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Abstract

We establish conditions under which gradient descent applied to fixed-width deep
networks drives the logistic loss to zero, and prove bounds on the rate of convergence.
Our analysis applies for smoothed approximations to the ReLU, such as Swish and the
Huberized ReLU, proposed in previous applied work. We provide two sufficient conditions
for convergence. The first is simply a bound on the loss at initialization. The second is a
data separation condition used in prior analyses.

1 Introduction

Interest in the properties of interpolating deep learning models trained with first-order opti-
mization methods is surging [Zha+17a; Bel+19]. One important question is to understand how
gradient descent with appropriate random initialization routinely finds interpolating (near-zero
training loss) solutions to these non-convex optimization problems.

In this paper our focus is to understand when gradient descent drives the logistic loss to
zero when applied to fixed-width deep networks using smooth approximations to the ReLLU
activation function. We derive upper bounds on the rate of convergence under two conditions.
The first result only requires that the initial loss is small, but does not require any assumption
about the width of the network. It guarantees that if the initial loss is small then gradient
descent drives the logistic loss down to zero. The second result is under a separation condition
on the data. Under this assumption we demonstrate that the loss decreases adequately in the
initial iterations such that the first result applies.

A few ideas that facilitate our analysis are as follows: under the first set of assumptions,
when the loss is small, we show that the negative gradient aligns with the weights of the
network. This lower bounds the norm of the gradient at the beginning of the gradient step
and implies that the loss decreases quickly at the beginning of the step. We then show that
the operator norm of Hessian of loss remains bounded throughout the gradient step. To do



this, inspired by Allen-Zhu, Li, and Song [ALS19], instead of directly analyzing the operator
norm of the Hessian, we instead analyze the difference between the gradients associated with
neighboring parameter vectors. The smoothness of the loss combined with the lower bound on
the norm of the gradient at the beginning of the step implies that the loss decreases throughout
the gradient step when the step-size is small enough.

The second sufficient condition is when the data is separable by a margin using the features
obtained by the gradient of the neural network at initialization (see Assumption 3.2). This
assumption has previously been studied by Chen et al. [Che | 21]. Intuitively, it is weaker than
an assumption that the training examples are not too close, as we discuss after its definition.
Under this assumption we use a neural tangent kernel (NTK) analysis to show that the loss
decreases sufficiently in the first stage of optimization such that we can invoke our first result
to guarantee that the loss decreases thereafter in the second stage. To analyze this first stage
we borrow ideas from [ALS19; Zou+20|, because the formulation of their results were most
closely aligned with our needs. However we note that their results do not directly apply since
they study networks with ReLU activations while we study smooth approximations to the
ReLU. In addition to adapting their proofs to our setting, we also worked out some details in
the original proofs.

Our first result could be viewed as a tool to establish convergence under a wide variety of
conditions. Our second result is one example of how it may be applied. Other separation as-
sumptions on the data like the ones studied by Ji and Telgarsky [JT19b], Chen et al. [Che+21],
and Zou et al. |[Zou+20| could also be used in conjunction with our first result to establish
convergence to zero-training loss.

Recently Chatterji, Long, and Bartlett [CLIB20| showed that gradient descent applied to
two-layer neural networks drives the logistic loss to zero when the initial loss is small and the
activation functions are Huberized ReLLUs. Our work can be viewed as a generalization of their
result to the case of deep networks. Previously Lyu and Li [LL20] proved that gradient descent
applied to deep networks drives the training logistic loss to zero, using the alignment between
the gradient and the weight vectors. However, their result requires the neural network to be
both positive homogeneous and smooth, which rules out the ReLLU and close approximations
to it like Swish [RZL18] or the Huberized ReLU [Tat+20] that are widely used in practice.
Their results do apply in case that the ReLU is raised to a power strictly greater than two.

Prior work has shown that gradient descent drives the squared loss of fixed-width deep
networks to zero [Du+ 18; Du+19; ALS19; OS20], using the NTK perspective [JGH18; COB19|.
The logistic loss however is qualitatively different. Driving the logistic loss to zero requires the
weights to go to infinity, far from their initial values. This means that a Taylor approximation
around the initial values cannot be applied. While the NTK framework has also been applied
to analyze training with the logistic loss, a typical result [LL18; ALS19; Zou+20] is that after
poly(1/e) updates, a network of size or width poly(1/e) achieves ¢ loss. Thus to guarantee
loss very close to zero, these analyses require larger and larger networks. The reason for this
appears to be that a key part of these analyses is to show that a wider network can achieve
a certain fixed loss by traveling a shorter distance in parameter space. Since it seems that,
to drive the logistic loss to zero with a fixed-width network, the parameters must travel an
unbounded distance, the NTK approach cannot be applied to obtain the results of this paper.

The remainder of the paper is organized as follows. In Section 2 we introduce notation and
definitions. In Section 3 we present our main theorems. We provide a proof of our first result,
Theorem 3.1 in Section 4. We conclude with a discussion in Section 5. Appendix A points to



other related work. The proof of our second result, Theorem 3.3 and other technical details
are presented in the appendix.

2 Preliminaries

This section includes notational conventions and a description of the setting.

2.1 Notation

Given a vector v, let ||v|| denote its Euclidean norm, ||v[|, denote its ¢,-norm for any p > 1,
||v]lo denote the number of non-zero entries, and diag(v) denote a diagonal matrix with v along
the diagonal. We say a vector v is k-sparse if ||v|lo < k. Given a matrix M, let || M| denote its
Frobenius norm, ||M]||,, denote its operator norm and [|M||o denote the number of non-zero
entries in the matrix. Given either a matrix or a tensor we let vec(-) be its vectorization.
Given a tensor T, let ||| = ||vec(T)||; we will sometimes call this the Frobenius norm of 7.
If, for matrices T1,...,Tr41 of different shapes, we refer to them collectively as T', we define
|T|| analogously. Given two tensors A and B let A - B denote the element-wise dot product
vec(A) - vec(B). We use the standard “big Oh notation” [see, e.g., Cor+09]. For any k € N, we
denote the set {1,...,k} by [k]. For a number p of inputs, we denote the set of unit-length
vectors in RP by SP~1. We will use ¢, c,c1, ... to denote constants, which may take different
values in different contexts.

2.2 The setting

We will analyze gradient descent applied to minimize the training loss of a multi-layer network.

We assume that the number of inputs is equal to number of hidden nodes per layer to
simplify the presentation of our results. Our techniques can easily extend to the case where
there are different numbers of hidden nodes in different layers. Let p denote the number of
inputs and the number of hidden nodes per layer, and let L denote the number of hidden
layers.

We will denote the activation function by ¢. Given a vector v let ¢(v) denote a vector with
the activation function applied to each coordinate. We study activation functions that are
similar to the ReLU activation function but are smooth.

Definition 2.1. An activation function ¢ is h-smoothly approximately ReL U if
e ¢(0) =0;
o forall z e R: |¢/(2)z — ¢p(2)| < %, |¢/(2)] <1 and |¢"(2)] < %

It is easy to verify the activation functions ¢ are contractive with respect to the Euclidean
norm. That is, for any vi,vs € RP, ||¢(v1) — ¢(v2)|| < |[vr — v2]|. See Lemma B.8 for a
proof of this fact. Here are a couple of examples of activation functions that are hA-smoothly
approximately ReL.U.

1. Huberized ReLU [Tat+20]:

0 if z <0,
o(z) = % if z € [0, A}, (1)
z — % otherwise.
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2. Scaled Swish [RZL18]: ¢(2) = ooy (ire 3;( =y The scaling factor ¢ ensures that [¢/(z)| <
: xp(— 5 :
1.

For i € {1,...,L}, let V; € RP*P be the weight matrix of the ith layer and let V3 € R¥?
be the weight vector corresponding to the outer layer. Let V' = (V1,..., Vp41) consist of all of
the trainable parameters in the network. Let fy- denote the function computed by the network,
which maps z to

fv(z) = Vo (VL ¢(Viz)).

Consider a training set (z1,1), .- -, (Tn,y¥n) € SP71 x {—1,1}. For any sample s € [n], define

uKS = ZCKS := x5 and for all ¢ € [L], define

Vo o._ 14 v . 1%
u@,s T wxffl,s andv J;@,s T d) (wxffl,s) )

that is, u}/s refers to the pre-activation features in layer £, while xXS corresponds to the features
after applying the activation function in the ¢th layer. Also for any ¢ € [L] and s € [n] let

EXS = diag ((;Sl(ue,s)) = diag (Qb, (W:L'X—l,s)) .

Define the training loss (empirical risk with respect to the logistic loss) J by

J(V) = %Z log(1 + exp (—ys fv(zs))),
s=1

and refer to loss on example s by
J(Vizs,ys) = log(1 + exp (—ysfv(vs)))-

The gradient of the loss evaluated at V is

n

1 —ys Vv fv(zs)
VyJ(V) = n Z 1+ exp (ysfv(fb"s))7

s=1

and the partial gradient of fy with respect to V; has the formula [see, e.g., Zou 20|

L

afV(xs)

S = S I () | Vil when e ) (20
=41

Ofv(xs) VT

Ofv(zs) _ v 2

V41 = 2

We analyze the iterates of gradient descent V), V) . defined by
YD =y _ Vv Jly_ye

in terms of the properties of V().

Definition 2.2. For all iterates t, define Jys = J(VW;xs,ys) and let J; = %Zgzl Jis.
Additionally for all t, define VJ, := Vv J|y_yw -
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3 Main results
In this section we present our theorems and discuss their implications.

3.1 A general result

Given the initial weight matrix V), width p, depth L, and training data {zs, ys}se[n}, define

Pmax, Omax and @ below:

L
Lz 3log(1
hmax = min{ > log(1/1) 1} , (3a)

Gy/pllVIDE

h v
2pJi|[V|BL+S o 4+ 3)1 logZ (1/.J7)
(1/J1)

832(L+1

~—

Omax(h) = min{ } , and (3b)

o

~ . L(L+ oy log
) = GCIE

(3¢)

Theorem 3.1. For any L > 1, for all n > 3, for all p > 1, for any initial parameters V1)

and dataset (x1,v1), ..., (Tn,yn) € SP~L x {~1,1}, for any h-smoothly approzimately ReL U
activation function with h < hpax, any positive o < amax(h) and positive Q < Q(«) the
following holds for all t > 1. If each step-size oy = «, and if J1 < w% then, for allt > 1,

J1
J<— -t
PCQt-1)+1

We reiterate that this theorem makes no assumption about the number on the width of the
network p and makes a very mild assumption on the number of samples required n > 3. The
only assumption is that initial loss is less than Wﬁ. We pick the step-size to be a constant
which leads to a rate that scales with 1/¢.

Next we provide an example where we show that it is possible to arrive at a small loss
solution using gradient descent starting from randomly initialized weight matrices.

3.2 Small loss guarantees using NTK techniques

In this subsection assume that the entries of the initial weight matrices for the layers ¢ €
{1,...,L} are drawn independently from N (0, %), and the entries of VL(}F)I are drawn inde-
pendently from A (0,1). In this section we also specialize to the case where the activation
function is the Huberized ReLU (see its definition in Equation (1)). We make the following

assumption on the training data.

Assumption 3.2. With probability 1—4§ over the random initialization, there exists a collection
of matrices W* = (Wy, ..., Wy ) with |[W*|| =1, such that for all samples s € [n]

ys (Vv (zs) - W*) = V/pv,

for some v > 0.



The scaling factor ,/p on the right hand side is to balance the scale of the norm of the gra-
dient at initialization which will scale with |/p as well. This is because the entries of the final
layer VL(i)l are drawn independently from A(0,1). This assumption is inspired by Assump-
tion 4.1 made by Chen et al. [Che+21]. This assumption can be seen to be implied by stronger
conditions that simply require that the training examples are not too close, as employed in
[ALS19; Zou+20]. Here is some rough intuition of why. The components of V fi,)(zs) in-
clude values computed at the last hidden layer when x4 is processed using 1740 (that is,
Vv fro(xs) = xg(sl)) For wide networks with Huberized ReLU activations, if the values of
T in the training examples do not have duplicates, their embeddings into the last hidden layer
of nodes are in general position with high probability. In fact, the Gaussian Process analysis
of infinitely wide deep networks at initialization [Mat-+18a; Mat -+ 18b| suggests that, for wide
networks, the embeddings will not even be close to failing to be in general position. If the width
p > n, results from [Cov65| show that they will be linearly separable. The anti-concentration
conferred by the Gaussian initialization promotes larger (though not necessarily constant)
margins. Assumption 3.2 is more refined than a separation condition, since it captures a sense
in which the data is amenable to treatment with neural networks that enables us to provide
stronger guarantees in such cases. Furthermore, in Appendix C we show that Assumption 3.2
is satisfied with a constant margin v by two-layer networks with Huberized ReLUs for data
satisfying a clustering condition. Finally, we note that we could also use other assumptions on
the data that have been studied in the literature |for example by, JT19b] to guarantee that the
loss reduces below W%, as required to invoke Theorem 3.1. However, we provide guarantees
only under this assumption in the interest of simplicity.

Define

pi= \[7 [ 1og( ) + log(Sn(2+24L))] (4)

where ¢; > 0 is a large enough absolute constant. Also set the value of
(14+24L)log(n)
V6(6p) e L3

With these choices of p and h we are now ready to state our convergence result under As-

h = hnt =

(®)

sumption 3.2. The proof of this theorem is presented in Appendix D.

Theorem 3.3. Consider a network with Huberized ReLU activations. There ezists r(n, L, ) =
poly (L log (ﬁ)) such that for any L > 1, n >3, 6 > 0, under Assumption 3.2 with ~ € (0, 1]
if h="hnT and p > T(nVL ) then both of the following hold with probability at least 1 — 49 over

the random initialization:

1. For allt € [T] set the step-size oy = anT = @(pL5>, where T = [W-| then

3anT

) 1
min Jo < L

2. Set VI = V) where s € arg min e 7y J(VE)), and for allt > T 41 set the step-size
ap = amax(h) then for allt > T + 1,

3L+11
Liﬁ 2L+5
th0< > (6p) )

P2 (f T — 1)




We invite the reader to interpret the result of this theorem in two scenarios. The first is
where the depth L is a constant and the margin v > (p‘”poly (n, log (%))) _1, for some constant
w € [0, %) In this case it suffices if p = poly (n, log (%)) for a large enough polynomial. Under
this choice of the width p the rate of convergence in the second stage is

Y LL;M(6P)2L+5 - poly (n, log (%))
t < ptt2l . (t —T—-1)) — ¢ |

Another scenario is where the margin « is at least a constant. Here it suffices for the width
3L+11

1
p > poly (L,log (%)). Thus if the number of samples n > [L 2 (6p)2L+5} "% then the rate

of convergence in this second stage is
3L+4+11
<o L N 50 1
P\ =T = 1) t—-T—-1)"

4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1.

4.1 Technical tools

In this subsection we assemble several technical tools required to prove Theorem 3.1. Their
proofs (which in turn depend on additional, more basic, lemmas) can be found in Appendix B.

We start with the following lemma, which is a slight variant of a standard inequality, and
provides a bound on the loss after a step of gradient descent when the loss function is locally
smooth.

Lemma 4.1. For o > 0, let VIHY) = VO — oV J,. If, for all convex combinations W of V)
and VD V2, J|lop < M, then if @ < 2, we have

(L+3)M
aL||VJ|?
L+3

Jep1 < Jp —
To apply Lemma 4.1 we need to show that the loss J is smooth near J;. The following
lemma controls the Hessian of the loss in terms of its current loss.
Lemma 4.2. If h < 1, for any weight matriz V such that J(V) < 1/n'*24L we have

208(L + 1)/p||V |25 J(V)
. .

Next, we show that J changes slowly in general, and especially slowly when it is small.

IV T(V)llop <

Lemma 4.3. For any weight matriz V, if ||V|| > 1 then

IV (V) < V(L + Dpl[VFH min{J (V). 1}

The following lemma applies Lemma 4.1 (along with Lemma 4.2) to show that if the step-
size at step t is small enough then the loss decreases by an amount that is proportional to the
squared norm of the gradient.



Lemma 4.4. If h <1, J; < ﬁ? and

h
ady < oL+ 1)2 VO 345’
832(L+1)7 /plVW|
then
aL||VJ|?
Jip1 < Jp — Li—l—%

The next lemma establishes a lower bound on the norm of the gradient at any iteration in
terms of the loss J; and the norm of the weight matrix V®.

Lemma 4.5. For all L € N if h < hmax, Ji < —r2r, and |[VO|L < 1og(1/Jt)1ﬂ§((f}ﬂf) then

(L + 3)Jilog(1/.J;)
VO

IV Je|| > (6)

The lower bound on the gradient is proved by showing that the alignment between the
negative gradient —V.J, and V® is large when the loss is small. The proof proceeds by showing

that when h is sufficiently small and the norm of V® is not too large, then the inner product
between —V.J; and V® can be lower bounded by a function of the loss J;.

4.2 The proof

As stated above the proof goes through for any positive h < hiax, step-size & < amax(h) and
any Q < Q(«a) (recall the definitions of hmax, dmax and @ in Equations (3a)-(3c)). We will use
the following multi-part inductive hypothesis:

J .
(I1) Je < g

log(1/Ji) ~, log(1/J1).
(12) ‘(‘)gv(t)HIi Z ‘L‘)‘g/(l)”]{a

h
(I3) et < Gy v
The first part of the inductive hypothesis will be used to ensure that the loss decreases at the
prescribed rate, the second part helps establish a lower bound on the norm of the gradient in
light of Lemma 4.5 and the third part will ensure that the step-size is small enough to apply
Lemma 4.4 and also allows us to make several useful approximations in our proofs.

The base case is trivially true for the first and second part of the inductive hypothesis. It
is true for the third part since the step-size a < apax(h) < SER(LT 10, [V PETS
assume that the inductive hypothesis holds for a step ¢ > 1 and prove that it holds for the
next step t + 1. We start with Part I1.

Now let us

Lemma 4.6. If the inductive hypothesis holds at step t then,

J1

Tl < .
=0+ 1
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Proof Since aJ; <

h 1 : : ,
S SR [VOPLTs and J; < J1 < 575z, by invoking Lemma 4.4,

Lo
Jir1 < Jp — ———|| VI

(L+3)

Additionally since h < hyay and by Part I2 of the inductive hypothesis ||V ]| log(1/J)|[VD ]~

L <
= log(1/J1) >
we use the lower bound on the norm of the gradient established in Lemma 4.5 to get '
L(L + $)aJ?log*(1/J;)
Jer1 < Jy = Vo2
(i) L(L+ DaJilog? 7 (1/J:) log (1))
<t |1—-
V2
(id) L(L + Y, logZ (1))
< Jt (1 - QHV(l)”Q ) (7)

where (i) follows by Part (I2) of the inductive hypothesis, and (iz) follows since L > 1 and
Jy < J1 < Wﬁ’ therefore logz_%(l/Jt) > 1.

For any z > 0, the quadratic function

L L(L+ Halogk (1) 1)
[V

is a monotonically increasing function in the interval

v

0,
2L(L + %)alog%(l/Jl)

J1
t—1)+1°

i J NASI[S ‘.
if o T1 = Pt DalosE (/)] the RHS of (7) is bounded

But this is easy to check: by our choice of step-size a

Thus, because J; < o]

above by its value when J; = ﬁ

we have,

AR
2L(L + 1)J logZ (1/.J7)
(1)12

LJ< IV2IE

2L(L + $)alog (1/J;)

J1 [V
= < ; .

QEt—1)+1" on(L+ $)alogZ (1/J;)

a < Qmax <




Bounding the RHS of Inequality (7) by using the worst case that J; = ﬁ, we get
; Ji . i L(L+YHalogi(1/4)
EQE-DHI\ QD+l V2
4 < Qt+1 ) . Q  L(L+YaJilogi(1/.)
T t+1\Q(t—1)+1 Qt—1)+1 Q|IVM]12
_ (1 . Q > L Q  LL+pahilogt(l/h)
T Qt+1 Qt—1)+1 Q(t—1)+1 PIVEIE
J1 Q 2 . ~ L(L+Y)ad log T (1/71)
< (= < - 2
S Qi+ 1 (1 <Q(t 1)+ 1> ) (Smce Q@< Qle) Ik
J1
T Qt+1
This establishes the desired upper bound on the loss at step ¢ + 1. |

In the next lemma we shall establish that the second part of the inductive hypothesis holds.

Lemma 4.7. Under the setting of Theorem 3.1, if the induction hypothesis holds at step t

then,
log (Jt+1) log (—Jll>
>

[V eEE = v e

Proof We know from Lemma 4.4 that

Loz||VJt|2>

J1 < i | 1—
t+1 > t( (L—'—%)Jt

and by the triangle inequality ||V D] < |[V®|| + o VJ|, hence

(L+

log 1 log <i> + log 1
oo N U e B\ er ey

VEDIE = (VO +a| V)" (v H+MW&W

o6 (3) 1_1og( I
tox(77)

V| (1 n anwtn)L

Vo]
14 — LoV

(;‘) 10g (i) ( (L—"-%)Jt log(%t> (8>
v r ol v\ F
(” ||V<t>||)
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where (i) follows since log(1 — z) < —z for all z € (0,1) and because

La Lo ‘
AN [(L+ DpAVOPED] (by Lemma 4.3)
2 2
(®)]|2(L+1)
o [ AV
L+1

h
<1 (by Part I3 of the IH).

2(L + 1 2 (t)]|3L+5
o, [83 (L+ 1" plIV) ] (IV®] > 1 by Lemma B.5, and & < 1)

We want the term in curly brackets in Inequality (8) to be at least 1, that is,
2 L
La| VI > <1+ 0‘||V(;)]t||)
(L+ 1)J;log (%) Ve
To show that this inequality holds, first note that

CTHLZ;)L\:\H < adi /T Dp|VO | (by Lemma 4.3)

1+

1 29(L -+ 1 2 (®)|13L+5

< I aJ; 832 (L + )thV | ] (since |[V®|| > 1 by Lemma B.5)
1

< I (by Part I3 of the IH).

For any positive z < % we have the inequality that (1 + z)” < 1 + Lz, therefore to show that
Inequality (9) holds it instead suffices to show that

2
La||VJi| >1+ LaHZ)JtH
(L + 3)J;log (%) VE
(L+ )T log (F)
el ’
(L+3)Je log(1/ J)

[V
that the term in the curly brackets in Inequality (8) is at least 1 and hence

1 1 1
log (Jt+1) N log (I) N log (JT)

[VEE = ves = v e

1+

< IVl =

which follows from Lemma 4.5 that guarantees ||V.J;|| > . Thus we have proved

This proves that the ratio is lower bounded at step ¢ 4+ 1 by its initial value and establishes
our claim. ]

Finally we ensure that the third part of the inductive hypothesis holds. This allows us to apply
Lemma 4.4 in the next step ¢ + 1.

