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1 Introduction
The ability to learn relations between events from experience is critical for humans to

behave adaptively. Learning relations between events allows individuals to predict future
events (e.g., predicting the likelihood of a side-effect after taking a medicine) and make
decisions to try to bring about desirable outcomes (e.g., deciding whether or not to use the
medication). There are two types of errors when learning relations between events. First, one
might falsely conclude that there is no relation between two events. For example, if a person
stops taking a medication because they falsely judge it to be ineffective, they will miss out on
the benefits of the therapy. Another error, called illusory correlation or illusory causation,
involves falsely concluding that there is a relation between two events. This type of error is
believed to contribute to the formation of stereotypes (e.g., believing that one race is more
likely to commit crimes than another (Hamilton & Gifford, 1976) and believing in
pseudoscientific therapies (Matute et al., 2011)). The goal of the present research was to assess
whether and when people can accurately identify relations, which is crucial for informing
efforts to improve decision making.
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These questions have frequently been studied using the “trial-by-trial” paradigm in which
participants observe multiple cue-outcome (or ‘cause-effect’) pairs. This trial-by-trial paradigm
simulates how individuals learn relations through trial and error while experiencing a temporal
stream of events. Typically, the entire learning session lasts on the order of 5-10 minutes (or
30-60 minutes for tasks with many trials). Furthermore, the participant is fully engaged in the
learning process and any distractions during the task are experimenter-induced. Originally used
in the behaviorist tradition, trial-by-trial learning is used pervasively across many fields such as
causal learning (Spellman, 1996; Waldmann, 2001), correlation detection (Jenkins & Ward,
1965; Kao & Wasserman, 1993), reinforcement learning (Daw et al., 2006; Delgado et al., 2000),
category learning (Kruschke, 1992; Nosofsky, 1986), fear learning (LaBar et al., 1998; Schiller et

al., 2010), and stereotype formation (Hamilton & Gifford, 1976; Le Pelley et al., 2010).



However, we contend that this pervasive rapid trial-by-trial learning paradigm does not
reflect real-world learning situations, which usually involve experiencing cause-effect
associations over longer periods of time. For example, stereotypes are not learned on the order
of minutes, but through experiences with in-group and out-group members over longer periods
of time. Similarly, learning about potential food allergies or the effectiveness of a medication is
based on experiences that are spaced out over days or weeks. When learning is spread out over
time and embedded in daily life, the learner is simultaneously engaged in many other cognitive
processes. Because the learner must rely on long-term memory as opposed to working
memory, they may have more difficulty learning cause-effect relations and be more likely to
make mistakes in real-world situations.

Historically, because so much research on causal learning (and experience-based learning
in general) compares human learning and judgments to normative or rational computational
models, researchers have often studied learning under optimal situations in which memory
demands are minimized. In the trial-by-trial paradigm, this is accomplished by rapidly
presenting the trials back-to-back usually without distractions, and in some other paradigms
the data is presented in a summarized format to make it even easier to digest (e.g., Cheng,
1997; Griffiths & Tenenbaum, 2005). Because of this emphasis on studying learning and
reasoning under optimal conditions, fairly little research has investigated learning under more
real-world learning constraints, though there are a few exceptions.

In fact, two of the foundational studies on illusory correlations investigated learning that
naturally occurred over a spaced-out timeframe. Chapman and Chapman (1969) argued that
psychotherapists inferred illusory correlations between Wheeler-Rorschach signs and their
patients’ diagnoses, and Redelmeier and Tversky (1996) argued that arthritis patients
experience illusory correlations between the weather and their symptoms. However, both of
these assessments are flawed. Aside from the premise of diagnosing homosexuality being
highly problematic (Herek, 2010), Chapman and Chapman also did not have access to the
individual therapists’ clinical records, so they could not actually analyze learning. And

Redelmeier and Tversky did not take autocorrelation into account when analyzing correlations



between weather and pain, which is necessary for analyzing time-series data. In sum, there is
no prior research that can really speak to the accuracy of causal learning over long timeframes.
1.2 The Role of Memory in Causal Learning

We compared trial-by-trial learning in the standard rapid paradigm with 24 trials (short
timeframe) versus learning in which the trials were spaced out once per day for 24 days (long
timeframe). The long timeframe condition, in which one trial was experienced per day, was
intended to simulate natural processes that unfold on a daily timescale (e.g., does a medicine
that can be taken once per day influence a health outcome, does exercising on some days
influence sleep).

We investigated how well people learned about four datasets. In two datasets, there was a
real correlation between the cause and the effect, either positive or negative. In two datasets,
there was zero correlation between the cause and the effect; however, prior research has
shown that people typically infer illusory correlations for these.

None of the existing models of causal learning have memory built into the model, so they
do not make clear predictions about learning over spaced-out timeframes. We briefly discuss
these models to point towards potential predictions that they could make. Importantly, our
goal is not to confirm or disconfirm particular models; that is impossible because they do not
make clear predictions. Still, it is possible to hypothesize a range of predictions that these
models could make for long timeframes.

Rule-based theories of causal learning (Cheng, 1997; Griffiths & Tenenbaum, 2005; Hattori
& Oaksford, 2007) assume that people judge causal relationships from tallies of the
experienced events. If learning over a long timeframe causes increased interference and/or
decay, and if this leads to less accurate tallies of the experienced events, it would mean worse
judgments in the long timeframe compared to the short. For example, in studies that have
manipulated working memory load, illusory correlations become stronger and the ability to
detect true relations is impaired when working memory is taxed (Kao & Wasserman, 1993;
Shaklee & Mims, 1982). Additionally, older adults with working memory decline and people
with lower levels of working memory exhibit stronger illusory correlations compared to

younger adults and people with higher levels of working memory (Eder et al., 2011; Mutter &



Pliske, 1996). In sum, perhaps the current study, which stretches learning out over time and
therefore requires long term memory instead of short term memory, could be viewed
somewhat analogously to studies that have increased working memory load.

