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1 Introduction 

The ability to learn relations between events from experience is critical for humans to 

behave adaptively. Learning relations between events allows individuals to predict future 

events (e.g., predicting the likelihood of a side-effect after taking a medicine) and make 

decisions to try to bring about desirable outcomes (e.g., deciding whether or not to use the 

medication). There are two types of errors when learning relations between events. First, one 

might falsely conclude that there is no relation between two events. For example, if a person 

stops taking a medication because they falsely judge it to be ineffective, they will miss out on 

the benefits of the therapy. Another error, called illusory correlation or illusory causation, 

involves falsely concluding that there is a relation between two events. This type of error is 

believed to contribute to the formation of stereotypes (e.g., believing that one race is more 

likely to commit crimes than another (Hamilton & Gifford, 1976) and believing in 

pseudoscientific therapies (Matute et al., 2011)). The goal of the present research was to assess 

whether and when people can accurately identify relations, which is crucial for informing 

efforts to improve decision making. 

These questions have frequently been studied using the “trial-by-trial” paradigm in which 

participants observe multiple cue-outcome (or ‘cause-effect’) pairs. This trial-by-trial paradigm 

simulates how individuals learn relations through trial and error while experiencing a temporal 

stream of events. Typically, the entire learning session lasts on the order of 5-10 minutes (or 

30-60 minutes for tasks with many trials). Furthermore, the participant is fully engaged in the 

learning process and any distractions during the task are experimenter-induced. Originally used 

in the behaviorist tradition, trial-by-trial learning is used pervasively across many fields such as 

causal learning (Spellman, 1996; Waldmann, 2001), correlation detection (Jenkins & Ward, 

1965; Kao & Wasserman, 1993), reinforcement learning (Daw et al., 2006; Delgado et al., 2000), 

category learning (Kruschke, 1992; Nosofsky, 1986), fear learning (LaBar et al., 1998; Schiller et 

al., 2010), and stereotype formation (Hamilton & Gifford, 1976; Le Pelley et al., 2010).  
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However, we contend that this pervasive rapid trial-by-trial learning paradigm does not 

reflect real-world learning situations, which usually involve experiencing cause-effect 

associations over longer periods of time. For example, stereotypes are not learned on the order 

of minutes, but through experiences with in-group and out-group members over longer periods 

of time. Similarly, learning about potential food allergies or the effectiveness of a medication is 

based on experiences that are spaced out over days or weeks. When learning is spread out over 

time and embedded in daily life, the learner is simultaneously engaged in many other cognitive 

processes. Because the learner must rely on long-term memory as opposed to working 

memory, they may have more difficulty learning cause-effect relations and be more likely to 

make mistakes in real-world situations. 

Historically, because so much research on causal learning (and experience-based learning 

in general) compares human learning and judgments to normative or rational computational 

models, researchers have often studied learning under optimal situations in which memory 

demands are minimized. In the trial-by-trial paradigm, this is accomplished by rapidly 

presenting the trials back-to-back usually without distractions, and in some other paradigms 

the data is presented in a summarized format to make it even easier to digest (e.g., Cheng, 

1997; Griffiths & Tenenbaum, 2005). Because of this emphasis on studying learning and 

reasoning under optimal conditions, fairly little research has investigated learning under more 

real-world learning constraints, though there are a few exceptions. 

In fact, two of the foundational studies on illusory correlations investigated learning that 

naturally occurred over a spaced-out timeframe. Chapman and Chapman (1969) argued that 

psychotherapists inferred illusory correlations between Wheeler-Rorschach signs and their 

patients’ diagnoses, and Redelmeier and Tversky (1996) argued that arthritis patients 

experience illusory correlations between the weather and their symptoms. However, both of 

these assessments are flawed. Aside from the premise of diagnosing homosexuality being 

highly problematic (Herek, 2010), Chapman and Chapman also did not have access to the 

individual therapists’ clinical records, so they could not actually analyze learning. And 

Redelmeier and Tversky did not take autocorrelation into account when analyzing correlations 
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between weather and pain, which is necessary for analyzing time-series data. In sum, there is 

no prior research that can really speak to the accuracy of causal learning over long timeframes. 

1.2 The Role of Memory in Causal Learning 

We compared trial-by-trial learning in the standard rapid paradigm with 24 trials (short 

timeframe) versus learning in which the trials were spaced out once per day for 24 days (long 

timeframe). The long timeframe condition, in which one trial was experienced per day, was 

intended to simulate natural processes that unfold on a daily timescale (e.g., does a medicine 

that can be taken once per day influence a health outcome, does exercising on some days 

influence sleep).  

We investigated how well people learned about four datasets. In two datasets, there was a 

real correlation between the cause and the effect, either positive or negative. In two datasets, 

there was zero correlation between the cause and the effect; however, prior research has 

shown that people typically infer illusory correlations for these.  

None of the existing models of causal learning have memory built into the model, so they 

do not make clear predictions about learning over spaced-out timeframes. We briefly discuss 

these models to point towards potential predictions that they could make. Importantly, our 

goal is not to confirm or disconfirm particular models; that is impossible because they do not 

make clear predictions. Still, it is possible to hypothesize a range of predictions that these 

models could make for long timeframes.   

Rule-based theories of causal learning (Cheng, 1997; Griffiths & Tenenbaum, 2005; Hattori 

& Oaksford, 2007) assume that people judge causal relationships from tallies of the 

experienced events. If learning over a long timeframe causes increased interference and/or 

decay, and if this leads to less accurate tallies of the experienced events, it would mean worse 

judgments in the long timeframe compared to the short. For example, in studies that have 

manipulated working memory load, illusory correlations become stronger and the ability to 

detect true relations is impaired when working memory is taxed (Kao & Wasserman, 1993; 

Shaklee & Mims, 1982). Additionally, older adults with working memory decline and people 

with lower levels of working memory exhibit stronger illusory correlations compared to 

younger adults and people with higher levels of working memory (Eder et al., 2011; Mutter & 
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Pliske, 1996). In sum, perhaps the current study, which stretches learning out over time and 

therefore requires long term memory instead of short term memory, could be viewed 

somewhat analogously to studies that have increased working memory load. 