Lemma 4.8. Under the setting of Theorem 5.1 if the induction hypothesis holds at step t then,

h

ad, < .
=832 (L 4 1)2p||V D) |3L45

11



Proof We want to show that

adii ||V(t+1) H3L+5 < %’
832(L+1)"p

WL ..
but we know by Lemma 4.7 that |V ||F < loga{gngf/)‘uy) IZ s it instead suffices to prove

that

aJiiilog T < 1 > < thgSLLH(l/Jl)
R\ T ) T 832 (L 1)Zp VO RS

(10)

Lemma 4.6 establishes that J;11 < J; < 1/n'T24E. The function zlogSLT%(l/z) is increasing

over the interval (0, —7+5 ). Recall that n > 3 therefore,
L

e

Thus, the LHS of (10) is maximized at J;

1 1 hl 1
Ji1 J1) = 832 (L +1)? /p||[VV)||3L+5

3L+5
L

where final inequality holds by choice of the step-size «. This completes the proof. |

Combining the results of Lemmas 4.6, 4.7 and 4.8 completes the proof of theorem.

5 Discussion

We have shown that deep networks with smoothed ReLU activations trained by gradient
descent with logistic loss achieved training loss approaching zero if the loss is initially small
enough. We also established conditions under which this happens that formalize the idea that
the NTK features are useful. Our analysis applies in the case of networks using the increasingly
popular Swish activation function.

While, to simplify our treatment, we concentrated on the case that the number of hidden
nodes in each layer is equal to the number of inputs, our analysis should easily be adapted to
the case of varying numbers of hidden units.

Analysis of architectures such as Residual Networks and Transformers would be a potentially
interesting next step.
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A Additional related work

Building on the work of Lyu and Li [LL20], Ji and Telgarsky [JT20] study finite-width deep
ReLU neural networks and show that starting from a small loss, gradient flow coupled with
logistic loss leads to convergence of the directions of the parameter vectors. They also demon-
strate alignment between the parameter vector directions and the negative gradient. However,
they do not prove that the training loss converges to zero.

Using mean-field techniques Chizat and Bach [CB20], building on [CB18; MMM19], show
that infinitely wide two-layer ReLLU networks trained with gradient flow on logistic loss leads to
a max-margin classifier in a particular non-Hilbertian space of functions. (See also the videos
in a talk about this work [Chi20].) Chen et al. [Che+ 20| analyzed regularized training with
gradient flow on infinitely wide networks. When training is regularized, the weights also may
travel far from their initial values. Previously Brutzkus et al. [Bru+18] studied finite-width
two-layer leaky ReLU networks and showed that when the data is linearly separable, these
networks can be trained up to zero-loss using stochastic gradient descent with the hinge loss.

Our study is motivated in part by the line of work that has emerged which emphasizes
the need to understand the behavior of interpolating (zero training loss/error) classifiers and
regressors. A number of recent papers have analyzed the properties of interpolating methods
in linear regression [Has-+19; Bar-+20; Mut+20b; TB20; BL20], linear classification [Mon-+19;
CL20; LS20; Mut+20a; HMX20], kernel regression [LR20; MM19; LRZ20] and simplicial near-
est neighbor methods [BHM18|.

There are also many related papers that characterize the implicit bias of the solution ob-
tained by first-order methods [NTS15; Sou+18; JT19¢; Gun+18a; Gun+18b; LMZ18; Aro+19a;
JT19a].

Finally, we note that a number of other recent papers also theoretically study the opti-
mization of neural networks including [And+14; LY17; Zho+17; Zha+17b; GLM18; PSZ18;
Du+18; SS18; Zha+19; Aro+19b; BG19; Wei+19; JT19b; NCS19; SY19; ZG19].

B Omitted proofs from Section 4.1

In this section we present the proofs of Lemmas 4.1-4.5.

B.1 Additional definitions
Definition B.1. For any weight matriz V, define

1

9:(V) = 1 + exp (ys fv (zs))

We will often use gs as shorthand for gs(V') when V' can be determined from context. Further,

for allt € {0,1,...}, define g := gs(V®).

Informally, gs(V') is the size of the contribution of example s to the gradient.

14



Definition B.2. For all iterates t, all ¢ € [L + 1] and all s € [n], define l‘étz = x}/;t),

® ., v® ®) ._ vv®
Up g 7= Uy g and Ee’s = E&S .

B.2 Basic lemmas

To prove Lemmas 4.1-4.5, we will need some more basic lemmas, which we first prove.
Lemma B.3. For anyz € RP andy € {—1,1} and any weight matriz V' we have the following:

1.

o i) S s ep(-ufy (@) = (Vi)

exp (yfv(z)) 1 .
(e @)~ Trew@h) 7o

Proof Part 1 follows since for any z € R, we have the inequality (1 + exp(z))~! < log(1 +

exp(—2)).
Part 2 follows since for any z € R%, we have the inequality exp(z)/ (1 + exp(z))? < (1 + exp(z)) .
|

The following lemma is useful for establishing a relatively simple lower bound on a sum of
applications of a concave function.

Lemma B.4. If ¢ : [0, M] — R" is a concave function with 1(0) = 0. Then the minimum of
Yoy (zi) subject to z1,...,z, >0 and Y ;| zi = M is p(M).

Proof Let zi,..., 2, be any solution, and let ¢ be the least index such that z; > 0. Then,
since 9 is concave and non-negative, we have

Y(z1 +2:) +9(0) = P(21 + 21) < P(21) + P(2).
Thus, replacing z; with 21 + z;, and replacing z; with 0, produces a solution with one fewer

nonzero entres that it at least as good. Repeating this for each ¢ > 1 implies that the solution
with 21 = M and 29 = ... = z, = 0 is optimal. [ ]

The next lemma shows that large weights are needed to achieve small loss.
Lemma B.5. For any L € N and any weight matriz V if J(V) < W% then,

1 |V| > V2, and

L
v
2. maxyen [L5IVi < (B2) " < ivie

15



Proof Proof of Part 1: Since ¢ is 1-Lipschitz and ¢(0) = 0, for all z, |¢(2)| < |2|, and thus,
given any sample s,

J(V;xs,ys) = log (1 +exp (—ysVi410(VL - - - 9(Vix))))
L+1
>log | 1+exp [ = [TIVillopllasl
j=1

L+1
>log {1+ exp | = [TIVillop (since [l = 1)
j=1

L+1
>log | 1+exp | = []IVjl
j=1

By the AM-GM inequality

1

L+1 L+t L+1 2
H||V||2 Zj:l Vil < V|2
e ! - L+1 T L+1

Therefore

L+1
J(V;xs,ys) > log (1 + exp (— <\/”I%> )) .

Now we know that

1 1 . HVH L+1
W>J(V):EZJ(V,xS,yS)zlog 14+exp|— \/Liﬂ .

s€[n]

Solving for ||V|| leads to the implication

1
VI +1logr - <|vI.
exp (=) — 1

Since for any z € [0,1], exp(z) <1+ 2z and n > 3, hence

14-24L 14-24L

3
V|| > VI + 1log+t <” ) > VI 1 1logZH ( ) > VL + 1logTer (324)

= VL + 1(24L) T+ log 741 (3) > V2.

This proves Part 1 of the lemma.
Proof of Part 2: Let n? = ||V||2. Then for any k € [L],

L+1
IT vl

j=k+1

16



is maximized subject to Z]L:,3+1||V]H2 < n? when every ||V;||? = n?/(L — k), this follows by

the AM-GM inequality. At the maximum it takes the value

L+1 n L—k n L
max Villop < max [ ——— <|—=
kemjzlllu illor = a3 («Lk) (ﬁ)

where the second inequality above holds since n = ||V|| > 1 by Part 1 of this lemma. [ ]

The next lemma bounds the product of the operator norms of matrices in terms of a “collective
Frobenius norm”.

Lemma B.6. For matrices Ay,...,Apy1 and My, ..., M1, let A = (Ay,..., A1), If
|Al| > 1 and for all i € [L + 1], | M;|lop < 1. Then, for any nonempty T C [L + 1]

LA[E*
o < AP
2

H||Ai”op||Mi||op <
ieT (L+1)

Proof We know that for all ¢ € [L + 1], || A;lop < ||4i||, therefore, by the AM-GM inequality

Siell AP\
TT (12,1402, < T4z, < TTiadl? < <€|Iz

€T €T €L
<HAH2> d
<
z|

HAHQ(L-H)
— (L+ 1)L+1’

where the last inequality follows by our assumption that ||A|| > 1. Taking square roots com-
pletes the proof. |

The next lemma bounds bounds how much perturbing the factors changes a product of ma-
trices.

Lemma B.7. Let Ay,...,Apy1, B1,...,Bry1, My, ..., Mpq and Ny, ..., Np11 be matrices,
and let A= (A1,...,Ar+1) and B = (B1,...,Bry1). Assume

e |A| > 1 and ||B| > 1,
o forallie [L+1], ||Millop <1 and || Ni|lop <1 and

o for allie [L+1], |M; — Nillop < &,

then
L+1 L+1
[TAins) = TTB:N)|| - < (1Al + 1A = BID* (sl A]| + | A - B])) .
i=1 i=1

op

17



Proof By the triangle inequality

L+1 L+1
[T - T[(B:iN:)
i=1 =1 op
L+1 J L+1 Jj—1 L+1
Z (HAz ) H B;N; | — ( AiMi> H B;N;
j=1 \ \i=1 i=j+1 i=1 = op
Lt1l| /3§ L+1 j-1 L+1
< Z (H AiMi> H BiN; | — (H AiMi) H B;N;
j=1|| \i=1 i=j+1 i= i=j op
L+1 L+1
=Y |(4;M; — B;N;) HAM I1 BN
Jj=1 =741 op
L+1 L+1
<> |l4;M; - BNy, ( > I1 BN
=1 i=j+1 op

For some j, consider T'(j) := (A1,...,Aj—1, Bj+1, Br+1). By the triangle inequality,

1T < [IAll + 1A = B.

Thus, Lemma B.6 implies

-1 L+1 j—1 L+1
(H AiMi> I BN < <H||A¢M¢||0p> LT 11BiNillop
i=1 =1

i=j+1 op i=j+1

Jj—1 L+1
< (HIIAz'Ilop> IT 1Billop
i=1 i=j+1
([Al+ 1A - BH)L“_
(L+1)%

<



Returning to (11),

L+1 L+1

H A; M; — H B;N;
=1 1=1

(IA] + |4 — BI)Ett &2

op

o
L+1
(JA] + [|A = BJ)™+
- Ti0E Z |4;M; — AjN; + A;jN; — BN,
j=1
L+1
(1Al + [|A = B+
SR > (1450 = N, + 14; = Byll,,)
j=1
[L+1 L+1
(1Al + [|A = BJ)™+!
< pent > 1Al 1M = Nil,, + D 1A = Byl
(L+1) =1 =
All 4+ 14 — BI[)E+! [ 41 L+1
s””wtwj” #3450+ S 14, - By
2 | =1 j=1
(l4] + [|A = B])E+ ¢
< o — [VIH ()4l + A - B])]
(L+1)5 -
(JA] + [|A = BJ)™+!
=Ty i 4-B)
2

< (A + 1A = BID* (s[|All + 1|4 = BJ),
which completes the proof. |

The next lemma shows that h-smoothly approximately ReLU activations are contractive
maps.

Lemma B.8. Given an h-smoothly approximately ReLU activation ¢, for any vi,ve € RP we
have ||p(v1) — P(v2)|| < ||v1 —w2l|. That is, ¢ is a contractive map with respect to the Fuclidean
norm.

Proof Let (v); denote the jth coordinate of a vector v. For each j € [p], by Taylor’s theorem,
for some v € [(v2);, (v1);]

(p(v1) = ¢(v2)); = ¢'(05)(v1 — v2);.

Thus,
()
lp(v1) — (v2)||I” = Z (¢'(0)(v1 — vQ)j)2 = Z (‘ﬁl(@j))z (v1 — 02)? < Z (v1 — 02)?
J€lp] j€lp] J€Elp]
= [l —valf?,

where (i) follows because |¢'(z)| < 1 for all z € R for h-smoothly approximately ReLU acti-
vations. Taking square roots completes the proof. |
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B.3 Proof of Lemma 4.1
Lemma 4.1. For o > 0, let VI = VO — oV J,. If, for all convex combinations W of V)
and VD V2 J|op < M, then if a < 1 ~» we have

@)

Jip1 < Jp —

aL||VJi|?
L+3

Proof Along the line segment joining V® to V#+1 | the function J(-) is M-smooth, therefore,

Ji1 < Jp+ Vi - (VD —y®)y 4 %”WHU v
2M

= Ji —a|VI|* + Ak
aM
=Ji—«a (1 - > VT
L
< Ji— —al| V2
L+3
This completes the proof. |

B.4 Proof of Lemma 4.2

The proof of Lemma 4.2 is built up in stages, through a series of lemmas.

The first lemma bounds the norm of the difference between the pre-activation (1" uf ) and post-
activation features (:L'] ;) at any layer j, when the weight matrix of a single layer is swapped.
It also provides a bound on the norm of the pre-activation and post-activation features at any
layer in terms of the norm of the weight matrix.

Lemma B.9. Consider V.= (Vi,...,Vp41) and W = (Wq,...,Wr41), and £ € [L + 1].
Suppose that V; = Wj for all j # £, and ||V||, ||W|| > 1. Then, for all examples s and all layers

Js

N

N < IVIES

I\S]

Nl < VI,

8. Nlugy —ufll < [IVe = Wellop [ VI**; and

]78

4o Nlys = 23l < (1Ve = WelloplVIIFHE.

]78

Proof Proof of Parts 1 and 2: For any sample s and layer j we have

(i) J
[ud Il = 11Vig(ul 1 I < IVjllopll@(u) 1 I < Villoplle 15l < TTIVillopllsl
k=1
: J
7/L
< H [Vicllop
(i
S [VIIEHL,

20



where (i) follows since ¢ is contractive (Lemma B.8), (i7) is because ||zs|| = 1 and (iii) is by
Lemma B.6. This completes the proof of Part 1 of this lemma. Again since ¢ is contractive,
||£L';/S|| = ||¢(uys)|| < ||[V||Z*t, which establishes the second part of the lemma.

Proof of Parts 8 and 4: For any j < £, u}{s = u% and x}{s = x%, since V; = W; for all
j # L. For j = £ we have

1% w 1% w |4 |4
||U’Z,s - ué,s” = ”wmﬁ—l,s - ngf—l,s” = H(w - WZ)xZ—LSH < Hw - WfHOpH‘TZ—LsH
1%
= Ve = Wellopll¢ (Ve—r2/_5.5) |

(i)
< Ve = Wellop [ TIIVicllop
k<t

< |IVe = Wellop [ T I Vil
k<l

(é)

< HW - WK”O{D”VHLH

where (i) follows since ¢ is a contractive map (Lemma B.8) and because ||zs|| = 1, and (ii)
follows by applying Lemma B.6. Since ¢ is contractive we also have

|4 w L
s — zpall < Ve = Wellopl [V

When j > /£, it is possible to establish our claim by mirroring the argument in the j = ¢ case
which completes the proof of the last two parts.

The next lemma upper bounds difference between the E;{S and Z%, when the weight matrices
differ in a single layer.

Lemma B.10. Consider V = (Vi,..., VL) and W = (Wh,..., W), and £ € [L]. Suppose that
Vi =Wj for all j # £, and |V, ||W|| > 1. Then, for all examples s and all layers j,

Ve = Wellop [V ][ F*
» .

Proof For any j € [L] and any s € [n], EXS and X% are both diagonal matrices, and hence

]73
=5 = Zillop = 16 (ug) — & (u)y)lloo
\%4 w
||Uj — Uy oo
- h
< Ve = Willop [V
— h Y
by Lemma B.9. |

||Z;{s - E;‘/Kg”op <

(since ¢’ is (1/h)-Lipschitz)

The following lemma bounds the difference between gs(V') and gs(W) for any sample s when
the weight matrices V' and W differ in a single layer.

Lemma B.11. Consider V.= (Vi,...,Vi41) and W = (Wh,...,Wr41), and ¢ € [L + 1].
Suppose that V; = Wj for all j # €, with |Ve — Willop||VIIFH < 1, and |V, |W] > 1.
Also suppose that for all examples s, for all convex combinations W of V and W, we have if
Js(W) < 2J4(V), then,

195(V) = gs(W)| < 2J(V) Ve = Wellopl [V 7.
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Proof By Taylor’s theorem applied to the function 1/(1 4 exp(z)) we can bound

|gs(v) - gs(W)|

1 1
- 1+ exp (ys fv(zs)) 1 + exp (ysfw (s)) ‘
exp (Ys fv (xs))

> (1 ¥ exp (ysfv(xs)))g ’ystV(xS) - yst(xS)’

+ (yst(xs) - ysf\/(xs) 2 max

2 WelV,W]

26Xp(2ysf'v[7($s)) B exp(ysf'ﬁ(ms)) (12)
(eXp(yst(xs)) +1)3 (exp(ysfw(xs)) + 12

2

[1]

The first term =1 can be bounded as

| e () I
1= (1 + exp (ysfv(xs)))Q (ysfw (s) — ysfv (vs))

1 exXp (yst(xs))

T (1 + exp (ys fr () L+ exp (ys fir (5)) lys fw (x5) = ys fv (2s)]

1
— (L4 exp (ysfv(es)))

() (i7)
= gs(V) [[uLi1s = ulsall < 9s(VIVe = Wellop IVIIFF < To(V)IIVe = Wellop IV [*7,

[1]

‘fW(ws) - fV(ws)‘

where (i) follows by applying Lemma B.9 and (i¢) follows since gs(V') < J(V') by Lemma B.3.
The second term =g

= _ (ysfw(zs) — ysfv(@))? 2exp(2ysfip(ws))  exp(ysfi(es))
- 2 wew.wl | (exp(ys fr(x5)) +1)3 (exp(ys fp7 (z5)) + 1)?
(@) (fW(xs) - fV(xs))2
< 5 w?fé% log(1 + exp(—ys fi7(25)))
- (fw(@s) ; fv(xs))z _max Js(WN/)
WeV,W]

(i)
< Js(V) (fw(xs) = fr(as))?
o (i) (iv)
= J(V) (uf 15— uphrs) < Jo(V)IVe = Will2, IV IPEHD < T (V)IVe = Wellopl VP,

where () follows since for every z € R

2exp(2z) exp(z)
(exp(2) + 1)3  (exp(z) + 1)2 < log(1 + exp(—=z)),

(i1) is by our assumption that for any W € [V, W], Jy(W) < 2J(V), (#ii) follows by invoking
Lemma B.9 and finally (iv) is by the assumption that ||V — Wy||ep||V||FT! < 1. By using our
bounds on =; and Zy in conjunction with Inequality (12) we obtain the bound

195(V) = gs(W)| < 2J5(V) Ve = Wellop [V [IFH
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completing the proof. |

By using Lemmas B.9, B.10 and B.11 we will now bound the norm of the difference of the
gradients of the loss at V' and W, when these weight matrices differ in a single layer.

Lemma B.12. Let h < 1, and consider V.= (Vi,...,Viy1) and W = (W1,...,Wry1), and
¢ € [L]. Suppose that V; = W; for all j # ¢, and if

i HVZ - WZHOZJ”VHLH <1
Vv

o [V-w|< ¥

o |[V||>1and|W| >1;

e for all s and all convex combinations W of V and W, Jo(W) < 2J4(V).

Then,

IV T (V) — Vo du(w) | < 22V L+ DR L) IVIPERVE = Wi
S s < h .

Proof Since
L+1
Vv Js(W) = Vi Js (VI =D IV Js(W) = Vi Js(V)][. (13)

k=1

First we seek a bound on ||V, Js(V) — Vi, Js(W)||op when k € [L]. We have

HVVk JS(V) - kaJS(W)HOP

L L
w TwW T WT 1% TV T VT
= ||gs(W) Ek,s H (Wj Zj,s) WLH«Tk—l,s—gs(V) Ek,s H (‘/j Ej,s) VL+137k—1,s
j=k+1 j=k+1 op
L L L
w TwW 1% TV 1% TV T WT
= gS(W) Z:k,s H (W] Ej,s) - EIc,s (V} Z:j,s> +2k,s (V] Ej,s) WL+1$]€,1’S
Jj=k+1 j=k+1 j=k+1
L
1% TV T VT
—9s(V) | Zks H (VJ Zj,s) Vit1%p—1,6
j=k+1 op
L L L
w TwW 1% TV 1% TV
= gS(W) Ek,s H (W] Ej,s) - EIc,s (V} 2]’,3) +2k,s (V] Ej,s)
Jj=k+1 j=k+1 j=k+1
L
T wT VT VT 1% TV T VT
X Wi (@15 — Tpo1,s + Tpo1s) — 9s(V) | Zgs H (VJ Zj,s) Vit1%p—1,6
j=k+1

op

23



Applying the triangle inequality

IV Js(V) = Vi Js (W) [lop

L
<llgsw) (=l TT (v7s) | WhaGel i, - =0
j=k+1 op
==
L L
o) | =k T (vi7sh) | wiael T o) SU TT (Vs | Vit
j=k+1 j=k+1 op
=5
L L
+ gS(W) ZkW,S H (W]TEK;>_2X5 H (‘/]TEXS> W[j&lx}?f{,s : (14)
j=k+1 Jj=k+1 op

(1

3

We will control each of these three terms separately in lemmas below. First in Lemma B.13

we establish that

21 < 4T (V)[[Ve = Wellop|[V][2EFD,

then in Lemma B.14 we prove

Ey < 8J,(V)IVIPEHD Ve = Wellop,

and in Lemma B.15 we establish

. < DLWV, - W)
= < - .

These three bound combined with the decomposition in (14) tells us that for any k € [L]

IV, Js(V) = Vi Js (W) lop < 4T5(W)[|Ve = Wellop [VI[PETD 4+ 8T, (V)[V[EETD Ve — Wellop
40T, (V)| VP3|V — W)
+ h
_ 520V VPP Ve — W
_— h )

where the previous inequality follows since h < 1 and |V| > 1. Since Vi and W} are a

p X p-dimensional matrices, we find
IV, Js(V) = Vi, Js(WIF < VplIVi Js (V) = Viw, Js (W) lop

52/pJs(V) ||V |IPET2(| Ve — W,
< PPV Ve~ Wl -
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For the final layer we know that

Vv 1 Js(V) = Vv Js (W) = llgs(V)zr s — gs(W)z |
= 195 (V) = g5 (W) + g5s(W))] s — g5 (W) |
< 1gs(V) = gs(W)lllz L oll + g5 (W)l o — 21l

(1)

< 2Ts(V) Ve = Wellop [V IPEHY + g (W) Ve — Wellop | V]| EH
(i1)

< 2J(V)|[Ve = Wellop |V [PEFD + 20(V)[[Ve = Wellop ||V ]| 2T

D)
< ATV Ve = Wellopl[V 2D (16)

where (i) follows by invoking Lemma B.11 and Lemma B.9, (i7) follows since gs(W) < Js(W)
by Lemma B.3 and because by assumption Js(W) < 2J4(V), and (¢i7) follows since ||V|| > 1.
This previous inequality along with (15) and (13) yield

Vv Is(W) = Vi Jo(V)||?