If memory is worse in the long timeframe, there are a few possible predictions. For the
datasets with a true cause-effect correlation, worse learning would likely mean that learners
would have more difficulty detecting the statistical relationship in the long timeframe
compared to the short, so judgments would be closer to zero. For the illusory correlation
datasets, worse learning could play out in two ways. First, it is possible that there will be
stronger illusory correlations in the long timeframe condition similar to the studies that
manipulated working memory load (Kao & Wasserman, 1993; Shaklee & Mims, 1982). Second,
if people have a lot of difficulty learning the statistical relationship, it could lead to judgments
closer to zero, which would paradoxically produce more accurate judgments.

Alternatively, there may be few differences between the long vs. short timeframe
conditions. In regard to the rule-based theories, it is possible that people will have fairly
accurate memories of the tallies given that they only involve a fairly simple form of learning
between a single cause and a single effect. Associative and reinforcement-learning models (e.g.,
Rescorla & Wagner, 1972) might also predict fairly accurate judgments, given that they do not
require memories for individual events and only require sequentially updating a cue-outcome
association.

Because the existing models do not have memory built in, they do not make clear
predictions for causal learning over long timeframes. Still, it is vitally important to know
whether people can accurately assess statistical relations in their own lives such as these daily
processes. As the first study of its kind, this study was designed to provide strong evidence
about the accuracy of simple causal learning over longer timeframes.

2 Materials and Methods
2.1 Participants

There were 479 participants (mean age = 21 years, 96% under 30 years old). Participants

were required to own a smartphone and intend to complete the entire study. We mainly

targeted college students to have a similar sample to most other causal learning studies and



since they frequently use smartphones. Participants were paid $30 if they successfully
completed the entire study. This study was approved as exempt through our university’s IRB. All
participants gave informed consent. Our goal was to have around 400 participants, 100 for each
of the 4 datasets in the long timeframe condition. The final data analyses included 413
participants after dropping 13 who admitted to writing down data during the study, 1 who
admitted to not trying during the task, 40 due to a programming error, and 12 who skipped too
many days.
2.2 Datasets and Design

Participants learned the statistical relation between a binary cause (c) and a binary effect
(e) in four datasets, each with 24 randomly ordered observations (Table 1). We represent the
presence vs. absence of the cause and effect with 1 and 0 respectively. We used the AP rule
(Allan, 1980) to characterize the strength of the cause-effect relations in the datasets, AP =

P(e=1|c=1) — P(e=1]|c=0), as well as Cheng’s (1997) power PC metric of causal strength (Table

1).
Table 1. Frequencies for Datasets in Current Study
c=1 c=l =0 =0 Power

Dataset e=1  e=0 e=l e=0 P(e=1|c=1) P(e=1|c=0) AP pC
Generative 9 3 3 9 .75 .25 .5 .67
Preventive 3 9 9 3 .25 .75 -5 -.67
A-cell 10 6 5 3 .625 .625 .0 .00
Outcome-Density 9 3 9 3 .75 .75 .0 .00

Note. C represents the cause and e represents the effect.

In the “generative” dataset, there was a positive relation between the cause and effect,
and in the “preventive” dataset there was a negative relation. Both AP and power PC imply
moderate strength relations for the generative and preventive datasets. People typically make
roughly normative judgments for these datasets in short timeframe studies (e.g., Shaklee &
Mims, 1982).

There were two noncontingent datasets. The A-cell dataset had a high number of ‘A-cell’
(c=1, e=1) trials, and the ‘outcome density’ dataset had a high probability of the effect. Both AP

and power PC imply zero relations between the cause and outcome for these two datasets,



however, people typically infer a positive relation for these datasets, which is called an “illusory
correlation” (e.g., Blanco et al., 2013; Kao & Wasserman, 1993).

Participants completed five tasks (Table 2). They learned about one of the four datasets in
the long timeframe, and they learned about all four in the short timeframe. On Day 1 they
completed Tasks 1 and 2 — the short timeframe tasks for 2 of the 4 datasets. Then from Days 1-
24 they completed Task 3 - the long timeframe condition. Finally, on Day 25, they completed
Tasks 4 and 5 — the short timeframe tasks for the 2 datasets not experienced on Day 1.

The long timeframe dataset matched one of the four short timeframe datasets in all ways
except for the length and the context of the cover story. Having subjects learn all four datasets
in the short timeframe condition was done to permit a within-subjects comparison for
increased power for this hard to run and expensive study while reducing the likelihood that
subjects were aware that one of the short timeframe datasets was the same as the long
timeframe dataset. The short timeframe dataset that matched the long timeframe dataset was
randomly assigned to appear either on Day 1 or Day 25. Of the two short timeframe tasks on
Days 1 and 25, one was contingent (generative or preventive) and one was noncontingent
(outcome density or A-cell). Table 2 gives an example of the design for one participant.

Table 2. Example order of tasks and randomization for a single subject

Task Order Day Length Dataset Context Valence Authenticity

1 1 Short A-cell* Restaurant  Positive*  Authentic*

2 1 Short Preventive House Negative Novel

3 1-24  Long A-cell* Library Positive*  Authentic*

4 25 Short Generative Street Positive Novel

5 25 Short Outcome Park Negative  Authentic
density

Note. * indicates a task in which the dataset, cover story valence, and cover story authenticity
were matched, but the length of the task was either short or long.

2.2.1 Cover stories. Since subjects learned about five cause-effect relations, we created five
‘contexts’ and cover stories so that each task was viewed as a separate learning task. In each

cover story, it was plausible for the cause to either improve or worsen the effect.



Out of caution with this new and resource-intensive paradigm, we manipulated two aspects
of the cover stories: authenticity of the cause (authentic vs. novel) and valence of the effect
(positive vs. negative). Typical causal learning paradigms use novel causes (e.g., the effect of
Vitamin E8H9 on productivity) to minimize the influence of prior beliefs. However, our overall
goal for this study was to increase the external validity (primarily in terms of timeframe, but
also in terms of feeling real more generally) and were worried that participants in the long
timeframe condition might perform poorly with novel causes (Mutter & Plumlee, 2009). Thus,
we decided to use both authentic and novel cover stories (see Table 3 for the authentic cover
stories). In the novel cause condition, the causes involved taking a hypothetical vitamin or not.

