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ABSTRACT

We compare atmospheric temperature changes in satellite data and in older and newer multi-model

and single-model ensembles performed under phases 5 and 6 of theCoupledModel Intercomparison

Project (CMIP5 and CMIP6). In the lower stratosphere, multi-decadal stratospheric cooling during

the period of strong ozone depletion is smaller in newer CMIP6 simulations than in CMIP5 or

satellite data. In the troposphere, however, despite differences in the forcings and climate sensitivity

of the CMIP5 and CMIP6 ensembles, their ensemble-average global warming over the satellite

era is remarkably similar. We also examine four well-understood properties of tropical behavior

governed by basic physical processes. The first three properties are ratios between trends in water

vapor (WV) and trends in sea surface temperature (SST), the temperature of the lower troposphere

(TLT), and the temperature of the mid- to upper troposphere (TMT). The fourth property is the ratio

between TMT and SST trends. All four trend ratios are tightly constrained in CMIP simulations.

Observed ratios diverge markedly when calculated with SST, TLT, and TMT trends produced by

different groups. Observed data sets with larger warming of the tropical ocean surface and tropical

troposphere yield atmospheric moistening that is closer to model results. For the TMT/SST ratio,

model-data consistency depends on the selected combination of observed data sets used to estimate

TMT and SST trends. If model expectations of these four covariance relationships are realistic,

one interpretation of our findings is that they reflect a systematic low bias in satellite tropospheric

temperature trends. Alternately, the observed atmosphericmoistening signal may be overestimated.

Given the large structural uncertainties in observed tropical TMT and SST trends, and because

satellite WV data are available from one group only, it is difficult to determine which interpretation

is more credible. Nevertheless, our analysis illustrates the diagnostic power of simultaneously

considering multiple complementary variables and points towards possible problems with certain

observed data sets.
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1. Introduction40

Since publication of the first assessment report of the Intergovernmental Panel onClimate Change41

(IPCC) in 1990, there have been major improvements in our ability to model the climate system42

(Randall et al. 2007; Trenberth et al. 2007; Flato et al. 2013; Hartmann et al. 2013). Thirty43

years ago, the climate science community performed single simulations with a small number of44

pioneering atmosphere-ocean models. Today, more complex Earth System Models (ESMs) are45

used to generate large multi-model and single-model ensembles of simulations (Kay et al. 2015;46

Fyfe et al. 2017; Eyring et al. 2019; Deser et al. 2020). Standard benchmark simulations, performed47

repeatedly with improved versions of uncoupled and coupled models, have over the last several48

decades exposed and in some cases reduced systematic errors in model representation of many49

different aspects of Earth’s climate (Gates et al. 1999; Randall et al. 2007; Flato et al. 2013; Sperber50

et al. 2013; Bellenger et al. 2014).51

In tandem with advances in modeling, there have been improvements in the forcings used in52

model simulations of historical climate change (Solomon et al. 2011; Fyfe et al. 2013; Schmidt53

et al. 2014; Checa-Garcia et al. 2018). Observations have also improved with advances in the54

ability of scientists to identify and adjust for non-climatic effects (Wentz and Schabel 1998; Mears55

et al. 2003; Fu and Johanson 2005; Mears and Wentz 2005; Karl et al. 2006, 2015; Po-Chedley56

et al. 2015). This evolution of models, forcings, and observations is ongoing.57

The last IPCC assessment report, published in 2013, relied on CMIP5 simulations performed58

with roughly four dozen models (Taylor et al. 2012). The 2021 IPCC assessment will evaluate59

output from a larger collection of CMIP6 models and an expanded set of experiments (Eyring60

et al. 2016, 2019). Our interest here is in comparing atmospheric temperature changes in CMIP5,61

CMIP6, the latest satellite data (Mears and Wentz 2017; Zou and Wang 2011; Spencer et al. 2017),62
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and a state-of-the-art reanalysis of weather observations with a weather forecast model (Simmons63

et al. 2020). We seek to determine whether: 1) there are important differences between atmospheric64

temperature changes in CMIP5 and CMIP6; and 2) models and observations show consistency in65

theoretically and physically based constraints on tropical behavior – the amplification of tropical66

warming with increasing height, and the ratios between trends in tropical water vapor and trends67

in temperature at different levels. We show that the combination of these constraints provides new68

information on model/data consistency.69

There are several reasons for our focus on atmospheric temperature. First, discrepancies between70

modeled and observed atmospheric temperature changes have received scientific and political at-71

tention for over 20 years (NRC 2000; Karl et al. 2006; Thorne et al. 2011; Fu et al. 2011; Po-Chedley72

and Fu 2012; US Senate 2015; Santer et al. 2017a,b; Po-Chedley et al. 2021). Determining the73

causes of these differences remains a priority. Second, estimates of atmospheric temperature from74

satellites have recently undergone important revision, primarily due to improved understanding of75

the effects of drifts in satellite orbits and instrument calibration (Po-Chedley et al. 2015; Mears and76

Wentz 2016, 2017; Zou and Qian 2016; Zou et al. 2018; Spencer et al. 2017). Reanalysis models77

and data assimilation systems have also evolved (Hersbach et al. 2020; Simmons et al. 2020).78

Our goal is to reassess model-data consistency in the light of these improvements to observations,79

models, and external forcings.80

The structure of our paper is as follows. Sections 2 and 3 introduce the observational and model81

data analyzed in our study. Section 4 discusses basic features of atmospheric temperature time series82

and trends. Trend comparisons are over the full satellite era and over periods of stratospheric ozone83

depletion and recovery. Section 5 examines the relative sizes of forced and unforced temperature84

changes on different timescales, and considers whether observed changes are consistent with results85

from the forced simulations. The statistical methodology in Section 5 follows Santer et al. (2011)86
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and is provided in the Supplementary Materials (SM) with only minor modifications. Section87

6 focuses on the covariability of different aspects of tropical climate change. We examine ratios88

between tropical trends in column-integrated water vapor (WV) and sea surface temperature (SST),89

WV and the temperature of the lower troposphere (TLT), WV and the temperature of the mid-90

to upper troposphere (TMT), and TMT and SST. These four ratios are compared in observations91

and multi-model and single-model ensembles. Prospects for using such covariability information92

to constrain divergent observations are considered in Section 7. Appendices A and B provide93

information regarding the calculation of synthetic satellite temperatures and the adjustment of94

tropospheric temperature for stratospheric cooling influence.95

2. Observational data96

a. Satellite temperature data97

Since late 1978, NOAA polar-orbiting satellites have monitored the microwave emissions from98

oxygen molecules using the Microwave Sounding Unit (MSU) and the Advanced Microwave99

Sounding Unit (AMSU; Mears and Wentz 2017; Spencer et al. 2017; Zou et al. 2018). Microwave100

emissions are proportional to the temperature of broad atmospheric layers. By measuring at differ-101

ent microwave frequencies, MSU and AMSU provide estimates of TLT, TMT, and the temperature102

of the lower stratosphere (TLS).103

We analyze TLS and TMT data sets produced by RSS (Mears and Wentz 2016), STAR (Zou104

and Qian 2016), and UAH (Spencer et al. 2017). Only RSS and UAH supply TLT measurements.105

We rely on the most recent data set versions: RSS 4.0, STAR 4.1, and UAH 6.0. The University106

of Washington (UW) also produces a TMT data set, but this is available for the tropics only107

(Po-Chedley et al. 2015). We did not use UW TMT data for the present study.108
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We consider three different versions of the RSS atmospheric temperature data. As noted in109

Mears and Wentz (2017), “a total of nine MSU instruments cover the period from 1978 to 2005,110

followed by a series of AMSU instruments that began in mid-1998 and continue to the present”.111

MSU and AMSU do not measure at the same microwave frequencies; different plausible choices112

can be made in merging their estimated brightness temperatures.113

Mears and Wentz (2016) employed three approaches to merge MSU and AMSU data:114

1. MSU and AMSU measurements were used during the merge period from mid-1998 to 2003.115

2. Only AMSU data were used after 1999. MSU data were excluded after 1999.116

3. MSU data were used after 1999. AMSU data were excluded before 2003.117

These approaches are referred to subsequently as “baseline”, “AMSUmerge”, and “MSUmerge”118