If memory is worse in the long timeframe, there are a few possible predictions. For the 

datasets with a true cause-effect correlation, worse learning would likely mean that learners 

would have more difficulty detecting the statistical relationship in the long timeframe 

compared to the short, so judgments would be closer to zero. For the illusory correlation 

datasets, worse learning could play out in two ways. First, it is possible that there will be 

stronger illusory correlations in the long timeframe condition similar to the studies that 

manipulated working memory load (Kao & Wasserman, 1993; Shaklee & Mims, 1982). Second, 

if people have a lot of difficulty learning the statistical relationship, it could lead to judgments 

closer to zero, which would paradoxically produce more accurate judgments.  

Alternatively, there may be few differences between the long vs. short timeframe 

conditions. In regard to the rule-based theories, it is possible that people will have fairly 

accurate memories of the tallies given that they only involve a fairly simple form of learning 

between a single cause and a single effect. Associative and reinforcement-learning models (e.g., 

Rescorla & Wagner, 1972) might also predict fairly accurate judgments, given that they do not 

require memories for individual events and only require sequentially updating a cue-outcome 

association. 

Because the existing models do not have memory built in, they do not make clear 

predictions for causal learning over long timeframes. Still, it is vitally important to know 

whether people can accurately assess statistical relations in their own lives such as these daily 

processes. As the first study of its kind, this study was designed to provide strong evidence 

about the accuracy of simple causal learning over longer timeframes.  

2 Materials and Methods 

2.1 Participants 

There were 479 participants (mean age = 21 years, 96% under 30 years old). Participants 

were required to own a smartphone and intend to complete the entire study. We mainly 

targeted college students to have a similar sample to most other causal learning studies and 
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since they frequently use smartphones. Participants were paid $30 if they successfully 

completed the entire study. This study was approved as exempt through our university’s IRB. All 

participants gave informed consent. Our goal was to have around 400 participants, 100 for each 

of the 4 datasets in the long timeframe condition. The final data analyses included 413 

participants after dropping 13 who admitted to writing down data during the study, 1 who 

admitted to not trying during the task, 40 due to a programming error, and 12 who skipped too 

many days. 

2.2 Datasets and Design 

Participants learned the statistical relation between a binary cause (c) and a binary effect 

(e) in four datasets, each with 24 randomly ordered observations (Table 1). We represent the 

presence vs. absence of the cause and effect with 1 and 0 respectively. We used the ΔP rule 

(Allan, 1980) to characterize the strength of the cause-effect relations in the datasets, ΔP = 

P(e=1|c=1) – P(e=1|c=0), as well as Cheng’s (1997) power PC metric of causal strength (Table 

1). 

Table 1. Frequencies for Datasets in Current Study 

Dataset 
c=1 
e=1 

c=1 
e=0 

c=0 
e=1 

c=0 
e=0 

P(e=1|c=1) P(e=1|c=0) ΔP 
Power 

PC 

Generative 9 3 3 9 .75 .25 .5 .67 

Preventive 3 9 9 3 .25 .75 -.5 -.67 

A-cell 10 6 5 3 .625 .625 .0 .00 

Outcome-Density 9 3 9 3 .75 .75 .0 .00 

Note. C represents the cause and e represents the effect. 
 

In the “generative” dataset, there was a positive relation between the cause and effect, 

and in the “preventive” dataset there was a negative relation. Both ΔP and power PC imply 

moderate strength relations for the generative and preventive datasets. People typically make 

roughly normative judgments for these datasets in short timeframe studies (e.g., Shaklee & 

Mims, 1982).  

There were two noncontingent datasets. The A-cell dataset had a high number of ‘A-cell’ 

(c=1, e=1) trials, and the ‘outcome density’ dataset had a high probability of the effect. Both ΔP 

and power PC imply zero relations between the cause and outcome for these two datasets, 
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however, people typically infer a positive relation for these datasets, which is called an “illusory 

correlation” (e.g., Blanco et al., 2013; Kao & Wasserman, 1993). 

Participants completed five tasks (Table 2). They learned about one of the four datasets in 

the long timeframe, and they learned about all four in the short timeframe. On Day 1 they 

completed Tasks 1 and 2 – the short timeframe tasks for 2 of the 4 datasets. Then from Days 1-

24 they completed Task 3 - the long timeframe condition. Finally, on Day 25, they completed 

Tasks 4 and 5 – the short timeframe tasks for the 2 datasets not experienced on Day 1. 

The long timeframe dataset matched one of the four short timeframe datasets in all ways 

except for the length and the context of the cover story. Having subjects learn all four datasets 

in the short timeframe condition was done to permit a within-subjects comparison for 

increased power for this hard to run and expensive study while reducing the likelihood that 

subjects were aware that one of the short timeframe datasets was the same as the long 

timeframe dataset. The short timeframe dataset that matched the long timeframe dataset was 

randomly assigned to appear either on Day 1 or Day 25. Of the two short timeframe tasks on 

Days 1 and 25, one was contingent (generative or preventive) and one was noncontingent 

(outcome density or A-cell). Table 2 gives an example of the design for one participant.  

Table 2. Example order of tasks and randomization for a single subject 

Task Order Day Length Dataset Context Valence Authenticity 

1 1 Short A-cell* Restaurant Positive* Authentic* 

2 1 Short Preventive House Negative Novel 

3 1-24 Long A-cell* Library Positive* Authentic* 

4 25 Short Generative Street Positive Novel 

5 25 Short Outcome 
density 

Park Negative Authentic 

Note. * indicates a task in which the dataset, cover story valence, and cover story authenticity 
were matched, but the length of the task was either short or long.  
 

2.2.1 Cover stories. Since subjects learned about five cause-effect relations, we created five 

‘contexts’ and cover stories so that each task was viewed as a separate learning task. In each 

cover story, it was plausible for the cause to either improve or worsen the effect. 



 
 

 
 

7 

Out of caution with this new and resource-intensive paradigm, we manipulated two aspects 

of the cover stories: authenticity of the cause (authentic vs. novel) and valence of the effect 

(positive vs. negative). Typical causal learning paradigms use novel causes (e.g., the effect of 

Vitamin E8H9 on productivity) to minimize the influence of prior beliefs. However, our overall 

goal for this study was to increase the external validity (primarily in terms of timeframe, but 

also in terms of feeling real more generally) and were worried that participants in the long 

timeframe condition might perform poorly with novel causes (Mutter & Plumlee, 2009). Thus, 

we decided to use both authentic and novel cover stories (see Table 3 for the authentic cover 

stories). In the novel cause condition, the causes involved taking a hypothetical vitamin or not.  