. (52\/16Js<v>uvu3“5||w - Wi
- h

2
2
> + (41,(V) Ve = Wallap V22D

2
52y/pJs(V)|V[PEH5| Ve — W,
S(LH)( VLIV £|> |

Taking square roots completes the proof. |

As promised in the proof of Lemma B.12 we now bound Z;.

Lemma B.13. Borrowing the setting the setting and notation of Lemma B.12, if Z1 is as
defined in (14) then

21 < AT (V)[[Ve = Wellop ||V ][2EFD.
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Proof Unpacking using the definition of =5

L
== |lgw) [ =E, TT (V2h) | WhaGl . -2t
k41 op
L
= [|gs(W) E}c/,s H (‘/}TE;{S> (WLT+1—VLT+1+VLT+1)($KVT13 33¥T1s)
k41 op
L
Sgs(W)HZkV,s op H HV]TH HZXsHOp HWLT+1—VLT+1+VLT+1H ka 1,s ka 13
. op
Zht1
@) T T T T
< gs(W) HV H HWL+1—VL+1+VL+1 ‘xk L — TE s
k41
< gs(W) HVT (HWL+1 Vil + VLT+1H >H$k Ls — ) 1s
j=k+1 °p
(i1)
2 o= witavie 11 57 (w2 = vita], + v,
Jj=k+1 P P
L
= s (W)IIVe = Wellp [VIF* | 1We = Villy, T] V57, + I .
=k =k

(#47)
< g (W)IIVe = Wellopl VI (11We = Vally IVI-F 4+ V1)

(iv)
< 21, (V)IVe = WellopIVIPED ([ We = Vill,, +1)

(v)
< 4J,(V)||[Ve = Wel|op ||V |2EFD,

where (i) follows since ||Z) |lop < 1, (i) follows from invoking Lemma B.9, (i) is by
Lemma B.6, (iv) follows since gs(W) < Js(W) by Lemma B.3 and because by assumption
Js(W) < 2J5(V). Finally (v) follows since by assumption ||V, — W|l,, < 1/[|[V[£*! and
V|| > 1, therefore ||V, — Wyl|op < 1. [ |

We continue and now bound =5 which as defined in the proof of Lemma B.12.

Lemma B.14. Borrowing the setting the setting and notation of Lemma B.12, if 2o is as
defined in (14) then

Zs < 8J,(V)|VIPED |V = Willop-
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Proof Unpacking the term =9

(1]
)

L

= gS(W) ZV VTEV )WLJrlxk 1,s gS(V) E)C/:S H (VJTE;/,s) VLT+1‘T}€/:F1,S

j= k+1 j=k+1

op

= ||gs(W) Ekv,s VTZV ) (Wi = Vi + V)=l

Jj=

_gs(v) EI‘C/S ( E ,s) V 1xk ls
j=k+1

op

L
QS(W) (Ekv,s H (‘/j—rz;/,s> (Wl—/r-&—l - VL—l—-i-l)‘r?/—{s

IN

op

L L
+ gS(W) (Z}c/s (‘/;TEXS)) V[—/r—ﬁ-lwgi—{,s _gS(V) El‘f/,s H (VY]TEXS> VL—r—l—lxl‘c/—Tl,s

j=k+1 op

L
~ [laetm) (zx,s T (b)) | 0Vl Vi@l ol )

Jj=k+1 op
L
+ QS(W) E}c/,s H (‘/}Tz}{s> Vl—errl(xE/—{s x}c/—rls)
j=k+1
L
o) =g, | =h, TT (V=) | Vil
j=k+1 op
L
< ||lgs(W) Ekv,s H (VjTZXs> (WLTH—VLTH)(%WTM kaTls"‘kaTls)
j=k+1 op
LY
L
+ gS(W) Z}c/,s H (VY]TZ;{S) Vljl——l—l(x?/—{s x}c/—rl s)
j=k+1 o
&
L
(o) =g (=L TT (V726 | Vel D (17)
j=k+1 op
::'2
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The first term

L
®: = ||gs(W) E}c/:s H (VjTEXs> (WLTJrl_VLTJrl)(xZVTls kaTls+kaTls)

j=k+1 op

T T
< gs(W) 1=, H Vi lopl = sllop | IW L1 = Vi llopUleih s — 2 Ty oll + 21yl
j=k+1
() T
< gs(W) II H‘f lop HVVL+1 Vl+1”m4”$k 1,s xk 15H4‘H$k 1JD
j=k+1
@) L1177 T
< gsMIIVIFHIWE = Vilallop(lat 1 s = 22l + )
< gsMIVIFHIVE = Wellop(l2iZ1 s — 1l + 2ty )

)
< gsMIVIFHIVE = Wallop(IVe = Wallop [V IFF 4 [V 5
= gs(MIVIPED Ve = Wellop(IVe = Wellop + 1)

(iv)

< 2J,(MIVIPED Ve = Wellop (Ve = Wellop + 1)

(v)
< 4T,(V)|[VIPEDNVE — Wollop,

where (i) follows since szv,s”op < 1, (i9) is by invoking Lemma B.6, (iii) follows due to
Lemma B.9, (iv) is because gs(W) < Jg(W) by Lemma B.3 and by the assumption Js(W) <
2J5(V), and finally (v) follows by the assumption that ||V; — Wy, < 1/||V|FFL < 1.

Moving on to &g, again since gs(W) < Js(W) (by Lemma B.3) and Js(W) < 2J5(V) (by
assumption),

L

%o = g.) (=, T (V1)) | Vi@l — ot
Jj=k+1 op
L
SQJS(V) EXS H (‘/]TZXS> VITJrl(xK/—{s x}c/—rls)
j=k+1 op

§2J5(V)H2}c/,sHop H HVT”OPHE HOP HVLH”Opka 1,s xk 13”

j=k+1
L+1
T
<27,(V) [ T 13 llop | Nl — 2Tl
j=k+1

()
< 2L,(V)IVIPFVVe = Welop,
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where (i) follows by invoking Lemmas B.6 and B.9. Finally let us control ¥

L
> = ||(gV) =0V [ K TT (v'=0) | Vilael s

j=k+1 op

L
< 1gsW) = gsWISallon | TT 1V NloplZ5llop | 1V 1 llopllek s o

j=k+1
L+1
T T
< 1gsW) = gs(V)I TT 1V llopllzk
j=k+1

(i)

< 1gs(W) = gsMINVIIFH k7
(id)

< |gs(W) = gs (V) [[[V|JPF+D

(#44)
< 2J(V)|[Ve = Wellop | V[ PEFD,

where (i) follows by Lemma B.6, (i) is by Lemma B.9 and (¢i¢) is by invoking Lemma B.11.
Combining the bounds on #g, & and ¥, along with (17) we find

SMIVIPED Ve = Wellop + 20 (VI[VIPED Ve — Wellop
SOV IEEHD 1V, — Wil |op,

where the previous inequality follows since ||V|| > 1. [ |

Finally we bound =3 which as defined in the proof of Lemma B.12.

Lemma B.15. Borrowing the setting the setting and notation of Lemma B.12, if 23 is as
defined in (14) then

= o ALV)[VIPEVe — Wi
25 < . .
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Proof Since gs(W) < Jg(W) and Js(W) < 2J5(V) (by assumption) we have

L L
== s [ T (w'=) - =t IT (W= | wikaell,
j=k+1 j=k+1 op
L L
<aw)| (st TT (wrsih) - st I1 (w7sh) | wioaett T,
j=k+1 Jj=k+1 op
L L
<2 Il 5|28 TT (wsi) - st TT (v7sh)
j=k+1 Jj=k+1 op
L L
= 2J,(V)| o TT (ws) - et - sl st) 1 (vst)
j=k+1 j=k+1
L L
<2 WIW Lol T[S [ TT (7s) = T1 (v's%)
j=k+1 j=k+1 op
=3
L
+ 2 (VIW ol Ll |SF, - =) TT (vl (18)
j=k+1
%
=:d3

Before we bound é#3 and &3, let us establish a few useful bounds. First note that for any
layer j by Lemma B.10

Ve = Wellopl[VII*+!

157, — =Wl < ; (19)
Also we know that
ap Lol < eyl + s — + IVIF Ve = Wellop
< HVHL“( + Ve — Wellop)
<2V (20)
Finally,
IWetillop < IVesillop + 1Vit1 = Wesallop < IV + Ve = Wellop
<2|v], (21)

where the last inequality follows by our assumptions that ||[Vy — Wy||op < ”V”++1 and ||V > 1.
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With these bounds in place we are ready to bound és:

L L
& = 20 Wl T |28 [ TT (ws) - T (v'=Y)
j=k+1 J=k+1
op
L
<2 WIWEallplef I8N | TT (W) - T1 (v'=Y)
j=k+1 j=k+1 op
@) L2 || T TeW - TyV
< 8JS(V)HVH * H (Wj Z:j,s> - H (VJ Z]j,s>
j=k+1 j=k+1 op
(id) Ve — Wellop|[V/[|*
< sa v v+ v - wips (P -
_ BLM)VIPE (11 WH>L“ (Wi, 1)
h v v=wi Ve
@ 167, VIV - W] (11 WH>L+1
h IV
@ 161, V)VIPHV - W] (1. LIV W1
R IV
(v) 32 § 3L+5 _
D AWV 7] )

where (i) follows by using the bounds in (20) and (21), (i¢) follows by invoking Lemma B.7
and using (19), (i) follows since h < 1 and ||V|| > 1 by assumption, and therefore

Ve — Wello h
HZ Z”p+

<2
IV =wi v+ =

Inequality (iv) follows since for any 0 < z < 1, (1+(L+1)2)5"! < 14(L+1)z and because by
assumption ||V —W| < ||V||/(L+1), and finally (v) is again because ||V —W|| < |V||/(L+1).
Let’s turn our attention to de3.

L
&y = 21 V)W ol Tl | 21— 5E0) T (v7=)
j=k+1 op

(4) L+2 w v = TyV
< 8J,(V)||V | OHEDIR | (Vj Eﬁ)

j=k+1

op

<L WIVIF2 sl -2, H 13 lop =5l

j=k+1
(i)
< 8LWMIVIP I, - =1,
iii) 8J(V) |V |IPEH Ve — W,
(S) \21\4 . Ve 5”0177 (23)

where (7) follows from the bounds in (20) and (21), (i7) follows by invoking Lemma B.6 and
(iii) is by (19).
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By combining the bounds in (22) and (23) we have a bound on =3.

_ o B2 (V)||V P . 8Js(MIVIFH4 Ve = Well,,

—

- h h
< AL W)IVIPERIV — W)
- h
_ A0 (V)[VIPE2 Ve — W
h b}
which completes the proof. |

Lemma B.12 provides a bound on the norm of the difference between Vy J5(V') and Vi Js (W),
when the weight matrices V' and W differ only at a single layer. The next lemma invokes
Lemma B.12 (L + 1) times to bound the norm of the difference between the gradients of the
loss at V' and W when they potentially differ in all of the layers.

Lemma B.16. Let h < 1, and consider V.= (V1,...,Vp41) and W = (Wy,...,Wr1), such
that the following are satisfied for all j € [L + 1]:

o Vi = WillopllVI** < 1;

V
o [V—wl <YL

o |[V]>1and|W]| >1.
For every j € {0,...,L + 1} define T(j) := (W1, Wa,...,W;,Vjq1,...,Viy1). Suppose that

for all j € [L+1], for all examples s, and for all convex combinations W of T'(j) and T(j+1),
Jo(W) < 2J,(T(j)) < 4J5(V). Then

208(L +1)y/pJ (V) [VIPEH|V — W]
; .

IV J(V) = Vi J(W)]| <

Proof We may transform V into W by swapping one layer at a time. For any s € [n]
Lemma B.12 bounds the norm of difference in each swap, thus,

M=

HVVJS(V) - VWJS(W)H =

(Vo Js(T(k) = Ve Js(T(k + 1)) H

>
Il

0

M=

< Ve Js(T (k) = Vg Js(T(k +1))||

“ﬁ
_ O

<3 52/ (L + DpJo(TR)IT (B) P2 Vie — Wi |

h
k=1

L+1
52¢/(L+1)p L+ Dp
= ZJ INIT (k)P 72 Vie — W]

L+1
104 L 1 J
v - ZHT JPLH||V;, —

Wk”v (24)
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where the final inequality follows from the assumption that Js(T'(k)) < 2J4(V). For any
ke[L+1]

3L+5 - 345
HT(k)HSL-i-5 — ||VH3L+5 <”T( )”) _ HV”3L+5 <HT(k) V+ VH>

IV IVl
T (k) = VI \*5*°
< HV”3L+5 <1 +
VIl
”W . VH 3L+5
< HV||3L+5 <1 +
IVl

(@) 3L+ 5)||W -V
S HV|’3L+5 <1 + ( H)‘uvH H)

(i0)
< 2|V 3PP,

where () follows since for any z < 3L+5, (1+2)36+5 < 14-(3L+5)z and because by assumption
WV =wl/|V| < and (i7) again follows by our assumption that ||V — W||/||V|| <

3L+5’ 3L+5
Using this bound in Inequality (24)
208+/(L + 1) J V)|V|[BE5 R
IV Jo(V) = Vi Jo(W)]| < vak—wku
=1
208+/(L+1) J V|35
< v (x/L+1||V—W||)
_ 208(L + 1)st( VP2V - W
= = :
Thus,
1
IVvI(V) = VwJ(W) = |~ Z Vi Js(V) = Vw Js(W)
< - Z IV Jo(V) = Vi Jo(W)]|
se[n
1 Z 208(L + 1) /pJs(V) V[PV — W]
- h
s€(n]
_ 208(L+1)pJ(V)[IVIP |V — W]
N h
completing the proof. |

Lemma 4.2. If h < 1, for any weight matriz V such that J(V) < 1/n'*?4L we have

208(L + 1) /p||V||2ET2T(V)
V3T 0V)ep < £ .

Proof First since J(V) < nuﬁ, Lemma B.5 implies that |V|| > 1. Given the Hessian V2J
at a point V', and let A\; correspond to the maximum eigenvalue of the Hessian at this point
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and let W be the corresponding normalized eigenvector (with ||W|| = 1). Then we know that
V2T llop = s

J(VAm W4 W)—J(V+na W) JV+mW)—J(V)

72 = A1 = limg = n B b b—r

n2—0 2

~ lim vec(VJ(V 4+ maW)) - vec(W) — vec(VJ(V)) - vec(W)

=0 2

o IV W) = VIV
n2—0 2

VI W) - I
72—0 2

Since the function J(-) is continuous, for all small enough 7, the assumptions of Lemma B.16
are satisfied. Hence by applying Lemma B.16

VIV + W) = VIV VIV + W) = VI(V)|

V2T |lop < i = 1
IV Tlop < i, . w0V mW V]
- 208(L + 1)\/pJ (V)| V|]?E+>
= h
as claimed. ]

B.5 Proof of Lemma 4.3

Lemma 4.3. For any weight matriz V, if |V|| > 1 then

IVy I < V(L + Dpl [V min{J(V), 1}.

Proof First note that since J(V) < RH% therefore [|[V|| > 1 by Lemma B.5. Now for any
¢ € [L] the formula for the gradient of the loss with respect to V} is given by (see Equation (2a))

L
OJ (V5 ws,ys)
TZQS(V) EXS H <V]TEXS) V[—/l:klx}/——rl,s?
¢ j=t41
therefore its operator norm
0J(V;xs,ys) L
[P0 | gy (8 TT (w750 | vilaal
op j=0+1

op

L
T T T
< gsI=llop | TT 1V lopl =5 cllop | 1Vt llopllt ol

j=0+1
L+1

<gsW) | TT IVillow | iy sl (25)
j=+1
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where the last step follows since HE;{s”Op < max, |¢/(z)| < 1. By its definition

(4)
lzi_y ol = 16 (Vi1 (- d(Viz))I| < [[Ve-16 (-~ d(Vizs))|
Vetllop 16 (- - ¢(Viz)) |

- (i) [ 4=l
(ijop) ool < (H v) ,
j=1 j=1

where (i) follows since ¢ is contractive (Lemma B.8) and (i) is because ||zs|| = 1. Along with
Inequality (25) this implies

IN

IN

8J(V; Ts, ys)
aVy

< g ) [TIVillop < gs) TTIVII < g IV ]IFH,
op J#t J#t

where the last inequality follows from Lemma B.6. Therefore we have

oJ(V 1 OJ(V;zs,ys 0J(V;xs,ys V| £+t
H 85/4) :Ez (8W ) (6% ) <|EL (V).
op s€[n] op s€[n] op s€[n]
We know that ¢g5(V') < Js(V') by Lemma B.3 and also that ¢g5(V') < 1. Therefore,
L+1
Ha‘;g) 3 < HVLL min{zs: JS(V),n} < IV[[FH min {J(V),1}.
Given that V; is a p X p matrix we infer
oJ(V L+1 -
v, \f < VoIV min{J(V), 1} (26)
op
When ¢ =L +1
aJ(V§x5,ys) VT
——— =9s(V)xp 5,
Vi gs(V)wp,

by using the same chain of logic as in the case of £ < L + 1 we can obtain the bound

Hagg)u < VB[P min {J(V), 1}

Summing up over all layers

Hogvy|)?
IVIV)2 =30 | =50 | < (L DpIVIEED (nin {7(V), 112,
(=1
hence, taking squaring roots completes the proof. |
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B.6 Proof of Lemma 4.4

Lemma 4.4. Ifh <1, J; < 1+24L, and

h
ady < oL+ 1)2 VO 345’
832 (L + 1) /pl[VW
then
aL||VJy|?
Jip1 < Jp — Li—i—%

Proof Since, by assumption, J; < Wﬁ, Lemma B.5 implies |[V®|| > 1. We would like
to apply Lemmas 4.2 and 4.3. To apply these lemmas we first upper and lower bound the
norm of all convex combinations of V® and V+D. Consider W = nV® + (1 — n)V ) =
V® — (1 —n)aVJ; for any n € [0,1]. An upper bound on the norm raised to the 3L + 5th
power is

3L+5
W35 = [V — (1 — n)aV |25 = [V O 3L+5 <||V e )aVJtH>
3L+5
< |[VO 3L+ gl +oz||VJt||
[V®
aHVJtH SLts
= Hv(t)||3L+5 <1 i
[V®
3L+5
Dy pLas \/ﬁ VO
< [V 1+ g

L+5

= [VOPE (14 a(/ T+ DAl VOl

(i2)
< [VOPE (14 6L +5)(VL+ Dpadi VO F)
< 2V 3Ets (27)

where (i) follows by invoking Lemma 4.3 and (ii) follows since for any z > 0, (1 + 2)35+5 <

1+ (3L +5)z for all 2 <1/(3L +5) and because the step-size « is chosen such that

h
a(v/(L+1) JtHV H [T "/(L‘i‘l)thHV(t)HL

- 832(L+ )2/p |V
T 832(L + 1)32|[VO|2L+5 = 3L 45
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Thus, we have shown that the norm of W € [V(t),V(t+1)] raised to the 3L + 5th power is
bounded by 2[|V®)|3£45. Next we lower bound the norm of W,

W =IIV® -1 —n)av > |V <1 _ QHVJt”>

Vo

2 VO (1 - e T+ DpaIv o))
2 V2 (1-ay/ T Dpav Ol
@

where (i) follows by again invoking Lemma 4.3, (i7) is by Lemma B.5 that guarantees that
||V(t) | > /2 since J; < ﬁ and (7i7) is by the logic above that guarantees that « <\ /(L + 1)pJi||[V® HL) <
3L+5 Thus we have also shown that |[W| > 1 for any W € [V®), V(D]

In order to apply Lemma 4.1 (that shows that the loss decreases along a gradient step
when the loss is smooth along the path), we would like to bound ||V, J||op, for all convex

A/ @) || L+1 )|y (E+1) (@)
combinations W of V® and VD, For N = | 2RIV : HJ: e “-" (similarly to

the proof of Lemma E.8 of [L1.20]) we will prove the following by induction

For all s € {0,...,N}, for all 5 € [0,s/N], for W = pVD 4+ (1 — n)v®),
192 ], < SO
W llop —= h :

The base case, where s = 0 follows directly from Lemma 4.2. Now, assume that the inductive
hypothesis holds from some s, and, for 7 € (s/N, (s+1)/N], consider W = nV ) 4 (1—n)V®.
Let W = (s/NYVEHD 1 (1 — s/N)V®. Since the step-size o is small enough, by applying
Lemma 4.1 along with the inductive hypothesis yields J (W) < J¢. On applying Lemma 4.3
(which provides a bound on the Lipschitz constant of J)

JmoSAqu¢@+np;m&wWw“mw—ﬁw

Wew,Ww
(i ~ —
< JW)+ V(L + Dp) VO w —w|
— 2. /(L + 1 O L+1)| 1/ E+1) _ 17()
< (i) 4 CYTERIVO D - vo)
N
=J(W)+ J;
< 2‘]t7

where (7) follows since maXWG[WW]HWHLH < 2||[V®| L+ by using the same logic used to

arrive at Inequality (27). Applying Lemma 4.2, this implies that for any W € [V(t), V(H'l)]

208(L + 1)y/pJ W)[WIPH5 _ 832(L + 1) /p o[V P12
h - h ’
completing the proof of the inductive step.

So, now we know that, for all convex combinations W of V® and V1 V2, J|,, <
832(L41)/pJe |V (1) ||3L+5
h

IV llop <

. By our choice of a < L+§ 32112 \[JtHV<t)H3L+5’by applying Lemma 4.1,
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we have

Jer1 < Jp —

ral V7
2
which is the desired result. [ |

B.7 Proof of Lemma 4.5
Lemma 4.5. For all L€ N if h < huax, Jy < ez, and |[VO|* < log(1/7) V1% then
(L + Q)Jt IOg(l/Jt)

VJi || > 6
Proof We have
—v®
IVJi|| = sup (VJi-a) > (VJy)-
aillaf=1 v
( )
”V Z Vv, J; - ( ) . (28)
Ze[L+1
Note that by definition,

Vi (-17) = Z Vvidis - (-V7). (29)

se [n]

Consider two cases.

