativity conditions. CITYPROVER’s counterexamples pointed out
collisions and capacity cases. Commutativity conditions are applied in practice
through the use of commutativity-based formats such as abstract locking [24],

access point specifications [17] and conflict abstractions [16].

Summary. With REDUCE], tools often struggle to converge on appropriate
abstractions but we show that DAREDUCE?, (employing mn-differencing) leads
to a more plausible algorithmic strategy: DAREDUCE], can promptly validate
commutativity conditions for 31 out of 37 examples. An important direction for
future work is to further improve performance and scalability.

8 Related Work

To our knowledge, mn-differencing and reductions based on mn-differencing
(e.g. DAREDUCE!,) have not occurred in the literature. We now survey related
works on commutativity reasoning, k-safety, product programs, etc., beyond

those that we have already mentioned.

Commutativity Reasoning. Bansal et al. [7] synthesize commutativity condi-
tions from provided pre/post specifications, rather than implementations. They
assume these specifications are precise enough to faithfully represent all effects
relevant to commutativity. As discussed in Sect. 2, if specifications are coarse,
Bansal et al. would emit unsound commutativity conditions. By contrast, our
relations capture just what is needed for commutativity. Gehr et al. [21] describe

100 E. Koskinen and K. Bansal

a method based on black-box sampling, but lack a soundness guarantee. Both
Aleen and Clark [4] and Tripp et al. [42] identify sequences of actions that com-
mute (via random interpretation and dynamic analysis, resp.). Kulkarni et al.
[32] point out that degrees of commutativity specification precision are useful.
Kim and Rinard [27] verify commutativity conditions from specifications. Com-
mutativity is also used in dynamic analysis [17]. Najafzadeh et al. [35] describe
a tool for weak consistency, that reports commutativity checking of formulae,
but not ADT implementations. Houshmand et al. [25] describe commutativ-
ity checking for replicated data types (CRDTSs). This complementary work is
geared toward CRDTSs written in a high-level specification language (transitions
on tuples of Sets) that can be represented in SMT with user-provided invariants.

k-safety, Product programs, Reductions. Self-composition [9,41] reduces some
forms of hyper-properties [14] to properties of a single program. More recent works
include product programs [8,18] and techniques for automated verification of k-
safety properties. Cartesian Hoare Logic [40] is a program logic for reasoning about
k-safety properties, automated via a tool called DESCARTES. Antonopoulos et
al. [5] described an alternative automated k-safety technique based on partition-
ing the traces within a program. Farzan and Vandikas [19] discuss a technique and
tool WEAVER for verifying hypersafety properties, based on the observation that
a proof of some representative runs in a product program can be sufficient to prove
that the hypersafety property holds of the original program. Others explore logical
relational reasoning across multiple programs [6,20].

9 Discussion and Future Work

We have described a theory (mn-differencing), algorithm (DAREDUCE],) and
tool for decomposing commutativity verification of ADT implementations.
mmn-differencing can be instantiated to reason about heap ADTs by using,
e.g., separation logic [37,38] as an assertion language. Using the separating con-
junction, we can frame the mn-differencing relation apart from the cloning rela-
tion. For example, we can consider push(x)/pop on a list-based implementation
of a stack containing n elements: stk — [en,S,] * -+ % [e1, L]. We can define
mn-differencing R, to focuses on whether two list-stack states agree on the
top element, and frame the rest with a relation C' that specifies exact (shape
and value) equivalence. It is unclear whether DAREDUCE], is the right strategy
for automating mn-differencing heap assertions; integrating mn-differencing into
heap-based tools (e.g. [1,2,26]) is an interesting direction for future work.

The results of our work can be used to incorporate more commutativity con-
ditions soundly and obtain speed ups in transactional object systems [16,24].
Further research is needed to use our commutativity proofs with parallelizing
compilers. Specifically, in the years to come, parallelizing compilers could com-
bine our proofs of commutativity with automated proofs of linearizability [12]
to execute more code concurrently and safely.

Decomposing Data Structure Commutativity Proofs with mn-Differencing 101

Acknowledgments. We would like to thank Marco Gaboardi, Maurice Herlihy,
Michael Hicks, David Naumann and the anonymous reviewers for their helpful feed-
back on earlier drafts of this work. This work was supported in part by NSF award
#1813745 and #2008633.

References

1. Infer static analyzer. https://fbinfer.com/

2. Verifast. https://github.com/verifast /verifast

3. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82, 253-284 (1991)

4. Aleen, F., Clark, N.: Commutativity analysis for software parallelization: letting
program transformations see the big picture. In: Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XII) (2009), ACM, pp. 241-252 (2009)

5. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, 18-23 June 2017, pp. 362-375. ACM (2017)

6. Banerjee, A., Naumann, D. A., and Nikouei, M. Relational logic with framing
and hypotheses. In: 36th TARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2016)

7. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful
commutativity conditions. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 115-132. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2_7

8. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200-214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_17

9. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: CSFW (2004)

10. Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184-190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
116

11. Bolognesi, T., Smolka, S.A.: Fundamental results for the verification of observa-
tional equivalence: a survey. In: PSTV, pp. 165-179 (1987)