Most effects have an implicit valence of being good (e.g., flower blooming; Spellman, 1996) 

or bad (e.g., presence/absence of a headace; Liljeholm & Cheng, 2007). Furthermore, valence 

can lead to stronger judgments about illusory correlations (Bott & Meiser, 2020; Mullen & 

Johnson, 1990) and real correlations (Baumeister et al., 2001; Öhman & Mineka, 2001; Rozin & 

Royzman, 2001). For generality, we used both negative and positive valence. The absence of 

the effect was always described as “normal”. The presence of the effect was described as either 

very good or very bad (Table 3). We coded the causal strength judgments so positive causal 

strength always means a positive correlation between the presence of the cause and the 

presence of the effect.  

We assigned the same valence and authenticity conditions to the matched short timeframe 

and long timeframe datasets. Of the four short timeframe conditions, two had one version and 

two had the other version for both the valence and authenticity manipulations (Table 2).  

The valence and authenticity manipulations were intended mainly for exploratory and 

counterbalancing purposes. We found no systematic effects of authenticity or valence and 

report these results in the supplement. 
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Table 3. Authentic causes, contexts, and effect valences for cover stories 

Authentic Cause Contextual 
Image 

Effect: Positive 
Valence 

Effect: Negative 
Valence 

Using Facebook vs. Not using 
Facebook 

Restaurant Very good mood vs. 
Normal mood 

Very bad mood vs. 
Normal mood 

Eating a healthy dinner vs. 
Not eating a healthy dinner 

Friend’s 
house 

Stomach feels great 
vs. Normal digestion 

Upset stomach vs. 
Normal digestion 

Using notecards to study vs. 
Not using notecards to study 

Library Very good grade vs. 
Normal grade 

Very bad grade vs. 
Normal grade 

Biking to work vs. Not biking 
to work 

Streets Very productive vs. 
Normal productivity 

Very unproductive vs. 
Normal productivity 

Bring dog vs. Not bringing 
dog on a daily walk 

Park Very relaxed vs. 
Feeling normal 

Very stressed vs. 
Feeling normal 

Note. In the ‘novel’ condition, the cause was replaced with taking a novel vitamin (e.g., Vitamin 
E8H9) or not. 
 
2.3 Procedure 

2.3.1 Overall procedure. The study was run on a website created with our PsychCloud.org 

framework (Rottman, 2019) and participants used their personal smartphones. The procedure 

for the short timeframe and long timeframe tasks were identical, except that there was one 

trial per day in the long timeframe condition and the trials were back-to-back in the short 

timeframe condition. On Day 1 of the study, participants completed two short timeframe tasks 

and began Day 1 of the long timeframe task.  

The long timeframe task occurred on Days 1-24. Participants received automated text-

message reminders at 10am, 3pm, and 8pm to complete the trial. They stopped receiving 

reminders if they had already participated that day. Participants were told that if they missed 

more than three days, the study would be terminated and that they would not be paid; 464 

(97%) completed the study. On any given day, 81% participated before the 3pm reminder, 95% 

before the 8pm reminder, and 98% by midnight. For subjects who failed to participate on one 

(13%), two (5%), or three days (2%), the subsequent trials were automatically pushed back the 

appropriate number of days so that they experienced all 24 trials.  
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They returned to the lab on Day 25 to answer questions about the long timeframe task, 

complete the remaining two short timeframe tasks, and receive payment. Of the 413 subjects 

in the final analyses, 83% returned to the lab the day after completing Trial 24. Sometimes 

participants returned to the lab on the same day as Trial 24 (13%), or two (2%), three (1%), or 

four (.2%) days after Trial 24, depending on the number of missed days and their availability. 

In sum, the long-timeframe study protocol of one trial per day for 24 days, with 

assessments on Day 25, was followed with high fidelity. 

2.3.2 Within a trial. Each trial proceeded similarly to the following example (Fig. 1). In this 

example, subjects were asked to judge whether taking Vitamin E8H9 during their lunch break 

improves or worsens or has no influence on their mood, based on the hypothetical data 

presented to them (not participants’ real-life experiences).  

 
Figure 1. Screenshots depicting one trial. Text has been simplified for visibility. 

 
In Step 1, subjects were shown a contextual image and description for three seconds. In 

Step 2, an icon and text appeared to show the presence or absence of the cause and 

participants confirmed the state of the cause. In Step 3, they predicted the effect as present or 

absent. In Step 4, they received feedback, saw an icon representing the true state of the effect, 

and verified the state of the effect. In Step 5, they were instructed to study the scene for four 

seconds. 

At the end of a trial in the short timeframe condition, subjects moved on to the next trial. In 

the long timeframe condition, subjects were told that their task was over and to come back to 
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the website the following day. In both the short and long timeframe conditions, participants 

were unable to access a trial after completing it; they could not go back to see what happened 

on a previous trial/day at any point during the study.  

2.4 Dependent Variables 

2.4.1 Causal strength. Before Trials 9, 17, and after Trial 24, participants answered whether 

the cause (Vitamin E8H9) “improves or worsens or has no influence” on the effect (mood). If 

participants said the cause had no influence, they were assigned a causal judgment of 0. If they 

responded “improve” (+1) or “worsen” (-1), they answered “How strongly does [the cause] 

[improve/worsen] [the effect]?” on a scale of 1 (very weak) to 10 (very strong). These two 

questions were multiplied together and divided by 10 to produce a causal strength rating from -

1 (negative relation between case and effect) to +1 (positive relation between cause and 

effect). 

2.4.2 Frequency judgments. Before Trials 5, 13, 21, and after the causal strength judgment 

on Trial 24, participants recalled how often they experienced four types of events (each 

combination of cause and effect, as present or absent) using the following three questions. 

First, they recalled how many times the cause was present out of the trials that had been seen 

(e.g., “You have experienced 24 days. Out of these 24 days, how many days did you take 

Vitamin E8H9?”). The participant’s response was piped into two follow-up questions: “Of the 

[14] days you did take Vitamin E8H9, how many days were you in a very happy mood?” and “Of 

the [10] days you did not take Vitamin E8H9, how many days were you in a very happy mood?”. 