Case 1: (When ¢ = L + 1) In this case, for any s € [n] by the formula for the gradient in
(2b) we have

VVL+1 Jts : (_VL(21> = gtsysVL(leg?s = gtsysfv(t) (335)

and therefore

VVL+1Jt' ( VL+1) = Z gtsysfv(t) (xs) (30)
sE[n]
Case 2: (When ¢ € [L]) Below we will prove the claim (in Lemma B.17) that for any ¢ € [L]
VPRIV |-
VVZ&) Ji - ( VE ) > — g{:] Ots [ysfv(t> (xs) — F (31)
By combining this with the results of inequalities (28) and (30)
_ Lyph|IVOYE |1
VJ SJS8 I - S
19502 iy 3 o) = SEE o |2 S
s€[n] s€[n]
i L+1 thHV HL
P GtsYs fo ( L
= Avo] %:] o ERCIN
G) [+1 _ Lyphl VO log(1/ )
> Z Gisysfyo (@ VP — = (32)
n||V s€ln] 21083(1/J1)L2 v H
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where (i) follows because gis < Jis by Lemma B.3 and (i) follows by our assumption on
V.
For every sample s, Jis = log (1 + exp (—ys fi/ (2s))) which implies

1 1
s s) =1 _— d g5 = =1- —Jts) -
sl (o =108 (o) w0 e = e ey = e
Plugging this into (32) we derive,
L+1 1 L/ph||[V||L
|V J|| > Z — exp ( Jts))log( ) - l Hl Jelog(1/J¢).
|Vl & exp(Jis) = 1) 2log(1/J1)LE V|

Observe that the function (1 — exp(—=z)) log (ﬁ) is continuous and concave with lim,_,g+(1—
exp(—z)) log <m> = 0. Also recall that ) Jis = Jyn. Therefore applying Lemma B.4,
to the function ¥ with ¥(0) = 0 and ¢(z) = (1 — exp(—=2)) log (W) for z > 0, we get

L+1 [1—exp(—Jin) < 1 )]
v, log [ ——
IVl = Vo) [ n &\ exp(Jin) — 1

Ly/phllV |
2log(l/Jl)LTlllVll

og(1/Jp). (33)

We know that for any z € [0, 1]
exp(z) <142z and exp(—2z) <1—z+ 22

Since J; < nH% and n > 3, these bounds on the exponential function combined with In-
equality (33) yields

IV
L+1 1 L/ph||[VO | F

> + {( th)log< ﬂ - VPRIV Jilog(1/Jt)
Vo 2Jin 21og(1/ 1) L2 7YV

LD/ [ do(zn) V-
Vo] og(1/72)  2log(1/J1)5 2

_ (L+1/2)Jlog(1/y) 1 L dog(2n) B[V (34)
gl 2(L+ 1) " log(1/J0)  210g(1/0y)LE 2|

1+

1
2

By the choice of h < hpax we have

yoRIVOLE 1
2log(1/J1)Lz~2 ~ 12L°

Next, since J; < W% and n >3

log(2n) < log(2) + log(n) < 1
log(1/J;) — (14 24L)log(n) — 12L°
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and
1 < 1
324L — 12L°

Therefore, using these three bounds in conjunction with Inequality (34) yields

ndy <

L+1/2)J;10g(1 1 1 L+ YHYJlog(1/J,
Vo] 2(L + 3) AL Vo
which establishes the desired bound. n

As promised above we now lower bound the inner product between the gradient of the loss
with respect to Ve(t) and the weight matrix for any ¢ € [L].

Lemma B.17. Under the conditions of Lemma 4.5 and borrowing all notation from the proof
of Lemma 4.5 above, for all ¢ € [L]

VPRIVOLE ]

1
VWJt . <—V€(t)> > ﬁ Z Ots [ysfv(t)(xs) 2L7_1

s€[n]

Proof To ease notation, let us drop the (¢) in the superscript and refer to V® as V. Recall
that for any matrices A and B, A- B = vec(A) - vec(B) = Tr(AT B). Also recall the formula
for the gradient of the loss in (2a), therefore, for any s € [n]

Vv, Jis - (=Vi)
- Ty (vame)

L
:gtsysTr (Vv@—r Ef,s H ‘/j—rzj,s V[Irlm;—l,s
Jj=0+1

L

T

= G1sys Iy (H V j s VL+1$Z 1,s
=L

= gtsysTr (336 1,8 H (VjT Js S) VL+1

j=t
L
= gtsyswz——l,s H (‘/]T Jss ) VL+1
j=t
. L-1 L
(g) gtsysx—Lr,sVLT+1 + GtsYs Z (xg—l,svk—rzk,s - xlzs> H (Vj—rzj,s> VLT+1
k=t j=k+1

+ 9tsYs (xz—l,sVI:l—EL,S - ‘T},—,s) VJ+1
L-1 L
(i)

= gtsysfv(t) (ws) + gtsys Z (:L'LZLSV,:E]{;’S - xkl—,s) H (‘/jTEj,S) VLT—H
k¢ j=k+1

T T T T
+ 9tsYs (foLSVL Yps— xL,s) VL+17
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where (i) follows by the cyclic property of the trace, and (ii) follows since the second term and
third term in the equation form a telescoping sum, and (#ii) is because fy o (zs) = Viy121s
by definition. By the property of h-smoothly approximately ReLU activations, for any z € R
we know that |¢'(2)z — ¢(2)| < % Therefore for any k € [L], ||:c,1—71,5VkTEkS :1:,”||Oo < %

and hence Hm;—fl stTEk,s — x;—SH < @h. Continuing from the previous displayed equation, by
applying the Cauchy-Schwarz inequality we find

‘7Mphs' C_LQ)

L-1 L
thsysfv(t)($s — Gts Enwk 1st Yks — Ty, s” HV]TH sz,s op )VLT-HH
k—¢ j=k+1 op
- gts”xzq,sVLTzL,s - xst HVLTHH
L L+1
\fhgt
> gtsYsfy o (Ts) — - Z H HVHOpH jSHOp
k=t j=k+1
) hat L L+l
> gafro ) — 2T TT v,
k=l j=k+1
L+1
pLhg,
> gy () — P2 e TT Vi,
kelLl] .
j=k+1
() ‘DLhg, Lt
> GisYsfvw (xs) — %max H 1Vjll
ke[L] .
j=k+1
(i) phIV "t
> gtsYsfyw () — % (35)
2L72

where (i) follows since ¢/(-) < 1 and therefore ||X;s|lop < 1, (it) follows since for any matrix
M, ||M||op < ||M]| and Inequality (ii) follows by invoking Part 2 of Lemma B.5. The previous
display along with (29) yields

1 ph||V L
Vv i (=Ve) > = Z gts |Ysfyw(ws) — %
nsEM} 2Lz
which completes our proof of this claim. |

Now that we have proved all the lemmas stated in Section 4.1, the reader can next jump to
Section 4.2.

C An example where the margin in Assumption 3.2 is constant

In this section we provide an example where the margin v in Assumption 3.2 is constant.
Consider a two-layer Huberized ReLLU network. In this section we always let ¢ denote the Hu-
berized ReLU activation (see its definition in Equation (1)). Since here we are only concerned
with the properties of the network at initialization, let V(1) be denoted simply by V. The first
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layer Vi € RP*P has its entries drawn independently from N (O, %) and Vo € R'™P has its
entries drawn independently from A(0, 1).

Let V1,; denote the ith row of V7 and let V5; denote the ith coordinate of V5. The network
computed by these weights is fy (z) = Vag(Vix).
Consider data in which examples of each class are clustered. There is a unit vector u € SP~!

such that, for all s with ys = 1, ||xs — u|| < 7, and, for all s with ys = —1, ||zs — (—p)| < r.
Let us say that such data is r-clustered. (Recall that ||zs|| =1 for all s.)

Proposition C.1. For any § > 0, suppose that h < \2/—;, r < min{&j,d\/ﬂw}, and
D> logcl(n/é) for a large enough constant ¢’ > 0. If the data r-clustered then, with probability
1 — ¢ there exists W* = (W}, W3) with ||[W*|| = 1 such that

for all s € [n], ys (Vv fv(zs) - W*) > ¢ey/p

where ¢ is a positive absolute constant.

Proof Define a set

< | Vol < 2} ;

DN | =

S::{ie[p]:

and also define

S ={ieS:Vij-p>4h} and S_:={ieS:-Vi; p>4h}.
Consider an event Emargin such that all of the following simultaneously occur:
(2) p (5 —0p(1)) <S¢ < p (5 +0p(1));
(b) p (3 —0p(1)) <IS-| <p (3 +0p(1));
(c) for all s € [n] and i € [p], Vi, - (5 — yots)] < 2h.

Let us assume that the event Emargin holds for the remainder of the proof. Using simple con-
centration arguments in Lemma C.2 below we will show that P [Emargin] > 1 — 6.
The gradient of f with respect to V7 ; is
Vv fv(@) =z (Void' (Vi @)

Consider a sample with index s with y; = 1. For any ¢ € S

sign(Va,i) (1 Vv, fv(zs)) = - xs (|Vaild' (Vi - 25))

= (|Va,ild Vi~ @s)) + - (x5 — 1) (|Vasild' (Vasi - zs))
i
S0 (Vi Vi (s — ) = 200 (2 — 1) (Vi - 2)

—

(1) 1 1

> §¢/(V1,z‘ 4+ Vig (s —p) — 3

(i) ¢'(2h) 1@yl 1 3

> I~ 7 = - - - = —

- 2 8 2 8 8 (36)
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where (i) follows since § < |V5;| < 2 when i € S;. Inequality (ii) follows since ¢’ is bounded
by 1 and because ||zs — ysu|| < r < 1/16. Inequality (iii) follows since i € S; and therefore
(Vi) - o > 4h, under event Emargin, (Vi) - (zs — p) > —2h, and since ¢’ is a monotonically
increasing function. Equation (iv) follows since ¢/(2h) = 1. On the other hand, for any i € S_:

Sign(%,i)ﬂ : VVMfV(-Ts) = M- Ts (|‘/2,z|¢l(vvl,z : xs))

= Vald! (Vi - s) + - (s — o) ([Va,il@' (Vi - 25))
@ 1

(@)
> =2p- (xs — )¢’ (Vi - xs) > ~3 (37)

where (7) follows since |V2;| < 2 when ¢ € S_ and ¢’ is always non-negative. Inequality (i7)
again follows since ¢’ is bounded by 1 and because ||xs — ysp|| < r < 1/16.
Similarly we can also show that for a sample s with y; = —1, for any ¢ € S_

. -3
sign(Va )yt Vv, fu () < 2 (38)
and for any i € Sy

. (39)

oo =

sign(Va,i)p - Vvy  fv(zs) <
With these calculations in place let us construct W* = (W, W5) where, W € RP*P, W5 €
RP and |[W*|| = 1. Set Wy =0. For all i € S; US_ set
1

VIS +15-]

and for all i ¢ S4 US_, set Wi, = 0. We can easily check that |[W*|| =1 (since |[ul| = 1).
Thus, for any sample s with ys =1

sz = Sign(VZi)M

Ys (VVfV(xs) : W*)
= Vv fv(zs) - Wi

= Z vVl,ifV(‘rs) : Wl*,z + Z vVl,ifV(xS) ' Wiz

1€Sy 1€S_
1 . .
= W Z sign(Va,i)p - Vv, fv(zs) + Z sign(Va,i)pu - Vivy , fv ()
+ -1 |iesy €S-
(i) 1 [38+| \8_|]
Z —
Jsia+sil s 8
1
= [B|S+| = [S-]]

8VISHIS
E 8 p(11+op<1>> [3p (i - 0”(1)> -F G i Op(l)ﬂ Z VP

where (i) follows by using inequalities (36) and (37) and (i) follows by Parts (a) and (b)
of the event Emargin- The final inequality follows since we assume that p is greater than a
constant. This shows that it is possible to achieve a margin of ¢,/p on the positive examples.
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By mirroring the logic above and using Inequalities (38) and (39) we can show that a margin
of ¢,/p can also be attained on the negative examples. This completes our proof. |

As promised we now show that the event Emargin defined above occurs with probability at least
1-9.
Lemma C.2. For the event Emargin be defined in the proof of Proposition C.1 above,

P [gmargin] Z 1-4.

Proof We shall show that each of the three sub-events in the definition of the event Emargin
occur with probability at least 1 — §/3. Then a union bound establishes the statement of the
lemma.

Proof of Part (a): Recall the definition of the set S

1
53:{1'6[19]¢2§|V2,i!§2}7
and also the definition of the set S;
S+ ::{Z'GSZVLZ"/Azllh}.

We will first derive a high probability bound the size of the set S, and then use this bound to
control the size of S;. A trivial upper bound is |S| < p. Let us derive a lower bound on its
size. Define the random variable ¢; = I [§ < [Va,| < 2]. It is easy to check that |S| = D icpp) Gi-
The expected value of this random variable

(4) _(
22] > 1—M—PHV%| 22]
V2w ’
(i4) _
9 1 exp( 2)>1
V2r V2T 2
where (i) follows since V5 ; ~ N (0, 1) so its density is upper bounded bounded by 1/v/2, and
(4i) follows by a Mill’s ratio bound to upper bound P [|V5 ;]| > 2] < 2 x e’(p\(/%%. A Hoeffding
bound (see Theorem F.5) implies that for any n > 0

P DSI > pE[G] - %] >1—exp (—an’p) .

Blg) = 1- B[ Vasl < 3| - Pl

1/4

Setting n = 1/p*/* we get

P [|sy >p (; - ]311/4” > 1— exp (—c1+/B). (40)

We now will bound |S; | conditioned on the event in the previous display: p <% — ﬁ) <|S] <
P.

For each i € S, the random variable V; ;- ~ N (0, %) since each entry of V7 ; is drawn inde-
pendently from N (O, %) and because ||u|| = 1. Define a random variable & :=1[Vi; - u > 4h].

It is easy to check that [Si| =), 5 & The expected value of &;
1 1
= [Pz 40— 5| = [PV 2 0 - BIVi e fo.am) -

&) dhyp ) 1
C PV, p e [0,4R)] £ VP L

Elel-;

Voryv2 T Vb
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. . . . . . 1
where (7) follows since the density of this Gaussian is upper bounded by = ( %) and (i7) is
by the assumption that h < ‘2/—;. Thus we have shown that 3 — % <E&) <%+ ip. Again a

Hoeffding bound (see Theorem F.5) implies that for any n > 0

11 )
P [’Z&— ISIE[&]| < np ‘ p (2 — p1/4> <S] Sp] >1—2exp (—con’p) .
€S
By setting 7 = 1/p'/* we get that

P ||1s:1 - ISt | <5

p<;_pll/4> <|S| gp} >1—2exp(—c2y/D)- (41)

By a union bound over the events in (40) and (41) we get that
1 1
P [p (4 - op(1)> <|S¢|<p (2 + op(1)>] > 1 —exp(—ci1y/p) — 2exp (—c2/D) -
By assumption p > logcl(n /9) for a large enough constant ¢, thus

Plo (- o)) <150 <p (54 o)) 21073

which completes our proof of the first part.
Proof of Part (b): The proof of this second part follows by exactly the same logic as Part (a).
Proof of Part (c): Fix any ¢ € [p] and s € [n]. Recall that Vi; ~ N (O, %I) and by
assumption ||zs —ysp|| < r. Thus the random variable Vi ;- (x5 —ysp) is a zero-mean Gaussian

random variable with variance at most 2%2. A standard Gaussian concentration bound implies
that

h2
B Vi (oo = )] < 28] > 1~ 20p (~ 220 ). (12)

By a union bound over all ¢ € [p] and all s € [n] we get

. coph® )
PHielpl,sen] : |(Vig)- (xs —ysp)| < 2h] > 1 —2npexp | — >1-3

r2
where the last inequality follows since 72 < W and because p > logc/ (n/d) for a large
75
enough constant ¢ > 0. This completes our proof. |

D Omitted proofs from Section 3.2

In this section we prove Theorem 3.3. We largely follow the high-level analysis strategy pre-
sented in [Che | 21] to prove that with high probability if the the width of the network is large
enough then gradient descent down the loss to at most Wﬁ under the Asssumption 3.2.
After that we use our general result, Theorem 3.1 to prove that gradient descent continues to
reduce the loss beyond this point. We begin by introducing some definitions that are useful
in our proofs in this section. All the results in this section are specialized to the case of the

Huberized ReLU activation function (see its definition in Equation (1)).
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D.1 Additional definitions and notation

Following Chen et al. [Che+{21] we define the Neural Tangent random features (henceforth
NT) function class. In these definitions depend on the initial weights V) and radii 7, p > 0.
We shall choose the value of these radii in terms of problem parameters in the sequel. Define
a ball around the initial parameters.

Definition D.1. For any VY and p > 0 define a ball around this weight matriz as

va,:z{vz v, — v <}.
( P) z&ffﬂ’f < p

We then define the neural tangent kernel function class.

Definition D.2. Given initial weights VY, define the function

Fv<1>,v(35) = fya (@) + (Viva () (V- V(l))v

then the NT function class with radius p > 0 is as follows
FVW,p) = {Fyw (@) : Ve BVD,p}.

We continue to define the minimal error achievable by any function in this NT function
class.

Definition D.3. For any VY and any p > 0 define

1 n
€ V(l), ‘=  min — log(1 + exp(—ysF; zs))),
NT( p) VeBV W p) ; g( p(—y V(l),v( )

that is, it is the minimal training loss achievable by functions in the NT function class centered
at V. Also let V*(V O p) € BV, p) be an arbitrary minimizer:

RS
V*e argmin — E log(1 + exp(—ys Fya) v (5)))-
veB(vW p)

We will be concerned with the maximum approximation error of this tangent kernel around
a ball of the initial weight matrix.

Definition D.4. For any V) and any 7 > 0 define

app(VW,m) = sup  sup | fip () — fip (@) = Vip(as) - (V -~ ‘7) ’ :
selnl vveB(v® 1)

Finally we define the maximum norm of the gradient with respect to the weights of any
layer.

Definition D.5. For any initial weights VY and any 7 > 0 define

s€[n] Le[L+1] VeB(VD) 1)
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D.2 Technical tools required for the neural tangent kernel proofs

We borrow [Che+21, Lemma 5.1] that bounds the average empirical risk in the first 7" iterations
when the iterates remain in a ball around the initial weight matrix. We have translated the
lemma into our notation.

Lemma D.6. Set the step-size ay = o« = O ( for all t € [T]. Suppose that given

1
LF(V<1),T)2>
an initialization VY and radius p > 0 we pick 7 > 0 such that V* € B(V® 1) and VI €
B(VW 1) for all t € [T]. Then it holds that

T * *
1 S Iw®) < [V — VA2 = VT — v|2 4 2T0¢5NT(V(1)aP)‘
T —1 B Ta (% - 45app(v(l)77))

Technically the setting studied by Chen et al. [Che+21] differs from the setting that we study
in our paper. They deal with neural networks with ReLU activations instead of Huberized
ReLU activations that we consider here. However, it is easy to scan through the proof of their
lemma to verify that it does not rely on any specific properties of ReLUs.

The next lemma bounds the approximation error of the neural tangent kernel in a neigh-
bourhood around the initial weight matrix and provides a bound on the maximum norm of the
gradient. The proof of this lemma below relies on several different lemmas that are collected
and proved in Appendix E.

2(nL
Lemma D.7. For any é > 0, suppose that 7 = ) <loi§(£)> and T =0 (M), h < ﬁ

and p = poly (L, log (%)) for some sufficiently large polynomial. Then with probability at least
1 — & over the random initialization V) we have

(a) capp(VW,7) < O(\/plog(p)L°74/?) and,
(b) D(VW, 1) < O(/pL?).

Having provided a bound on the approximation error let us continue and show that gradient
descent reaches a weight matrix whose error is comparable to enT.

Lemma D.8. For any L € N, § > 0,

log® ("¢
T:Q<0g(6)> and T < ! =,

psL? c(plog(p))s LT
where ¢ is a large enough positive constant, p = g5, h < ﬁ, and p > poly (L,log (%))

for a large enough polynomial, if we run gradient descent with a constant step-size oy = o =
2
e (ﬁ), forT = [%-‘ iterations, with probability 1 —4§ over the random initialization

min J(V®) < 3ent (VWY p).
te[T)
Our proof closely follows the proof of [Che+21, Theorem 3.3].
Proof Recall the definition of

1
V*e argmin — Z log(1 + exp(—ys Fyya) y(25)))-
VGB(V(I)»/’) n s=1
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We would like to apply Lemma D.6 to show that the average loss of the iterates of gradient
descent decreases. To do so we must first ensure that all iterates V® and V* remain in a ball
of radius 7 around initialization.
We have assumed that 7 < —— = and that p > poly (L log ( )) for a large enough
c(plog(p)) 8 LT

polynomial. Therefore if this polynomial is large enough we have 7 < O (M) This
og2(p

means by we can invoke Lemma D.7 which guarantees that with probability at least 1 — 9,
the approximation error e,p, (V1 7) < O(\/;BL5T4/ 3) and the maximum norm of the gradient

r(vW, 7) < O(/pL?). Again recall that 7 < W, where c is a large enough positive
c(plog(p))8 L 4

constant. Thus for a large enough value of ¢ the approximation error eapp(V( ),7') < %. Let us
assume that this is case going forward.

Since p = 57 < 7, V* is clearly in BV, 7). We will now show that the iterates {V(t)}tem
also lie in this ball by induction. The base case when ¢ = 1 is trivially true. So now assume
that VY, ..., V=D lie in this ball and we will proceed to show that V(®) also lies in this ball.
Since app (VM 7) < 1/8, by Lemma D.6

=t , 1) _y*2 = (t) _ 1|2 _ (1)
LSty < IR VAP Z VO = VAP 20— Daenr (VY. )
which implies
Z H‘/Z(t) _W*||2 = ||V(t) _V*HQ S ”V( V*||2+2a(t—1)5N-|- —aZJ
Le[L+1] bt

<[V = V2 + 2a(t — Dent(VY, p)

(i)

< p+ (L+1)p* < (L+2)p* <3Lp?
where (i) follows since V* € B(V(), p) and t < T = {%—‘. Taking square roots implies
that for each ¢ € [L + 1], ||Vz(t) — V7|l £ V3Lp. By the triangle inequality for any ¢ € [L + 1]

VO v < IV vz +11vg =V < VBLp+p < 3Lp=r.

This shows that Ve(t) e B(VW 1) and completes the induction.

Now that we have established that V* and V() are all in a ball of radius 7 around V) we can
again invoke Lemma D.6 (recall from above that e,p,(V (M, 7) < + and (v r) < O(/pL?))
to infer that

min J(V0) < 1 ZT:J yoy < VO VA2 = VD VA2 + 2T acyr (VD). p)
te[T) t:l Ta
VW VP 4 2Taent (VY p)
- Ta
V(l) — V|2
= 2ent(VD, p) + HTH < 3ent(VY, p),
a
where the last inequality follows since V* € B(V(, p), therefore [V — V*||2 < (L + 1)p?
and because T = {%—‘. This completes our proof. |
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Finally we shall show that under Assumption 3.2 the error ent(V (), p) is bounded with
high probability. Recall the assumption on the data.