Most effects have an implicit valence of being good (e.g., flower blooming; Spellman, 1996)
or bad (e.g., presence/absence of a headace; Liljeholm & Cheng, 2007). Furthermore, valence
can lead to stronger judgments about illusory correlations (Bott & Meiser, 2020; Mullen &
Johnson, 1990) and real correlations (Baumeister et al., 2001; Ohman & Mineka, 2001; Rozin &
Royzman, 2001). For generality, we used both negative and positive valence. The absence of
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the effect was always described as “normal”. The presence of the effect was described as either
very good or very bad (Table 3). We coded the causal strength judgments so positive causal
strength always means a positive correlation between the presence of the cause and the
presence of the effect.

We assigned the same valence and authenticity conditions to the matched short timeframe
and long timeframe datasets. Of the four short timeframe conditions, two had one version and
two had the other version for both the valence and authenticity manipulations (Table 2).

The valence and authenticity manipulations were intended mainly for exploratory and

counterbalancing purposes. We found no systematic effects of authenticity or valence and

report these results in the supplement.



Table 3. Authentic causes, contexts, and effect valences for cover stories

Authentic Cause Contextual Effect: Positive Effect: Negative
Image Valence Valence

Using Facebook vs. Not using Restaurant Very good mood vs. Very bad mood vs.

Facebook Normal mood Normal mood

Eating a healthy dinner vs. Friend’s Stomach feels great Upset stomach vs.

Not eating a healthy dinner  house vs. Normal digestion Normal digestion

Using notecards to study vs.  Library Very good grade vs. Very bad grade vs.

Not using notecards to study Normal grade Normal grade

Biking to work vs. Not biking  Streets Very productive vs. Very unproductive vs.

to work

Normal productivity

Normal productivity

Very stressed vs.
Feeling normal

Very relaxed vs.
Feeling normal

Bring dog vs. Not bringing Park
dog on a daily walk

Note. In the ‘novel’ condition, the cause was replaced with taking a novel vitamin (e.g., Vitamin
E8H9) or not.
2.3 Procedure

2.3.1 Overall procedure. The study was run on a website created with our PsychCloud.org
framework (Rottman, 2019) and participants used their personal smartphones. The procedure
for the short timeframe and long timeframe tasks were identical, except that there was one
trial per day in the long timeframe condition and the trials were back-to-back in the short
timeframe condition. On Day 1 of the study, participants completed two short timeframe tasks
and began Day 1 of the long timeframe task.

The long timeframe task occurred on Days 1-24. Participants received automated text-
message reminders at 10am, 3pm, and 8pm to complete the trial. They stopped receiving
reminders if they had already participated that day. Participants were told that if they missed
more than three days, the study would be terminated and that they would not be paid; 464
(97%) completed the study. On any given day, 81% participated before the 3pm reminder, 95%
before the 8pm reminder, and 98% by midnight. For subjects who failed to participate on one
(13%), two (5%), or three days (2%), the subsequent trials were automatically pushed back the

appropriate number of days so that they experienced all 24 trials.



They returned to the lab on Day 25 to answer questions about the long timeframe task,
complete the remaining two short timeframe tasks, and receive payment. Of the 413 subjects
in the final analyses, 83% returned to the lab the day after completing Trial 24. Sometimes
participants returned to the lab on the same day as Trial 24 (13%), or two (2%), three (1%), or
four (.2%) days after Trial 24, depending on the number of missed days and their availability.

In sum, the long-timeframe study protocol of one trial per day for 24 days, with
assessments on Day 25, was followed with high fidelity.

2.3.2 Within a trial. Each trial proceeded similarly to the following example (Fig. 1). In this
example, subjects were asked to judge whether taking Vitamin E8H9 during their lunch break
improves or worsens or has no influence on their mood, based on the hypothetical data

presented to them (not participants’ real-life experiences).

Step 1 Step 2 Step 3 Step 4 Step 5

Predict whether or not

This is the scene from Today you did take you were in a Correct! You were in Take a few seconds
your lunch break Vitamin E8H9 very happy mood a Normal Mood to study the entire
scene.

© Vitamin EBHZ O Very Happy Mood O Very Happy Mood
2 No Vitamin EBHS ) Normal Mood ) Normal Mood

Figure 1. Screenshots depicting one trial. Text has been simplified for visibility.

In Step 1, subjects were shown a contextual image and description for three seconds. In
Step 2, anicon and text appeared to show the presence or absence of the cause and
participants confirmed the state of the cause. In Step 3, they predicted the effect as present or
absent. In Step 4, they received feedback, saw an icon representing the true state of the effect,
and verified the state of the effect. In Step 5, they were instructed to study the scene for four
seconds.

At the end of a trial in the short timeframe condition, subjects moved on to the next trial. In

the long timeframe condition, subjects were told that their task was over and to come back to
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the website the following day. In both the short and long timeframe conditions, participants
were unable to access a trial after completing it; they could not go back to see what happened
on a previous trial/day at any point during the study.

2.4 Dependent Variables

2.4.1 Causal strength. Before Trials 9, 17, and after Trial 24, participants answered whether
the cause (Vitamin E8H9) “improves or worsens or has no influence” on the effect (mood). If
participants said the cause had no influence, they were assigned a causal judgment of 0. If they
responded “improve” (+1) or “worsen” (-1), they answered “How strongly does [the cause]
[improve/worsen] [the effect]?” on a scale of 1 (very weak) to 10 (very strong). These two
guestions were multiplied together and divided by 10 to produce a causal strength rating from -
1 (negative relation between case and effect) to +1 (positive relation between cause and
effect).

2.4.2 Frequency judgments. Before Trials 5, 13, 21, and after the causal strength judgment
on Trial 24, participants recalled how often they experienced four types of events (each
combination of cause and effect, as present or absent) using the following three questions.
First, they recalled how many times the cause was present out of the trials that had been seen
(e.g., “You have experienced 24 days. Out of these 24 days, how many days did you take
Vitamin E8H9?”). The participant’s response was piped into two follow-up questions: “Of the
[14] days you did take Vitamin E8H9, how many days were you in a very happy mood?” and “Of
the [10] days you did not take Vitamin E8H9, how many days were you in a very happy mood?”.