2.4.3 Memory task. After the frequency judgments, participants completed a three-part 

memory task. First, in the recognition memory task, they were asked to choose which of two 

images they saw during the learning task (one image they had previously seen and a lure 

image). Participants were then given feedback about the actual image they saw during the 

learning task. Second, in the episodic memory task, participants recalled whether the cause and 

effect were present or absent for the image that they saw during the task. Finally, in the 

temporal order task, participants used a slider to report the approximate trial (1-24) during 

which the scene occurred. Only the results from the episodic memory task are reported in the 

manuscript. 
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3 Results 

The data and analysis scripts are available at https://osf.io/hmzvn. 

3.1 Analysis Plan 

We analyzed three measures of participants’ judgments for the strength of the relation 

between the cause and effect at the end of learning: the causal strength question, the trial-by-

trial predictions, and the frequency judgments (Fig. 2). We converted the predictions and 

frequency judgments into measures of the strength of the cause-effect relation using the ΔP 

equation1. For predictive strength, we used the predictions from Trials 13-24 to ensure that 

participants had some time to learn the cause-effect relation.  

 
1 For frequency ratings in the outcome-density condition, we dropped one participant who said that there were 24 
c=0, e=0 trials, making ΔP incalculable. 
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Figure 2. The box plot shows the 25th, median, and 75th percentiles, and notches represent the 
95% CI of the median. Individual observations (N = 413) were plotted with horizontal jitter. 
Markers above each column indicate Bayes Factor evidence for the value vs. zero. Markers 
above the horizontal lines indicate Bayes Factor evidence for differences between the short vs. 
long timeframe conditions.  
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We only analyzed data from the matched short timeframe and long timeframe conditions 

so that we could do within-subject tests. Tests were conducted separately for the generative (N 

= 99), preventive (N = 104), A-cell (N = 106), and outcome density (N = 104) conditions.  

Participants were randomly assigned to complete the matched short condition before (on 

Day 1) or after the long condition (on Day 25). To analyze for possible order effects, in the short 

timeframe condition, we compared participants who did the short timeframe task on Day 1 vs. 

participants who did the short timeframe task on Day 25. We did the same analysis for the long 

timeframe condition. This resulted in 24 t-tests; one for each of the 2 timeframes, 3 measures, 

and 4 datasets. There was only one significant result (see Appendix for all results). In the short 

timeframe, predictive strength judgments for the preventive dataset were significantly stronger 

if learned after (M = -0.57, SD = 0.37) compared to before (M = -0.38, SD = 0.43) the long task, 

t(102) = 2.37, p = .020, d = 0.46. Because only one of 24 t-tests was significant, we concluded 

that there was no reliable evidence of systematic order effects and followed our intended 

analysis plan. 

The inferential statistics for the causal strength, prediction strength, and frequency strength 

measures appear in Tables 4 and 5. For each dataset and measure of causal strength, we 

conducted two-sided one-sample t-tests against zero to see if short timeframe and long 

timeframe strength judgments were significantly different from zero. Next, we conducted two-

sided paired-samples t-tests to assess whether there were significant differences between short 

timeframe and long timeframe judgments for each dataset. We also calculated Bayes Factors 

(BF) for each t-test using the default parameters and priors in the BayesFactor package (Morey 

& Rouder, 2018) in R including the default sqrt(2)/2 prior for the rscale parameter. A BF > 1 is 

support for the alternative hypothesis and a BF < 1 is support for the null. We used the 

descriptive labels to summarize the BFs suggested by Lee and Wagenmakers (2014). Because 

we observed non-normal distributions in the measures of strength, we also conducted non-

parametric Wilcoxon signed-rank tests. The conclusions were very similar across the t-tests, 

BFs, and Wilcoxon tests.  
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Table 4. Results for Generative and Preventive Conditions 

 t-test  
Bayes 
Factor 

 Wilcoxon Test 

 t p d 
CI 

lower 
CI 

upper 
 BF  V p 

Generative (N=99) 

Long vs. 0 

Causal 11.53 <.001 1.18 .39 .55  1.84 × 1017  3.01 x 103 <.001 

Frequency 12.97 <.001 1.30 .28 .37  7.79 × 1019  4.41 x 103 <.001 

Predictive 12.37 <.001 1.24 .46 .63  4.67 × 1018  4.18 x 103 <.001 

Short vs. 0 

Causal 11.43 <.001 1.15 .37 .53  5.25 × 1016  3.33 x 103 <.001 

Frequency 14.61 <.001 1.47 .26 .34  1.58 × 1023  4.40 x 103 <.001 

Predictive 11.65 <.001 1.17 .44 .62  1.51 × 1017  4.36 x 103 <.001 

Long vs. Short 

Causal -0.38 .707 -0.05 -.12 .08  0.12  1.36 x 103 .585 

Frequency -1.04 .301 -0.13 -.09 .03  0.19  2.00 x 103 .299 

Predictive -0.29 .769 -0.04 -.13 .09  0.12  1.87 x 103 .705 

Preventive (N=104) 

Long vs. 0 

Causal -7.24 <.001 -0.71 -.42 -.24  1.10 × 108  2.70 x 102 <.001 

Frequency -11.04 <.001 -1.08 -.37 -.26  1.47 × 1016  2.99 x 102 <.001 

Predictive -9.44 <.001 -0.93 -.55 -.36  5.04 × 1012  4.27 x 102 <.001 

Short vs. 0 

Causal -9.21 <.001 -0.90 -.43 -.28  1.57 × 1012  2.03 x 102 <.001 

Frequency -13.75 <.001 -1.35 -.35 -.26  8.26 × 1021  1.41 x 102 <.001 

Predictive -12.15 <.001 -1.19 -.56 -.41  3.58 × 1018  2.84 x 102 <.001 

Long vs. Short 

Causal -0.35 .728 -0.05 -.14 .09  0.12  1.69 x 103 .954 

Frequency 0.25 .801 0.03 -.06 .07  0.11  2.68 x 103 .718 

Predictive -0.62 .538 -0.07 -.14 .07  0.13  2.34 x 103 .628 

Note. Long vs. 0 and Short vs. 0 are statistical tests to see if the mean or median is different 
from zero. The Long vs. Short comparison subtracts long from short, so positive numbers mean 
that short is more positive and negative means that short is more negative. 
  