(respectively), and are described in more detail in the SM. In Sections 5 and 6, we address the119

question of whether these three RSS data sets yield different statistical inferences regarding the120

correspondence between simulated and observed measures of climate change.121

All satellite temperature data sets analyzed here are in the form of monthly means on the same122

2.5◦× 2.5◦ latitude/longitude grid. Near-global averages of TLS, TMT and TLT were calculated123

over areas of common coverage in the RSS, UAH, and STAR datasets (82.5◦N to 82.5◦S for124

TLS and TMT, and 82.5◦N to 70◦S for TLT). At the time this analysis was performed, satellite125

temperature data for full 12-month years were available for the 492-month period from January126

1979 to December 2019.127

b. SST data128

Section 6 considers two ratio statistics involving SST. The first is '{WV/SST}, the ratio between129

tropical trends in WV and SST (Wentz and Schabel 2000; Held and Soden 2006; Mears et al.130
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2007; Mears and Wentz 2016). The second is '{TMT/SST}, the ratio of tropical TMT and SST trends131

(Wentz and Schabel 2000; Santer et al. 2005; Po-Chedley et al. 2015). We seek to determine132

whether simulated and observed values of these ratio statistics are consistent, and how model-data133

agreement is affected by structural uncertainty in observed SST data. This uncertainty arises from134

differences in raw data, the methods used to adjust raw data for known inhomogeneities, treatment135

of sea ice, and the decisions made in merging information from ship-based measurements, buoys,136

floats, and satellites (Karl et al. 2006, 2015;Morice et al. 2012; Hausfather et al. 2017). We quantify137

structural uncertainty in SST data by calculating '{WV/SST} and '{TMT/SST} with four commonly138

used observational records (Po-Chedley et al. 2021):139

1. Version 2 of the Centennial In Situ Observation-Based Estimates of the Variability of SST140

and Marine Meteorological Variables (COBE; Hirahara et al. 2014).141

2. Version 5 of the NOAA Extended Reconstructed SST data set (ERSST; Huang et al. 2017).142

3. Version 1 of the Hadley Center Sea Ice and SST data set (HadISST; Rayner et al. 2003).143

4. Version 3 of the Hadley Center SST data set (HadSST; Kennedy et al. 2011).144

All data sets exceptHadSST are spatially complete over the ocean domain of interest (20◦N-20◦S).145

c. Satellite water vapor data146

The satellite WV data used here were produced by RSS and are from 11 different satellite-147

based microwave radiometers (Wentz 2013). The procedures for intercalibrating and merging148

information from these instruments and for estimating uncertainties in satellite WV trends are149

described in detail elsewhere (Mears et al. 2018). The WV retrievals are based on measurements150

of microwave emissions from the 22-GHz water vapor absorption line. The distinctive shape of this151

line provides robust retrievals that are less problematic than other types of satellite measurement.152
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The signal-to-noise ratio (S/N) for detecting moistening in the lower troposphere by a measurement153

of water vapor is several times larger than for MSU-based measurements of air temperature (Wentz154

and Schabel 2000). Relative to WV information from radiosondes and early reanalysis products,155

the RSS WV data set was judged by Trenberth et al. (2005) to provide the most credible estimate156

of means, variability, and trends over oceans.157

RSS WV data were available for the 384 months from January 1988 to December 2019 on a158

1◦× 1◦ latitude/longitude grid. Due to the high emissivity of the land surface, WV retrievals are159

provided over oceans only. Our focus here is on WV trends spatially averaged over tropical oceans160

(20◦N-20◦S), where there is well-understood covariability between temperature and saturation161

vapor pressure (Iribarne and Godson 1981).162

Because of changes in satellite capabilities, footprint size, and rain and land masking, the spatial163

coverage of the RSSWVdata changes over time. This results in the systematic addition of grid cells164

with WV data in the western Pacific and near the maritime continent. To avoid the introduction of165

trend biases arising from coverage changes, we imposed a “fixed coverage” mask – i.e., our analysis166

of the satellite WV data was restricted to the subset of grid-points with continuous coverage over167

the 384-month analysis period. After regridding model WV data to the observational grid, the168

same “fixed coverage” mask was applied to all model simulations of historical climate change.169

d. Reanalysis data170

Reanalyses employ an atmospheric numerical weather forecast model with no changes over time171

in the model itself (Bengtsson and Shukla 1988; Kalnay et al. 1996). They provide a well-tested172

framework for blending and constraining assimilated weather information from different sources;173

each source is typically characterized by different accuracy and different temporal and spatial174

coverage.175
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The ERA5 reanalysis product of the European Centre for Medium-Range Weather Forecasts176

(ECMWF) recently superseded the ERA-Interim reanalysis. ERA5 was generated with a high-177

resolution version (≈ 31 km horizontal resolution, 137 vertical levels) of the ECMWF operational178

forecast model and a 4-D variational data assimilation system (Hersbach et al. 2020). According179

to Simmons et al. (2020), ERA5 exhibited “a pronounced cold bias for the years 2000 to 2006”.180

ERA5.1, which spans the affected 2000 to 2006 period, corrects this error and yields “analyses181

with better global-mean temperatures in the stratosphere and uppermost troposphere than provided182

by ERA5” (Simmons et al. 2020). Inclusion of ERA5.1 results allows us to test whether blending183

model and observational information in a state-of-the-art reanalysis framework provides layer-184

average atmospheric temperature information similar to those available from actual RSS, STAR,185

and UAH satellite data.186

3. Model output187

a. CMIP5 simulations188

We used model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5)189

(Taylor et al. 2012). The description of the CMIP5 data sets provided in the next two paragraphs190

follows Santer et al. (2017a).191

Our focus here is on three different types of CMIP5 numerical experiment: 1) simulations192

with estimated historical changes in human and natural external forcings; 2) simulations with193

21st century changes in greenhouse gases and anthropogenic aerosols prescribed according to194

the Representative Concentration Pathway 8.5 (RCP8.5; Meinshausen et al. 2011);i and 3) pre-195

industrial control runs with no changes in external influences on climate.196

iRCP8.5 has radiative forcing of approximately 8.5 W/m2 in 2100, eventually stabilizing at roughly 12 W/m2.
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Most CMIP5 historical simulations end in December 2005. RCP8.5 simulations were initiated197

from conditions of the climate system at the end of the historical run. To avoid truncating198

comparisons between modeled and observed climate change trends in December 2005, we spliced199

together output from the historical simulations and the RCP8.5 runs. We refer to these spliced200

simulations subsequently as “extended HIST” runs.201

In total, we analyzed 123 individual extended HIST realizations performed with 28 different202

CMIP5 models. We excluded models that did not consider the scattering and absorption of203

radiation by stratospheric volcanic aerosols (Santer et al. 2013), and therefore lack short-term204

lower stratospheric warming signals after the eruptions of El Chichón in 1982 and Pinatubo in205

1991. Including these models in the calculation of multi-model average (MMA) temperature206

changes would bias the MMA estimate of volcanic TLS signals.207

Details of the start dates, end dates, and lengths of the historical integrations and RCP8.5 runs are208

given in Supplemental Table S1. Supplemental Table S2 provides information on the 36 CMIP5209

pre-industrial control runs used to calculate climate noise estimates. The control integrations allow210

us to determine S/N characteristics of atmospheric temperature changes (see Section 5).211

b. CMIP6 simulations212

We also analyze TLS, TMT, TLT, WV, and SST from model simulations performed under213

phase 6 of CMIP. These simulations rely on newer versions of CMIP5 models, often with more214

comprehensive representation of earth system processes (Eyring et al. 2016), andwith contributions215

from modeling groups that did not participate in CMIP5. Efforts were made in CMIP6 to improve216

the representation of external forcings with known systematic errors in CMIP5, such as volcanic217

and solar forcing in the early 21st century (Solomon et al. 2011; Kopp and Lean 2011; Ridley et al.218

