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Update on BEST Collaboration oo e
and Status of Lattice QCD

Claudia Ratti

Abstract The Beam Energy Scan Topical (BEST) Collaboration was formed to
support the Relativistic Heavy Ion Collider (RHIC) experimental program in search
for the QCD critical point. I will report on the status of the BEST collaboration,
mainly focusing on the lattice QCD effort but also touching on the other main topics.

59.1 Introduction and Structure of the Collaboration

There are many open questions on the QCD phase diagram that can be answered by
studying finite density QCD. The most pressing one is whether the deconfinement
phase transition, an analytical crossover at chemical potential g = 0 [1], can turn
into first order as the chemical potential is increased. Other relevant questions are the
location of the transition line and the nature of the QCD phases at large densities. The
only way to produce the high density phase of matter in the laboratory is to bring
more net-baryon number in the mid-rapidity region, by systematically decreasing
the collision energy so that some of the primordial baryons are left in the collision
area. The RHIC facility at BNL is devoted to this purpose: the second Beam Energy
Scan (BESII) is scheduled for 2019-2021. The foreseen runs will take place both in
the collider and fixed target modes, so that higher values of the baryonic chemical
potential can be reached. After RHIC, other facilities will study dense QCD matter:
NICA, CBM and JPARC will pursue the study of critical point, onset of deconfine-
ment and dense hadronic matter at least till 2025. For reviews on these topics see
[2-4].

Fundamental theory and phenomenology need to provide adequate support to
such a rich experimental program. The main purpose and goal of the project pursued
by the Beam Energy Scan Topical (BEST) collaboration is to develop a dynamical
framework which allows for a quantitative description of the heavy ion reaction for
collision energies relevant to the RHIC BES. This framework will then enable a

C. Ratti ()
Department of Physics, University of Houston, Houston, TX 77204, USA
e-mail: cratti@uh.edu

© Springer Nature Switzerland AG 2020 373
D. Elia et al. (eds.), The XVIII International Conference on Strangeness

in Quark Matter (SOM 2019), Springer Proceedings in Physics 250,
https://doi.org/10.1007/978-3-030-53448-6_59


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53448-6_59&domain=pdf
mailto:cratti@uh.edu
https://doi.org/10.1007/978-3-030-53448-6_59

374 C. Ratti

quantitative assessment of the data from the BES in order to either claim discovery
or rule out the presence of a critical point and the onset of chiral restoration in the
region of the QCD phase diagram accessible by the RHIC beam energy scan. In
this contribution I will review the current status of the BEST collaboration, mainly
focusing on the lattice QCD effort but also touching on other relevant topics.

To achieve the proposed goal, several elements need to be developed and eventu-
ally merged into the final framework. Following essentially the time evolution of the
heavy ion collision, from initial conditions to hydrodynamic and transport evolution
to the final analysis of the data, these are:

— Initial conditions: Calculate and model the initial distribution of all conserved
charges as well as of axial charges.

— Hydrodynamic evolution: Development of (3+1)-D viscous relativistic
(anomalous-magneto) hydrodynamics with transport coefficients for all charges
which includes hydro fluctuations and coupling to a fluctuating critical field.

— Equation of state and transport coefficients: Carry out lattice QCD calculations
of the EoS atlarge densities, needed for the hydrodynamic evolution, and determine
some of the needed transport coefficients. Extend the EoS to regions beyond the
reach of lattice calculations by careful modeling and matching to lattice results.

— Transport evolution: Development of a transport model which matches onto the
hydrodynamic phase and is able to propagate fluctuations and anomalous currents.

— Data analysis: Develop and apply a data analysis framework which will enable a
comparison of all observables, to constrain the model parameters.

The left panel of Fig. 59.1 shows a schematics of the above steps and how they
are linked together. The right panel shows the twelve Universities and two national
laboratories that belong to BEST.
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Fig. 59.1 Left: The various components of the BEST program and how they are linked together.
Right: BEST collaboration institutes
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59.2 Lattice QCD and Equation of State with 3D-Ising
Critical Point

The lattice effort in the BEST collaboration is conducted completely independently
by the group at Brookhaven National Laboratory and the University of Houston
group, using two different lattice discretizations and two different methodologies.
The goals until now were to obtain the QCD transition temperature at finite g,
extract the equation of state up to power six in g/ 7T, to use as an input in hydro
simulations and as a baseline in the EoS with critical point, and calculate fluctuations
at finite p.

The Wuppertal Budapest Houston [5] and the HotQCD [6] collaboration have
published results for the QCD transition temperature at finite (5. The most recent
value for the chiral transition temperature from the HotQCD is 7, = 156.5 + 1.5
MeV, obtained from chiral observables. Both collaborations found that the curvature
of the phase diagram at up = 0 is extremely small (see Fig. 59.2 left).

