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Abstract

Reinforcement learning methods have
been used to compute dialog policies from
language-based interaction experiences. Ef-
ficiency is of particular importance in dialog
policy learning, because of the considerable
cost of interacting with people, and the
very poor user experience from low-quality
conversations. Aiming at improving the effi-
ciency of dialog policy learning, we develop
algorithm LHUA (Learning with Hindsight,
User modeling, and Adaptation) that, for the
first time, enables dialog agents to adaptively
learn with hindsight from both simulated and
real users. Simulation and hindsight provide
the dialog agent with more experience and
more (positive) reinforcements respectively.
Experimental results suggest that, in success
rate and policy quality, LHUA outperforms
competitive baselines from the literature, as
well as its no-simulation, no-adaptation, and
no-hindsight counterparts.

1 Introduction

Dialog systems have enabled intelligent agents to
communicate with people using natural language.
For instance, virtual assistants, such as Siri, Alexa,
and Cortana, have been increasingly popular in
daily life. We are particularly interested in goal-
oriented dialog systems, where the task is to effi-
ciently and accurately exchange information with
people, and the main challenge is on the ubiqui-
tous ambiguity in natural language processing (spo-
ken or text-based). Goal-oriented dialog systems
typically include components for language under-
standing, dialog management, and language syn-
thesis, while sometimes the components can be
constructed altogether, resulting in end-to-end di-
alog systems (Bordes et al., 2016; Williams and
Zweig, 2016; Wen et al., 2017; Young et al., 2018;
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zhangs@binghamton.edu

Yang et al., 2017). In this paper, we focus on the
problem of policy learning for dialog management.

Reinforcement learning (RL) algorithms aim at
learning action policies from trial-and-error experi-
ences (Sutton and Barto, 2018), and have been used
for learning dialog policies (Young et al., 2013;
Levin et al., 1997). Deep RL methods (e.g. (Mnih
et al., 2013)) have been developed for dialog pol-
icy learning in dialog domains with large state
spaces (Su et al., 2016a; Fatemi et al., 2016; Ser-
ban et al., 2017). While it is always desirable for
RL agents to learn from the experiences of inter-
acting with the real world, such interactions can
be expensive, risky, or both in practice. Back to
the context of dialog systems, despite all the ad-
vances in RL (deep or not), dialog policy learning
remains a challenge. For instance, interacting with
people using natural language is very costly, and
low-quality dialog policies produce very poor user
experience, which is particularly common in early
learning phases. As a result, it is critical to de-
velop sample-efficient RL methods for learning
high-quality dialog policies with limited conversa-
tional experiences.

In this paper, we develop an algorithm called
LHUA (Learning with Hindsight, User modeling,
and Adaptation) for sample-efficient dialog pol-
icy learning. LHUA, for the first time, enables a
dialog agent to simultaneously learn from real, sim-
ulated, and hindsight experiences, which identifies
the key contribution of this research. Simulated
experience is generated using learned user models,
and hindsight experience (of successful dialog sam-
ples) is generated by manipulating dialog segments
and goals of the (potentially many) unsuccessful
samples. Dialog experience from simulation and
hindsight respectively provide more dialog sam-
ples and more positive feedback for dialog policy
learning. To further improve the sample efficiency,
we develop a meta-agent for LHUA that adaptively
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Figure 1: An overview of LHUA. A dialog agent interacts with both real and simulated users while learning a dia-
log policy from this interaction experience. A simulated user is modeled using real dialog samples, and interacting
with this simulated user provides the dialog agent with simulated dialog samples. An adaptive coordinator learns
from the dialog agent’s recent performance to adaptively assign one user (real or simulated) for the dialog agent
to interact with. A hindsight manager manipulates both real and simulated dialog samples (of mixed qualities) to

“synthesize” successful dialog samples.

learns to switch between real and simulated users in
the dialog-based interactions, which identifies the
second contribution of this research. An overview
of LHUA is shown in Figure 1.