Assumption 3.2. With probability 1—9 over the random initialization, there exists a collection
of matrices W* = (Wy, ..., Wy ) with |[W*|| =1, such that for all samples s € [n]

ys (Vv (zs) - W*) > /P,

for some v > 0.
Lemma D.9. Under the Assumption 3.2, for any e,0 > 0, if the radius
c [«/log(n/é) + log (ﬁ)]

VDY

for some large enough positive absolute constant c¢ then, with probability 1 — 20 over the ran-
domness in the initialization

p>

1 n
€ V(l), = min — log(1 + exp(—ysF z5))) < e.
NT ( P) vettR, w SE_l g( xp(—YsFy o) v(75))) <
Proof Recall that, by definition,
Fv(l)y(fn) = fro () + (Vi (@) - (V - V(l))-

By Assumption 3.2 we know that, with probability 1 — §, there exists W* with ||W*| = 1,
such that for all s € [n]

i (Vv (zs) - W) = V/py. (43)

By Lemma E.11 proved below with know that

P [y (@)| < c1v/log(n/8)| =16, (44)

For the remainder of the proof let’s assume of that both events in (43) and (44) occur. This
happens with probability at least 1 — 29. Thus, for any positive A

i [fy (ws) + AV fya) (zs) - W > Ay/py — c1/log(n/0).

e1v/ 1878 +o sty
VDY

we infer that

Setting A =

vi [fya (xs) + A (Vv fya (zs) - WH)] > A\/py — c1y/1og(n/d) = log <exp(51)—1> . (45)

Set V = V) 4 AW*. The neural tangent kernel function at this weight vector is

Fyoy(2) = A7) + Vv fya @) - (V= VD) = fD(@) + AV fro) (2) - W
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Thus by using (45)

;ilog (1 + exp ( vilya y (s )) Zlog < + exp <—log (exp(el)—1>>>

s=1
<e.

V1 §)+Hog( ——A—
We can conclude that if we choose the radius p > A||[W*|| = A i )ﬁf/g<exp(e>l>

||[W*|| =1 by assumption) then there exists a function in the NT function class with training
error at most €. This completes our proof. |

(since

D.3 Proof of Theorem 3.3

Theorem 3.3. Consider a network with Huberized ReLU activations. There exists r(n, L, ) =
poly (L, log (%)) such that for any L > 1, n >3, § > 0, under Assumption 3.2 with v € (0, 1]
if h =hnT and p > T(n,;%&) then both of the following hold with probability at least 1 — 46 over
the random initialization:

1. For allt € [T] set the step-size oy = anT = @(#), where T = {w1 then

3anT

in J;y < 1
min .
teir] "' pit2ALl

2. Set V) = V) where s € arg mingep) J(V), and for allt > T +1 set the step-size
ap = Qmax(h) then for allt > T + 1,

3L+11 2L+5
th()( L™5 (6p) )

nlt24L . (t —T —1)
Proof Proof of Part 1: Define two events

te|T)

1 .
€= {%(V“%p) < 3n2+24L} and & := {““n JVO) < 3€NT<V(1”’)}'

We will show that the & := &, N &, occurs with probability at least 1 — 36. That is,

. 1
P [61 = {%1%1] JVO)y < R TT) H >1-—34. (46)

The value of p is set to be (this was done in Equation (4))

(2+24L)
p= \f’y[ 1g< )+log<3n >]
1
> L log (%) + log A (since e* < 1+ 2z when z € [0, 1]).
\/ﬁfy exp <W) — 1
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With this choice of p, since c; is a large enough absolute constant, Lemma D.9 guarantees that
P [511] Z 1- 257 (47)

where the probability is over the randomness in the initialization. Continue by setting

T=3Lp= ?:;;35 [ log (%) + log(3n(2+24L))}

Since p > poly (L, log (%)) /~? for a large enough polynomial it is guaranteed that

log® (&
7= 7og3(5) and 7 < ! 5
p2L? c3(plog(p))s L'+

where c3 is the positive absolute constant from the statement of Lemma D.8. Also recall the

value of h = hyt from Equation (5)

(1+24L)log(n) @) 311 { log(n/d) + log (Sn(2+24L))} i
h = hNT g yE S _ T
V6(6p) 2 L? oy 7

where (i) follows since v € (0,1] by assumption. Under these choices of 7 and h along with

the choice of the step-size ay = © and number of steps 7', Lemma D.8 guarantees that

1
pL5 >
P&] > 1. (48)

A union bound over the events (47) and (48) proves the Claim (46), which completes the proof
of this first part.

Proof of Part 2: To prove this part of the lemma, we will invoke Theorem 3.1 to guarantee
that the loss decreases in the steps t € {T" + 1,...}. We defined VI+) — v where s €
arg mine 7 J(V®), thus we are guaranteed to have J(V(T+1)) < W% < W%’ if event &;
defined above occurs. Define another event

& = {IVV] < VoL }.

Lemma E.12 guarantees that P[£5] > 1 — §. Define the “good event” £ := £ N E. A simple
union bound shows that

P[€] > 1 — 46.

Assume that this event £ occurs for the remainder of this proof. This also establishes that
the success probability of gradient descent is at least 1 — 40 as mentioned in the theorem
statement.

To invoke Theorem 3.1 we need to ensure that h < hpyax. Recall that, in Equation (3a), we

defined

L_3
Amax 1= min Le IOg(l/JT+1),1 .
6\/13”‘/(T+1)HL
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For all ¢ € [L + 1], HV(TJrl V| < 7 (this fact is implicit in the proof of Lemma D.8). By
the triangle inequality

HV(T+1)H < Hv(l)” + HV(TH) _ V(l)” < \/5pL +VL+ 17 < \/6pL

poly (L. Jox(2))

by the choice of 7 above and since p > - for a large enough polynomial. This

means that

b Lé_‘g(l +24L)log(n) (1 +24L)log(n)
S TTRRWODE  6E s

= hnt = he

Thus, our choice of A is valid. In this second stage the step-size is chosen to be

h [V 2
Omax(h) = min 5 ) 1 57T,
832(L + 1)? pJp i [[VTHD|3L4+5" 2L(L + 1) Jp g1 log? F (1) Jrir)

h
832(L + 1) pJra|[VTHD|3L45]

where the first term of the minima wins out above by our choice of h and because ||V T+ || <
v6pL. Thus Theorem 3.1 guarantees that

J(V(t)) - J(V(T+1))
© Qomax(h) - (t =T —=1)+1

where Q(-) was defined in Equation (3c). Thus,

~  L(L+ Y)amax(h) Jri1log? H (1) Jpia)

Olamax(h) = e
_ L(L+ §)Jryalog (1) Iria) h
- HV(T+1)||2 % 832 (L + 1)2pJT+1HV(T+1)H3L+5
hL(L + 1)

T 832(L + 1)2p|VTTD ||3L+7
(1+24L)(L + )log( )
~ 832v/6L2(L + 1)2p(6p) = (6pL) =

3L+7

310g( )
(L+ 1) (Gp)élL;»lO
1

v

4AL+10

(L +1)2(6p) 2
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Thus, for all t > T + 1

J(V(t)) - J(V(T+1))
Q- (t-T-1)+1

o1 1
SpIAL Q. (t—T— 1) + 1

1 104v/6L"2" (L + 1)2(6p) "2
Tt G 1) 41040757 (L + 1)2(6p)

1 104v6L™5 " (L + 1)2(6p) 3

nl+24L (t—T—1)

:0< ﬁ%H@NH5>,

4L410
2

PP (f T — 1)

this completes the proof. |

E Proof of Lemma D.7

In this section we prove Lemma D.7 that controls the approximation error 5app(V(1),T) and
establishes a bound on the maximum norm of the gradient T'(V(®) 7) . The proof of this
lemma requires analogs of several lemmas from [ALS19; Zou+20] adapted to our setting. In
Appendix E.1 we prove that several useful properties hold at initialization with high proba-
bility. In Appendix E.2 we show that some of these properties extend to weight matrices close
to initialization and in Appendix E.3 we prove Lemma D.7.

Throughout this section we analyze the initialization scheme described in Section 3.2. This
scheme is as follows: for all ¢ € [L] the entries of Ve(l) are drawn independently from A (O, %)
and the entries of V[(/}i-)l are drawn independently from A (0,1). Again, the results of this
appendix apply only to the Huberized ReLU (see definition in (1)).

E.1 Properties at initialization

In the next lemma we show that several useful properties hold with high probability at ini-
tialization.

Lemma E.1. For any d > 0, suppose that h < W, p > poly (L, log (%)) for a large enough
log? (%)
i
p2 L3
V) we have the following:

polynomial and T = < ) . Then with probability at least 1 —§ over the randommness in

(a) For all s € [n] and all € € [L]:

v, o2 1
H$£,S || 6 [107 10 :

(b) For all all ¢ € [L], [VVlop < O(1), and [V, < O(yD).
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(c) For all s € [n] and all 1 <03 <ty < L,

1 (1) (1)
Vi sh s v <O,
and for any 1 </¢; < L
1 (1) v
|vihsEy - sEvEY| < otvab).

(d) For all s € [n] and all 1 < {1 < {3 <L,

1 (1) M(1
[vasrs - sE v a] < 3)al

Els

for all vectors a with ||allo < k = W’ where ¢ is a small enough positive absolute
constant.

(e) For all s € [n] and all 1 <0y <ty < L,

|| = odan

Ty, (v V(l)
Ha’ ‘/42 252—178' 518‘/61

for all vectors a with |lallo < k = ﬁ, where ¢ is a small enough positive absolute
constant.
(f) Foralls € [n] and all 1 < ¢; < ¥y <L,

T ) ar® Sy klog(p)
a v sl sl v <o <|| ”Hb”T

for all vectors a,b with ||al|o, ||bllo < k = where ¢ is a small enough positive

absolute constant.

cp
log(p) L2’

(9) For all s € [n] and all 1 < ¢ <L,
(1 1) M1
VLSS sV el < 0 (Jlallv/kIog®))

for all vectors a with |lallo < k = ﬁ, where ¢ is a small enough positive absolute

constant.

3

(h) For =0 <L272/3) and
Sus(8) = {3 €l : V)=l < 8}
where VZ(;) refers to the jth row of Ve(l), for all ¢ € [L] and all s € [n]:
[Se5(8)] < O(*28) = O(pL*r*/?).
We will prove this lemma part by part and show that each of the eight properties holds with
probability at least 1 —4/8 and take a union bound at the end. We show that each of the part

holds with this probability in the eight lemmas (Lemmas E.2-E.9) that follow.
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E.1.1 Proof of Part (a)

Lemma E.2. For any 6 > 0, suppose that h < ﬁ and p > poly (L,log (%)) for a large

enough polynomial, then with probability at least 1 — 0/8 over the randomness in V) we have

that for all s € [n] and all £ € [L]:

Il € (5 5
10°10] -
Proof Fix any layer ¢ € [L] and any sample s € [n]. We will prove the result for this layer
and sample, and apply a union bound at the end. To ease notation we drop V() from the

V 1 (1)

superscript of n and refer to V7 as simply V}.

By definition

Ty s = d) (wxffl,s) .

2|jwg_1 412
p

each entry of V; is drawn independently from A (0, %) Let ¢(z) = max{0, z} denote the ReL.U

activation function. Then we know that ¢(z) — & < ¢(z) < ¢(2) for any 2 € R. Let (zy);
denote the ith coordinate of xy and let V;; denote the ith row of V;. Therefore conditioned on

Te—1,s

Conditioned on xy_; g, each coordinate of Vyxy_ , is distributed as N (0, ), since

E [(xﬁ,s)?‘l'ﬁ—l,s] =E [¢2 (w,ixﬁ—l,s) ‘:L'E—l,s]

_ h2
>E [¢2 (W,ixﬁ—l,s) ‘fﬂe—l s] hE [ ‘/@zxﬂ 1,s |5L'€ 1 s] + Z
i1 [|Veiwo—1,s s h?
(:) iE [(W,ixé—l s 2 ’xé—l s} ‘ Lt 21 ’ ‘W ! ] + a1

_ ”W—l,s\|2 hHW ls” +
p 2p7 4’

where (i) follows since ¢(z) = 0 if 2 < 0 and the distribution of Vj;z,_1 s is symmetric about
the origin. Therefore summing up over all i € [p] we find

Bhllzersll b2
E [laosl? [e1s] = SO [(0)? [re1s] > [l lf? - Y2l I
i) V2T 4

> (beesal - 2) (49

Similarly we can also demonstrate an upper bound of E [||z¢s||? | ze—1,s] < |lze—1,s]/* since
d(2) < ¢(z) for any z as stated previously.

Let |||y, denote the sub-Gaussian norm of a random variable (see Definition F.1) and let
|||, denote the sub-exponential norm (see Definition F.2). Since the function ¢ is 1-Lipschitz,
conditioned on xy_1 s,

[(we,s)illy, = l6(Veize—1,6)lpn
<|¢(Veixr—1,5) —E[d(Viize—1s)|xe—1.5]|lps + IE[d(Veite—1.s)|Te—1.5] |l

) lwe—sl @ el
c———— + ||E ‘/ézxé ,8)|1Te—1s <cag—— 50
7 IE [o( 1,5)|Te—1,6] 7 (50)

INS
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where (i) follows by invoking Lemma F.4, and (i7) follows since we showed above that

To_1
IE [¢(Veize—1,6)Te—1,5]llpy = [E[@(VeiTe—1,5)|Te-1,5] | < \/E (2 (Veio—1 s)|xo—1,5] < ”i/%

2
Therefore ||(z¢,5)? ||y, < \|(:Cg75)i||12p2 < % by Lemma F.3. Since the random variables
(z05)3, .- (mg,s)i are conditionally independent given xy_; s, applying Bernstein’s inequality
(see Theorem F.6) we get that for any n € (0, 1]

P (|leesl? = E [lloesl? lze-1] | < nlleeoll? [ees)
2 4 2
: - [lze—1s Nl ze—1,sll
>1—2exp | —cmin : , ’
( {p X (Bllze-1,s)*/p?) " colle-1,s[*/p
>1—2exp (—03 min {nzp, np})
>1—2exp (—03pn2) .

We established above that the expected value

h\/p 2
(lo1all = ) < B [l or-a,] < el

Thus

ho/p\ 2
P (uxe,suz : [(qu,su =AY a0+ )

Taking a union bound over all samples and all hidden layers we find that: for all s € [n] and

all £ € [L]

>1—2exp (—03pn2) .

2 2(1+m)

|$€—1,s

hyp\ 2
P <||£Ué,sH2 = [(Hm_mn M) e

>1—2nLexp (—63pn2) .

This implies that, for all s € [n] and ¢ € [L]

h?p
P <‘ wa,sHQ - ”mffl,sHQ’ < 77"-@[71,3”2 + h\/ﬁ”xéfl,su + 4> >1—2nLexp (_0317772) .

Setting n = ﬁ and because by assumption h,/p < ﬁ =1 we get that for all s and ¢ € [L]:

2

n
P ([l = loeos.l?] < alleesal 4 nloeral + %) 2 1~ 20Lexp (-

C4p )

Iz (51)

Let us assume that the event of (51) holds for the rest of this proof. Starting with £ = 1 we

know that ||z s|| = ||zs|| = 1, thus if the event in the previous display holds then by the choice
of n =1/(50L) we have that

|z1,]* € [1 — 3,1+ 3n).
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For any z € [0,1] we have that (1 + 2)/2 < 1+ 2z and (1 — 2)"/2 > 1 — 2. Thus, by taking
square roots

Je1sll € [1 =30, 1+ 3n].

We will now prove that ||z || € [1—3¢n, 1+3¢n] using an inductive argument over £ = 1,..., L.
The base case when ¢ = 1 of course holds by the display above. Now let us prove it for a layer
£ > 1 assuming it holds at layer £ — 1.

Let us first prove the upper bound on ||z, the lower bound will follow by same exact
same logic. If the event in (51) holds then we know that

2
s l? = llze1. ol < mlleer ol +nllzel + 4
which implies that
2
lzesl® < llzersll® (14 n) + wlleesll +
2
2 n n
= ||Tp_1, 1+n+ + >
bronl? (1404 2 b
(i) 10n 257
< sl —_— 4+ —
<loesal? (1404 297 + 2T
197 2502\ @) 20m
2 2
= _ 14—+ ——| < _ 14—
foe-al? (14 2574 20 ) S ol (14 %
where (i) follows since by the inductive hypothesis ||z¢_; ;|| > 1 — 3(¢ — 1)n and because

1 3(6-1 97 9 . : 1
n = gor, therefore ||x,_14[| > 1 — £00L) > 100 > 1p» and (ii) again follows because n = 57

and L > 1. Taking square roots we find

20
el < laesslly/1+ 75"

< (1+3(z—1)n),/1+¥ (by the TH)

)

< (1+3(¢—-1)n) <1+28n>

20n | 60(¢ —1)n? (i)

where (4) follows since v/ + z < 1+2 and (ii) follows since = i and L > 1. This establishes
the desired upper bound on ||z ||. As mentioned above, the lower bound (1 — 3¢n) < |z ||
follows by mirroring the logic. This completes our induction and proves that for all s and all

¢ with probability at least 1 — /8
[zesll € [L = 36,1+ 36n].

—
=

Our choice of n = 50% establishes that

9 11
i P
foel € | 5035 (52)
for all s € [n] and ¢ € [L] with probability at least 1 —2nLexp (—5%) > 1—4/8, which follows
since p > poly (L, log (%)) for a large enough polynomial. This wraps up our proof. |
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E.1.2 Proof of Part (b)

Lemma E.3. For any 6 > 0 suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — §/8 over the randommess in V1) :

foralie (L], VPl <O), and [V, < O(p).

Proof For any fixed ¢ € [L] recall that each entry of Vz(l) is drawn independently from
N (O, %) Thus, by invoking [Verl8, Theorem 4.4.5] we know that

1V|lop < O(1)

with probability at least 1 —exp(—(p)). The entries of VL(i)l are drawn from A (0, 1), therefore
by Theorem F.7 we find that

1
V12 < 2p

with probability 1 — exp(—£(p)). By a union bound over the L + 1 layers and noting that
p > poly (L, log (%)) yields that

forall €€ [L], [[V\"]op <O1), and [V | < O(/p)

with probability at least 1 — §/8 as claimed. |

E.1.3 Proof of Part (c)

Lemma E.4. For any 6 > 0 suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — §/8 over the randomness in VW we have that for all s € [n]
and all 1 < 41 < ¥ty < L,

1 (1) (1) 1
[visit, S| <ow).
and alll1 < /{1 <L
v (1) v 1,(1)
vt sy, < otm

Proof We begin by analyzing the case where ¢ < L+1. A similar analysis works to prove the
claim when ¢9 = L + 1. This is because the variance of each entry of VL(Bl is 1, whereas when
ly < L + 1 the variance of each entry of Vg(l) is 2/p. Therefore the bound is simply multiplied
by a factor of v/2p in the case when ¢ = L + 1.

Fix the layers 1 < ¢1 < {5 < L and fix the sample index s. At the end of the proof we shall
take a union bound over all pairs of layers and all samples. Now to ease notation let us denote
Ve(l) by simply V; and let EXS(I) be denoted by ¥ ;.

To bound the operator norm

1 (1) 1) (1
Vi st vy

1 (1) (1)
= sup [vzhl 2l V| (53)
P aflal=1
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we will first consider a supremum over vectors that are non-zero only on an arbitrary fixed
subset S C [p] with cardinality |S| < | 9% ], where ¢; is small enough absolute constant. That
is, we shall bound

2. (D5 v y,(1)
Ei= sup HVK? Y1 X Ve al| -
a:[|al|=1,supp(a)CS

Using this we will then bound the operator norm in (53) by decomposing any unit vector a

into LC% vectors that are non-zero only on subsets of size at most | 2% ].
ﬁJ

Let us begin by first bounding Z. Recall that for a fixed unit vector z € SP~! by Part (b) of
Lemma E.10 that is proved below we get

||W22€2—1,S et E€1,SW1Z|| S 2

—q(=
with probability at least 1 — O(nL3)e <LT)

We take an 1/4-net (see the definition of an e-net in Definition F.8) of unit vectors {a;}",
whose coordinates are non-zero only on this particular subset S, with respect to the Euclidean
norm. There exists such an 1/4-net of size m = 917/L* (see Lemma F.9). By a union bound,

Vie [m]v HV@2252,173 e Zfl,swlai” <2 (54)

with probability at least 1—O(nL? -9‘31p/L2)67Q(%) =1 —eiQ(ﬁ) since p > poly (L,log (%))
for a large enough polynomial, and because c; is a small enough constant. We will now proceed
to show that if the “good event” (54) regarding the 1/4-net holds then we can use it to establish
guarantees for all unit vectors a that are only non-zero on this subset S. To see this, if ((a)
maps each unit vector a with support contained in S to its nearest neighbor in {ai,...,an},
then if the event in (54) holds then

E= sup szzfz—LS T Zﬂwvélaﬂ
a:l|al|=1,supp(a)CS
= sup Ve By 1.6+ 2y sV (@ = C(a) + ((a)) ]
arlall=1,supp(a)CS
< sup HVEQZb—l,S t Zf1,8Vf1aj|| + sup HW2E€2—1,S e Eﬂl,swl (a - C(a))H
Jj€lm] allal|=1,supp(a)CS
(@) 1 a—((a
< sup HWQZ&*LS T 261,8‘/61%“ + Sup ‘/Ezzfzfl,s T E&,swl(q))H
j€[m] 4 a:|lal]|=1,supp(a)CS ”CL - C(a)H
) =
<2+ —
< 2+ 1

where and (i) follows since ||a — ((a)|| < 1/4, Inequality (ii) follows since we assumed the
event (54) to hold and by the definition of . By rearranging terms we find that for any unit
vector a that is only non-zero on subset S we have that

1
HVble—l,S T Zfl,swlan < 1 X2 <3 (55)

=

_af=
with the same probability that is at least 1 — e Q(L2>.
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As mentioned above we will now consider a partition of [p] = S U ... U S, such that for
all i € [q], |S;| < |$£] and the number of the sets in the partition ¢ < ﬁ = {L—ﬂ Given

L2 % c1
L
an arbitrary unit vector b € SP~!, we can decompose it as b= uj + ... + ug, where each u; is
non-zero only on the set .S;. Invoking the triangle inequality

q
Ve Sts16 - SV bl <D Ve By 1,6+ - Sy s Vi |
=1

i=1

Wi
WQEZQ—LS e Eﬂhswl m
1

il

By applying the result of (55) to each term in the sum above along with a union bound over
the ¢ sets S1,..., 5, we find that: for all unit vectors b € Sp—1

q q 1/2
Vis St 1,5+ ey sVir bll <3 _lluall < 3/ (Znuiw) =34 =0(L)
i=1 i=1

with probability at least 1 — g~ (%) = 1 o(£2)e () iti

y at leas qe (L?)e . The definition of the operator
norm of a matrix [|Allop = sup,.|,|=1/|Av|| along with the previous display establishes the
claim for this particular pair of layers ¢1 and f5 and sample s. A union bound over pairs of
layers and all samples to establish that: for all pairs 1 < /¢; < ¢y < L and all s € [n]

Ve Xt,-1 - BV [lop < O(L) (56)

P
2

with probability at least 1 — O(TLL4)€79<L ) As claimed above, a similar analysis shows that
for all s € [n] and all ¢; € [L]

Vi XL - XV [lop < O(VPL) (57)

with probability at least 1 — O(nLﬂeiQ(ﬁ). Since p > poly (L,log (%)) we can ensure that
both events in (56) and (57) occur simultaneously with probability at least 1 — 0/8. [ ]

E.1.4 Proof of Part (d)

Lemma E.5. For any 6 > 0, suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — §/8 over the randomness in V) we have that for all s € [n]
and all 1 < 01 <ty <L,

1) «v® v ,(1)
vasrh sk vV < 3)a
for all vectors a with ||allp < k = ﬁ, where ¢ is a small enough positive absolute constant.