2014; Schmidt et al. 2014; Gillett et al. 2016).219
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At the time this research was performed, the CMIP6 archive was still being populated with model220

simulation output. For pre-industrial control runs, output was available from 30 different models.221

For the analysis of forced simulations, the CMIP6 historical runsii from 22 different models were222

spliced with results from scenario integrations.223

Multiple Shared Socioeconomic Pathway (SSP) scenarios were available for splicing (Riahi et al.224

2017). We chose the SSP5 scenario here. SSP5 most closely approximates the radiative forcing225

in the CMIP5 RCP8.5 simulation. The differences in radiative forcing between the five SSPs are226

very small over the satellite era (Riahi et al. 2017), so the choice of scenario is unlikely to affect227

our model-versus-data comparisons.228

In the case of TMT, TLT, SST, and WV, we analyzed 166 realizations. For reasons discussed in229

Section 3c, the sample size was smaller for TLS (116 extended HIST realizations performed with230

21 models). Further details of the CMIP6 extended HIST and control simulations are provided in231

Supplemental Tables S3 and S4, respectively.232

c. Large initial condition ensembles233

Large initial condition ensembles (LEs) are routinely performed by climate modeling groups234

(Deser et al. 2012; Fyfe et al. 2017; Deser et al. 2020). Typical LE sizes range from 30 to 100.235

Individual LEmembers are generated with the samemodel and external forcings, but are initialized236

from different conditions of the climate system. Each LE member provides a unique realization237

of the “noise” of natural internal variability superimposed on the underlying climate “signal” (the238

response to the changes in forcing).239

We used four different LEs to quantify uncertainties in temperature and WV trends arising from240

multi-decadal internal variability. Two LEs applied CMIP5 historical forcing until 2005 and CMIP241

iiThe CMIP6 historical runs typically end in December 2014.
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RPC8.5 forcing thereafter. The other two LEs relied on CMIP6 forcing until 2014 and SSP5242

forcing from 2015 to 2100. The CMIP5 LEs were performed with version 1 of the Community243

Earth System Model (CESM1; Deser et al. 2012) and with version 2 of the Canadian Earth System244

Model (CanESM2; Fyfe et al. 2017; Swart et al. 2018). The CESM1 and CanESM2 LEs consist of245

40 and 50 members, respectively. The two 50-member CMIP6 LEs relied on version 5 of CanESM246

(CanESM5; Fyfe et al. 2021) and on version 6 of the Model for Interdisciplinary Research on247

Climate (MIROC6; Tatebe et al. 2019). All four LEs used different strategies for initialization of248

the individual ensemble members.iii249

The CanESM5 LE exhibits anomalous aperiodic 1-2 month lower stratospheric warming events250

in certain ensemble members. These warming events are sufficiently large to influence decadal-251

timescale TLS trends but have minimal impact on decadal variability in tropospheric temperature.252

We therefore excluded the CanESM5 LE from the multi-model analysis of CMIP6 TLS trends, but253

included CanESM5 LE results in the multi-model analysis of TMT, TLT, WV, and SST.254

4. Temperature time series and trends255

a. Lower stratosphere256

Figure 1A shows time series of near-global averages of TLS. The lower stratosphere cools over the257

full satellite era in all observational data sets andmodel extendedHIST simulations. Themain cause258

of this cooling is human-induced depletion of stratospheric ozone, with a smaller contribution from259

anthropogenic increases in atmospheric CO2 (Solomon 1999; Ramaswamy et al. 2006; Thompson260

et al. 2012; Aquila et al. 2016; Maycock et al. 2018; Bandoro et al. 2018). Satellite-era decreases261

in TLS are punctuated by large episodic warming signals after the major eruptions of El Chichón262

iiiDifferences include the selected starting year for the simulation, the strategy for perturbing initial conditions, and whether perturbations were

applied to the atmosphere only or to the atmosphere and the ocean.
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in 1982 and Pinatubo in 1991. Warming arises from absorption of incoming solar radiation and263

outgoing long-wave radiation by stratospheric volcanic aerosols (Robock 2000; Shine et al. 2003).264

TheCMIP6multi-model average has an unrealistically small TLS signal after El Chichón (Fig. 2).265

Based on theMMA root-mean-square (RMS) errors between observed and simulated volcanic TLS266

signals, the TLS response to El Chichón is better captured in CMIP5 (Figs. 3A,C). For Pinatubo,267

the MMA RMS error is smaller in CMIP6 (Figs. 3B,D). These CMIP5-versus-CMIP6 differences268

are significant at the 5% level for the El Chichón signal, but not for the Pinatubo signal (see SM).269

Volcanic signal differences in CMIP5 and CMIP6 arise from multiple factors. These include270

differences in the type and time history of information used for prescribing historical changes in271

volcanic aerosol loadings, the aerosol optical properties, and the implementation of these properties272

in calculating volcanic radiative forcing (Thomason et al. 2018). Rather than prescribing volcanic273

aerosol, at least one CMIP6modeling group calculated volcanic aerosol loadings based on observed274

estimates of volcanically produced SO2 (Mills et al. 2016; Danabasoglu et al. 2020). Separating275

and quantifying the impact of these different factors on volcanic temperature signals requires276

systematic numerical experimentation (Rieger et al. 2020; Fyfe et al. 2021).277

Recent studies suggest that the Montreal Protocol led to a partial recovery of lower stratospheric278

ozone and TLS in the early 21st century (Solomon et al. 2016, 2017; Philipona et al. 2018;279

Petropavlovskikh et al. 2019; Banerjee et al. 2020). All model and observational TLS data sets280

analyzed here exhibit behavior consistent with ozone recovery: pronounced global-mean cooling281

of the lower stratosphere over the ozone depletion portion of the satellite record, followed byweaker282

cooling or near-zero trends over the recovery period (Solomon et al. 2017; Philipona et al. 2018;283

Steiner et al. 2020; Mitchell et al. 2020; see Fig. 4). The multi-model average TLS trends for these284

two periods are −0.36 and −0.07◦C/decade in CMIP5 and −0.26 and −0.06◦C/decade in CMIP6.285

During the ozone depletion period, the larger multi-model average lower stratospheric cooling in286
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the older CMIP5 simulations is in better accord with satellite TLS trends, which range from −0.42287

to −0.49◦C/decade. This is partly due to the larger (negative) ozone-induced stratospheric radiative288

forcing in CMIP5 (Checa-Garcia et al. 2018).289

Other factors may also contribute to reduced lower stratospheric cooling in CMIP6 over 1979290

to 2000. These factors include CMIP5-versus-CMIP6 differences in forcing from tropospheric291

ozone (Checa-Garcia et al. 2018), volcanoes (see above) and stratospheric water vapor (Keeble292

et al. 2020), along with differences in the behavior of tropical upwelling. The zonal-mean structure293

of trends in TLS and TMT (Fig. 5) reveals prominent differences between CMIP5 and CMIP6 in294

the tropics, where any differences in the behavior of tropical upwelling should manifest (Ball et al.295

2020). More detailed analyses and more systematic numerical experimentation will be required296

to quantify the relative contributions of forcing, response, chemistry, and dynamics to differences297

between CMIP5 and CMIP6 TLS trends (Checa-Garcia et al. 2018; Fyfe et al. 2021).298

b. Troposphere299

Multi-decadal warming of the global troposphere is a ubiquitous feature of the observations300

and all CMIP5 and CMIP6 forced simulations (Figs. 1B, C). Over the full satellite era, the301

MMA tropospheric warming rate is very similar in CMIP5 and CMIP6 (0.28 and 0.29◦C/decade,302

respectively). This holds both for TMT and TLT (Fig. 6A). The similarity of the CMIP5 and CMIP6303

results is noteworthy given that CMIP6 has a larger number ofmodels with higher Transient Climate304

Response (TCR) and higher Effective Climate Sensitivity (ECS) (Zelinka et al. 2020; Flynn and305