Experiments were conducted using a realistic
movie-ticket booking platform (Li et al., 2017).
LHUA has been compared with state-of-the-art
methods (Peng et al., 2018; Lu et al., 2019; Su
et al., 2018) in dialog policy learning tasks. Results
suggest that ablations of LHUA produce compa-
rable (or better) performances in comparison to
competitive baselines in success rate, and LHUA
as a whole performed the best.

2 Related Work

In this section, we summarize three different ways
of improving the efficiency of dialog policy learn-
ing (namely user modeling, hindsight experience
replay, and reward shaping), and qualitatively com-
pare them with our methods.

Researchers have developed “two-step” algo-
rithms that first build user models through super-
vised learning with real conversational data, and
then learn dialog policies by interacting with the
simulated users (Schatzmann et al., 2007; Li et al.,
2016b). In those methods, user modeling must be
conducted offline before the start of dialog policy
learning. As a result, the learned policies are poten-
tially biased toward the historical conversational
data. Toward online methods for dialog policy
learning, researchers have developed algorithms for
simultaneously constructing models of real users,
and learning from the simulated interaction experi-
ence with user models (Asri et al., 2016; Su et al.,
2016b; Lipton et al., 2016; Zhao and Eskenazi,

2016; Williams et al., 2017; Dhingra et al., 2017; Li
et al., 2017; Liu and Lane, 2017; Peng et al., 2017,
Wau et al., 2019; Li et al., 2016a). Those methods
enable agents to simultaneously build and leverage
user models in dialog policy learning. However,
the problem of learning high-quality user models
by itself can be challenging. Our algorithms sup-
port user modeling, while further enabling agents
to adaptively learn from both hindsight and real
conversations.

In comparison to many other RL applications,
goal-oriented dialog systems have very sparse feed-
back from the “real world” (human users), where
one frequently cannot tell dialogs being success-
ful or not until reaching the very end. Positive
feedback is even rarer, when dialog policies are
of poor qualities. Hindsight experience replay
(HER) (Andrychowicz et al., 2017) methods have
been developed to convert unsuccessful trials into
successful ones through goal manipulation. The
“policy learning with hindsight” idea has been ap-
plied to various domains, including dialog (Lu
et al.,, 2019). Our methods support the capabil-
ity of learning from hindsight experience, while
further enabling user modeling and learning from
simulated users.

Within the dialog policy learning context, re-
ward shaping is another way of providing the dialog
agents with extra feedback, where a dense reward
function can be manually designed (Su et al., 2015),
or learned (Su et al., 2016b). Researchers also de-
veloped efficient exploration strategies to speed
up the policy learning process of dialog agents,
e.g., (Pietquin et al., 2011; Lagoudakis and Parr,
2003). Those methods are orthogonal to ours, and
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can potentially be combined to further improve
the dialog learning efficiency. In comparison to
all methods mentioned in this section, LHUA is
the first that enables dialog policy learning from
real, simulated, and hindsight experiences simulta-
neously, and its performance is further enhanced
through a meta-policy for switching between inter-
actions with real and simulated users.

3 Background

In this section, we briefly introduce the two build-
ing blocks of this research, namely Markov de-
cision process (MDP)-based dialog management,
and Deep Q-Network (DQN).

3.1 MDP-based Dialog Management

Markov Decision Processes (MDPs) can be speci-
fied as a tuple < S, A, T, R, so >, where S is the
state set, A is the action set, T is the transition
function, R is the reward function, and sg is the ini-
tial state. In MDP-based dialog managers, dialog
control can be modeled using MDPs for selecting
language actions. s € S represents the current
dialog state including the agent’s last action, the
user’s current action, the distribution of each slot,
and other domain variables as needed. a € A rep-
resents the agent’s response. The reward function
R : S x A — R gives the agent a big bonus in
successful dialogs, a big penalty in failures, and a
small cost in each turn.