Proof We fix the layers 1 < £; < {5 < L and fix the sample index s. At the end of the proof
we shall take a union bound over all pairs of layers and all samples. Again, to ease notation,
let us denote Vg(l) by simply V; and let Z‘}/S(D be denoted by X ;.
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For a fixed unit vector z € SP~! by Part (b) of Lemma E.10 that is proved below we have

HVEQEEQ—LS t 251,5‘/@1ZH <2 (58)

with probability at least 1 — O(nL?’)e_Q(L%) Consider a 1/4-net of k-sparse unit vectors
{a;}7 1, where m = (})9* (such a net exists, see Lemma F.10).
Using (58) and taking a union bound, we find that for all vectors {a;}",

Hvﬂzzb—lﬁ T Eh,svﬂlaz’” <2
_ _p_
with probability at least 1 — O ((7)9* - nL?) e Q<L2>.

Now by mirroring the logic that lead from inequality (54) to inequality (55) in the proof of
the previous lemma, we can establish that for any vector a that is k-sparse

again with probability that is at least 1 — (i) 9k . O(nL3)e_Q(ﬁ). A union bound over all pairs
of layers and all samples we find that: for all 1 < ¢; < ¢y < L, for all s € [n] and for all vectors

a that are k-sparse
with probability at least
—o(= k —o=
o ((R)or e ) "B 2o () 0t ) ) e (< (21

—1-0 ((?)k : n2L5> ()

—1-0 (n2L5) efﬂ<%fklog(96p)>
>1-6/8

a
Wngz—l,s e Zzl,st”a’H S 3

a
WQZZQ—LS e Zzl,st”a’H S 3

™~

where the last inequality follows since k < —5 7= where c is a small enough absolute constant

log(p)
and p > poly (L, log (%)) for a large enough polynomial. This completes the proof. |

E.1.5 Proof of Part (e)

Lemma E.6. For any é > 0, suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — §/8 over the randomness in V1) we have that for all s € [n]
and all 1 < 01 <ty <L,

Ty-(1 1) M -(1
o s s

| <O(lal)

for all vectors a with ||a|lop < k = where ¢ is a small enough positive absolute constant.

cp
log(p)L?’
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Proof We fix the layers 1 < £ < {5 < L and fix the sample index s. At the end of the proof
we shall take a union bound over all pairs of layers and all samples. In the proof let us denote
Vz(l) by simply V; and let EZ:) be denoted by X ;.

For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

: 42(%) .
1—0(nL?)e ~"\L?/ over the randomness in (V,—1,..., V1)
136 -1,5Ves—1 -+ ey s Vi 2| < 2] (59)

Recall that the entries of Vp, are drawn independently from N (0, %) Thus, conditioned on
this event above, for any fixed vector w the random variable wTng (Xpy—15 -2 Vi 2) is a

8llwl*|1=]*

mean-zero Gaussian with variance at most . Thus over the randomness in Vp,

4 —o(=
< FhollelfVer, i) 2 1- ). o

P(\wTWQE@_l,S---Ezl,swlz <<

By union bound over the events in (59) and (60) we have

< 4|w||HZH> > 1 - oLy e #), (61)

P<(wTw22z2_1,s---Ez1,swlz <<

Similar to the proof of Lemma E.4 our strategy will be to first bound

T
sup sup e Vi S Sy oV
a:||al|=1,||al|o <k b:||b|]|=1,supp(b)CS

where S is a fixed subset of [p] with |S| < ¢, where ¢; is a small enough absolute constant. Let
{zi}i_, be an 1/4-net of unit vectors with respect to the Euclidean norm whose coordinates
are non-zero only on this subset S. There exists such an 1/4-net of size r = 912/ L (see
Lemma F.9). Let {w;}[", be a 1/4-net of k-sparse unit vectors in Euclidean norm of size
m = (7)9* (Lemma F.10 guarantees the existence of such a net). Therefore by using (61) and

taking a union bound we get that

< (62)

. . 4
Vielrl.gem [w] VB Ba Vou| < 7

with probability at least 1 — er(nL3)e‘Q(ﬁ) = 1 — O(9a?/L? (g)gknL?’)e‘“(%) =1-

_of = .
e (LZ), since k = ﬁ where both ¢ and ¢; are small enough absolute constants and

because p > poly (L, log (%)) for a large enough polynomial.

We will now demonstrate that if the “good event” in (62) holds then we can use this to
establish a similar guarantee for all k-sparse unit vectors a and all unit vectors b that are only
non-zero on the subset S. To see this, as before, suppose ( maps any unit-length vector with
support in S to its nearest neighbor in {z1,..., 2.} and A maps any k-sparse unit vector to its
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nearest neighbor in {w, ..., wy,}. Then if the event in (62) holds, we have

== sup sup ‘CLTV@E@Q,LS X sV b
azllall=1,[lallo<k b:]|b]|=1,supp(b) TS
— s sup (@ = A(@) + A@) VeuTeg1- Beg s Vis (0 = C0) + C(0))

a:||a||=1,]|allo<k b:||b||=1,supp(b)CS

S sup w;‘/zzzfgfl,s T Efl,swl Z]‘
i€[m],j€[r]
+ sup (a - )‘(a))TWQzﬂzfl,s ce E€1,swlzj‘
a:llal|=1,llallo<k.j€lr]
+ sup 07 Vi St Zeu s Vi (b= C(0)|
i€[m],b:||b||=1,supp(b)CS

+ sup sSup (CL - )‘(a))—r‘/bzﬁz—l,s to Eﬁl,swl (b - C(b))
a:llal|=1,llallo<ki€[m],b:||b]|=1,supp(b) S5
)4 = =2 B 4 9

T B BT I
IR T AT (63)

INS

where (i) follows by the definition of Z, because we assume that the event in (62) holds, and
also because ||a — A(a)|| < 1/4 and ||b — ((b)]| < 1/4.

By rearranging terms in the previous display we can infer that
1 4 10
L

== sup sup ‘GTWQEKZ_LS e Eel,swlb S WZ <
T 16

a:||al|=1,|allo <k b:[b]|=1,supp(b) S5

(64)

with probability at least 1 — e L2/,
Finally, when b is an arbitrary unit vector we can partition [p] = S1U...US,,, such that for
all i € [m], |S;] < [9%] and the number of the sets in the partition ¢ < V}pr = H—f—‘ Thus,
Z

given an arbitrary unit vector b € SP~!, we can decompose it as b= u + ...+ ug, where each

u; is non-zero only on the set .S;. By invoking the triangle inequality
q
0" Ve Sy 1,5+ - SeVi bl < o Vi Sy 1+ Sy oV wal.
i=1

By applying the result of (64) to each term in the sum above we find that: for all k-sparse
unit vectors a and all unit vectors b € SP~1

1/2
10 & 10 1 10,/q
0 Vi1~ Se s Vidl < 7 D lluill < TV (Dmu?) = VT _ o)
=1 =1

P
2

. . -0(%) 2y (%)
with probability at least 1 — ge 12) =1—-0(L%)e £/ In other words for all k-sparse
unit vectors a

HQTV&EZQ*LS T thsvﬁ H = ﬁ‘“hp ’aTV@Eb*LS T E‘el,swlb’ < O(l)
b:||b||=1

_of=x
with the same probability that is at least 1 — O(L?)e Q(LZ). By a union bound over the pairs
of layers ¢1 and ¢ and all samples s € [n] we establish that: for all pairs 1 < {1 < fy < L, all
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s € [n] and all k-sparse vectors a

T

wzzfg 1,8 Zfl,s‘/&

<o)

with probability at least 1 — O(nL4)e_Q(%). Since, p > poly (L, log (%)) we can ensure that
this happens with probability at least 1 — §/8 which completes the proof. [ ]

E.1.6 Proof of Part (f)

Lemma E.7. For any § > 0, suppose that p > poly (L, log (%)) for a large enough polynomial,
then with probability at least 1 — §/8 over the randomness in V1) we have that for all s € [n]
and all 1 < 01 <ty <L,

Kls

ey @ M, klog(p)
@tV S B Ve(l)b|<0<|| Iy ==

for all vectors a,b with ||allo, ||b]lo < k =
constant.

ﬁ, where ¢ is a small enough positive absolute

Proof Fix the layers 1 < ¢; < 5 < L and the sample index s. At the end of the proof we shall
take a union bound over all pairs of layers and all samples. In the proof let us denote Ve(l) by
simply V; and let ZZS) be denoted by ¥ ;.

For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

3y,~( %) :
1—0(nL?)e "\t?J over the randomness in (Vp,—1,..., V1)
”252*1,8‘/52*1 s Eﬂl,sVéle < 2HZ|| (65)

Recall that the entries of Vp, are drawn independently from N (0, ) Thus, conditioned on

this event above, for any fixed vector w the random variable w W2 (Bpg—1,5 -2, Vi 2) is a

8lwl|?]l=]1?
P

mean-zero Gaussian with variance at most . Therefore over the randomness in V,

_ klog(p)

ol Ve, - v) <e mEL o (66)

51 klog( )
C2

((w VisZts 10+ Sy oVir 2

where ¢y is a small enough positive absolute constant that will be chosen only as a function
of the constant c¢. A union bound over the events in (65) and (66) yields

_ klog(p)
E0B) ), |||rzH>21—0<nL3>e‘“<5>—e

P (\wTwzzez_l,s B V2| <

_ klog(p)
=1- e_Q(ﬁ) —e 1283 (67)
where the last equality holds since p > poly (L, log (%)) for a large enough polynomial.
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Let {w;}1, be a 1/4-net of k-sparse unit vectors in Euclidean norm of size m = (¥)9* (such
a net exists, see Lemma F.10). Therefore by using (67) and taking a union bound we find that

.. 1 [klog(p
V’L,] S [m] ‘wg—‘/fngg—l,s "'Efl,swle‘ S ;2 If() (68>

with probability at least

_ klog(p) 2 _ klog(p)
L (e_mpm) L ) 0 ((@ 9k> ) (E) | B

i 2k _ klog(p)
Y10 ((91?’) > (O | )

_ klog(p)
—1_ <e—Q(L'é)+2klog(96p) +e 128¢2 +2k10g(96p))

@, <e‘9(52) n en(klog@))) @) | _ ()

where (i) follows since (§) < ()", (ii) follows since p > poly (L,log (%)), k = W and
because ¢y is a small enough absolute constant (which can be chosen given the constant c),
. . e
and (7i7) again follows since k = g2
We will now demonstrate that if the “good event” in (68) holds then we can use this to
establish a similar guarantee for all k-sparse unit vectors a and b. Suppose, for each k-sparse

unit vector w, that {(w) is its nearest neighbor in {wi,...,wy}. Then, if the event in (68)
holds,
== sup sup ‘aTszzbfl,s 2,5V b

a:l|al|=1,[|lallo<k b:[[b]|=1,[|blo<k

= sup sup ‘(a —((a) +¢(a) "V Bey—1,6 -+ ey s Vey (b — C(b) + ¢(b))
allall=1,llallo<k b:||b||=1,||bllo<k

T
S sup wi Wszgfl,s T Efl,swle’

i,j€[m]
s @ @) Vi S Vi)
a:llal|=1,llallo<k,j€[m]
+ sup ‘wiTVbe—LS 20,5V (b— C(b))’
i€[m],b:[|bl|=1,[Ibllo<k
+  sup sup (@ = (@) Vi1 - Ty s Via (0 = 1)
azllal|=1,l|allo<k b:||b]|=1,[Iblo<k
@ 1 [klo =E = = 1 [kl 9
Q1 [klogp) E E_ E _ 1 [kloglp) 9
c2 P 4 4 16 ¢ P 16

where (i) follows by the definition of Z, because we assume that the event in (68) holds, and
also since ||ja — ((a)|| < 1/4 and ||b — ((b)|| < 1/4.
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By rearranging terms in the previous display we can infer that

1 1 [klog(p)
(1-55) 2 p

_0 < klog@))
P

_ P
with probability at least 1 — e Q(LQ). Taking a union bound over all pairs of layers and all
sample we find that, for all 1 < /¢; < ¢y < L, for all s € [n] and all k-sparse vectors a and b

klo
VZQEZQ 15 2 sV ||b||' ( E(p)> (69)

= T
E=  suwp sup TV By 1 By oV b| <
a:[lall=1]lallo<k b:[|b]|=L,[|blo<k

T

with probability at least 1 — O(nLQ)e_Q(%). Since p > poly (L,log (%)) for a large enough
polynomial we can ensure that this probability is at least 1 — /8 which completes our proof.
|

E.1.7 Proof of Part (g)

Lemma E.8. For any é > 0, suppose that p > poly (L log ( )) for a large enough polynomial,
then, with probability at least 1 — §/8 over the randomness in VY, for all s € [n] and all
1<¢<L,

(1) ()
VL sEY sV al < 0 (JlallvkIog))

for all vectors a with ||allop < k = where ¢ is a small enough positive absolute constant.

log(cz?)Lz’
Proof Fix the layer 1 < ¢ < L and the sample index s. At the end of the proof we shall take

a union bound over all layers and all samples. Let us denote Vg(l) by simply V; and let ZZ;D

be denoted by X .
For any fixed vector z we know from Part (a) of Lemma E.10 that with probability at least

- O(nL?’)e_Q(ﬁ) over the randomness in (Vz,,..., Vi)
|XL,sVE ... EesVez|| < 2|2]. (70)

Recall that the entries of V41 are drawn independently from N(0,1). Thus, conditioned on
this event above, for any fixed vector w the random variable wTVLH (Xr,s---2Vpz) is a
mean-zero Gaussian with variance at most 4//z||2. Therefore over the randomness in V7,1

k _ klog(p)
P(\VLHEL,S---ze,SwZ\zV"g 21V, m)g (71)

where ¢s is a small enough positive absolute constant that will be chosen only as a function
of the constant c¢. A union bound over the events in (70) and (71) yields

k1 of p _ klog(p)
P<|VLHEL,5~-24,SV@Z\< Og‘ Vklogp) . ||> oty () _ o

) _ klog(p)

_1o ) e (72)
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where the last equality holds since p > poly (L, log (%)) for a large enough polynomial.
Let {z}7, be a 1/4-net of k-sparse unit vectors in Euclidean norm of size m = (})9* (such
a net exists, see Lemma F.10). Therefore by using (72) and taking a union bound we find that

k1l
Vie [m], |VL+12L,S v Eg}s‘/}zi\ < cog® (73)
2
with probability at least
_klo (p) _klo (p)
1—m <e—Q(I7/L2) te 12§c§ > =1—-0 <<Z>9k> (6—9(%) te 32%17 )
i k _ klog(p)
$1-0 <<9kp) ) I
(& ) +hlog(oep) |~ “ired’+klog(9en)
:1—<€ 72 3 P_|_€ 32c2 )
@) <€—Q(L’5) n eQ(klog(p))) @), —0(%)
. . p ep\k ) : n — cp
where (i) follows since (k) < (?) , (i7) follows since p > poly (L,log (E))? k= TR I2 and
because ¢y is a small enough absolute constant (which can be chosen given the constant c),
and (i) follows again since k = ﬁ.

We will now demonstrate that if the “good event” (73) holds then we can use this to establish
a similar guarantee for all k-sparse unit vectors a. To see this, as before, suppose ( maps any
unit-length k-sparse vector to its nearest neighbor in {z1,...,z.}. Suppose that the event in
(73) holds then

Ei= sup Vit1XL,s -+ esVeal
a:llall=1,lallo<k

= sup Ve1Xrs - YesVi(a — ((a) + ((a))]

a:||al|=1,[lalo<k

< sup |Vopy1Xps- -2 sViz| + sup Vit1ZL,s - XgsVe(a — ((a))]
i€[m] allal|=1,]lallo<k
@) \/klo 1 a—C(a) | @ /klo =
< Vklog(p) + - sup Vi1Xns - 2esVe ¢(a) < 8lp) L 2
ca 4 gilal=1,]lallo<k la —C(a)]l c2 4

where (i) holds because we assume that the event in (73) holds and since ||a — {(a)| < 1/4,
and (77) follows by the definition of E.
By rearranging terms in the previous display we infer that

_ 1 \/klo
== sup WVi1Xps- - EesVeal < T 8(r) =0 ( klog(}?))
a:llall=1allo<k (1-7) e

with probability at least 1 — €_Q<%). Taking a union bound over all layers and all sample we
find that, for all 1 < ¢ < L, for all s € [n] and all k-sparse vectors a

a
VipiXps: - Ee,sVeHaH‘ =0 ( k:log(p)) (74)
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with probability at least 1 — O(nL)e_Q(ﬁ) Since p > poly (L, log (%)) for a large enough
polynomial we can ensure that this probability is at least 1 — /8 which completes our proof.
|

E.1.8 Proof of Part (h)

Lemma E.9. For any § > 0, suppose that h < W, p > poly (L, log (%)) for a large enough

. . log?(2L) _ 12:2/3\ .
polynomial and T = () <p2L ) For =0 ( N ), if

Sus(8) = {5 € b+ V2l < 8}

where Vg refers to the jth row of Ve( ) then with probability at least 1 — §/8 over the ran-
domness in V) we have that for all £ € [L] and all s € [n]:

Se.5(8)| < O(p*28) = O(pL>7%/3).

Proof To ease notation let us refer to Ve(l) as Vy and xﬂ”

sample s € [n] define

as xys. For a fixed ¢ € [L] and

Z(&j? 3) = ]IHw,jxé,s‘ < 6]

so that (S, s(8)| = Z(j,¢,s). Define &€ to be the event that [|2,_1 4| > 3. By Inequal-
ity (52) in the proof of Lemma E.2 above
p
P[] > 1—O(nL)exp (—Q <ﬁ)) . (75)

Conditioned on x,_ s since each entry of V4 ; is drawn independently from A (0, %) we know

2
that the distribution of Vp jz¢_1 s ~ N (O, w> Thus, conditioned on the event £, which

is determined by the random weights before layer ¢, we have

E[Z(j,é,s)‘c‘:]: [jEst ’5 N ose—Tr /exp< 4”xji)”2)dx
S\/;/Bexp( 4| xg 15”2>d <25\[

On applying Hoeffding’s inequality (see Theorem F.5) we find

p
[Ses(B) <E|D Z(j 4, 9) ‘ gl +p**B<p (25\@) 828 < 3523 ‘ ¢

j=1
> 1 - exp(~Q(p*B)). (76)

Taking a union bound over the events in (75) and (76) we find that

B [[Ses(8)] < 39%28] > 1 exp(~Q(p*'?8)) — O(nL)exp (-2 (15 ) -
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Applying a union bound over all samples and all layers we find that: for all £ € [L] and all
s € [n]

1Se.4(8)] < 3p¥28 = O(pL2r2/3)

with probability at least 1 — O(nL) exp(—Q(p®/?3)) — O(n>L?) exp (=€ (#£)). We shall now
demonstrate that this probability of success is at least 1 — 6/8. On substituting the value of

B = O(Lg/jg/g) we find that this probability is at least

1= OmL) exp(~228) — 0?1 exp (2 (L))
= 1—O(nL) exp(—Q(pL*7*?)) — O(n*L?) exp (_Q (%))
21— O(nL) exp(~Q(pL* ) —exp (-2 ()

@1 _ O(nL)exp (—Q <1og§ <"5L>>> e (-2(73))

>1-4/8,

—~
=

where (7) follows since p > poly (L, log (%)) for a large enough polynomial and (i) follows by
log” (&)

assumption that 7 = ) < T
p2

. This completes our proof. |

E.1.9 Other useful concentration lemmas

The following lemma is useful in the proofs of Lemmas E.4-E.8. It bounds the norm of an
arbitrary unit vector z that is multiplied by alternating weight matrices ‘Q(l) and corresponding
) S

l,s

Lemma E.10. Suppose that p > poly(L,log(n)) for a large enough polynomial, then given
an arbitrary unit vector z € SP~1 with probability at least 1 — O(nL3) exp (—Q (%)) over the
randomness in V) for all 1 < ¢, < ly < L and for all s € [n]

(a) HZZ(_DLS'”EV(DVZ(II)ZH <2, and

01,8

1 (1) (1) 1
) |[VisEl - mE v <2

l1,s

Proof To ease notation let us denote Vz(l) by simply Vg, let EXS) be denoted by ¥y ¢, and let

xXél) be denoted as xy 5.
Proof of Part (a): For any layer ¢ € {¢1,...,0s — 1} define

s = Ef,swszl,s te Efl,swlz

with the convention that zp, _1 5 := 2.
2
Conditioned on z;_1 s the distribution of Vjzp_1 4 ~ N (0, M

Vp is drawn independently from N (0, %) We begin by evaluating the expected value of its

), since each entry of
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squared norm conditioned on the randomness in V;_1,...,V;. Let V;; denote the jth row of
Vi and let (X/5);; denote the jth element on the diagonal of ¥y 5, then

E [||Z£,s||2|V£—1, SRR Vl] =E [||EZ,SWZ€—1,S||2|W—17 R Vl]

p
E Y ((S00)iVejze-1,s)? [Vier, - VA
j=1

By the definition of the Huberized ReLLU observe that each entry

(Be,5)5 = ¢ Vejaes) <T[Vijai—1,s > 0]

and therefore

E[

p
VA SE DY IVigzes > 0] (Vegze1,s)” Vet Vi - (77)
j=1

Let us decompose the vector zy_1 s into its component in the xy_ ; direction, which we refer

toas z,_; and a component that is perpendicular to x,_; 5, which we refer to as Z(il,s' That
is, define

l — Te-1,s Ti-1,s 1 I
Zp_qs= | Z-1,s - and, 21, = Bl — Zp_q g
[e—1,s ’