After the publication of the QCD Equation of State at ug = 0 [7-11], both col-
laborations proceeded to extend them to finite density. This is difficult due to the
sign problem. One of the methods to circumvent the sign problem is to expand
the thermodynamic observables as a Taylor series in powers of pg/T. The Taylor
coefficients can be calculated in two ways, either by direct simulations (method cho-
sen by the HotQCD collaboration), or simulations at imaginary chemical potentials
(choice of the WBH collaboration). Besides, a finite ;g chemical potential implies a
choice for the strangeness and electric charge chemical potentials, s and 1 respec-
tively. The two possibilities that were considered are pg = g = 0 or us(7, ug)
and uo(T, ug) such that the average strangeness density (os) = 0 and the average
electric charge density (og) = 0.4(pg). Both collaborations published results for
the Taylor coefficients up to sixth order, in the case of us = o =0 [12, 13] and
in the case of strangeness neutrality [13—15]. All results for the EoS are consistent
between the two collaborations. More recently, a lattice-based Taylor expansion for
the equation of state containing all conserved charges has been developed within the
BEST collaboration [16, 17].

Fluctuations of conserved charges can be used to study criticality, as they are
expected to diverge with powers of the correlation length near the critical point.
Recent results by the HotQCD collaboration are showing the baryon number vari-
ance and the disconnected chiral susceptibility, extrapolated to finite @ along the
crossover line. Both are expected to diverge at the critical point, but they do not show
signs of criticality up to u =250 MeV [18]. Both collaborations have expanded the
higher order fluctuations as functions of up/ T, finding a behavior that is compatible
with the experimental results [12, 19] (see Fig. 59.2 right). Both collaborations also
have results for correlators between conserved charges [20, 21].

The lattice QCD Equation of state developed by the lattice effort of the BEST
collaboration has been modified by introducing a critical point in the 3D Ising model
universality class [22], in order to test its effects on thermodynamics and eventually
dynamical observables. The hydrodynamics working group within BEST has already
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Fig. 59.2 Left: QCD transition line from [6]. Right: extrapolation of higher order fluctuations to
finite wp [12]

250
5[‘:‘\\"35 Siﬂ‘f%‘; =21
SIF® A
200 g[Me"
5
7
2 T e
=]
100
200 250 300 350 400 _
pg[MeV] g (GeV)

Fig. 59.3 Left: effect of the critical point on the isentropic trajectories in the QCD phase diagram
[22]. Right: fireball trajectory of a central gold-gold collision at 19.6 GeV [25]

started testing it, and the predictions will be compared to the experimental data as
they become available. The community also benefits from this achievement, since
the code to generate the EoS is open source [23]. It was assumed that the lattice QCD
Taylor expansion coefficients are the sum of a regular and a singular contributions.
The latter are obtained by mapping the Ising model Equation of State onto the QCD
one. The left panel of Fig. 59.3 shows the effect of the critical point on the isentropic
trajectories in the QCD phase diagram.

59.3 Other Working Groups

Initial conditions for all three conserved charges have been developed, which take
into account the fact that the nuclei at the lowest collision energies are not so Lorentz
contracted and so there can be multiple scatterings between them [24—27]. The hydro-
dynamics simulations have been extended to include the propagation of net-baryon
current including dissipative effects [28]. This has allowed the authors of [25] to
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extract the fireball trajectory of a central gold-gold collision at 19.6 GeV, shown in
the right panel of Fig. 59.3.

One of the goals of BEST is to develop a quantitative understanding of fluctu-
ations near the CP, which includes a modification of hydro to couple with a slow
mode. This formalism has been developed [29-32]. In [29] it was shown that the
dynamics of fluctuations (more precisely, the Wigner transform of the two-point
correlation function of the fluctuations) and the influence of the fluctuations on the
bulk hydrodynamic evolution can be studied together, self-consistently, by solving
deterministic equations. This formalism is being implemented numerically within
BEST [33, 34].

The chiral magnetic effect has been the goal of an active research program within
the collaboration [35-38]. One of the goals is to model initial conditions not only for
the conserved charges, but also for axial charges. In a series of papers [39-41] it has
been demonstrated that glasma provides the appropriate methodology for addressing
this question. Another goal is to develop anomalous magneto hydrodynamics [42—
44]. A first step in this direction is the development of a code [45], which calculates
electromagnetic fields from the spectators and participant nucleons in relativistic
heavy-ion collisions. Finally, we want to quantify the experimental signal of the
chiral magnetic effect. One first example is the prediction for CME-induced charge
asymmetry of azimuthal correlations in 200 GeV Au+Au collisions, which happens
to be in good agreement with the STAR H-correlation measurements [45].

I will finally touch on the topic of particlization and hadron dynamics. It was
found out that the standard Cooper-Frye procedure is not suitable to study fluctua-
tions because the Poisson sampling adds unphysical fluctuations and washes away
correlations [46, 47]. A new micro-canonical sampling method has been proposed
[48], which conserves all the charges as well as energy and momentum. This method
has been tested in a toy model and it was shown that the obtained fluctuations are in
agreement with the ones which were computed analytically, contrary to the Cooper-
Frye ones.

For other important developments within the collaboration, which are not at the
core of the BEST project but have important implications for the success of the BES
program as a whole, see [49-58].
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