Solving an MDP-based dialog management
problem produces 7, a dialog policy. A dialog
policy maps a dialog state to an action, 7 : S — A,
toward maximizing the discounted, accumulative
reward in dialogs, i.e., Ry = Zfit vi’tri, where
v € [0,1] is a discount factor that specifies how
much the agent favors future rewards.

3.2 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) is
a model-free RL algorithm. The approximation
of the optimal Q-function, Q* = Q(s,a;0), is
used by a neural network, where a is an action
executed at state s, and 6 is a set of parame-
ters. Its policy is defined either in a greedy way:
7Q(s) = argmaxa,c AQ(s, a; §) or being e-greedy,
i.e., the agent takes a random action in probability
e and action mg(s) otherwise. The loss function
for minimization in DQN is usually defined using
TD-error:

L= ES,a,T,S’[(Q(Sa a;0) — y)g]’ (1)

where y = r + ymazycAQ(s', d'; 0).

To alleviate the problem of unstable or non-
convergence of Q values, two techniques are widely
used. One is called target network whose param-
eters are updated by 6 once every many iterations
in the training phase. The other technique is expe-
rience replay, where an experience pool ¢ stores
samples, each in the form of (s¢, ay, 74, Sp41). It
randomly selects small batches of samples from
€ each time during training. Experience replay
can reduce the correlation between samples, and
increases the data efficiency.

4 Algorithms

In this section, we first introduce Learning with
Hindsight, and User modeling (LHU), and then
present LHU with Adaptation (LHUA), where al-
gorithms LHU and LHUA point to the main contri-
bution of this research.

LHU, for the first time, enables a dialog agent
to learn dialog policies from three dialog sources,
namely real users, simulated users, and hindsight
dialog experience. More specifically, a real user
refers to the human who converses with the dialog
agent, and a simulated user refers to a learned user
model that captures real users’ interactive behav-
iors with our dialog agent. In this way, a simulated
user is used for generating “human-like” dialog
experience for speeding up the process of dialog
policy learning. The last dialog source of ‘“hind-
sight dialog experience” is used for creating many
successful dialog samples using both successful
and unsuccessful dialog samples, where the source
samples are from both real and simulated users.
Different from “simulated users” that generate di-
alog samples of mixed qualities, hindsight expe-
rience produces only successful (though not real)
dialog samples, which is particularly useful for di-
alog policy learning at the early phase due to the
very few successful samples.

Among the three dialog sources, hindsight ex-
perience is “always on”, and synthesizes dialog
samples throughout the learning process. The “real”
and “simulated” dialog sources bring in the selec-
tion problem: At a particular time, from which
source should the agent obtain dialog experience
for policy learning? The “adaptation” capability
of LHUA aims at enabling the dialog agent to learn
to, before starting a dialog, select which user (real
or simulated) to interact with.
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4.1 Learning with Hindsight, and User
Modeling

In this subsection, we focus on two components
of LHUA, including user modeling, and hindsight
management, which together form LHU, an ab-
lation algorithm of LHUA. The two components’
shared goal is to generate additional dialog experi-
ence (simulated and hindsight experiences respec-
tively) to speed up dialog policy learning.

Dialog (Sub)Goal and Segmentation Goal-
oriented dialog agents help users accomplish their
goals via language-based multi-turn communica-
tions. Goal G includes a set of constraints C' and a
set of requests R, where G = (C, R). Consider a
service request “I’d like to purchase one ticket of Ti-
tanic for this evening. Which theater is available?”
In this example, the goal is of the form:

G = (C = [ticket = one, time = eve,
movie = titanic|,
R = [theater =7])

We define G’ as a subgoal of G = (C, R): G' =
(C',R"), where C" C C, R’ C R, and G’ cannot
be empty. Continuing the “titanic” example, one of
its subgoals is

G = (C' = [ticket = one, movie = titanic|,

R =0).