Mauritsen 2020; Meehl et al. 2020). An independent analysis of surface temperature supports our306

finding: despite higher average TCR and ECS in CMIP6, theMMA historical surface warming rate307

is comparable in older and newer generations of CMIP models, possibly due to a larger response308

to anthropogenic aerosol forcing in CMIP6 (Flynn and Mauritsen 2020; Fyfe et al. 2021).309
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In the four single-model large ensembles, the spread of TMT and TLT trends arising from310

internal variability is substantial, spanning 31 to 47% of the trend spread in the CMIP5 and CMIP6311

multi-model ensembles (Fig. 6A).iv These results are consistent with other recent comparisons of312

LE spread to multi-model ensemble spread (Mitchell et al. 2020; Po-Chedley et al. 2021).313

Observed trends in global-mean tropospheric temperature range from 0.13 to 0.19◦C/decade314

for TMT and from 0.13 to 0.21◦C/decade for TLT (Fig. 6A). For TLT, over 84% of the total315

number of CMIP5 and CMIP6 extended HIST realizations analyzed here have trends exceeding the316

largest observational result; the corresponding figure is 91% for corrected TMT trends. Related317

work suggests that the smaller observed warming is partly due to an unusual manifestation of318

natural internal variability. Model realizations with phasing of internal variability similar to the319

observations yield global-mean and tropical tropospheric temperature trends that are within the320

range of satellite results (Po-Chedley et al. 2021).321

In all individual extended HIST realizations, the ratio '{TMT/TLT} between global-mean trends in322

TMT and TLT is close to unity (Fig. 6B). This narrow range occurs despite differences in external323

forcings, ECS, and internal variability in the multi-model and single-model ensembles, and despite324

differences in the patterns of warming in TMT and TLT (Santer et al. 2019). The CMIP5 and325

CMIP6 sampling distributions of '{TMT/TLT} encompass the UAH, ERA5.1, and RSS “MSUmerge”326

results. The latter data set relies solely on information from earlier MSU instruments during the327

1999 to 2003 overlap period between MSU and AMSU measurements (see Section 2a). The328

other two RSS data sets, “AMSU merge” and baseline, depart noticeably from the model-based329

expectations, yielding '{TMT/TLT} values significantly less than one.330

ivThis percentage represents (BLE/BCMIP) ∗ 100, where BLE is the standard deviation of the sampling distribution of trends in an individual

CMIP5 LE or CMIP6 LE and BCMIP is the standard deviation of the sampling distribution of ensemble-mean trends in the corresponding CMIP5

or CMIP6 multi-model ensemble containing the LE.
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It is now recognized that there were systematic deficiencies in the early 21st century solar and331

volcanic forcing used in CMIP5 (Kopp and Lean 2011; Solomon et al. 2012; Flato et al. 2013;332

Schmidt et al. 2014). Efforts were made to improve representation of both forcings in CMIP6333

(Eyring et al. 2016; Gillett et al. 2016; Thomason et al. 2018; Rieger et al. 2020). We find,334

however, that CMIP5 and CMIP6 multi-model average trends in TMT are virtually identical over335

2001 to 2019 (Fig. 7). Since other external forcings also changed between these two generations336

of models (Checa-Garcia et al. 2018), isolating the climate impact of improvements in volcanic337

or solar forcing is challenging. Such diagnosis will benefit from simulations in which the same338

physical climate model is run with different versions of individual forcings (Fyfe et al. 2021).339

Tropospheric trends in ERA5.1 exhibit several notable differences relative to the satellite data340

sets (Hersbach et al. 2020). Reanalysis TMT trends are smaller than in all satellite data sets over341

1979 to 2000 and larger than in all satellite data sets over 2001 to 2019 (Fig. 7). Over the 2002 to342

2018 period covered by Global Positioning Satellite (GPS) radio occultation measurements, both343

GPS data and radiosondes yield trends in the middle troposphere that are in reasonable accord with344

the ERA5.1 results (Steiner et al. 2020).345

While the satellite data analyzed here are derived from measurements of microwave emissions346

alone, ERA5.1 uses a state-of-the-art 4D assimilation system to constrain a weather forecast model347

with a wide range of multi-variable measurements from satellites, radiosondes, and surface stations348

(Hersbach et al. 2020; Simmons et al. 2020). Detailed observing system experiments can help349

to understand the impact of different features of the assimilation system and assimilated data350

(Bormann et al. 2019). Such studies will be useful in reconciling the trend differences found here351

and elsewhere (Steiner et al. 2020) between microwave sounders and ERA5.1.352
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5. Signal-to-noise properties and model-data signal differences353

In previous statistical comparisons of modeled and observed temperature changes, discussion354

often focused on the appropriateness of different comparison periods (Santer et al. 2011). This can355

be uninformative if attention is restricted to a short segment of the overall temperature record. Here356

we analyze atmospheric temperature changes over all #! maximally overlapping !-year periods357

(see SM). We consider four different values of !: 10, 20, 30, and 40 years. For each value of358

!, sampling variability is reduced by averaging over all #! individual measures of temperature359

change. As we show below, examining timescale-average behavior can have diagnostic value.360

Figure 8 shows two different types of statistic: trends and regression coefficients. Results are361

from individual observational data sets and from distributions of statistics in forced and unforced362

simulations.363

Consider the trend results first. Rows 1-3 of Fig. 8 display trends in TLS, TMT, and TLT364

(respectively) for our four selected values of the timescale !. With increasing !, the amplitude365

of internally generated trends decreases. As a result, the standard deviations of the forced and366

unforced trend distributions decrease. For all three atmospheric layers, forced and unforced trend367

distributions are completely separated at ! = 40 years (Figs. 8D, H, and L). This is a simple visual368

illustration of the timescale-dependence of signal and noise, and of the difficulty in their separation369

on shorter, noisier timescales of 1-2 decades (Santer et al. 2011).370

Despite the evolution in model complexity and resolution between CMIP5 and CMIP6, the371

sampling distributions of unforced atmospheric temperature trends are remarkably similar in the372

two generations of coupled models. The same is true for the sampling distributions of forced trends373

on 10- and 20-year timescales. On longer 30- and 40-year timescales, however, small differences374

are apparent in the distributions of forced tropospheric temperature trends in CMIP5 and CMIP6.375
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These may arise because CMIP5 and CMIP6 do not have identical multi-decadal evolution of376

certain external forcings (Checa-Garcia et al. 2018; Fyfe et al. 2021).377

Figure 8 also provides information on the consistency between global-mean temperature trends378

in observations and the extended HIST simulations. On shorter 10- and 20-year timescales, all379

observed TLS, TMT, and TLT trends are contained within the respective CMIP5 and CMIP6380

distributions of forced trends. The same is true for observed TLS trends on longer 30- and 40-381

year timescales (Figs. 8C, D). For TMT and TLT, however, only observed data sets with larger382

tropospheric warming rates are within the model 30- and 40-year distributions of forced trends.383

The UAH-inferred warming on these timescales is invariably smaller than model expectations384

(Figs. 8G, H, K, and L).385

Amplification of warming with increasing height is a well-known and well-understood property386

of the tropical atmosphere (Stone and Carlson 1979; Santer et al. 2005; Held and Soden 2006).387

Figures 8M-P display one measure of tropical amplification behavior – the regression coefficient388

1{TMT:TLT} between time series of tropical ocean averages of TMT and TLT. All model and obser-389

vational values of 1{TMT:TLT} are greater than 1, indicating that temperature changes in the mid- to390

upper troposphere exceed those in the lower troposphere. The means and widths of the CMIP5 and391

CMIP6 sampling distributions of 1{TMT:TLT} are relatively insensitive to increases in !, and show392

substantial overlap for the forced and unforced runs. The model results imply that 1{TMT:TLT} is both393

timescale-invariant and insensitive to forcing, and that its values may impose a robust, physically394

based constraint on observations (Santer et al. 2005; Held and Soden 2006).395

Observational values of 1{TMT:TLT} show a number of interesting features. First, the ERA5.1 and396