 
 

 
 

15 

Table 5. Results for A-Cell and Outcome Density Conditions 

 t-test  
Bayes 
Factor 

 Wilcoxon Test 

 t p d 
CI 

lower 
CI 

upper 
 BF  V p 

A-Cell (N = 106) 

Long vs. 0 

Causal 6.24 <.001 0.61 .17 .33  1.15 × 106  1.74 x 103 <.001 

Frequency 1.96 .052 0.19 .00 .09  0.68  2.57 x 103 .035 

Predictive 3.79 <.001 0.37 .09 .28  7.56 × 101  3.54 x 103 <.001 

Short vs. 0 

Causal 7.12 <.001 0.69 .16 .28  6.46 × 107  1.27 x 103 <.001 

Frequency 2.88 .005 0.28 .02 .09  5.31  3.12 x 103 .002 

Predictive 3.75 <.001 0.36 .07 .22  6.74 × 101  3.47 x 103 <.001 

Long vs. Short 

Causal -0.71 .477 -0.09 -.13 .06  0.14  1.39 x 103 .364 

Frequency 0.20 .845 0.02 -.05 .06  0.11  2.48 x 103 .985 

Predictive -0.72 .469 -0.08 -.14 .06  0.14  2.30 x 103 .161 

Outcome Density (N=104, N=103 for Frequency Strength) 

Long vs. 0 

Causal 4.23 <.001 0.41 .09 .24  3.41 × 102  9.25 x 102 <.001 

Frequency 2.53 .013 0.25 .01 .10  2.23  2.59 x 103 .017 

Predictive 2.13 .036 0.21 .01 .18  0.94  2.73 x 103 .036 

Short vs. 0 

Causal 2.73 .008 0.27 .02 .13  3.60  3.17 x 102 .010 

Frequency 0.36 .718 0.04 -.03 .04  0.12  2.02 x 103 .535 

Predictive -2.24 .028 -0.22 -.16 -.01  1.17  1.48 x 103 .031 

Long vs. Short 

Causal -1.72 .089 -0.25 -.18 .01  0.45  6.44 x 102 .068 

Frequency -1.97 .052 -0.26 -.10 .00  0.70  1.87 x 103 .050 

Predictive -3.60 <.001 -0.42 -.28 -.08  4.22 × 101  1.57 x 103 .001 

Note. Long vs. 0 presents statistical tests to see if the mean or median is different from zero. 
The long vs. short comparison subtracts long from short, so positive numbers mean that short is 
more positive and negative means that short is more negative. 
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3.2 Generative and Preventive Datasets 

Participants clearly learned the generative and preventive relations; the judgments were 

positive for the generative dataset and negative for the preventive dataset. The statistical tests 

against zero for both the short and long timeframe were significant and BFs were very strong. 

Furthermore, the tests comparing the short vs. long timeframe were all non-significant, and 

most of the BFs were roughly around .12 (about 1:8 in favor of the null hypothesis) and one was 

0.19 (about 1:5 in favor of the null). In sum, participants exhibited nearly equivalent ability to 

learn positive and negative relations in short and long timeframes.  

3.3 Illusory Correlation Datasets 

3.3.1 A-Cell dataset. For the causal strength and predictive strength measures, the 

judgments for the A-cell datasets were significantly positive for both the short and long 

timeframe. The BFs were quite strong, especially for the causal strength judgments, suggesting 

that participants exhibited illusory correlations. The frequency strength judgments were also 

positive but the BFs were weaker, especially in the long timeframe, suggesting that different 

ways to measure illusory correlations may make a difference.  

Most importantly, however, the comparisons between short and long timeframes were 

non-significant for each of the three measures, and the BFs were in the range of .11-.14 

(roughly 1:9 or 1:7 in favor of the null). Thus, participants exhibited similar patterns of illusory 

correlations in the short and long timeframe conditions.  

3.3.2 Outcome density. The judgments for the outcome density dataset were somewhat 

less clear. Outcome density datasets often produce positive illusory correlations, though 

typically not as strongly as A-cell datasets (Blanco et al., 2013). In the long timeframe condition, 

there were positive illusory correlations for each measure according to p-values, however, the 

BFs varied greatly. In the short timeframe condition, some of the measures revealed positive 

illusory correlations and some were actually negative according to significance testing. The BFs 

were not at all convincing.  

When comparing the short vs. the long timeframe conditions, the causal strength and 

frequency strength measures were not significantly different (or marginally significant) and the 

BFs were weak. However, the predictive strength measure was significantly different; the long 
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timeframe condition produced a positive illusory correlation, but the short timeframe condition 

produced a negative illusory correlation (inconsistent with prior rapid trial-by-trial studies, e.g., 

Blanco et al., 2013). For this reason, and since there was only one significant and one marginal 

difference between long and short timeframes, we believe that these differences between 

short vs. long timeframe should be interpreted skeptically. 

3.4 Judgments During Learning 

Figure 3 shows learning curves using the three dependent measures. The causal strength 

and frequency strength measures are from participants’ interim judgments during learning. For 

predictive strength, participants predicted the presence or absence of the effect on each trial. 

In Fig. 3, we calculated predictive strength using the predictions from Trials 1-8 for the Trial 8 

measure, 9-16 for the Trial 16 measure, and 17-24 for the Trial 24 measure.  All three measures 

have some missing data. There is a bit of missing data for the interim causal strength judgments 

due to server errors. The frequency and predictive strength have considerable missing data due 

to being impossible to calculate with a divide by zero error, especially early on.  

We did not conduct quantitative analyses for these measures out of concern for inflated 

Type I error due to the large number of potential comparisons. Qualitatively, the three 

measures of strength over time are quite similar between the short timeframe and long 

timeframe conditions. Fig. 3 also shows that substantial learning had already occurred by Trial 8 

for causal strength and predictive strength: the generative and preventive conditions were 

already separated. The frequency strength panel suggests that participants may have had a bit 

of difficulty remembering the prior evidence at Trial 4 in the long timeframe condition; the 

judgments were more extreme for the generative and preventive datasets in the short than 

long timeframe. However, by Trial 12, frequency strength in the short and long timeframes look 

similar. 
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Figure 3. Measures of strength over time for each dataset in the short and long timeframe 
conditions. The long and short timeframes are separated a bit on the X axis to reduce over-
plotting. Error bars represent 95% CI of the mean. Note that frequency strength was measured 
at different times than causal strength. We reported predictive strength for the same times as 
causal strength. 
 
