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Introduction

This paper describes an ongoing research towards the development of a cartographic
framework for mapping movement. Although research on trajectory data and movement
analytics is on the rise (Long et al., 2018), the suitability of cartographic theories for
movement as a dynamic phenomenon and the efficacy of current visualization
approaches for knowledge discovery using large tracking data sets remain understudied
(Griffin, Robinson and Roth, 2017; Demsar, Slingsby and Weibel, 2019). A vast
amount of information on trajectories (i.e. time-ordered sets of locations of mobile
entities) is now collected at very high spatial and temporal resolutions. These data
promise new forms of knowledge about global flows of humans and goods, disease
outbreaks, the impact of transportation changes on urban dynamics, or effects of human
activity on the behavior of competing species. However, as computational approaches
advance our ability to analyze trajectory data, we remain limited in our understanding of
how movement patterns should be displayed in accurate and informative ways.

Figure 1 shows the data science paradigm for movement introduced in Dodge (2019).
Taking advantage of abundant real tracking data, the model operates on a bottom-up
approach for understanding movement processes through data-driven analytics,
knowledge discovery and machine learning. Complementary, a top-down approach
integrates domain knowledge with analytical outcomes to enhance theory-driven models
for more reliable movement modeling and prediction of dynamic systems. Emphasizing
the role of ~uman in movement data science, visualization is highlighted as a
fundamental element of this paradigm (Figure 1).
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Figure 1 The Data Science Paradigm for Movement (Dodge, 2019)
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Proper visualizations grounded in sound cartographic theories can enhance the
exploratory analysis of movement data, knowledge communication in cross-disciplinary
collaborations with domain experts, and human interpretation of discovered patterns and
processes. Inspired by Sacha et al. (2018), Figure 2 illustrates a model for human-
centered knowledge discovery of movement through data science. In this model,
mapping movement is central to data exploration and knowledge generation, and to
spark new hypotheses through human visual reasoning. In addition, information
visualization supports movement data science in several ways, as follows:

e [t enables visual inspection of raw observations to learn about the data and its
structures and anomalies (e.g. trends, extents, outliers, etc.).

e [t can reveal unexpected or hidden patterns and movement-context dependencies
in observations.

e [t provides a means to illustrate extracted patterns from models and analytics.

e [t supports the method validation process by providing a means to monitor the
work process of algorithms and simulations.

e While facilitating communication with domain experts, it supports human visual
reasoning to infer and interpret knowledge about underlying processes and
behaviors captured in the data.

e [t enables the delivery of analytical outcomes and generated knowledge in a
form that is easy to perceive and understand (e.g. maps, animations, graphs).

Movement analytics and models
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Figure 2 Human-centered knowledge discovery of movement, modified from (Dodge, 2018).

Therefore, to take advantage of the evolution in tracking data and strengthen data
science research on movement, we need to advance our cartographic theories and
visualization techniques to effectively map movement as a multidimensional dynamic
process that involves space, time, and context.

Background

One of the most famous early representations of movement is the Charles Minard’s map
of Napoleon Russian Campine in mid-nineteenth century. Later, the space-time prism
representation of human activity was introduced by Hagerstrand (1970). These hand-



AutoCarto 2020 S. Dodge

made graphs illustrate a schematic representation of movement in space over time.
Digital cartography of movement took off by mapping flows representing Origin-
Destination (O-D) vectors or flowlines (Steiner, 2019). As an example, (Tobler, 1981)
mapped the US net population flows and migration trajectories using a field
representation of directional vectors (gradient vectors) and directional contour lines.
These illustrations of movement flows were based on the concept of spatial interaction
representing the flows of goods, cash, and population between different geographic
regions (Tobler, 1976). In these representation the quantity (represented as the size of
vector) is not an attribute of the region but the amount of flow between two different
regions (e.g. population origin and destination).