RSS “MSU merge” results are well within the range of model expectations on all four timescales397

considered here. In terms of this tropical amplification metric, therefore, there is no fundamental398

discrepancy between simulations and all observations.399
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Second, as in the model simulations, 1{TMT:TLT} is timescale-invariant for UAH, ERA5.1, and400

the RSS “MSU merge” case. While the three RSS sensitivity tests have almost identical 1{TMT:TLT}401

values for ! = 10 years (Fig. 8M), the RSS baseline and “AMSU correct” data sets yield regression402

coefficients that decrease in size as ! increases, and are generally outside the range of model results403

for 30- and 40-year timescales (Figs. 8O-P). On these longer timescales, the maximally overlapping404

!-year windows always sample the 1998 to 2003 transition between earlier and more advanced405

microwave sounders, and thus are more likely to reflect the impact of different merging choices on406

amplification behavior (see Section 2a).407

Third, the UAH 1{TMT:TLT} value is ≈ 1.1 on all four timescales and is smaller than almost all408

model results. The anomalous UAH value is due to a change in the method used by the UAH group409

to estimate TLT (Spencer et al. 2017). The impact of this change was to increase the height of410

the effective weighting function for TLT, thus decreasing the vertical separation between the TLT411

and corrected TMT weighting functions. This leads to a smaller amplification ratio. To maintain412

continuity with previous tropical amplification studies (Santer et al. 2017b) and to increase the413

amplification signal, the model, RSS, and ERA5.1 results shown here do not use the new UAH414

approach for calculating TLT.415

6. Covariability of different aspects of tropical climate change416

Properties of the climate system that are controlled by well-understood physical mechanisms417

and are tightly constrained in model simulations may be useful for reducing large uncertainties418

in observed temperature trends (Santer et al. 2005). We consider four such properties here. The419

first three properties are ratios between tropical WV trends and trends in tropical SST, TLT, and420

corrected TMT.v We refer to these ratios as '{WV/SST}, '{WV/TLT}, and '{WV/TMT} (respectively).421

vBecause satellite WV data are available over ocean only, we computed '{WV/TLT} and '{WV/TMT} using “ocean only” TLT and TMT trends.

Temperature gradients are weak in the tropical free troposphere, so whether we use TLT and TMT trends calculated over ocean only or over land
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The relationship between temperature and saturation vapor pressure changes is governed by the422

Clausius-Clapeyron (C-C) equation (Iribarne and Godson 1981). If relative humidity remains423

approximately constant as temperature increases, C-C predicts the increase in columnar content of424

WV (Wentz and Schabel 2000; Held and Soden 2006; Mears et al. 2007; O’Gorman and Muller425

2010).426

The fourth property we examine, the trend ratio '{TMT/SST}, is a measure of the amplification of427

tropical SST changes in the tropical troposphere. Its behavior is governed bymoist thermodynamics428

(Stone and Carlson 1979; Held and Soden 2006). '{TMT/SST} provides information that differs from429

that of 1{TMT:TLT}, the regression-based amplification metric considered in Section 5.vi430

In a climate model, these four ratios are internally and physically consistent. The observed431

covariability of tropical WV, tropospheric temperature, and SST should also exhibit internal and432

physical consistency. As we show below, however, observed values of '{WV/SST}, '{WV/TLT},433

'{WV/TMT}, and '{TMT/SST} can be inconsistent for certain combinations of observed data sets, and434

may depart noticeably from model expectations.435

Such departures can have at least three explanations. First, WV, tropospheric temperature, and436

SST aremeasured independently by different instruments on different satellites and/ormeasurement437

platforms. Each variable has different measurement accuracy and errors. These measurement438

differences can affect the estimated covariability between multidecadal trends in WV, tropospheric439

temperature, and SST.440

and ocean has minimal impact on our results. To be consistent in terms of the domain analyzed, the TMT trends in '{TMT/SST} also rely on data

averaged over tropical oceans only.
vi1{TMT:TLT} was useful for examining whether the TMT and TLT time series produced by an individual research group yielded internally

consistent amplification behavior. 1{TMT:TLT} used TMT and TLT information from the same microwave sensors flown on the same satellites.

In contrast, observed values of '{TMT/SST} provide information on the physical consistency between multidecadal trends in SST and TMT

measurements that are processed by different research groups, and that are obtained using different types of measurement platforms.
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Second, the tropospheric temperature and SST data sets analyzed here were generated bymultiple441

research groups. In the case of TMT and TLT, each research group uses different procedures to442

adjust for drifts in satellite orbits and instrument calibration, to merge measurements from multiple443

satellites, and to merge brightness temperatures estimated from earlier and more recent microwave444

sounders. For SST, groups use different methods to blend information from ships, buoys, drifting445

floats, and satellites, to adjust for changes over time in how SST measurements were made, and to446

infill SSTs in data-sparse regions. The decisions made in adjusting tropospheric temperature and447

SST for these known non-climatic influences can affect trends (Karl et al. 2006, 2015; Hausfather448

et al. 2017; Mears et al. 2011; Mears and Wentz 2016, 2017; Zou and Qian 2016; Zou et al. 2018;449

Spencer et al. 2017; Po-Chedley et al. 2015), and can therefore influence the estimated covariability450

between real-world tropical temperature and WV changes (or between observed trends in SST and451

TMT). Trends in satellite WV data are also sensitive to data set construction choices (Mears et al.452

2018), but we currently have uncertainty estimates from the RSS group only.vii453

Third, models may have incomplete or inaccurate representation of the basic physics driving454

observed tropical covariability relationships on multidecadal timescales. This seems unlikely455

(Held and Soden 2006), particularly given the fact that on interannual timescales, observed tropical456

covariability relationships between surface and tropospheric temperature (Santer et al. 2005) and457

between temperature and WV (Mears et al. 2007) are well captured by models (see Section 7).458

Figure 9 shows scatter plots of the individual trend components of the four ratio statistics. For each459

statistic, model results are tightly constrained in the CMIP5 and CMIP6 multi-model ensembles.460

At least 96% of the variance in simulated WV trends (plotted on the H-axis in panels A-C) and in461

simulated TMT trends (plotted on the H-axis of panel D) is explained by simulated trends in the462

viiWe do not use the reanalysis-derived WV trend in estimating structural uncertainties in observed WV trends. Other research has found possible

problems with WV trends inferred from reanalysis products (Bengtsson et al. 2004; Wang et al. 2020).
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independent (G-axis) variable. This indicates that the four covariance relationships of interest here463

are relatively insensitive to model differences in the applied historical forcings, the temperature and464

WV responses to these forcings, and the properties of simulated multi-decadal internal variability.465

A related inference is that even though most of the mass of atmospheric water vapor resides in the466

lower troposphere, simulated tropical SST, TLT, and TMT trends impose similar constraints on467

simulated tropical WV trends – i.e., there is no evidence that on multidecadal timescales, SST or468

TLT explain noticeably more of the WV variance than TMT.469

The regression fits to the CMIP5 and CMIP6 trends are 8.5 and 8.7%/decade for WV and SST,470

6.3 and 6.4%/decade for WV and TLT, and 5.3 and 5.5%/decade for WV and TMT (Figs. 9A-C,471

respectively). The decrease in regression slope in the progression from panels A to C in Fig. 9472

reflects the fact that tropical temperature changes closely follow a moist adiabatic lapse rate (Stone473

and Carlson 1979). As the magnitude of warming amplifies with increasing height, the slope of474

the regression between temperature trends and moisture trends decreases. The regression slope475

for simulated tropical SST and TMT trends (1.6 for both CMIP5 and CMIP6; see Fig. 9D) is also476

consistent with MALR expectations.477

Unlike the model covariance relationships in Fig. 9, all four sets of observed covariance re-478

lationships show substantial spread. The tight clustering of model expectations and the large479

observational uncertainty are clearer if we directly compare trend ratios (Fig. 10).viii This com-480

parison reveals that observed SST and tropospheric temperature data sets with the largest tropical481

warming over 1988 to 2019 have '{WV/SST}, '{WV/TLT}, and '{WV/TMT} ratios closest to the model482

results (Figs. 10A-C).483

viiiThe lowest and highest observational values for '{WV/SST} , '{WV/TLT} , '{WV/TMT} , and '{TMT/SST} vary by factors of 1.6, 1.7, 1.8,

and 2.9, respectively. The larger range for '{TMT/SST} arises because there is appreciable observational uncertainty in both the numerator and

denominator of the ratio. In the three ratios involving WV, the structural uncertainty of observed trends can be estimated in the denominator only.
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For all three ratios involving WV trends, there is minimal overlap between simulations and484

observations – observed ratios generally exceed model expectations. For '{WV/SST}, only the COBE485