3.5 Episodic Memories 

In the episodic memory test, participants were shown an image from the study and recalled 

whether the cause and effect were present or absent, so chance performance for getting both 

correct was .25. We analyzed all four dataset conditions together. For each participant, we 

calculated an accuracy score out of the 24 trials for both the short and long timeframe 

conditions. One participant was excluded from analyses due to a programming error. Thus, 

these analyses include 412 participants. 
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Two-sided one-sample t-tests revealed that participants’ episodic memories were 

significantly better than chance in both the short (M = .34, SD = .12) and long (M = .29, SD = .11) 

timeframes (Table 6), though still poor in an absolute sense. The difference between accuracy 

scores in the short and long timeframe conditions was significant, suggesting that participants 

had stronger episodic memories in the standard rapid trial-by-trial paradigm. 

Table 6. Results for episodic memories collapsed across all datasets. N=412. 

 t-test  Bayes Factor 

Comparison t p d 
CI 

lower 
CI 

upper 
 BF 

Long vs. 0.25 8.42 <.001 0.41 .28 .30  7.30 × 1012 

Short vs. 0.25 15.18 <.001 0.75 .33 .35  1.68 × 1038 

Short vs. Long* 6.09 <.001 0.38 .03 .06  1.06 × 106 

Note. *This comparison subtracts long from short, so positive numbers mean that short is more 
accurate. 

4 Discussion 

Although standard trial-by-trial paradigms present cue-outcome trials in rapid succession, 

most real-world experiences require learning from events that are spread out over longer 

periods of time. We found that when participants observed one trial per day for 24 days, they 

were capable of learning contingent cause-effect relations, but they exhibited illusory 

correlations for non-contingent datasets. Critically, we found few differences between the short 

and long timeframe conditions, with most Bayes factors roughly 8 to 1 in support of the null. 

We observed some inconsistencies for the outcome density dataset, but these were due to 

judgments in the short timeframe condition that were inconsistent with prior research. 

From a practical perspective, this research suggests that in our everyday lives, humans may 

be able to detect simple cause-effect relations when they exist; however, we will likely also 

infer illusory correlations. 

From a methodological perspective, this research provides an optimistic initial outlook on 

the validity of the trial-by-trial paradigm as a simulation of causal learning that occurs across 

longer periods of time. Assessing the external validity of this paradigm is important given that it 

has been used in hundreds of studies on causal learning, and many thousands of studies when 

including all sorts of probability learning tasks and other related topics. 
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From a theoretical perspective, we find it striking that there were so few differences in 

learning across the short and long timeframe conditions. The robust learning in the long 

timeframe condition is surprising considering that participants completed this condition outside 

of the lab and likely participated with many distractions and interruptions, as would be 

expected when learning from experience in everyday life.  

4.1 Implications for Theories of Causal Learning 

4.1.1 Sequential updating models. Though studies have manipulated the inter-trial-interval 

(ITI) within human (Msetfi et al., 2005) and animal learning paradigms (Carranza-Jasso et al., 

2014; Holland & Morell, 1996), the maximum ITIs have been on the order of minutes. For this 

reason, empirical research does not provide much guidance about the impact of ITI on learning 

if the trials are spaced out once per day. 

Theoretically, sequential updating models, including reinforcement-learning and associative 

learning theories (e.g., Rescorla & Wagner, 1972), have very minimal memory demands, which 

could facilitate learning over long timeframes. Our failure to find differences between short and 

long timeframes is generally consistent with these classes of models. 

4.1.2 Rule-Based models. Rule-based models are the dominant models of how people 

assess causal relations (Cheng, 1997; Griffiths & Tenenbaum, 2005; Hattori & Oaksford, 2007). 

These models assume that individuals judge the strength of causal relations from remembered 

frequencies of the four types of events (each combination of the cue and outcome as 

present/absent). Therefore, accurate judgments would require accurate tallies of the four types 

of events.  

We found that there were few differences between the causal strength judgments across 

the short vs. long timeframes, and also that there were few differences between the frequency 

judgments (tallies). It is possible that learning four tallies is simple enough that it can be 

performed robustly over long timeframes and that a rule-based approach was used to estimate 

causal strength. Another possibility is that participants engaged in a sequential updating 

learning process and recreated the tallies from learned associations. 

4.1.3 Uneven cell weighting in attention and memory. People focus most on trials when 

the cause and effect are present and least on trials when the cause and effect are absent (e.g., 
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Kao & Wasserman, 1993). Uneven cell weighting is one of the primary explanations for illusory 

correlations and is also exaggerated under increased cognitive load (Kao & Wasserman, 1993; 

Shaklee & Mims, 1982). If spreading out the events over time further taxes memory and 

attention, by analogy, one might expect a stronger A-cell bias in long timeframes, which would 

lead to more positive judgments in all four long timeframe conditions. Although we did find 

illusory correlations, we did not find that the judgments were more positive in the long 

timeframe condition compared to the short. 

4.1.4 Working memory vs. reinforcement learning as alternative learning systems. 

Recently there have been some advances in research attempting to disentangle the working 

memory (WM) and reinforcement learning (RL) systems in an instrumental reinforcement 

learning paradigm (A. G. Collins, 2018; A. G. Collins & Frank, 2012). A key finding was that when 

participants had to learn which action to take for each of 3 or 6 cues, they were more successful 

with 3 cues if tested immediately after learning and more successful with 6 cues if tested after a 

delay (when WM could not be used). This finding and additional modeling suggested that WM 

and RL both operate in experience-based learning tasks, and to some extent the learner can 

dynamically trade-off between the two. In the current study, which had only one cue, 

presumably WM was strongly engaged in the short timeframe. Because participants could not 

use WM in the long timeframe, either RL or another form of long-term form of memory must 

have been used. Conducting similar studies in a long timeframe may help reveal whether 

similar tradeoffs exist and the potential for multiple memory systems in long timeframe 

learning. 