2.4.3 Memory task. After the frequency judgments, participants completed a three-part
memory task. First, in the recognition memory task, they were asked to choose which of two
images they saw during the learning task (one image they had previously seen and a lure
image). Participants were then given feedback about the actual image they saw during the
learning task. Second, in the episodic memory task, participants recalled whether the cause and
effect were present or absent for the image that they saw during the task. Finally, in the
temporal order task, participants used a slider to report the approximate trial (1-24) during
which the scene occurred. Only the results from the episodic memory task are reported in the

manuscript.
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3 Results
The data and analysis scripts are available at https://osf.io/hmzvn.

3.1 Analysis Plan

We analyzed three measures of participants’ judgments for the strength of the relation
between the cause and effect at the end of learning: the causal strength question, the trial-by-
trial predictions, and the frequency judgments (Fig. 2). We converted the predictions and
frequency judgments into measures of the strength of the cause-effect relation using the AP
equation®. For predictive strength, we used the predictions from Trials 13-24 to ensure that

participants had some time to learn the cause-effect relation.

1 For frequency ratings in the outcome-density condition, we dropped one participant who said that there were 24
¢=0, e=0 trials, making AP incalculable.



Generative Preventive A-Cell Outcome Density
Tt Tt Tt T
& 10— = ey = = -
2 osl T S= || £ . = = | 3 2F
% 0.01 ";_" - - e~ L/: ._\1 L/. ~ -
o X . .. -
0 T TR T
O -0-5- e o !“ ':.. :. -
-1.0 - - esd .
6 2y 8 Tt t
= *kkkk ke ddkdkk dkkkk T *k * TT
> 10 ..
FC;’ ¢..:' 5. . .
£ 0.5 % p ) .
> e ‘ae
$ 00 = > 28
o s A
g | 4 (2]
£ 05
3
1.0, a
tt t tt ok
T e
e A
G0 () () %
0] on s
> 3 F & L3
§ 00 =t .7
9 ' b oot
g 05 .
a 0. o ~
-1.04 . —
Long Short Long Short Long Short Long Short
BF Evidence for H1 BF Evidence for HO
> 100 Extreme e <1100 Extreme (tt111)
30-100 Very Strong  (****) 1/100-1/30 Very Strong  (11171)
10-30  Strong **)  1/30-1/10 Strong (t11)
3-10 Moderate (**y 1/10-1/3  Moderate (1)
1-3 Anecdotal * 13-1 Anecdotal (1)

12

Figure 2. The box plot shows the 25th, median, and 75th percentiles, and notches represent the

95% Cl of the median. Individual observations (N = 413) were plotted with horizontal jitter.
Markers above each column indicate Bayes Factor evidence for the value vs. zero. Markers

above the horizontal lines indicate Bayes Factor evidence for differences between the short vs.

long timeframe conditions.
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We only analyzed data from the matched short timeframe and long timeframe conditions
so that we could do within-subject tests. Tests were conducted separately for the generative (N
= 99), preventive (N = 104), A-cell (N = 106), and outcome density (N = 104) conditions.

Participants were randomly assigned to complete the matched short condition before (on
Day 1) or after the long condition (on Day 25). To analyze for possible order effects, in the short
timeframe condition, we compared participants who did the short timeframe task on Day 1 vs.
participants who did the short timeframe task on Day 25. We did the same analysis for the long
timeframe condition. This resulted in 24 t-tests; one for each of the 2 timeframes, 3 measures,
and 4 datasets. There was only one significant result (see Appendix for all results). In the short
timeframe, predictive strength judgments for the preventive dataset were significantly stronger
if learned after (M =-0.57, SD = 0.37) compared to before (M =-0.38, SD = 0.43) the long task,
t(102) = 2.37, p =.020, d = 0.46. Because only one of 24 t-tests was significant, we concluded
that there was no reliable evidence of systematic order effects and followed our intended
analysis plan.

The inferential statistics for the causal strength, prediction strength, and frequency strength
measures appear in Tables 4 and 5. For each dataset and measure of causal strength, we
conducted two-sided one-sample t-tests against zero to see if short timeframe and long
timeframe strength judgments were significantly different from zero. Next, we conducted two-
sided paired-samples t-tests to assess whether there were significant differences between short
timeframe and long timeframe judgments for each dataset. We also calculated Bayes Factors
(BF) for each t-test using the default parameters and priors in the BayesFactor package (Morey
& Rouder, 2018) in R including the default sqrt(2)/2 prior for the rscale parameter. ABF > 1 is
support for the alternative hypothesis and a BF < 1 is support for the null. We used the
descriptive labels to summarize the BFs suggested by Lee and Wagenmakers (2014). Because
we observed non-normal distributions in the measures of strength, we also conducted non-
parametric Wilcoxon signed-rank tests. The conclusions were very similar across the t-tests,

BFs, and Wilcoxon tests.



Table 4. Results for Generative and Preventive Conditions
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t-test FB:!tEc!)sr Wilcoxon Test

f p Ioﬁ//er upcpler BF v P
Generative (N=99)
Long vs. 0
Causal 11.53 <.001 1.18 .39 .55 1.84 x 10Y/ 3.01x10® <.001
Frequency 12,97 <.001 1.30 .28 .37 7.79 x 10%° 4.41x10% <.001
Predictive  12.37 <.001 1.24 .46 .63 4.67 x 10%8 4.18x10® <.001
Short vs. 0
Causal 11.43 <.001 1.15 .37 .53 5.25x 101 3.33x10® <.001
Frequency 14.61 <.001 1.47 .26 .34 1.58 x 10?3 4.40x10% <.001
Predictive  11.65 <.001 1.17 44 .62 1.51 x 10Y/ 436x10% <.001
Long vs. Short
Causal -0.38 .707 -0.05 -12 .08 0.12 1.36x 103  .585
Frequency -1.04 301 -0.13  -.09 .03 0.19 2.00x10® .299
Predictive -0.29 .769 -0.04 -13 .09 0.12 1.87x10% .705
Preventive (N=104)
Long vs. 0
Causal -7.24 <.001 -0.71 -.42 -.24 1.10 x 108 2.70x10? <.001
Frequency -11.04 <.001 -1.08 -37 -.26 1.47 x 1016 2.99x 10> <.001
Predictive  -9.44 <001 -0.93 -55 -36 5.04 x 10%2 4.27 x 10> <.001
Short vs. 0
Causal -9.21 <.001 -0.90 -43 -.28 1.57 x 10*2 2.03x10? <.001
Frequency -13.75 <.001 -135 -35 -26 8.26 x 10%* 1.41x10*> <.001
Predictive -12.15 <.001 -1.19 -56 -.41 3.58 x 10%8 2.84x10* <.001
Long vs. Short
Causal -0.35 728 -0.05 -.14 .09 0.12 1.69x 10> .954
Frequency 0.25 801 0.03 -.06 .07 0.11 2.68x10° .718
Predictive -0.62 .538 -0.07 -.14 .07 0.13 2.34x10° .628