SST trend leads to a result consistent with model expectations (Fig. 10A). For both '{WV/TLT} and486

'{WV/TMT}, observed trend ratios are larger than almost all of the 289 model results (Figs. 10B,C).ix487

The agreement betweenmodel and observed '{TMT/SST} values is closer, but depends on the selected488

combination of observed TMT and SST data sets (Fig. 10D).489

We calculated /-scores to summarize and synthesize the information in Fig. 10. For each490

observed ratio in Fig. 10, the /-score is simply the difference between the observed result and the491

mean of the CMIP5 or CMIP6 multi-model average ratio, normalized by the CMIP5 or CMIP6492

standard deviation of the sampling distribution of the ratio in question. The /-scores in Fig. 11A493

are averages over the individual scores arising from structural uncertainty in observed SST trends;494

they are measures of the consistency between the simulated values of '{WV/TLT}, '{WV/TMT}, and495

'{TMT/SST} and the observed values of these ratios estimated with a specific TLT or TMT data set.496

The /-scores in Fig. 11B are defined analogously, and are averages over the individual /-scores497

arising from structural uncertainty in observed tropospheric temperature trends.498

Under the assumption that the model-generated distributions of the four ratios are realistic rep-499

resentations of the true (but uncertain) real-world covariance relationships, the /-scores allow us500

to make certain inferences about the likelihood that individual observed SST and tropospheric501

temperature data sets are consistent with model expectations and with other other observations. In502

Fig. 11A, for example, STAR and RSS “MSU merge” – the data sets with the largest observed tro-503

pospheric warming trends – are closest to the model expectations of WV/tropospheric temperature504

trend ratios, and therefore have the smallest /-scores for '{WV/TLT} and '{WV/TMT}. In contrast, the505

ixFor each ratio, there are 123 values for CMIP5 and 166 for CMIP6. For '{WV/TLT} and '{WV/TMT} , only 4 and 3 of the 289 extended HIST

realizations (respectively) have scaling ratios exceeding the smallest observed value.
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muted tropospheric warming in UAH leads to '{WV/TLT} and '{WV/TMT} values that are significantly506

larger than model expectations, thus leading to large UAH /-scores for these two ratios. Based507

on '{WV/TLT} and '{WV/TMT} alone, therefore, we might infer that the smaller tropical tropospheric508

warming trend is UAH is less credible.509

This inference assumes that the observed trend in tropicalWV is accurate. A substantially smaller510

observed WV trend would decrease the UAH-derived '{WV/TLT} and '{WV/TMT} ratios, bringing511

them in closer agreement with model expectations. Since we do not have estimates of the observed512

WV trend from multiple research groups, it is difficult to assess the likelihood that the true (but513

uncertain) real-world WV trend is markedly smaller than the RSS WV trend estimate.514

By considering the '{TMT/SST} ratio, however, we can bring in independently monitored observed515

SST data. This allows us to explore the constraint that observed SST trends impose on the size of516

observed TMT trends. The COBE, ERSST, andHadSST data sets, when considered in combination517

with the UAH TMT trend, lead to UAH-based '{TMT/SST} ratios that are significantly smaller than518

climate model and MALR expectations (Fig. 10D). Only the muted tropical surface warming519

in the HadISST data set yields a UAH-based '{TMT/SST} ratio that is marginally consistent with520

model expectations. The weaker surface warming in HadISST is inconsistent with independently521

monitored WV data (see Figs. 10A and 11B).522

To summarize, the reduced tropical tropospheric warming in UAH is not supported by: 1) an523

independent estimate of atmospheric moistening from satellite data; 2) all independent estimates524

of observed sea surface warming except HadISST; and 3) all model and theoretical expectations of525

'{WV/TLT}, '{WV/TMT}, and '{TMT/SST}. In turn, the HadISST tropical SST trend that is marginally526

consistent with the muted UAH tropospheric warming is not supported by independently monitored527

satellite WV or TMT data, or by model and theoretical expectations of '{WV/SST} and '{TMT/SST}.528
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The above analysis focused on comparing simulated and observed measures of tropical covari-529

ability. It is also of interest to compare modeled and observed values of the individual components530

of these covariability metrics. In the case of WV, 21% of the model WV trends are smaller than531

the satellite-estimated WV trend in Fig. 9A. For SST, TLT, and TMT, only 17%, 12%, and 12% of532

the model trends are within the range of observed results (Figs. 9A-C, respectively).533

There are multiple interpretations of this finding. One interpretation is that the higher level of534

consistency between simulated and observed tropical WV trends reflects a systematic low bias in535

observed tropical TLT and TMT trends over 1988 to 2019. An alternative explanation is that the536

satellite WV trend is overestimated. It is difficult to discriminate between these two possibilities537

without additional information, such as well-quantified estimates of uncertainties in observed WV538

trends from different research groups.539

7. Conclusions540

Relative to CMIP5, the more recent CMIP6 models have higher resolution (on average), more541

complete numerical portrayal of Earth’s climate system, and nominally improved representation542

of external forcings (Eyring et al. 2016). These advances do not guarantee improved agreement543

between simulations and observations. This is apparent in at least two aspects ofmodel performance544

analyzed here: lower stratospheric cooling over the ozone depletion period and the stratospheric545

temperature response to the El Chichón eruption. Understanding why these features are more546

accurately represented in CMIP5 will require more systematic diagnostic efforts to disentangle547

evolutionary changes in models from evolutionary changes in model forcings (Fyfe et al. 2021).548

The development of satellite temperature data sets remains a work in progress. Adjustments549

for known non-climatic factors can have significant impact on observed trends in tropospheric550

temperature, as well as on basic physical properties related to tropospheric warming (Karl et al.551
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2006; Mears et al. 2011; Mears and Wentz 2016, 2017; Zou and Qian 2016; Zou et al. 2018;552

Spencer et al. 2017; Po-Chedley et al. 2015). Multi-model and single-model large ensembles553

tightly constrain four such physical properties – the ratio between tropical trends in WV and SST,554

WV and TLT, WV and TMT, and TMT and SST. These are denoted here by '{WV/SST}, '{WV/TLT},555

'{WV/TMT}, and '{TMT/SST}, respectively. Comparing modeled and observed values of such basic556

covariance relationships has the advantage (relative to single-variable comparisons) that results are557

less sensitive to model-versus-observed differences in the phasing of internal variability (Santer558

et al. 2005; Po-Chedley et al. 2021).559

We find significant differences between simulated and observed values of '{WV/SST}, '{WV/TLT},560

'{WV/TMT}, with observations exceeding model expectations in most cases (Figs. 10A-C). Observed561

data sets with larger warming of the tropical ocean surface and tropical troposphere yield trend562

ratios that are closer to model results. For '{TMT/SST}, model-data consistency depends on the563

selected combination of observed data sets used to estimate TMT and SST trends (Fig. 10D).564

One interpretation of our findings is that they are due to a systematic low bias in satellite565

tropospheric temperature trends – i.e., that the size of the observed tropical moistening signal is566

greater than can be explained by the independently observed warming of the tropical troposphere.567

Alternately, the observed atmospheric moistening signal may be overestimated. Given the large568

structural uncertainties in observed tropical TMT and SST trends, and because satellite WV data569

are available from one group only, it is difficult to determine which interpretation is more credible.570