These vectors are orthogonal and hence, continuing from Inequality (77) by applying Lemma F.11
to each term in the sum

p
E [zl Veet, -, Vi] <E |1 [szx,y(fyo} (vzjze 18) Vi, Vi

Zp: 1V Ly = 0] (Veyztn) Vieroo i | (19)

We begin by evaluating the term involving the parallel components. For any j, conditioned
on Vy_1,...,Vq, recalling that V;; is the jth row of V,, the random variable Vj ;xy_1, ~

2|ze—1,s]2
N(0, A ), therefore

E {H [Vijxe—1,s > 0] (Vegzy 1 S) Vieq,... 7V1]

2
Ti—1,s
(Ze 15-( = )) E [1[Vigi-1s 2 0) (Vigae.o)? Vi, A

2¢—1,s]2
2
Te—1,s 1 2
= | 2-1,s *X]E[Ve,'ﬂfz—l, Ve—1,-~,V1}
(1o (i) 2 [0smesor]
2 2 2
€T 1 2|z ||Z |
(Zeu-( 5132>> 1. lzo—1 sl =1l (79)
lze—1s|l 2 p P
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For the perpendicular component, notice that conditioned on (Vy_1,...,V}), the distribution
of the random variable Vg,jzj-_ 1. is symmetric about the hyperplane defined by V; jz,_1 s > 0,
and hence

2
E [H Vegoe s 2 0] (Vegzis) [Vers oo, vl}

1 n 2 1 2HZ£L—1, [ ”ZéL—l, 12
= §E |:<W7jzf—178> ‘w—la . 7‘/1:| = 5 X P - = P 2 . (80)
By combining the results of (78)-(80) we find that
Iz I+ 2y 1
B [l PVt i) < p | ) (51)
2
By symmetry among the p coordinates we can also infer that E [(2’575)%%_1, ol Vﬂ < w

for each i € [p]. Thus, by the same argument as we used in Lemma E.2 to arrive at (50)
we can show that conditioned on Vy_q,...,V; the sub-Gaussian norm ||(2/s);l|y, is at most
c1|ze=1,s]|/+/P and hence the sub-exponential norm ||(z¢)? ||y, < H(z@’s)iﬂ?pg < callze—15]1?/p

(by Lemma F.3). Therefore by Bernstein’s inequality (see Theorem F.6) for any n € (0, 1]
P 205 < llze—1,s|*(L +0)[Veers ., VA] 2 1 — exp (—ezprp®) -

Setting n = =3 and taking a union bound we infer that for all s € [n] and all £ € {fo—1,...,¢;}

\/m] >1 - O(nL)exp (79 (%)) . (82)

We will now show by an inductive argument for the layers that if the “good event” in (82)
holds then ||zps|| <14+3(¢ —4¢1+1)n, forall £ € {¢{; —1,...,0, — 1} and all s € [n]. The base
case holds at ¢; — 1 since by definition ||zp, _1 || = [|2]] = 1. Now assume that the inductive
argument holds at any layers ¢1,...,¢ — 1. Then if the event in (82) holds we have

lzesll < llze-1sllv/T+7

< (143 —1t1)n) (1+n) (by the TH and because /T+n < 1+1n)

P20l < llze-1,

)
:1+3<5—€1+3>n+3(€—61—2)n2
<1+430—-6+1)n (since n = z57 and L > 1).

This completes the induction. Hence we have shown that for all s € [n]

P [H%—l,sll <1+ W] >1 - O(nL)exp (—Q (%)) . (83)

Recall that zp,_1 ¢ := Xg,—1 -+ - 2X¢, sV, 2, therefore taking union bound over all pairs of layers
we get that for all 1 <43 </ly < L+ 1 and all s € [n]

3(f2 — 0+ 1) 3 p
P [Hzéz—l,sH <1+ 50L] >1—0(nL’)exp <—Q <ﬁ>) )
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This completes the proof of the first part of the lemma.
Proof of Part (b): For a fixed s € [n] we condition on zp,_1 s and consider the random
variable as = Vi, 2,—1,5. Since ¢ € [L] each entry of V; is drawn independently from A/ (0, %)

2
The distribution of each entry of a, conditioned on zp,_1 4 is N(0, M) Therefore by

the Gaussian-Lipschitz concentration inequality (see Theorem F.7) for any 1’ > 0
P [llall < V212t 1,61+ 1) |20,16] = 1= exp (—eapn’?).

Setting n’ = ﬁ and taking a union bound over all samples we get that for all s € [n]

1 p
P [Has] < (1 + 50L> ‘262175:| >1—nexp (—C4ﬁ) . (84)

By a union bound over the events in (83) and (84) we find that for all s € [n]:

[HasH < \f( (50‘2“)) <1+501L>] >1-O(nL)exp (—Q (%))

The definition of as = Vp,2p,—1 = Vi, Xpy—1,5 - - - Xy sV, s and the previous display above yields
that for all s € [n]

3L 1
P [Hm%_l VLSt S Vir sl < V2 <1 + ) ( + > < 2}

50L 50L
>1—0(nL)exp (—Q (%)) .

Finally a union bound over all pairs of 1 < ¢1 < ¢ < L completes the proof of the second
part. |

The next lemma bounds the magnitude of the initial function values with high probability.

Lemma E.11. For any 6 > 0, suppose that p > poly (L log( )) for a large enough polyno-
mial, then with probability at least 1 — & over the randomness in V) for all s € [n],

|fyay (2s)] < ey/log(2n/0).

Proof By Lemma E.2: with probability at least 1 — ¢/8

ot Il <2 (85)
for all s € [n]. Fix a sample with index s € [n]. Conditioned on :cg(l) the random variable
VL(JF)1 V(l) N(0, ||z V(1>|| ) since each entry of VL(+)1 is drawn independently from A(0,1).

Therefore for any n >0

(1) 1)
P Iy @)l < nllzb |2 | 21| 21— 2exp (—ern?).

A union bound over all samples implies

v

P[¥s el fyo @) < nlald |2 210] =1 2nexp (—em?)
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Setting 7 = ca24/log(n/d) where ¢y is a large enough absolute constant we get that

>1- 9 (86)

70
J21-3

6 e
P[vs el [fyo (@)l < e2v/logln/d) el I | 2f

Taking union bound over the events in (85) and (86) we find that
P[Vs € nl s [y (@)l < esy/log(n/d)| =16

which completes the proof. |

Lastly we prove a lemma that bounds the norm of initial weight matrix with high probability.

Lemma E.12. For any é > 0, suppose that p > poly (L, log (%)) for a large enough polyno-
mial, then with probability at least 1 — § over the randomness in 149

V|| < /5pL.

Proof By definition

WvoR="5S v
Le[L+1]

When ¢ € [L], the matrix Ve(l) has its entries drawn from A(0, %) Therefore by applying
Theorem F.7 we find that for any fixed ¢ € [L],

W2 e 2y 205 2P| o
IV <57 x 2 xS = 2] < e (-0,

1)

While when ¢ = L + 1, the p-dimensional vector VL( ¥

Hence, again applying Theorem F.7 we get

, has its entries drawn from N(0,1).

5 op
IV <12 = 2] <enp (020,
Taking a union bound over all L + 1 layers we find that
()2 . OP
Plveei1: v <] <@t e (-am) <16
where the last inequality follows since p > poly (L7 log (%)) Therefore,

V|2 < (L+1) x ‘%p < 5pL

with probability at least 1 — §. Taking square roots establishes the claim. |
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E.2 Useful properties in a neighborhood around the initialization

In the next two lemmas we shall assume that the “good event” described in Lemma E.1 holds.
We shall show that when the initial weight matrices satisfies those properties, we can also
extend some of these properties to matrices in a neighborhood around the initial parameters.

Lemma E.13. Let the event in Lemma E.1 hold and suppose that the~conditi0ns on h, p and
7 described in that lemma hold. Let V be a weight matriz such that |V, — V)|, < 7 for all

¢ e [L]. Foralll € [L] and s € [n], let f]g,s be diagonal matrices such that ||§g7s — ZX(I) llo <k,

S

and (§g7s)jj €[-3,3] foralljelp]. If T < klng(p) <0 (%) then, for all 1 < f; < ly < L,

lo
[1Vi's| <ow?.

Jj=l op

Proof Fix an arbitrary sample index s. To ease notation let us refer to V() as V, E}/;D as

Yy, and ig’s as 3. Note that for any j € [L]

ADIEAMIER Al (ij - 2;‘) +(V;-)'S;. (87)
ﬁ,—/ —'A’ .
:IFJ' g

Let us refer to I'; and A; as “flip matrices”. Then, if we define the set A; = {VjTEj, I';,Aj},
expanding the product into a sum of terms yields

fg EQ 52
V'S =11 (szj,s I AJ,S) - 3 IT A5 (88)
j=0 =0 Agy €Ay Agy €A, j=1

To bound the operator norm of any term in the sum above we will employ the following
strategy. We will begin by bounding the operator norm of terms that have at most one flip
matrix. To bound the operator norm of some other term with two or more flip matrices we can
decompose it into subsequences that have exactly two flips and end in a flip, and subsequences
that have at most one flip. In the calculations that follows the indices g1, go and g3 satisfy:
1<h<qa<g@p<g<l<L

Subsequences with no flip matrices: First, the term in which A; = VjTZj for all 7 can be
bounded by Part (c) of Lemma E.1:

q2 q1
[Hvi's|l =|1]=v| <ow. (89)
J=q op = op
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Subsequences with one flip matriz: There will be two types of sub-sequences with just one
flip matrix. First, let us consider the following type of subsequence:

q2—1
V'S | Awl| =|A] sz < |az sz
j=a op =g2-1 op " |li=a-1 op
(i) .
- O(L) HAq2 op

(31) (iv)
< O(tL) < O(1), (90)

where (i) follows by again invoking Part (c) of Lemma E.1, (ii) follows since by assumption the
diagonal matrix X, has its entries bounded between [—3, 3], (iii) follows since by assumption

Ve = Ve
Next, let us consider the second type of subsequence with just one flip matrix:

< 7 and (4v) follows since by assumption 7 = O(1/L).
op

q2—1 q2—1
V‘TEJ Ly, = H VTE Vq—zr ( @ Eth)
J q1 op J=q1 op
g2—1
= sw || [TV | Vel (B = S @
allal=1 1|\ j—¢

q1
= Ssup a’ <2q2 - Etm) Ve H 25V
a:llal|=1 j=q2—1

For each a let’s define b = ( 4 — qu) a. Since ||§]q2 — g lo < k, therefore b is k-sparse. Also

since the diagonal matrix Zq2 has entries in [—3,3] and ¥,, has entries in [0, 1], therefore the
entries of ¥4, — X, lie in [—4,4]. This implies that [|b]| < 4[|a|| < 4. Applying Part (e) of
Lemma E.1, we have

[1V's | Tl <OWBl) =00). (91)

q2—1
J=q

op

Subsequences with two flip matrices: Now we continue to subsequences with two flip matrices.
There shall be four types of such subsequences. We begin by consider subsequences of the type

q2—1 gz—1 q2—1 g3—1
H VjTZj qu H VjTEj Aqs < H VjTZj qu H VjTEj Ag,
i=a j=g2+1 op j=a1+1 op || \7=22+1 op
(%) (44)
< O(r’L* < O(rL) (92)

where () follows by (90) and (é7) follows since 7 = O(1/L).
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Next, we bound the operator norm of a subsequence of the type

a2—1 g3—1 q2—1 g3—1
[TVi"s | de | IT Vil | T < IT V3" | 2w IT V' | Ta
J T J=q2+1 op j=q op Il \J=a2+1 op
(@)
< O(rL) (93)

where (i) follows by invoking inequalities (90) and (91).
We continue to bound the operator norm of subsequences

q2—1 g3—1 q2—1 g3—1
H VjTZJ' qu H VjTEj Aqs < H VjTEj qu H VjTEj Aqs
J=q1 Jj=q2+1 op J=q1 op J=q2 op
(4)
< o(rr) (94)

where (i) follows again invoking inequalities (90) and (91).
Finally we bound the operator norm of subsequences of the type

g2—1 g3—1
H VJ'TEJ' Ly, H Vszj Ly
J=q J=gq2+1 op
g2—1 _ q3—1 ~
< H Vj—rzj Vql— (qu - E(D) H VjTZj V;]—gr (Z% - qu)
J=a op J=q2+1 op
@) T(5 5 T T($
< O(L) sSup ‘/:12 (EQQ - Etﬂ) H Vj ZJ' V:]g (EQS - Eq3> a
a:llal=1 j=qa+1
=O(L) sup sup bTVqI (Zq2 — Zq2> H VjTZj Vq;r (Zq3 — qu) a
a:llall=1 b:[jl| =1 Pl
_ g2+1
—0() s sw faT (S =) Vo | [T =V - %4 Visb
a:l|a||=1 b:||b]|=1 j=qz—1
_ g2+1 Vb
—O(L) sup sup |a’ (2q3 - 2%) Vi, H 2V — g ) 2|Vl
azllall=1 b:|b| =1 ol ||V bl
(i) klogp klogp (i) klogp
< O(L) sup [|[Vg,b]| = O(L) Vaxllop < O(L) (95)
P b= p p

where (i) follows by invoking Part (c¢) of Lemma E.1. Inequality (ii) follows since the vectors
a’ (ti - Zqz) and (iql - Zq1> % are k-sparse and both have norm less than or equal
to 4, thus we can apply Part (f) of Lemma E.1, and (iiz) follows by applying Part (b) of
Lemma E.1.

As stated above we can decompose each product in (88) that has at least two flips into
subsequences that end in a flip and have exactly two flips, and subsequences that have at most
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one flip. The subsequences that have at most one flip have operator norm at most O(L) (by
inequalities (89)-(91)).
The above logic (92)-(94) implies that subsequences with exactly two flips that have at

least one A flip have operator norm at most O(7L) < ( %L) (since 7 < % by

assumption). Subsequences with two I" flips have operator norm at most O ( %L). Define

=0 ( %L). So, if a sequence has r flip matrices then its operator norm is bounded

by
0 (wLT/QJ > L)
So, putting it together, by recalling the decomposition in (88) we have
Lo o Lo
[1V's| = > I«

Jj=t Ap €Ay oAy €Ay j=L1

op op

i £2
(S)(1+2L)><O(L)+ > 11 45

Ag €Ay, ., Agy €A, > 2 flips [|7=60
<O+ <T>27"0 <L¢LT/2J>
9 L
=0(IL*)+L> o
2

L
)o
”
(i)

< O(IAH+L(1+0 (M))L
k

(
@) 512 tos )\
:O(L)+L<1+O<\/f<) ))

op

((4¢)Lr/2J)
((40)

dap Lr/2J>

p

where (i) follows since the number of terms with at most one flip matrix is (1 + 2L) and
the operator norm of each such term is upper bounded by O(L) by inequalities (89)-(91).
Inequality (i¢) is because the number of terms with r flip matrices is (f) 2", (4i7) by the Bi-

nomial theorem, (iv) is by our definition of . Inequality (v) follows since by assumption
MOTf(p) <0 (%) and (vi) follows since for any 0 < z < +, (1+2z)% < 14 Lz. This completes
our proof. |

The following lemma bounds the difference between post-activation features at the ¢th layer
when the weight matrix is perturbed from its initial value.
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Lemma E.14. Let the event in Lemma FE.1 hold and suppose that the conditions on h, p

and T described in that lemma hold with the additional assumptions that T = O <L12113()
og2(p

and h < %. Let VY be the initial weight matriz and ‘7, V are weight matrices such that

Ve = Voo Ve = VD lop < 7 for all £ € [L]. Then
1. |2, - 5 llo < O(L*7%3);
2. |, - all |l < O(L37);

for all £ € [L] and all s € [n].

Proof Fix the sample s, let us remove its index from all subscripts. To further simplify nota-

. 1 Ve ) 1 ¥ - 2 ~ ~ .
tion let us refer to EXS( ), E}/s, E}/s, :UXS( ),aj}/ and z}/s as Xyp, Xy, Xy, ¢, Ty and Ty respectively.

,8
Before the first layer (at 1a}£er 0) define 3y = ¥y = ¥y = I and recall that by definition for

(1)
any sample s € [n], 7}, =, =2, = xs.

We will inductively show that
L 12 = Zello,lISe = Zellos 12 = Sello < O(pLAr?%), and
2. 120 — @all, llwe — Zell, llwe — 2] < O(L7).

The base case, when £ = 0 is trivially true since xy = Ty = Zo and g = f]o = f)g.
Now let us assume that the inductive hypothesis holds at for all layers r =1,...,¢ —1. We
shall prove that the inductive hypothesis holds at layer £ in two steps.

Step 1: By the triangle inequality
15 = ello < 122 = Zello + 12 = Sello. (96)

Thus by showing that || X, — (|0 and ||S¢ — 3|0 are at most O(pL27%/3) also proves the claim
that [|S; — S¢llo < O(pL272/3).

We begin by bounding ||, — %¢|jo. Recall that by definition the diagonal matrix (X0)j; =
(¢ (Vexy—1))j. So to bound the difference between ¥, — Y, we characterize the difference
between

Vo1 — Vizor = (Vo = Vi)zo_1 + Vo(Fo_1 — 24_1).

By assumption ||V, — Villop < 7, ||ze—1]] £ 2 by Part (a) of Lemma E.1, and ||Z,—1 — z¢—1]|| <
O(L3T) by the inductive hypothesis. Therefore,
Veze—r — Vede—1 || < (Ve = Vo)ze—a |l + [Ve(Fe—1 — ze-1)|
< Ve = Villopllze—ll + [[Vellopl|Ze—1 — w1l
< 27+ O(L*7)|[Villop
< 20+ O(L*7) (Ve = Vallop + 1Vellop
@ 3 (i1) 3
<27+ O(L°7)(t+0(1)) = O(L°1)
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where (%) follows since [|Vy||op < O(1) by Part (b) of Lemma E.1 and (44) follows since 7 = O(1)
by assumption.

2
Let 8 =0 (L\Q/Ts> > 2h > 0. This particular choice for the value of 8 shall become clear

shortly, and h < /2 since h < % by assumption. Define the set:

Se(B) = {7 € lp): Vejeea| < 5}

where V; ; refers to the jth row of Vj. Also define

s0(8) =l €SB (s # o)y} and,
s(8) = (i €S58+ (o) # G}
Clearly we must have that
12e = Zello = 547 (8) + 5 (8).

To bound Sgl)(ﬂ) we note that 821)(5) < |Si(B)| < O(p*/?p) by Part (h) of Lemma E.1. We

focus on s (8). For a j € S5(8) by the definition of the Huberized ReLU if (£¢);; # (5);;
then we must have that

‘Ve,ji“eq - Vz,ﬂefl‘ > —h.
This further implies that

~ 2 ~
(8- h)?s(8) < 3 Viger = Vogae| < IViwer = Vi | < O(LS72).
JESE(B):(S0) 55 #(B0) 55

Therefore, we find that

= 6,-2
1Ze = Sello = 57 (8) + 57 (8) < m +0(p*28).

,272/3

Balancing both of these terms on the RHS leads to the choice 8 = O( N

(8 shows that

). This choice of

120 — Sello < O(pL*7%/3).

Similarly we can also show that [|%; — 3]lo < O(pL?*7%/3). These two bounds along with (96)
proves the first part of the inductive hypothesis.

Step 2: Now, for the second part we want to show that ||Z¢s — 2/ s/ remains bounded. We
can also show that ||xys — ¢ || and ||z s — T4 || remain bounded by mirroring the logic that
follows. Define a diagonal matrix

Vi jTe—a

(E0)jj = (B¢ — o)y

VejZe—1 — ViZe1

] , for all, j € [p].
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In the definition above we use the convention that 0/0 = 0. We will show that for any j € [p]

<1

(Z0)j5] = |(Be — Ze)y5

Vi jTe—1
VijiZo—1 — Vo jTo—1

Firstly observe that the matrices f]g and f)g have entries between [0, 1], therefore ig — Yy has
entries between —1 and 1. Also recall that by the definition of the Huberized ReLU,

1 if ‘7@7]@171 > h,
(B0)jj = § Ll £ U,y € [0, h),
0 if Vi jdo_1 <O.

Now we will analyze a few cases and show that the absolute values of the entries of ¥, are
smaller than 1 in each case.
If the signs of Vj ;2,1 and Vp ;jZ_1 are opposite then we must have that

(i

~
=

- |‘7€7j3~7£—1|
- A N ~ _ -~ 41,
\Vejo—1| + Ve Zo—1]

S VejTe— Ve %o
(B0 = Z)ji=— ~— =
VijiZo—1 — Vi jTo—1

IN

VojToe—1— Vi jTe—1

where (i) follows since (3, — ig)jj| < 1. If they have the same sign and are both negative
then (ig —Y¢);; = 0 in this case. The same is true when they are both positive and are bigger
than h. Therefore, we are only left with the case when both are positive and one of them is
smaller than h. If %Ji'g,l > h and Vg,jjcg,l € [0, h] we have that

~ Vet U, 5 Ve
(Xe — 0)jj = | = |"=— ~—— =5 <1
VijZoe—1 — Voo VijZe—1 — Voo ZegPe-t g
Ve, iTo—1

where the last inequality follows since %,ja?g,l > h. And finally in the case where ‘757j@g,1 >h
and V; jZ¢—1 € [0, h] we have that

ViiFo1 (h - Vz,ﬁeq) VeiZe

(e — Ze)jj=— ~—
Vo jTe—1 — Vo jTe—1

(- Ve jTe—1 Ve jTe—1
h Vo jZe—1— Vo ;Te—1

To show that this term of the RHS above is smaller than 1 it is sufficient to show that

h (Ve,ji‘ﬁ—l - %,j@—l)

(h— Vé,jfz‘ﬁ—l)%,jjfe—l < h(Vyjdoq — %,jfff—l),

in our case where 0 < %J@,l <h< Vg,jaﬁg,l. Consider the change of variables a = %J-:ig,l
and b =V} ;j&,_1, then it suffices to show that

(h —a)a < h(b—a) < 0 < a® — 2ah + hb.