Note. Long vs. 0 and Short vs. 0 are statistical tests to see if the mean or median is different
from zero. The Long vs. Short comparison subtracts long from short, so positive numbers mean

that short is more positive and negative means that short is more negative.



Table 5. Results for A-Cell and Outcome Density Conditions
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t-test I?aac\(cisr Wilcoxon Test

t p loj/ler upi!er BF v p
A-Cell (N =106)
Long vs. 0
Causal 6.24 <001 0.61 .17 .33 1.15 x 10° 1.74x 103 <.001
Frequency  1.96 .052 019 .00 .09 0.68 2.57 x 103 .035
Predictive 3.79 <001 037 .09 .28 7.56 x 101 3.54x10®° <.001
Short vs. 0
Causal 7.12 <001 0.69 .16 .28 6.46 x 107 1.27x10° <.001
Frequency 2.88 .005 0.28 .02 .09 5.31 3.12x 10° .002
Predictive 3.75 <001 036 .07 22 6.74 x 10! 3.47x10®° <.001
Long vs. Short
Causal -0.71 477 -0.09 -.13 .06 0.14 1.39x 103 .364
Frequency  0.20 .845 0.02 -.05 .06 0.11 2.48 x 103 .985
Predictive -0.72 469 -0.08 -.14 .06 0.14 2.30x 10° 161
Outcome Density (N=104, N=103 for Frequency Strength)
Long vs. 0
Causal 423 <.001 041 .09 .24 3.41 x 10? 9.25x 102 <.001
Frequency  2.53 .013 0.25 .01 .10 2.23 2.59 x 103 .017
Predictive 2.13 .036 021 .01 .18 0.94 2.73x 103 .036
Short vs. 0
Causal 2.73 .008 0.27 .02 13 3.60 3.17 x 102 .010
Frequency 0.36 718 0.04 -.03 .04 0.12 2.02 x 103 .535
Predictive -2.24 .028 -0.22 -16 -.01 1.17 1.48 x 103 .031
Long vs. Short
Causal -1.72 .089 -0.25 -.18 .01 0.45 6.44 x 102 .068
Frequency -1.97 .052 -0.26 -.10 .00 0.70 1.87 x 103 .050
Predictive -3.60 <.001 -0.42 -28 -.08 4.22 x 10! 1.57 x 103 .001

Note. Long vs. 0 presents statistical tests to see if the mean or median is different from zero.
The long vs. short comparison subtracts long from short, so positive numbers mean that short is
more positive and negative means that short is more negative.
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3.2 Generative and Preventive Datasets

Participants clearly learned the generative and preventive relations; the judgments were
positive for the generative dataset and negative for the preventive dataset. The statistical tests
against zero for both the short and long timeframe were significant and BFs were very strong.
Furthermore, the tests comparing the short vs. long timeframe were all non-significant, and
most of the BFs were roughly around .12 (about 1:8 in favor of the null hypothesis) and one was
0.19 (about 1:5 in favor of the null). In sum, participants exhibited nearly equivalent ability to
learn positive and negative relations in short and long timeframes.

3.3 lllusory Correlation Datasets

3.3.1 A-Cell dataset. For the causal strength and predictive strength measures, the
judgments for the A-cell datasets were significantly positive for both the short and long
timeframe. The BFs were quite strong, especially for the causal strength judgments, suggesting
that participants exhibited illusory correlations. The frequency strength judgments were also
positive but the BFs were weaker, especially in the long timeframe, suggesting that different
ways to measure illusory correlations may make a difference.

Most importantly, however, the comparisons between short and long timeframes were
non-significant for each of the three measures, and the BFs were in the range of .11-.14
(roughly 1:9 or 1:7 in favor of the null). Thus, participants exhibited similar patterns of illusory
correlations in the short and long timeframe conditions.

3.3.2 Outcome density. The judgments for the outcome density dataset were somewhat
less clear. Outcome density datasets often produce positive illusory correlations, though
typically not as strongly as A-cell datasets (Blanco et al., 2013). In the long timeframe condition,
there were positive illusory correlations for each measure according to p-values, however, the
BFs varied greatly. In the short timeframe condition, some of the measures revealed positive
illusory correlations and some were actually negative according to significance testing. The BFs
were not at all convincing.

When comparing the short vs. the long timeframe conditions, the causal strength and
frequency strength measures were not significantly different (or marginally significant) and the

BFs were weak. However, the predictive strength measure was significantly different; the long
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timeframe condition produced a positive illusory correlation, but the short timeframe condition
produced a negative illusory correlation (inconsistent with prior rapid trial-by-trial studies, e.g.,
Blanco et al., 2013). For this reason, and since there was only one significant and one marginal
difference between long and short timeframes, we believe that these differences between
short vs. long timeframe should be interpreted skeptically.

3.4 Judgments During Learning

Figure 3 shows learning curves using the three dependent measures. The causal strength
and frequency strength measures are from participants’ interim judgments during learning. For
predictive strength, participants predicted the presence or absence of the effect on each trial.
In Fig. 3, we calculated predictive strength using the predictions from Trials 1-8 for the Trial 8
measure, 9-16 for the Trial 16 measure, and 17-24 for the Trial 24 measure. All three measures
have some missing data. There is a bit of missing data for the interim causal strength judgments
due to server errors. The frequency and predictive strength have considerable missing data due
to being impossible to calculate with a divide by zero error, especially early on.