What we can say with confidence, however, is that decisions regarding how to merge MSU571

and AMSU TMT data have substantial impact on observed tropical TMT trends. This is evident572

from the three RSS sensitivity tests examined here. These sensitivity tests point towards merging573

decisions as a significant contributory factor to uncertainties in observed '{WV/TMT} and '{TMT/SST}574

trend ratios (Figs. 10C,D).575
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Two further points are relevant to the question of whether the model-observed differences in576

Figs. 10A-C are mainly due to underestimated observed tropospheric temperature trends or to an577

overestimated satelliteWV trend. First, there is some evidence that observational uncertainties may578

be smaller in satellite WV data than in satellite tropospheric temperature data (Wentz 2013; see579

Section 2c). Second, when the individual trend components of our four trend ratios are examined,580

the agreement between models and observations is better for WV and SST trends than for TMT or581

TLT trends. This difference in model-data consistency, taken together with higher measurement582

accuracy of WV and the results of the RSS sensitivity tests, suggests that underestimated observed583

tropospheric warming is plausible. This inference is predicated on the assumption that the model-584

based covariance constraints are realistic.585

While our analysis does not definitively resolve the cause or causes of significant differences586

between modeled and observed tropospheric warming trends, it does illustrate the diagnostic power587

of simultaneously considering multiple complementary variables (Wentz and Schabel 2000). Our588

study also highlights the strong internal and physical consistency between the model constraints589

derived from multidecadal tropical trends in WV, TMT, and SST. Examining additional inde-590

pendently monitored constraints may be helpful in reducing the currently large uncertainties in591

observations of tropical climate change.592
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APPENDIX A607

Calculation of synthetic satellite temperatures from model data608

a. Calculation of synthetic satellite temperatures609

We use a local weighting function method developed at RSS to calculate synthetic satellite610

temperatures from CMIP5 and CMIP6 output and from the ERA5.1 reanalysis (Santer et al.611

2017b). At each grid-point, simulated temperature profiles were convolved with local weighting612

functions. The weights depend on the grid-point surface pressure, the surface type (land, ocean,613

or sea ice), and the selected layer-average temperature (TLS, TMT, or TLT). The local weighting614
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function method provides more accurate estimates of synthetic satellite temperatures than use of a615

global-mean weighting function, particularly over high elevation regions.616

APPENDIX B617

Method used for correcting TMT data618

Trends in TMT estimated from microwave sounders receive a substantial contribution from the619

cooling of the lower stratosphere (Fu et al. 2004; Fu and Johanson 2004, 2005; Johanson and Fu620

2006). In Fu et al. (2004), a regression-based method was developed for removing the bulk of621

this stratospheric cooling component of TMT. This method has been validated with both observed622

and model atmospheric temperature data (Fu and Johanson 2004; Gillett et al. 2004; Kiehl et al.623

2005). We calculated two different versions of corrected TMT, the first with latitudinally fixed624

and the second with latitudinally varying regression coefficients. We refer to these subsequently625

as TMT1 and TMT2, respectively. The main text discusses corrected TMT1 only, and does not use626

the subscript 1 to identify corrected TMT.627

The regression equation applied in Fu and Johanson (2005) for calculating corrected TMT is:628

TMT = 024TMT+ (1− 024)TLS (B1)

For TMT1, we use 024 =1.1 at each latitude. For TMT2, 024 =1.1 between 30◦N and 30◦S, and629

024 =1.2 poleward of 30◦. This is consistent with how we have calculated TMT1 and TMT2 in630

previous work (Santer et al. 2017b).631

The advantage of TMT2 is that lower stratospheric cooling makes a larger contribution to TMT632

trends at mid- to high latitudes. The latitudinally varying regression coefficients in TMT2 remove633

more of this extratropical cooling. We prefer to use the more conservative TMT1 here. In practice,634

the choice of TMT1 or TMT2 has minimal influence on the statistical significance of differences635
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between the modeled and observed statistics of interest here (temperature trends and a regression-636

based measure of the amplification of warming with increasing height in the tropical atmosphere).637
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Fig. 1. Time series of monthly-mean near-global averages of the temperature of the lower strato-914

sphere (TLS; panel A), the mid- to upper troposphere (TMT; panel B), and the lower915

troposphere (TLT; panel C). For TLS and TMT, observations are the average of the RSS916

“baseline”, STAR, and UAH satellite data sets and the ERA 5.1 reanalysis. Since STAR917

does not produce a TLT data set, the observational average for TLT was calculated with RSS918

“baseline”, UAH, and ERA5.1 only. CMIP5 synthetic satellite temperatures were computed919

from 123 realizations of historical climate change (“extended HIST”) performed with 28920

models. For CMIP6, 116 extended HIST realizations were used for TLS and 166 realizations921

for TMT and TLT (performed with 21 and 22 models, respectively). All temperature changes922

are defined as anomalies relative to climatological monthly means over 1979 to 2019. TMT923

is adjusted for the contribution it receives from stratospheric cooling (see Appendix B).924

Calculation of the multi-model average (MMA) involves first averaging over realizations of925

an individual model, then averaging over models. . . . . . . . . . . . . . 46926

Fig. 2. Time series of monthly-mean anomalies of the temperature of the lower stratosphere (TLS)927

in CMIP6 extended HIST simulations. Results are for 21 individual CMIP6 models (in grey)928

and for the RSS “baseline” satellite data (in red). The CMIP6 multi-model average is also929

shown (bottom right panel). All anomalies are spatially averaged over 82.5◦N-82.5◦S and930

are defined relative to climatological monthly means over 1979 to 2019. The number of931

extended HIST realizations is indicated in parentheses. Vertical lines denote the times of932

maximum lower stratospheric warming in the RSS “baseline” data after the eruptions of El933

Chichón and Pinatubo. . . . . . . . . . . . . . . . . . . . . 47934

Fig. 3. Root-Mean-Square (RMS) differences between simulated and observed volcanic signals in935

lower stratospheric temperature in CMIP5 models (panels A, B) and CMIP6 models (panels936

C, D). RMS differences were calculated for 24-month periods after the 1982 eruption of937

El Chichón (panels A, C) and the 1991 Pinatubo eruption (panels B, D). The observational938

target is the RSS “baseline” TLS time series, spatially averaged over 82.5◦N-82.5◦S. Blue939

dots denote RMS values from individual realizations of the CMIP5 and CMIP6 extended940

HIST runs. Horizontal bars are average RMS differences for individual models. The dashed941

vertical lines are the multi-model average RMS differences, calculated by first averaging942

RMS values over a model’s individual realizations, and then averaging over models. . . . . 48943

Fig. 4. Least-squares linear trends in near-global average lower stratospheric temperature over ozone944

depletion and ozone recovery periods (1979 to 2000 and 2001 to 2019, respectively). Model945

results are from 123 and 116 extended HIST simulations performed with 28 different CMIP5946

and 21 different CMIP6 models (respectively). CMIP5 trends include results from the947

40-member CESM1 and 50-member CanESM2 large ensembles (LEs). CMIP6 trends948

incorporate the 50-member MIROC6 LE. Observed estimates of TLS trends rely on satellite949

data (RSS, STAR, and UAH) and the ERA5.1 reanalysis. Three different versions of the950

RSS data are shown. The 1:1 line (with trends of equal size over the the ozone depletion951

and ozone recovery periods) is marked in purple. For both periods, the CMIP5 multi-model952

average TLS trend is closer to the satellite data results. No individual CMIP5 or CMIP6953

realization has larger lower stratospheric cooling in the ozone recovery period than in the954

ozone depletion period. This underscores the fact that the non-linear behavior of TLS over955

the satellite era is dominated by the response to ozone forcing, not by multi-decadal internal956

variability (Solomon et al. 2017). The shaded ellipses are the 2f confidence intervals for957

each of the three LEs. For information on spatial averaging and calculation of multi-model958

averages, refer to Fig. 1. . . . . . . . . . . . . . . . . . . . . 49959
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Fig. 5. Zonal-mean trends inmonthly-mean lower stratospheric temperature (panels A,B) and in cor-960

rected mid- to upper tropospheric temperature (panels C,D). Results are for ozone depletion961

and ozone recovery periods (left and right columns, respectively). For information regarding962

the numbers of CMIP5 and CMIP6 models and extended HIST realizations, calculation of963

multi-model averages, spatial averaging, and observational data, refer to Fig. 1. . . . . . 50964