4.2 Implications for Broader Research 

4.2.1 Episodic memory. Recently, the possibility has been raised that participants in trial-by-

trial learning tasks store and use episodic memories of learning events (Bornstein et al., 2017; 

Bornstein & Norman, 2017) as opposed to learning an association between the cause and effect 

or tallies of the four events. We found that the accuracy of participants’ episodic memories (29-

34%) was significantly but only slightly above chance (25%), and therefore cannot explain the 

accurate causal judgments observed in the generative and preventive conditions. Furthermore, 

there were significant timeframe differences for episodic memories but few differences for 
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causal judgments. Thus, our results suggest that participants were probably not primarily using 

episodic memories for assessing the strength of the cause-effect relation or for making 

predictions of the effect from the cause. However, it is possible that participants remembered a 

few recent learning experiences that had an impact on their assessments. 

4.2.2 Timescales of learning. In associative learning, there is a debate about “timescale 

independence” or “invariance” (Brown et al., 2007; Gallistel & Gibbon, 2000; Kello et al., 2010), 

in which learning phenomena tend to replicate if the sequence is stretched or compressed. In 

memory, there are debates about the similarities and differences between short vs. long-term 

memory (Cowan, 2008) and whether memories across short and long timescales can be 

modeled with the same forgetting curves (Averell & Heathcote, 2011; Wixted & Ebbesen, 

1991). These debates are complex and technical, and though the current study was not 

designed specifically to address them, the lack of differences speaks to the similarity of learning 

over short and long timeframes. 

4.2.3 Personal semantics. A relatively new topic in memory research is the idea of ‘personal 

semantics’ - declarative memories about the self that fall in-between episodic memories of 

events and semantic memories of facts. Many autobiographical memories involve repeated 

events (Renoult et al., 2012, 2016). The sorts of memories studied in the current research take 

autobiographical memories a step further because they involve memories of repeated events 

involving both a cause (e.g., “I often drinking coffee”) and effect (e.g., “I often sleep poorly”) 

and memories about the relationship between the two (e.g., “Drinking coffee impairs my 

sleep”). Insofar as repeated events are believed to be fundamental to autobiographical 

memories and beliefs about oneself, the current paradigm is important because it provides a 

way to empirically study the accuracy of repeated autobiographical memories in a more 

realistic timeframe. 

4.3 Limitations and Future Directions 

The current research was intended as a first step towards generalizing the standard short 

timeframe trial-by-trial paradigm into a long timeframe. In order to make the long timeframe 

highly comparable to the short timeframe, we intentionally sought a compromise between 

internal and external validity. Specifically, we manipulated the length of time between the trials 
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and kept everything else as similar to prior studies as possible; we felt that this was the first 

most important step towards understanding learning from experience in long timeframes.  

We are already modifying the paradigm to test causal learning in progressively more 

authentic ways. In particular, we are studying whether people can learn more complex cause-

effect relations, such as when there are two causes instead of just one, and when there are 

considerable delays between the cause and the effect. We are also studying situations in which 

a cause is not used for a period of time and then starts to get used for a period of time (e.g., 

initially not using a medication and then starting to use a medication for multiple days in a row), 

rather than the random order of the cause being present or absent in the current study; this 

alternative task may be harder because it could require remembering back to the prior period 

of time when the cause was not used. 

However, we acknowledge that the long timeframe paradigm we used is still artificial in a 

number of different ways, some of which we mention here. We hope that this list encourages 

other researchers from a variety of sub-fields to take up these questions. 

4.3.1 Explicit vs. implicit learning. One limitation with almost every causal learning 

paradigm, including our smartphone paradigm, is that participants are aware of the goal – to 

learn causal relations – and the smartphone task likely triggers engagement with this goal each 

day. In the real world, there may be situations in which one has a strong goal to learn and 

assess a causal relation, for example, when eliminating a food from one’s diet to see if it makes 

them feel better, or when starting a medicine. However, there are also many situations in 

which one does not initially have a goal, such as encountering a problem (e.g., poor sleep, 

feeling sick) and then trying to figure out what may have caused the problem. Or there may 

even be situations that are entirely implicit. Our smartphone paradigm best simulates the most 

explicit form of learning. 

4.3.2 The phone as a protected learning context. Another challenge with using a 

smartphone to present the materials to participants is that it may serve as its own unique 

learning context. One of the challenges in learning is the credit assignment problem – 

identifying which of a practically infinite number of potential causes actually influence an effect 

(Denniston et al., 2003; Gallistel et al., 2019; Noonan et al., 2017; Staddon & Zhang, 2016; 
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Sutton, 1984). Perhaps one limitation of the current study is that participants are able to ignore 

anything happening in their normal lives, and only focus on the single cause and single effect 

presented on the phone. Thus, our study does not address the credit assignment problem; this 

is something we are currently studying. At the same time, we note that almost all short 

timeframe studies are explicitly designed with novel stimuli and a novel context (the lab, or the 

experimental application on the computer) to accomplish the same goal of protecting the study 

from outside influences. Furthermore, if it is true that the phone serves as a protected 

environment for learning in the long timeframe, and that within this environment learning 

occurs unimpeded relative to the short timeframe, in our opinion, this is an important finding in 

its own right. In theory, it should be entirely possible for events outside the phone to affect 

learning that occurs within the context of the phone to some extent (e.g., through interference 

or simply distraction). Furthermore, the length of time between trials should impact memory 

decay regardless of the phone context. The fact that learning was so similar in the long and 

short timeframes highlights the important role of attention at facilitating learning and it also 

demonstrates that the length of the task does not inherently impair learning. 

4.3.3 Causal strength vs. causal structure. One of the most major developments in research 

on causation in the past two decades has been the shift from only focusing how people learn 

causal strength towards how people learn the causal structure among multiple variables 

(Bramley et al., 2018; Coenen et al., 2015; Davis et al., 2020; Rothe et al., 2018; Rottman & Keil, 

2012; Steyvers et al., 2003). One reason that this is vitally important is because it is helps to 

distinguish truly causal vs. associative representations (though see Fernando (2013) for an 

associative learning model of causal structure). Whereas associative representations have very 

low memory demands, inferring causal structures with causal representations requires 

considerably more memory and reasoning demands. Thus, another interesting question for 

future research is the extent to which people can learn causal structure in more realistic 

contexts.  