The derivative of a? — 2ah + hb with respect to a is 2(a — h), which is non-positive when a < h.
Therefore the minima of the quadratic when a € [0, ] is at @ = h and the minimum value is
h? — 2h% + hb = hb — h?> = h(b— h) > 0. This proves that |(¥);;] < 1 in this final case as well.
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With this established we note that

ep =g — 7 = ¢(Voio—1) — ¢(Voip—1)
= S Vide-1 — SVedie-1 + o(Vide-1) — SeViedo1 — ¢(Vedp—1) + SeVad

=Xe

(]

= (iz + 2@) (‘7456471 - %@4) + X

(f]g - ig) Vi (#0_1 — F0_1) + (ie + ie) (‘75 - Ve) Zo-1+ X0

—
=

—_——
%/_/ —
=:Ap e =:by
= Apep_1+ by (97)

where (i) follows because by the definition of the matrix ¥, for each coordinate j we have

(ie - i]g) 4 (Vz,jﬂ:“e—l - ‘7&]'538—1) = (EZ) ,

JJ Jj

(W,ji“e-l - ‘74,3‘55@—1) + (Ee)jj (Ve,jiz—l - %,jj€—1>

= (ié)jj (Ve,ji“e—1 - ‘7&]'5%—1) + (2 — Ef)jjf/&jif—l

= (30);;Vejte1 — (Z0)j;VejEe-r.

In Equation (97) above we have expressed the difference between the post-activation features
at layer ¢ in terms of the difference at layer £ — 1 plus some error terms. Repeating this £ — 1
more times yields

1 -1 | r+1
er = Apep—1 + by = Ag(Ap_q1e0-2 + bgfl) + b = H Ajeo + Z H Aj b | + by.
=t =1 | j=t

Since eg = |9 — Zo|| = 0, by re-substituting the values of Ay and by we find

-1 |r+1
Ty — 2y = Z H <ij + 2;’) Vil S+ 30 (Ve = Vi) &1 + (iz + 2@) (‘74 — Ve) Tpq
r=1 | j=¢
=1 frer
+ D [ TIE +2)Vi | e+ e (98)
r=1 | j=¢
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and therefore by the triangle inequality

| Ze — Z|
/-1 | r+1 B B
< TT (S5 +55) Vi | S+ S0 = W) || +]|(Se 4+ 50) (Ve = Vi) e
/—1 | r+1
+ AT + 20V | x| + Ixell
-1 |[r+1 N B
<SSOTT s +8) Gl [[Se+5| [0 = V|| naeal+||Se+ 5| ||V - V2| 1@en
: op op op op
r=1 ]:@ op
-1 ||r+1
Y T +20vi|l el + lxell
r=1 j:f op

Recall that the diagonal matrices (3, — £y — ) are O(pL27%/3) sparse by the inductive
hypothesis. Also the matrices (X, — 3y — ¥;) have entries in [—3,3]. Therefore by applying

1

Lemma E.13 (note that since 7 = O | ———5—
L'2logZ2 (p)

therefore Lemma E.13 applies at this level
of sparsity) we find

Iz — Zel| < O(L?)

¢ l
Y Ve = Vellopllr—a ]| + Z\lxr!\]

r=1 r=1

(i) L
< O(L%) D IVe = VillopllEr—a || + fhx/ﬁ]
r=1

< O(L?)

4
S I = Vol (-1 = 1| + 21 ) +£h\/ﬁ]

r=1

¢
>V - Villop (O(L37) +2) + éh\/ﬁ]
r=1

1
Y Ve = Villop + L7

r=1

(41)
< O(L?)

(i41)

< O(L? < O(L’7),

Inequality (i) follows since by definition of the Huberized ReLU for any z € R we have that
#(2) < ¢ (2)z < ¢(2) + h/2, therefore

. -~ h
X7 lloo = qu(VMﬁ—ﬂ —YVixg1 — ¢(VaZp—1) + Eé‘/éﬂfz-lHoo <2-5=h (99)
which implies that ||x,| < h,/p. Next (ii) follows by bound on |#,_1 — x,_1| due to the
inductive hypothesis and because ||z,_1]|2 < 2 by Part (a) of Lemma E.1. Finally (#ii) follows
by assumption 7 < O(1/L3) and h < %. This establishes a bound on ||y — Z¢||. We can also

mirror the logic to bound ||zy — Z¢|| and ||z — Z¢||. This completes the induction and the proof
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of the lemma. [ |

Lemma E.15. Let the event in Lemma FE.1 hold and suppose that the conditions on h, p

and T described in that lemma hold with the additional assumptions that T = O (13>
L'2log?2 (p)

and h < \;ﬁ. Let VY be the initial weight matriz and ‘7, V be weight matrices such that

Ve — Vg(l)HOp, IV, — Vf(l)HOp < 1 for all £ € [L]. Also let Sy be O(pL?7%/3)-sparse diagonal
matrices with entries in [—1,1] for all € € [L] and s € [n]. Then

<0 ( plog(p) L7/ 3) :

¢ _ ¢ A
‘7L+1 H (27‘:5 + i’r‘,S) ‘7;" - VL-i—l H Er‘{s‘?’r
r=L r=L

op

for all ¢ € [L] and all s € [n].

Proof We want to bound the operator norm of
_ ¢ B N ¢
Vi1 H (EKS + Er,s) Ve = Vi H EXSW
r=L

¢
e 1% () ()
= Vi [T (S0 + S0 Vi - VLHHZvl ()+VL+1HZ‘/1 VLHH
=L r=L r=L

=:X1

X2

(100)

We shall instead bound the operator norm of x; and x2. Let us proceed to bound the operator
norm of x; (the bound on x2 will hold using exactly the same logic). Now to ease notation
let us fix a sample index s € [n] and drop it from all subscripts. Also to simplify notation let
us refer to EXS as %, , xV rs a8 I S5 as Oy, and EX;I) as ¥,. We shall also refer to V(1) as
simply V.

By assumption the diagonal matrix S, is O(pL?7%/%)-sparse with entries in [—1, 1]. Also the
matrix X, — 5, is O(pL272/3)-sparse by Lemma E.14. Therefore the matrix ¥, := 2 +3. -3,
is also O(pL?72/3)-sparse and has entries in [—2,2]. Thus,

l ¢
X1 = ‘7L+1 H (ir + ir) ‘7;“ —Via H > Vi
r=L r=L

14 14
= ‘A}L+1 H (Er + Sr) ‘77’ - VL+1 H X Ve
r=L r=L
~ ¢ o ~
= (Vo1 — Vit1) H (Zr+2)V,

r=L
=®
VA _ VA
+ Vi (H = +2) V-] EM) : (101)
r=L r=L
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The operator norm of # is easy to bound by invoking Lemma E.13

14

IIE+2)v

r=L

< O(rL?). (102)

op

[ lop < Vi1 — Vitillop

To bound the operator norm of & we will decompose the difference of the products of matrices
terms into a sum. Each term in this sum correspond to either a flip from V,. to V,. or from 3.
to ¥, + X,. That is,

¢ ¢
& =— <VL+1 H X Ve = Vi H (5 +3%)) ‘Z)
r=L r=L

=iWl,q =5i2,q
14 q+1 £
= Z VL+1 (H (Erv;")> (iq) ‘711 H (27‘ + 27") ‘77’
q=L r=L r=q—1

L =4 _

_ s g .
14 q+1 14

— S Vi (H (zm)) 2 (Va-Va) II & 4+50) W (103)
q=L r=L r=q—1
L :?rq ]

where in the previous equality above, the indices in the products “count down”, so that cases
in which ¢ = L include “empty products”, and we adopt the convention that, in such cases,

wig =wszqg =1,

and when ¢ =/

WQ’q = (,U47q =1.

84



We begin by bounding the operator norm of #, (for a g that is not £ or L, the exact same
bound follows in these boundary cases):

qg—1 J4

194llop = [V TT Vo) (B0) (Ve TT (5 + 500 W
r=L r=q+1
op
(0 = ST 7
= Ve [T v 590850 T (S +5) V2
r=L r=q+1 op
qg—1 _ V4 B
<|\Vesr [T @ V) SV 180llop |25 Ve TT (20 +50) Vi
r=L op r=q+1 op
(id) a1 4 L
< 2|[Vep [T V)= (29 TT (& +20) W,
r=L op r=q+1 op
(iid) _ L L~
< 0( pLQTz/Slog(m) \22/1 Vo [ &+5)W
op r=q+1 op
(iv)
< o( pL272/310g(p)> ><0(L2)=0( plog(p)L?’Tl/?’) (104)

where in (7) we define 22/1 to be a diagonal matrix with (22/1)jj =1 [(iq,s)jj + O]. Note that

since %, is O(pL?7%/3) sparse, therefore 22/ ! is also O(pL*7%/3) sparse. Inequality (ii) follows
since the entries of 3, s lie between [—2,2], (iii) follows by applying Part (g) of Lemma E.1.
Finally, (iv) by applying Lemma E.13 since the matrix ¥, is O(pL?72/3)-sparse and has entries
in [—2,2).

To control the operator norm of %, (again for a ¢ # ¢ or L, the exact same bound follows
in these boundary cases):

q—1 ¢
1allop = [Vior TT &) %0 (Vo= Ve) | TT (B4 W
r=L r=q+1
op
q—1 B ¢ o
< ||Vo+1 H E Vo)l 1Zqllop ‘Vq - VqH H (Zr 4+ %) Vi
r=L op P r=q+1 op
q—1 l L
<2r\Via [TEv)| || IT E+2)W
r=k op [|r=at1 op
(@) 9 a1 (i) 5
<o) |[Ven [[ V)| < O(vprL?)
r=L op

where (i) follows by applying Lemma E.13 and (i7) follows by Part (c) of Lemma E.1.
With these bounds on 4, and ¥, along with the decomposition in (103) we find that

[#l < L% (0 (Vplog) L) +0(vprL)) < O (Vologlp)L'r'"?).
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Thus by using this bound on ||d||,, along with (101) and (102) we get that

Ixtllop < O(rL*) + 0O ( plog(p)L4rl/3> -0 ( plog(p)L471/3> '

As mentioned above we can also bound || x2l/op using the exact same logic to get that

Ixzllop < O (v/plog(p)L'7"/%)

Thus, the decomposition in (100) along with a triangle inequality proves by claim of the lemma.
|

E.3 The proof

With these various lemmas in place we are now finally ready to prove Lemma D.7

2(nL
Lemma D.7. For any é > 0, suppose that 7 = ) (loi%(;%)> and T = O (Lulolg%@) h < ﬁ

and p = poly (L, log (%)) for some sufficiently large polynomial. Then with probability at least
1 — 6 over the random initialization V") we have

(a) 5app(V(1)a7') < O( plog(p)L57'4/3) and,

(b) T(VV, 1) < O(/pL?).

~ _ ol () 1
Proof Note that since 7 = Q| —=2+% ) and 7 < O and

T 1
A1 mm>’h§ﬁ§W7
because p > poly (L,log (%)) for a large enough polynomial all the conditions required to
invoke Lemma E.1 are satisfied. Let us assume that the event in Lemma E.1 which occurs
with probability at least 1 — ¢ holds in the rest of this proof.

Proof of Part (a): Recall the definition of the approximation error

capp(VW,7) = sup  sup | fo(s) = fip(ws) = V() - (‘7 - ‘7)’
s€[n] V,VeB(VM),r)

Fixa V,V € B(VM 1) and a sample s € [n]. To ease notation denote EZS by 3, ZZ«: by 3,

:JJZS by Zy, st by Z,; and J:Xs(l) by x¢s. We know that fi (zs) = ‘7L+1§CL and fp (7s) = VL+1§:L.
Also since VVL+1fV(xS) = 1, we have

o) = Fole) = Vi) - (V= 7)

L
= Vipidr — Vi@ — (Vigr = Vo) - 30— Y Vi fplzs) - (Vi = Vo)
=1
L ~
= Vi1 (& —%1) = Y Vi fp(as) - (Ve = V), (105)
=1
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By Equation (98) from the proof of Lemma E.14 above we can decompose the difference as
follows,

L1 [e41
L — 3L = Z H (Zj + 2;’) i (S04 Se) (Vi = V)&
=1 |j=L
) o L-1 e+ A
+ (EL + ZL) <VL - VL) Te—1+ Z H(Ej +25)Vi| xe + Xt (106)
=1 |j=L

where the diagonal matrix Ej’s is O(pL*r?/3)-sparse and has entries in [—1,1], and the p-
dimensional vectors x, have infinity norm at most h (see Inequality (99)). Now when ¢ € [L],

the formula for the gradient given in (2a), using this formula and because given two matrices
Aand B, A- B =Tr(A"B) we get

Vi, fo(@s) - (W - %) =Tr {V@_,fv/(ﬂ?s)T <Vz = ‘715)}

.
L
=1 | (& I] 78 | Vil | (V-0)
j=0+1
I _ A N W
=Tr |21V H Vi) X (VE - Vf)
L ]:L
_ {41 o _ R .
— Vi [ ] Ej,svj) St (Ve = Ve) @, (107)
j=L
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Using (105)-(107), and noting that, here HgJ:rlL Aj denotes ArAr_1... Ay, ie. the indices

“count down”, we find

) - ff/(ws) - va(xs) : (V - ‘7)
. /+1 . _ . . _
Vi | TT (554 %5) V5 | S+ S)(Ve = Vi)aes

fo(

8
&)

%

—~

M-

(=1 j=L
5 /+1 s » » L /+1
Voot | TTEV ) B (V= Vo) e | + 30 [ TT5 + 20V | xe
j=L (=1 | j=L
L {41 _ {41 o _ _
= Z Vit i+ EJ) Vil Be+%0) = Vi SiVi | Be | (Ve— V)T
=1 j=L j=L
L 041
+ Z (35 +35)V5 | xe
=1 |j=L
L /+1 » /+1 o _ »
=3 (Ve | TT (S5 +%5) V5| = Vour | TI S5V | | SV = W)es
(=1 j=L j=L
=y
L /+1 _ »
3 Vi [ TT (55 + %) V| (S0 + S0 = S0) (V- Vddes
(=1 j=L
=:dy
L +1
Y I+ 20V | xe (108)
=1 | j=L

where in (i), we adopt the convention that when ¢ = L, the “empty products” Hfi L (ZAJJ + Ej) f/}

and H?:L iﬁ/] are interpreted as I. Let us bound the norm of #y in the case where £ # L
(the bound in the boundary case when ¢ = L follows by exactly the same logic):

I+1 {41
el = [[{ Vewn | TT (254 25) Vi | = Vieur | TL SV | | SelVe = Ve
j=L j=L
/41 » {+1 o _ ~
< (Ve [ TT (55 +%) V| = Veur [ TISW ||| [|ZetVe - Vzen
j=L j=L op
(4) ~ "~
< O(Vplos@ L") ||| 1V~ Vil
(i)
< O(/plog®IL'7") (71 — we 1| + llzea )
(id)
< O(\/plog(p)L'r?) (2+ O(L*r)) < O(v/plog(p)L'r") (109)
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where (i) follows by invoking Lemma .15, (i) is because the entries of 5 lie between 0 and
1 and because |V; — Vy|| < 27 since both V and V are in B(V (1), 7). Inequality (i) is because
|Ze—1 — zo—1]| < O(L?7) by Lemma E.14 and ||z¢_1|| < 2 by Part (a) of Lemma E.1.

Moving on to &, (again consider the case where ¢ # L, the bound in the boundary case
when ¢ = L follows by exactly the same logic),

[ 0+1 i
el = [Vior | TT (S5+55) V3| (S + e = 50) (Ve = V)
J=L i
) 41 N A _ L
< \|Vi+1 (Zj+2j)Vj HEH-Ee—EzH HVK_VK 1 Ze—1]l
=L 1 llop "
(i)
< O(L*) x 7 x (2+ O(L%7)) = O(L?) (110)

where (i) follows by invoking Lemma E.13, since the diagonal matrix S+ — f]g have entries
between —3 and 3 and by bounding ||Zy—1|| as we did above. Finally we bound the norm of
¥, (again in the case where ¢ # L, the bound when ¢ = L follows by exactly the same logic)

1l = || TT (=5 + E)Vixe

< (I TI5 + )i Hlxel
j=L

0 (i) (i)
< O(L)|Ixell < O(L)plxelloo < O(L?)y/ph < O(TL?) (111)

where (¢) is by invoking Lemma E.13, (4i) is due to a bound on the ||x/|lcc < h derived in

Inequality 99 and (#i7) is by the assumption that h < %. The bounds on the norms of éy, &y

and %, along with the decomposition in (108) reveals that for any s € [n], V, Ve BVD, 1)

fi(as) = fplws) = Vip(as) - (V= V)| < L (0(/plog®)L*7/%) + O(7L%))
< O(v/plog(p) L°7"/?).

This completes the proof of the first part.

Proof of Part (b): Recall the definition of T(V (), 1)

I‘(V(l)77—) = sup sup sup HvngV(xS)H
s€n]Le[L+1] VeB(VA) 1)

89



Fix a sample s € [n]. First let us bound the Frobenius norm of the gradient when ¢ € [L]. By
the formula in (2a) we have

L
Vv fv ()l = ||| £Fs H (v"=V.) | vikael
_|_
<|I{=t. 11 szjV,s) Vil D=l
j=0l+1 op
<1221, H VISVl IVesalllze sl
j=0+1 op

L
<| II vi'=i| | (since £V, lop < 1)

j=L+1 op

= (1) (1)

1 1

<| T vt (Wil +vi = vial) (el — 0

j=t+1

op

@) = TvV 3
< || II v'sl.| (OG®m) +1)(2+0ELr))

j=l+1

op

(i) L Tar (iid) )
<o || [T vi'sl| < o(veL? (112)

j=+1 op

where (i) follows since ||V,-Sj_)1” < O(y/p) by Part (b) of Lemma E.1, HV]SF)1 — Vil < 7,
||a:}/_(11)sH < 2 by Part (a) of Lemma E.1 and ||z}, s JI}/(ll)SH < O(L37) by Lemma E.14. Next
g : . . .

(i1) follows since 7 = O(1/L3). Finally, (i) follows since the matrix E;{S - E}fs is O(pL27%/3)

sparse by Lemma E.14, therefore we can apply Lemma E.13 to bound the operator norm of

1

the product of the matrices (since 7 =0 | ———5—
L1?log2 (p)

, that Lemma applies that this level of

sparsity).
If £=L + 1, then the gradient at V is xg s, therefore
sup  sup [V, fu(@s)l = sup  sup  fag |
s€[n] veB(V 1) s€n] veB(VM,r)

(1) (1)
<swp s (o)) + 2k - 2F))
sen] veB(VM,r)

<sup sup (2+O0(L’1)) <O(1),

s€n] veB(VM,r)

where above we used the fact that Ha:V(l) | <2 by Part (a) of Lemma E.1 and H.CEV( ) SH <
O(L37) by Lemma E.14 along with the fact that 7 < O(1/L3). Combining the conclusmns in
the two cases when ¢ € [L] and ¢ € [L + 1] establishes our second claim. |

Now that we have proved Lemma D.7, the reader can next jump to Appendix D.2.
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F Probabilistic tools

For an excellent reference of sub-Gaussian and sub-exponential concentration inequalities we
refer the reader to Vershynin [Verl8]. We begin by defining sub-Gaussian and sub-exponential
random variables.

Definition F.1. A random variable 0 is sub-Gaussian if
10|, = inf {t > 0 : Elexp(6?/t%)] < 2}
is bounded. Further, ||0||y, is defined to be its sub-Gaussian norm.
Definition F.2. A random variable 0 is said to be sub-exponential if
6]l := inf {¢ > 0 : Elexp([6]/¢) < 2]}
is bounded. Further, ||0]|y, is defined to be its sub-exponential norm.
Next we state a few well-known facts about sub-Gaussian random variables.

Lemma F.3. [Verl8, Lemma 2.7.6] If a random variable 6 is sub-Gaussian random variable
then 0% is sub-ezponential with ||6?|,, = HHHiQ

Lemma F.4. [Ver18, Theorem 5.2.2] If a random variable 8 ~ N(0,1) and g is a 1-Lipschitz
function then ||g(0) — E[g(0)]||ly, < ¢, for some absolute positive constant c.

Let us state Hoeffding’s inequality [see, e.g., Verl8, Theorem 2.6.2|, a concentration inequal-
ity for a sum of independent sub-Gaussian random variables.

Theorem F.5. For independent mean-zero sub-Gaussian random variables 01,...,0,, for
every n > 0, we have

>

P[’gﬁi

where ¢ is a positive absolute constant.

2
C1)
L2exp| ~—=—5 |
( z&uma)

We shall also use Bernstein’s inequality [see, e.g., Verl8, Theorem 2.8.1] a concentration
inequality for a sum of independent sub-exponential random variables.

Theorem F.6. For independent mean-zero sub-exponential random variables 01,...,0,,, for

every n > 0, we have
UR U
>n| <2exp | —cmin , ,
Do 10317, max; (|0 ]y,

P[)gai

where ¢ 1s a positive absolute constant.

Next is the Gaussian-Lipschitz contraction inequality applied to control the squared norm
of a Gaussian random vector [see, e.g., Wail9, Example 2.28|.
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Theorem F.7. Let 61,...,0,, be drawn i.i.d. from N(0,0?%) then, for every n > 0, we have
m
P ZH? > o?m(1+n)?| < exp (—emn?),
i=1
where ¢ is a positive absolute constant.
Let us continue by defining an e-net with respect to the Euclidean distance.

Definition F.8. Let S C RP. A subset K is called an e-net of S if every point in S is within
a distance € (in FEuclidean distance) of some point in K.

The following lemma bounds the size of a 1/4-net of unit vectors in RP.

Lemma F.9. Let S be the set of all unit vectors in RP. Then there exists a 1/4-net of S of
size 9P.

Proof Follows immediately by invoking [Ver18, Corollary 4.2.13] with £ = 1/4. [ ]
Here is a bound on the size of an 1/4-net of k-sparse unit vectors.

Lemma F.10. Let S be the set of all k-sparse unit vectors in RP. Then there exists a 1/4-net
of S of size (£)9k.

Proof We construct a 1/4-net as follows. The number of distinct k-sparse subsets of [p]
are (Z) Over each of these distinct subsets build a 1/4-net of unit vectors of size 9%, this is
guaranteed by the preceding lemma. Thus by building a 1/4-net for each of these subset and
taking union of these nets we have built a 1/4-net of k-sparse unit vectors of size (ﬁ) 9% as
claimed. |

Here is a simple fact about orthogonal projections of Gaussian random vectors.

Lemma F.11. Given a 0 > 0, let v € RP be a random vector whose entries are drawn
independently from N'(0,02). Then given any two orthogonal vectors a and b

B|(v7@+0)’| =2 [(v70)"| +5 | (7o)’

Proof Observe that E [(UT(G + b))ﬂ =E [(vTa)2] +E {(va)ﬂ +2E [(v"a)(v'b)]. Let us
demonstrate that the cross-term is zero:

E [(vTa)(va)} =E |:CLTUUTb:| =a'E |:’UUT:| b=0c%(a"b) =0,

which proves our claim. |
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