We did not conduct quantitative analyses for these measures out of concern for inflated
Type | error due to the large number of potential comparisons. Qualitatively, the three
measures of strength over time are quite similar between the short timeframe and long
timeframe conditions. Fig. 3 also shows that substantial learning had already occurred by Trial 8
for causal strength and predictive strength: the generative and preventive conditions were
already separated. The frequency strength panel suggests that participants may have had a bit
of difficulty remembering the prior evidence at Trial 4 in the long timeframe condition; the
judgments were more extreme for the generative and preventive datasets in the short than
long timeframe. However, by Trial 12, frequency strength in the short and long timeframes look

similar.
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Figure 3. Measures of strength over time for each dataset in the short and long timeframe
conditions. The long and short timeframes are separated a bit on the X axis to reduce over-
plotting. Error bars represent 95% Cl of the mean. Note that frequency strength was measured
at different times than causal strength. We reported predictive strength for the same times as
causal strength.
3.5 Episodic Memories

In the episodic memory test, participants were shown an image from the study and recalled
whether the cause and effect were present or absent, so chance performance for getting both
correct was .25. We analyzed all four dataset conditions together. For each participant, we
calculated an accuracy score out of the 24 trials for both the short and long timeframe

conditions. One participant was excluded from analyses due to a programming error. Thus,

these analyses include 412 participants.
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Two-sided one-sample t-tests revealed that participants’ episodic memories were
significantly better than chance in both the short (M = .34, SD =.12) and long (M = .29, SD = .11)
timeframes (Table 6), though still poor in an absolute sense. The difference between accuracy
scores in the short and long timeframe conditions was significant, suggesting that participants
had stronger episodic memories in the standard rapid trial-by-trial paradigm.

Table 6. Results for episodic memories collapsed across all datasets. N=412.

t-test Bayes Factor
Comparison t p d lovcvler upCpler BF
Long vs. 0.25 8.42 <.001 041 28 30 7.30 x 10*2
Short vs. 0.25 15.18 <.001  0.75 33 35 1.68 x 10%
Short vs. Long* 6.09 <001 0.38 .03 .06 1.06 x 10°

Note. *This comparison subtracts long from short, so positive numbers mean that short is more
accurate.
4 Discussion

Although standard trial-by-trial paradigms present cue-outcome trials in rapid succession,
most real-world experiences require learning from events that are spread out over longer
periods of time. We found that when participants observed one trial per day for 24 days, they
were capable of learning contingent cause-effect relations, but they exhibited illusory
correlations for non-contingent datasets. Critically, we found few differences between the short
and long timeframe conditions, with most Bayes factors roughly 8 to 1 in support of the null.
We observed some inconsistencies for the outcome density dataset, but these were due to
judgments in the short timeframe condition that were inconsistent with prior research.

From a practical perspective, this research suggests that in our everyday lives, humans may
be able to detect simple cause-effect relations when they exist; however, we will likely also
infer illusory correlations.

From a methodological perspective, this research provides an optimistic initial outlook on
the validity of the trial-by-trial paradigm as a simulation of causal learning that occurs across
longer periods of time. Assessing the external validity of this paradigm is important given that it
has been used in hundreds of studies on causal learning, and many thousands of studies when

including all sorts of probability learning tasks and other related topics.
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From a theoretical perspective, we find it striking that there were so few differences in
learning across the short and long timeframe conditions. The robust learning in the long
timeframe condition is surprising considering that participants completed this condition outside
of the lab and likely participated with many distractions and interruptions, as would be
expected when learning from experience in everyday life.

4.1 Implications for Theories of Causal Learning

4.1.1 Sequential updating models. Though studies have manipulated the inter-trial-interval
(IT1) within human (Msetfi et al., 2005) and animal learning paradigms (Carranza-Jasso et al.,
2014; Holland & Morell, 1996), the maximum ITIs have been on the order of minutes. For this
reason, empirical research does not provide much guidance about the impact of ITl on learning
if the trials are spaced out once per day.

Theoretically, sequential updating models, including reinforcement-learning and associative
learning theories (e.g., Rescorla & Wagner, 1972), have very minimal memory demands, which
could facilitate learning over long timeframes. Our failure to find differences between short and
long timeframes is generally consistent with these classes of models.

4.1.2 Rule-Based models. Rule-based models are the dominant models of how people
assess causal relations (Cheng, 1997; Griffiths & Tenenbaum, 2005; Hattori & Oaksford, 2007).
These models assume that individuals judge the strength of causal relations from remembered
frequencies of the four types of events (each combination of the cue and outcome as
present/absent). Therefore, accurate judgments would require accurate tallies of the four types
of events.

We found that there were few differences between the causal strength judgments across
the short vs. long timeframes, and also that there were few differences between the frequency
judgments (tallies). It is possible that learning four tallies is simple enough that it can be
performed robustly over long timeframes and that a rule-based approach was used to estimate
causal strength. Another possibility is that participants engaged in a sequential updating
learning process and recreated the tallies from learned associations.

4.1.3 Uneven cell weighting in attention and memory. People focus most on trials when

the cause and effect are present and least on trials when the cause and effect are absent (e.g.,
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Kao & Wasserman, 1993). Uneven cell weighting is one of the primary explanations for illusory
correlations and is also exaggerated under increased cognitive load (Kao & Wasserman, 1993;
Shaklee & Mims, 1982). If spreading out the events over time further taxes memory and
attention, by analogy, one might expect a stronger A-cell bias in long timeframes, which would
lead to more positive judgments in all four long timeframe conditions. Although we did find
illusory correlations, we did not find that the judgments were more positive in the long
timeframe condition compared to the short.

4.1.4 Working memory vs. reinforcement learning as alternative learning systems.
Recently there have been some advances in research attempting to disentangle the working
memory (WM) and reinforcement learning (RL) systems in an instrumental reinforcement
learning paradigm (A. G. Collins, 2018; A. G. Collins & Frank, 2012). A key finding was that when
participants had to learn which action to take for each of 3 or 6 cues, they were more successful
with 3 cues if tested immediately after learning and more successful with 6 cues if tested after a
delay (when WM could not be used). This finding and additional modeling suggested that WM
and RL both operate in experience-based learning tasks, and to some extent the learner can
dynamically trade-off between the two. In the current study, which had only one cue,
presumably WM was strongly engaged in the short timeframe. Because participants could not
use WM in the long timeframe, either RL or another form of long-term form of memory must
have been used. Conducting similar studies in a long timeframe may help reveal whether
similar tradeoffs exist and the potential for multiple memory systems in long timeframe
learning.