4.3.5 Definition of a trial. Another limitation of this paradigm, and trial-by-trial paradigms 

generally, is that the meaning of a ‘trial’ is very hard to define let alone justify from a 

naturalistic learning perspective (Gallistel, 2021; Gallistel & Gibbon, 2000). For example, one 
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way in which the ‘trial’ paradigm is artificial is that absences are more salient than usual; in the 

real world, not taking medicine and not experiencing pain are typically less salient than taking 

medicine and feeling pain. In most causal learning paradigms, however, the absence and 

presence of the cause are explicitly stated and therefore made artificially salient. Another 

related concern is that many real-world phenomena are not punctate events that happen at a 

brief moment in time, but instead may persist or fluctuate in intensity over periods and grow or 

recede in awareness over time (e.g., pain, mood; Davis et al., 2020; Soo & Rottman, 2015. 

Studying causation with other paradigms over long timeframes will help make the research 

more realistic. 

4.3.4 Repeated judgments. One aspect of the current design is that on certain learning 

trials, participants were prompted to make causal judgments or to report their memories. We 

did this in order to have interim measures of learning aside from the predictions. Prior research 

has varied widely in the practices used. The majority of studies on causal learning simply ask for 

judgments at the end of learning. Some have asked for judgments a few times during learning, 

and a few have asked for judgments on every trial (Soo & Rottman, 2015; Van Hamme & 

Wasserman, 1994). There is some evidence that asking for judgments repeatedly may lead 

participants to report only what has happened on the most recent experiences since the last 

judgment (D. J. Collins & Shanks, 2002; Hogarth & Einhorn, 1992; Marsh & Ahn, 2006). It is 

possible that asking for interim judgments helped improve learning or modified learning in 

some way. That said, given that interim judgments were asked for both the long and short 

timeframe conditions, it seems unlikely that such judgments are responsible for the essentially 

equal performance in the two conditions; it would have needed to perfectly balance out any 

other differences between the short vs. long timeframe conditions. 

4.3.6 Within vs. between subjects design. A weakness of our study is that it used an 

atypical within-subjects design, with the long timeframe task occurring in-between the short 

timeframe tasks on the first and last day. We implemented the within-subjects comparison to 

increase power and because a between subjects design is very expensive (participants in the 

short and long conditions would need to be paid the same amount). That said, researchers who 

want to study long timeframe learning may consider doing a standard counterbalanced design, 
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or may consider only studying the long timeframe condition instead of comparing long vs. short 

timeframe learning. 

4.4 Potential for Mobile Phones and Wearables for Ecological Momentary Experiments 

We believe that mobile phones, smart watches, and other wearable technologies provide 

valuable but largely untapped opportunities for researchers to conduct experiments that are 

embedded in everyday life. For many years various technologies have facilitated the collection 

of survey data at different times of day using ecological momentary assessment (EMA), 

experience sampling, and intensive longitudinal data in order to prevent recall bias and other 

problems with retrospective reports (e.g., Shiffman et al., 2008). The omnipresence of 

smartphones is now facilitating ecological momentary interventions (EMI) – interventions 

meant to prompt behavior change around mental and behavioral health (Heron & Smyth, 2010; 

Marcolino et al., 2018; Nahum-Shani et al., 2018; see also just in time active interventions, 

JITAI, and mobile health, mhealth). 

The current research is a departure from these methods in that it involves embedding what 

would otherwise be a normal psychology experiment, with high degrees of manipulation and 

control of stimuli, into participants’ lives; we call this approach ‘ecological momentary 

experiments’ (EME). Though such experiments are hard to program and conduct, we believe 

that they are valuable because a wide variety of learning phenomena  that are typically studied 

in short timeframe studies translate best to phenomena that play out over considerably longer 

periods of time in real life. Thus, we believe that this EME paradigm can be adapted to studying 

many phenomena studied by cognitive scientists (e.g., probability learning, second language 

learning, memory, decision-making, sleep, and others). 

In our study, we used a custom-designed program based on our PsychCloud.org framework 

and hosted on Google’s app engine. Recently a number of other tools have become available 

for both presenting stimuli and asking questions (Mack et al., 2019; Shevchenko et al., 2021; 

Stieger et al., 2018). We hope that as these technologies become more powerful and easier to 

use, researchers can exploit the possibilities that they open up. 
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4.5 Conclusions 

The current research is an important step towards generalizing existing learning paradigms 

to more real-world settings; it shows that people have similar strengths and weaknesses when 

learning simple cause-effect relations in long timeframes as they do in short timeframes. 

However, we also raised a number of limitations with the study – there are still many ways in 

which real world causal learning differs from the current paradigm and there are also many 

different sorts of real-world causal learning situations. Additionally, our participants were 

mostly college students, but older adults with age-related working memory decline exhibit less 

accurate causal learning (Mutter et al., 2009; Mutter & Plumlee, 2009); it is uncertain how 

accurately older adults can perform causal learning over long timeframes. Given how important 

causal learning and statistical learning are for so many cognitive functions, additional research 

is needed to understand the accuracy of these abilities in real-world environments. 
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Appendix 

 
Table A1. Tests of order effects 

     Causal Strength   Frequency Strength  Predictive Strength 

 Dataset Length df     t    p     d 
 

    t   p     d 
 

    t    p     d 

 Generative Short 97 0.91 .364 0.18  0.47 .643 0.09 
 

0.29 .774 0.06 

  Long 97 0.46 .646 0.09  0.14 .887 0.03 
 

-1.33 .185 -0.27 

 Preventive Short 102 1.01 .317 0.20  0.71 .477 0.14 
 

2.37 .020* 0.46 

  Long 102 0.75 .457 0.15  1.18 .241 0.23 
 

0.18 .856 0.04 

 A-Cell Short 104 1.66 .101 0.32  1.54 .126 0.30 
 

1.43 .156 0.28 

  Long 104 1.59 .116 0.31  -1.30 .196 -0.25 
 

-0.20 .842 -0.04 

 Outcome Short 102 0.75 .458 0.15  -0.44 .660 -0.09 
 

-0.27 .790 -0.05 

 Density Long 102 -0.25 .803 -0.05  -1.34 .183 -0.26 
 

-0.67 .506 -0.13 

Note. *p<.05. Positive numbers indicate more positive judgments if the task was completed first 
than if the task was completed second. 
 
 