Traditionally, movement is mapped as static representations of points and lines
capturing movement trajectories. Other common way to map movement applies
aggregation to represent patterns in tracking data or trends in movement parameters
(e.g. speed, direction, etc.). The aggregated information is usually overlaid on top of 2D
thematic maps as density maps, treemaps, charts or bar graphs (Andrienko et al., 2017)
or incorporated in 3D space-time representations (Demsar ef al., 2014). In a dynamic
representation, Xavier and Dodge (2014) used ribbons and directional vectors to depict
the changes and associations in movement and contextual parameters by gradually
varying the color and widths of lines representing the trajectories. Although a wealth of
studies have offered methods for visual analytics of movement (DemsSar, Slingsby and
Weibel, 2019), the question is how well these methods capture movement and can
facilitate our perception and cognition of complex movement patterns in support of
quantitative knowledge discovery of large movement data? As a first step towards
answering this question, this ongoing research aims to develop and systematically
evaluate a cartographic framework for movement.

A Cartographic Framework for Movement — Preliminary Elements

Movement is realized in a multidimensional space-time-context continuum (represented

as a Movement Cube in Figure 3). A trajectory is a
manifestation of the footprints of a mobile entity as it ”
traverses this space-time-context continuum. Space pscaie s

represents a two or higher dimensional geographic or
abstract space in which the entity moves. Time represents
the temporal duration, start and end time of movement, and
the frequency of observations. Context encapsulates a
multidimensional attribute space representing the
circumstances of movement and the characteristics of its Figure 3 Movement Cube,
embedding environment. The Movement Cube operates representing a multidimensional
across multiple spatial and temporal scales at which space-time-context continuum
movement patterns are observed or studied.

Context

The proposed framework associates cartographic primitives and visual principles to
different components of movement (i.e. space, time, context, scale, movement
parameters, and movement patterns) as described in (Dodge, Weibel and Lautenschiitz,
2008). The framework consists of the following elements:
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e Cartographic space: describes the environment in which movement is mapped.
Examples include time plots, 2D geographic maps, 3D space-time cube, network
graphs.

e Data representation forms: describes the geographic data model (i.e. vector, raster)
used to represent movement.

e Movement components: includes information on:

o Object: represents the moving phenomena that is captured in the visualization
(e.g. discrete movement tracks or aggregate flows)

o Location: represents the geographic location and the extent of movement

o Time: can be linear or cyclic (Kraak, 2014). It represents temporal information
about the start and end time, the duration, and the frequency of movement
patterns.

o Attributes: involve measurable movement parameters (e.g. speed, acceleration,
traffic counts, etc.) or other contextual variables setting the circumstances
surround movement (e.g. weather conditions, behavioral states, transportation
modes, etc.)

e Visual variables: describes how Bertin’s visual variables (Roth, 2017) can be applied
to encode movement using moving points and trajectory lines (see Figure 4).

e Movement data and visualization perspective: describes the perspective of
movement or view angle in visual representations, which includes Lagrangian (when
individuals are observed and followed along their movement paths over time) or
Eulerian (when movement is observed at fixed locations).

e Visualization techniques: provides a taxonomy of visualization techniques for
movement. These techniques include but not limited to: aggregation, dynamic
visualization and animation, flow lines, space-time path representations, multivariate
maps, coordinated parallel views, and interactive displays.

e Interaction: describes the applicability of interaction modalities (e.g. zoom, pan, touch,
navigating a time slider, modification) in movement visualization.

e Granularity: describes how spatial, temporal, and thematic granularity (Kuhn, 2012) of
movement are captured in static and dynamic visualizations.

e Display forms: explores the use of static and dynamic, and Virtual Reality displays in
mapping movement.
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Figure 4 Visual variables and their suitability for mapping movement (preliminary draft)

Conclusion and Future Work

This research conceptualizes a cartographic framework to facilitate the design of more
effective, intuitive, and accurate representation of movement within the space-time-
context continuum. This extended abstract mainly outlines a preliminary draft of the

elements considered in the framework. A taxonomy of movement visualization

techniques based on different elements of this framework will be submitted to the
special issue of Cartography and Geographic Information Science (CaGlS). As future
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work, to evaluate the efficacy and the usability of the framework, a series of user study
experiments will be conducted.
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