12. Bouajjani, A., Emmi, M., Enea, C., Hamza, J. On reducing linearizability to state
reachability. In Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, 6-10 July 2015, Proceedings, Part II, pp.
95-107 (2015)

13. Chechik, M., Stavropoulou, I., Disenfeld, C., Rubin, J.: FPH: efficient non-
commutativity analysis of feature-based systems. In: Russo, A., Schiirr, A. (eds.)
FASE 2018. LNCS, vol. 10802, pp. 319-336. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89363-1_18

14. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157—
1210 (2010)

https://fbinfer.com/
https://github.com/verifast/verifast
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-89363-1_18
https://doi.org/10.1007/978-3-319-89363-1_18

102

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

E. Koskinen and K. Bansal

Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The
scalable commutativity rule: designing scalable software for multicore processors.
ACM Trans. Comput. Syst. 32(4), 10 (2015)

Dickerson, T.D., Koskinen, E., Gazzillo, P., Herlihy, M.: Conflict abstractions and
shadow speculation for optimistic transactional objects. In: Programming Lan-
guages and Systems - 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali,
Indonesia, 1-4 December 2019, Proceedings, pp. 313-331 (2019)

Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detec-
tion. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2014) (2014)

Eilers, M., Miller, P., Hitz, S.: Modular product programs. ACM Trans. Pro-
gramm. Lang. Syst. (TOPLAS) 42(1), 1-37 (2019)

Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 200-218. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_11

Frumin, D., Krebbers, R., Birkedal, L.: Reloc: a mechanised relational logic for fine-
grained concurrency. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, pp. 442-451 (2018)

Gehr, T., Dimitrov, D., Vechev, M. T. Learning commutativity specifications. In:
Computer Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, 18-24 July 2015, Proceedings, Part I, 307-323 (2015)

Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641-643. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36742-7_53

Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: Computer Aided Verification, 14th
International Conference, CAV 2002, Copenhagen, Denmark, 27-31 July 2002,
Proceedings, pp. 526-538 (2002)

Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly con-
current transactional objects. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP 2008) (2008)
Houshmand, F., Lesani, M.H.: replication coordination analysis and synthesis.
Proc. ACM Program. Lang. 3(POPL), 74:1-74:32 (2019)

Juhasz, U., Kassios, I.T., Miiller, P., Novacek, M., Schwerhoff, M., Summers,
A.J.: Viper: a verification infrastructure for permission-based reasoning. Technical
report, ETH Zurich (2014)

Kim, D., Rinard, M.C. :Verification of semantic commutativity conditions and
inverse operations on linked data structures. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, ACM, pp. 528-541 (2011)

Koskinen, E., Bansal, K.: Reducing commutativity verification to reachability with
differencing abstractions. CoRR abs/2004.08450 (2020)

Koskinen, E., Parkinson, M.J.: The push/pull model of transactions. In: Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015, pp. 186-195 (2015)
Koskinen, E., Parkinson, M.J., Herlihy, M.: Coarse-grained transactions. In: Pro-
ceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, ACM, pp. 19-30 (2010)

Kragl, B., Qadeer, S.: Layered concurrent programs. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 79-102. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_5

https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-96145-3_5

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Decomposing Data Structure Commutativity Proofs with mn-Differencing 103

Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the com-
mutativity lattice. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, pp. 542-555.
ACM (2011)

Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. In: Ferrante, J., McKinley, K.S. (eds.)
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI 2007), pp. 211-222. ACM (2007)

Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717-721 (1975)

Najafzadeh, M., Gotsman, A., Yang, H., Ferreira, C., Shapiro, M.: The CISE
tool: proving weakly-consistent applications correct. In: Proceedings of the 2nd
Workshop on the Principles and Practice of Consistency for Distributed Data,
PaPoC@EuroSys 2016, London, United Kingdom, 18 April 2016, pp. 2:1-2:3 (2016)
Ni, Y., et al.: Open nesting in software transactional memory. In: Proceedings
of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2007, pp. 68-78. ACM (2007)

O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1-19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0-1

Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp.
55-74. IEEE (2002)

Rinard, M.C., Diniz, P.C.: Commutativity analysis: a new analysis technique for
parallelizing compilers. ACM Trans. Program. Lang. Syst. (TOPLAS) 19(6), 942—
991 (1997)

Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, 13-17 June 2016, pp. 57-69. ACM (2016)

Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: SAS
(2005)

Tripp, O., Manevich, R., Field, J., Sagiv, M.: JANUS: exploiting parallelism via
hindsight. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2012, pp. 145-156 (2012)

Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450-464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6_40

Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1-3), 308-334
(2007)

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-14295-6_40

	Decomposing Data Structure Commutativity Proofs with mn-Differencing
	1 Introduction
	2 Overview
	3 Preliminaries
	4 One-Shot Reduction to Reachability
	5 Decomposing Commutativity with mn-differencing
	5.1 Formal Definition
	5.2 Connecting the Pieces Together

	6 mn-differencing for Automata-Based Verification
	7 Evaluation
	8 Related Work
	9 Discussion and Future Work
	References