4.2 Implications for Broader Research

4.2.1 Episodic memory. Recently, the possibility has been raised that participants in trial-by-
trial learning tasks store and use episodic memories of learning events (Bornstein et al., 2017,
Bornstein & Norman, 2017) as opposed to learning an association between the cause and effect
or tallies of the four events. We found that the accuracy of participants’ episodic memories (29-
34%) was significantly but only slightly above chance (25%), and therefore cannot explain the
accurate causal judgments observed in the generative and preventive conditions. Furthermore,

there were significant timeframe differences for episodic memories but few differences for
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causal judgments. Thus, our results suggest that participants were probably not primarily using
episodic memories for assessing the strength of the cause-effect relation or for making
predictions of the effect from the cause. However, it is possible that participants remembered a
few recent learning experiences that had an impact on their assessments.

4.2.2 Timescales of learning. In associative learning, there is a debate about “timescale
independence” or “invariance” (Brown et al., 2007; Gallistel & Gibbon, 2000; Kello et al., 2010),
in which learning phenomena tend to replicate if the sequence is stretched or compressed. In
memory, there are debates about the similarities and differences between short vs. long-term
memory (Cowan, 2008) and whether memories across short and long timescales can be
modeled with the same forgetting curves (Averell & Heathcote, 2011; Wixted & Ebbesen,
1991). These debates are complex and technical, and though the current study was not
designed specifically to address them, the lack of differences speaks to the similarity of learning
over short and long timeframes.

4.2.3 Personal semantics. A relatively new topic in memory research is the idea of ‘personal
semantics’ - declarative memories about the self that fall in-between episodic memories of
events and semantic memories of facts. Many autobiographical memories involve repeated
events (Renoult et al., 2012, 2016). The sorts of memories studied in the current research take
autobiographical memories a step further because they involve memories of repeated events
involving both a cause (e.g., “l often drinking coffee”) and effect (e.g., “I often sleep poorly”)
and memories about the relationship between the two (e.g., “Drinking coffee impairs my
sleep”). Insofar as repeated events are believed to be fundamental to autobiographical
memories and beliefs about oneself, the current paradigm is important because it provides a
way to empirically study the accuracy of repeated autobiographical memories in a more
realistic timeframe.

4.3 Limitations and Future Directions

The current research was intended as a first step towards generalizing the standard short
timeframe trial-by-trial paradigm into a long timeframe. In order to make the long timeframe
highly comparable to the short timeframe, we intentionally sought a compromise between

internal and external validity. Specifically, we manipulated the length of time between the trials
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and kept everything else as similar to prior studies as possible; we felt that this was the first
most important step towards understanding learning from experience in long timeframes.

We are already modifying the paradigm to test causal learning in progressively more
authentic ways. In particular, we are studying whether people can learn more complex cause-
effect relations, such as when there are two causes instead of just one, and when there are
considerable delays between the cause and the effect. We are also studying situations in which
a cause is not used for a period of time and then starts to get used for a period of time (e.g.,
initially not using a medication and then starting to use a medication for multiple days in a row),
rather than the random order of the cause being present or absent in the current study; this
alternative task may be harder because it could require remembering back to the prior period
of time when the cause was not used.

However, we acknowledge that the long timeframe paradigm we used is still artificial in a
number of different ways, some of which we mention here. We hope that this list encourages
other researchers from a variety of sub-fields to take up these questions.

4.3.1 Explicit vs. implicit learning. One limitation with almost every causal learning
paradigm, including our smartphone paradigm, is that participants are aware of the goal —to
learn causal relations — and the smartphone task likely triggers engagement with this goal each
day. In the real world, there may be situations in which one has a strong goal to learn and
assess a causal relation, for example, when eliminating a food from one’s diet to see if it makes
them feel better, or when starting a medicine. However, there are also many situations in
which one does not initially have a goal, such as encountering a problem (e.g., poor sleep,
feeling sick) and then trying to figure out what may have caused the problem. Or there may
even be situations that are entirely implicit. Our smartphone paradigm best simulates the most
explicit form of learning.

4.3.2 The phone as a protected learning context. Another challenge with using a
smartphone to present the materials to participants is that it may serve as its own unique
learning context. One of the challenges in learning is the credit assignment problem —
identifying which of a practically infinite number of potential causes actually influence an effect

(Denniston et al., 2003; Gallistel et al., 2019; Noonan et al., 2017; Staddon & Zhang, 2016;
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Sutton, 1984). Perhaps one limitation of the current study is that participants are able to ignore
anything happening in their normal lives, and only focus on the single cause and single effect
presented on the phone. Thus, our study does not address the credit assignment problem; this
is something we are currently studying. At the same time, we note that almost all short
timeframe studies are explicitly designed with novel stimuli and a novel context (the lab, or the
experimental application on the computer) to accomplish the same goal of protecting the study
from outside influences. Furthermore, if it is true that the phone serves as a protected
environment for learning in the long timeframe, and that within this environment learning
occurs unimpeded relative to the short timeframe, in our opinion, this is an important finding in
its own right. In theory, it should be entirely possible for events outside the phone to affect
learning that occurs within the context of the phone to some extent (e.g., through interference
or simply distraction). Furthermore, the length of time between trials should impact memory
decay regardless of the phone context. The fact that learning was so similar in the long and
short timeframes highlights the important role of attention at facilitating learning and it also
demonstrates that the length of the task does not inherently impair learning.

4.3.3 Causal strength vs. causal structure. One of the most major developments in research
on causation in the past two decades has been the shift from only focusing how people learn
causal strength towards how people learn the causal structure among multiple variables
(Bramley et al., 2018; Coenen et al., 2015; Davis et al., 2020; Rothe et al., 2018; Rottman & Keuil,
2012; Steyvers et al., 2003). One reason that this is vitally important is because it is helps to
distinguish truly causal vs. associative representations (though see Fernando (2013) for an
associative learning model of causal structure). Whereas associative representations have very
low memory demands, inferring causal structures with causal representations requires
considerably more memory and reasoning demands. Thus, another interesting question for
future research is the extent to which people can learn causal structure in more realistic
contexts.