Fig. 6. Scatter plot (panel A) of linear trends in near-global mean lower tropospheric temperature965

(TLT) and mid- to upper tropospheric temperature (TMT) and histograms of the TMT/TLT966

trend ratio (panel B). All trends are over 1979 to 2019. TMT is corrected for lower strato-967

spheric cooling. The multi-model averages include information from the 50- and 40-member968

CanESM2 and CESM1 LEs (for CMIP5) and from the 50-member CanESM5 and MIROC6969

LEs (for CMIP6). The shaded ellipses in panel A are the 2f confidence intervals for each970

LE. Because TLT is not produced by STAR, the STAR TMT trend is plotted as a horizontal971

line in panel A. Selected isopleths of equal values of the TMT/TLT trend ratio are denoted972

by dashed grey lines in panel A. For further details of CMIP5 and CMIP6 realizations and973

models, calculation of multi-model averages, spatial averaging, observational data sources,974

and fits to histograms, refer to caption of Fig. 1 and SM. . . . . . . . . . . . 51975

Fig. 7. As for Fig. 4 but for linear trends in near-global average mid- to upper tropospheric temper-976

ature (TMT) over 1979 to 2000 (G-axis) and over 2001 to 2019 (H-axis). TMT is corrected977

for the influence of lower stratospheric cooling. While Fig. 4 excluded TLS results from978

the 50-member CanESM5 LE because of anomalous TLS variability, TMT trends from the979

CanESM5 LE are minimally affected by this anomalous variability and are included here.980

The 1:1 line (with TMT trends of equal size over the two periods) is marked in purple.981

Simulated TMT trends are larger in the second analysis period in approximately 90% of the982

realizations. In satellite data, trends in the two periods are of roughly equivalent size. . . . 52983

Fig. 8. Trends and regression coefficients in CMIP5, CMIP6, and observations. Maximally over-984

lapping !-year trends were calculated from time series of monthly-mean, near-global spatial985

averages of TLS, TMT, and TLT (panels A-D, E-H, and I-L, respectively). The regression986

coefficient 1 {TMT:TLT}, a measure of amplification of warming in the tropical troposphere,987

was computed with maximally overlapping !-year time series of monthly-mean TMT and988

TLT, spatially averaged over ocean areas between 20◦N-20◦S (panelsM-P). The four selected989

timescales shown here are 10, 20, 30, and 40 years (columns 1-4, respectively). Histograms990

of these !-year trends and regression coefficients are shown for CMIP5 and CMIP6 extended991

HIST simulations and for pre-industrial control runs. Histograms are weighted to account992

for model differences in the number of extended HIST simulations or in control run length.993

For each histogram, results are normalized by the total number of trend or regression coef-994

ficient samples. Fits to the model trend and 1 {TMT:TLT} distributions were performed with995

kernel density estimation (see SM). The vertical lines for the observed trends and regression996

coefficients are the averages across the maximally overlapping !-year analysis periods. For997

trends in TMT, the RSS “MSU merge" and STAR results are almost identical. . . . . . 53998

Fig. 9. Scatter plot of tropical trends in WV and SST (panel A), WV and TLT (panel B), WV999

and corrected TMT (panel C), and corrected TMT and TLT (panel D). Trends are over1000

1988 to 2019, the period of availability of observed WV data from 7 different microwave1001

radiometers (Mears et al. 2018), and were calculated with WV, TLT, TMT and SST data1002

averaged over tropical oceans (20◦N-20◦S). Before computing WV trends, monthly-mean1003

WV anomalies were expressed as percentages with respect to climatological monthly means.1004

Because satellite-derived WV is produced by RSS only, all satellite TLT and TMT trends in1005

panels B and C are plotted against the RSS WV trend. ERA5.1 TLT and TMT trends are1006

plotted against the WV trend from the reanalysis. Since there are 4 different observed SST1007

data sets and 6 different observed TMT data sets, there are 4× 6 combinations of SST and1008
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TMT trends in panel D. The G-axis position of observational symbols in panel D reflects the1009

observed SST trend; the H-axis position depends on the observed TMT trend. The CMIP51010

multi-model average trend in each panel include results from the CanESM2 and CESM11011

LEs; the CMIP6 multi-model average trend include results from the CanESM5 andMIROC61012

LEs. The regression fits and slopes were estimated with Orthogonal Distance Regression1013

and are given separately for CMIP5 and CMIP6 results (see SM). . . . . . . . . . 541014

Fig. 10. Histograms of the ratios between the model trends plotted in each of the four panels of1015

Figure 9. Results are for '{WV/SST}, '{WV/TLT}, '{WV/TMT}, and '{TMT/SST} (panels A-D,1016

respectively). Observational trend ratios in panels A-C are plotted as vertical lines. Each1017

satellite TMT data set in panel D can be paired with 4 different observed SST trends, yielding1018

4 different observed values of '{TMT/SST} (see Fig. 9 caption). Observed '{TMT/SST} values1019

in panel D are plotted in six rows, one row per satellite TMT data set. The vertical spacing1020

and H-axis location of rows is nominal; the vertical ordering of rows reflects the size of the1021

observed tropical TMT trend over 1988 to 2019. The largest TMT trend (in the STAR data1022

set) has the largest H-axis offset in panel D. For details regarding fits to the model histograms1023

and histogram weighting, refer to SM. . . . . . . . . . . . . . . . . 551024

Fig. 11. Normalized differences (/-scores) between observed scaling ratios and the mean of model1025

scaling ratio distributions. Results in panel A are for tests of '{WV/TLT} ratios based on 51026

different observed TLT data sets and for tests of '{WV/TMT} and '{TMT/SST} ratios based on 61027

different observed TMT data sets. Panel B involves tests of '{WV/SST} and '{TMT/SST} with 41028

different observed SST data sets. All /-scores were calculated with the scaling ratio data in1029

Fig. 10. For each ratio tested, the observed ratio is subtracted from the mean of the CMIP5 or1030

CMIP6 sampling distribution of the ratio. These differences are normalized by the CMIP5 or1031

CMIP6 standard deviation of the ratio’s sampling distribution; CMIP5 and CMIP6 /-scores1032

are then averaged. For the '{TMT/SST} ratios in panel A, there is an additional averaging step:1033

each observed TMT data set can be paired with 4 different observed SST data sets, yielding1034

4 different /-scores (see rows in Fig. 10D). We average these 4 values per TMT data set.1035

Likewise, each observed SST data set in panel B can be paired with 6 different TMT data1036

sets, yielding 6 different values of '{TMT/SST} (see columns in Fig. 10D). We average these 61037

values per SST data set. The brown bars are average /-scores for different types of scaling1038

ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 561039
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Fig. 1: Time series of monthly-mean near-global averages of the temperature of the lower strato-
sphere (TLS; panel A), the mid- to upper troposphere (TMT; panel B), and the lower troposphere
(TLT; panel C). For TLS and TMT, observations are the average of the RSS “baseline”, STAR, and
UAH satellite data sets and the ERA 5.1 reanalysis. Since STAR does not produce a TLT data set,
the observational average for TLT was calculated with RSS “baseline”, UAH, and ERA5.1 only.
CMIP5 synthetic satellite temperatures were computed from 123 realizations of historical climate
change (“extended HIST”) performedwith 28models. For CMIP6, 116 extended HIST realizations
were used for TLS and 166 realizations for TMT and TLT (performed with 21 and 22 models,
respectively). All temperature changes are defined as anomalies relative to climatological monthly
means over 1979 to 2019. TMT is adjusted for the contribution it receives from stratospheric
cooling (see Appendix B). Calculation of the multi-model average (MMA) involves first averaging
over realizations of an individual model, then averaging over models.
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