4.3.5 Definition of a trial. Another limitation of this paradigm, and trial-by-trial paradigms
generally, is that the meaning of a ‘trial’ is very hard to define let alone justify from a

naturalistic learning perspective (Gallistel, 2021; Gallistel & Gibbon, 2000). For example, one
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way in which the ‘trial’ paradigm is artificial is that absences are more salient than usual; in the
real world, not taking medicine and not experiencing pain are typically less salient than taking
medicine and feeling pain. In most causal learning paradigms, however, the absence and
presence of the cause are explicitly stated and therefore made artificially salient. Another
related concern is that many real-world phenomena are not punctate events that happen at a
brief moment in time, but instead may persist or fluctuate in intensity over periods and grow or
recede in awareness over time (e.g., pain, mood; Davis et al., 2020; Soo & Rottman, 2015.
Studying causation with other paradigms over long timeframes will help make the research
more realistic.

4.3.4 Repeated judgments. One aspect of the current design is that on certain learning
trials, participants were prompted to make causal judgments or to report their memories. We
did this in order to have interim measures of learning aside from the predictions. Prior research
has varied widely in the practices used. The majority of studies on causal learning simply ask for
judgments at the end of learning. Some have asked for judgments a few times during learning,
and a few have asked for judgments on every trial (Soo & Rottman, 2015; Van Hamme &
Wasserman, 1994). There is some evidence that asking for judgments repeatedly may lead
participants to report only what has happened on the most recent experiences since the last
judgment (D. J. Collins & Shanks, 2002; Hogarth & Einhorn, 1992; Marsh & Ahn, 2006). It is
possible that asking for interim judgments helped improve learning or modified learning in
some way. That said, given that interim judgments were asked for both the long and short
timeframe conditions, it seems unlikely that such judgments are responsible for the essentially
equal performance in the two conditions; it would have needed to perfectly balance out any
other differences between the short vs. long timeframe conditions.

4.3.6 Within vs. between subjects design. A weakness of our study is that it used an
atypical within-subjects design, with the long timeframe task occurring in-between the short
timeframe tasks on the first and last day. We implemented the within-subjects comparison to
increase power and because a between subjects design is very expensive (participants in the
short and long conditions would need to be paid the same amount). That said, researchers who

want to study long timeframe learning may consider doing a standard counterbalanced design,
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or may consider only studying the long timeframe condition instead of comparing long vs. short
timeframe learning.
4.4 Potential for Mobile Phones and Wearables for Ecological Momentary Experiments

We believe that mobile phones, smart watches, and other wearable technologies provide
valuable but largely untapped opportunities for researchers to conduct experiments that are
embedded in everyday life. For many years various technologies have facilitated the collection
of survey data at different times of day using ecological momentary assessment (EMA),
experience sampling, and intensive longitudinal data in order to prevent recall bias and other
problems with retrospective reports (e.g., Shiffman et al., 2008). The omnipresence of
smartphones is now facilitating ecological momentary interventions (EMI) — interventions
meant to prompt behavior change around mental and behavioral health (Heron & Smyth, 2010;
Marcolino et al., 2018; Nahum-Shani et al., 2018; see also just in time active interventions,
JITAI, and mobile health, mhealth).

The current research is a departure from these methods in that it involves embedding what
would otherwise be a normal psychology experiment, with high degrees of manipulation and
control of stimuli, into participants’ lives; we call this approach ‘ecological momentary
experiments’ (EME). Though such experiments are hard to program and conduct, we believe
that they are valuable because a wide variety of learning phenomena that are typically studied
in short timeframe studies translate best to phenomena that play out over considerably longer
periods of time in real life. Thus, we believe that this EME paradigm can be adapted to studying
many phenomena studied by cognitive scientists (e.g., probability learning, second language
learning, memory, decision-making, sleep, and others).

In our study, we used a custom-designed program based on our PsychCloud.org framework
and hosted on Google’s app engine. Recently a number of other tools have become available
for both presenting stimuli and asking questions (Mack et al., 2019; Shevchenko et al., 2021;
Stieger et al., 2018). We hope that as these technologies become more powerful and easier to

use, researchers can exploit the possibilities that they open up.
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4.5 Conclusions

The current research is an important step towards generalizing existing learning paradigms
to more real-world settings; it shows that people have similar strengths and weaknesses when
learning simple cause-effect relations in long timeframes as they do in short timeframes.
However, we also raised a number of limitations with the study — there are still many ways in
which real world causal learning differs from the current paradigm and there are also many
different sorts of real-world causal learning situations. Additionally, our participants were
mostly college students, but older adults with age-related working memory decline exhibit less
accurate causal learning (Mutter et al., 2009; Mutter & Plumlee, 2009); it is uncertain how
accurately older adults can perform causal learning over long timeframes. Given how important
causal learning and statistical learning are for so many cognitive functions, additional research

is needed to understand the accuracy of these abilities in real-world environments.
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Causal Strength Frequency Strength  Predictive Strength

Dataset Length df t p d t p d t p d
Generative Short 97 091 364 0.18 047 .643 0.09 0.29 .774 0.06
Long 97 0.46 .646 0.09 0.14 .887 0.03 -1.33 .185 -0.27
Preventive Short 102 1.01 .317 0.20 0.71 .477 0.14 2.37 .020* 0.46
Long 102 0.75 .457 0.15 1.18 .241 0.23 0.18 .856 0.04
A-Cell Short 104 166 .101 0.32 1.54 .126 0.30 1.43 .156 0.28
Long 104 159 .116 0.31 -130 .196 -0.25 -0.20 .842 -0.04
Outcome Short 102 0.75 .458 0.15 -0.44 .660 -0.09 -0.27 .790 -0.05
Density Long 102 -0.25 .803 -0.05 -1.34 .183 -0.26 -0.67 .506 -0.13

Note. *p<.05. Positive numbers indicate more positive judgments if the task was completed first

than if the task was completed second.