Given an intact dialog D, we say D, is a seg-
ment of D, if D, includes a consecutive sequence
of turns of D. With the concepts of dialog segment
and subgoal, we introduce two segment sets (head
and tail), which are later used in hindsight manager.
A head segment set €2 consists of dialog segments
Dpeqq that include the early turns in the intact dia-
log with the corresponding completed subgoal G’.

Q = {(Dhead, G")} 2

We use function HeadSegGen to collect a
head segment set ) during dialog interactions.
HeadSegGen receives a dialog segment D,
and a goal G, then checks all subgoals of GG, and
finally outputs pairs (Dseq, G') where Dy, accom-
plishes subgoal G’ of G.

A tail segment set I" consists of dialog segments
Dy that include the late turns in the intact dialog
with the corresponding completed subgoal G’.

I' = {(Dtaat, G")} 3)
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Function T'ailSegGen is implemented to gener-
ate tail segments after interactions terminate. It
receives a dialog D, a goal G and a corresponding
head segment €. If the dialog D accomplishes the
goal G, for each pair (Dpeqq, G') from the head
segment set €2, T'arlSegGen outputs a correspond-
ing pair (DS Dpeqq, G'), where D16 Do produces
a dialog segment by removing Dy from D;.

Hindsight Manager Given head and tail seg-
ment sets (2 and I'), the hindsight manager is
used for stitching two tuples, (Dpeqd; G}eqq) and
(Drair, GQ ail)’ respectively to “synthesize” success-
ful dialog samples. There are two conditions for
synthesization:

1. The two subgoals from head and tail segments

. . ! o /
are identical, G}, == G ;> and

2. The last state of Dj,cqd, Siast> and the first state
of Diqit, ;.- are of sufficient similarity.

We use KL Divergence to measure the similarity
between two states:

DKL(SlaStHS/first) <9 “4)

where § € R is a threshold parameter. We im-
plement a function to synthesize successful dialog
samples as hindsight experience for dialog policy
learning, as follows:

Dping < HindMan(6,Q,T) 5)

HindM an takes a threshold 9, a head segment
set {2, and a tail segment set I". It generates suc-
cessful dialog samples Dy,;,,4 that satisfy the above
two conditions of synthesization.

Dialog with Simulated Users In dialog policy
learning, dialog agents can learn from interactions
with real users, where the generated real experience
is stored in reply buffer B, To provide more expe-
rience, we develop a simulated user for generating
simulated dialog experience to further speed up the
learning of dialog policies.
The simulated user is of the form:

s’ r« M(s,a;0n)

where, M (s, a; 0ys) takes the current dialog state
s and the last dialog agent action a as input, and
generates the next dialog state s, and reward r. M
is implemented by a Multi-Layer Perceptron (MLP)
parameterized by 65, and refined via stochastic



Algorithm 1 Algorithm LHU

Input: K, the times of interactions with the simulated user; J,
KL-divergence threshold

Output: the success rate SR”'Y, and average rewards RP'
of agentP'9; Q(-) for agent'

1: Initialize Q(s, a;0¢q) of agent'¥ and M (s, a;0nr) of
the simulated user via pre-training on human conversa-
tional data

2: Initialize experience replay buffers B® and B® for the
interaction of agent™'9 with real and simulated users

3: Initialize head and tail dialog segment sets:

Q<+ 0,andT + 0

4: Collect initial state, s, by interacting with a real user
following goal Gfe!

5: Initialize D% « () for storing dialog turns (real)

6: while s ¢ term do // Start a dialog with real user

7 Select a + argmaz, Q(s,a’; 0g), and execute a

8: Collect next state s’, and reward r

9:  Add dialog turn d = (s, a,7,s’) to BT and D%

10 Q+ QU HeadSegGen(DFea! GReal)

11: s+ s

12: end while

13: T « T'U TailSegGen(DTet GFet Q)

14: for k = 1: K do // K interactions with simulated user
15:  Sample goal G%*™, and initial state s

16: Initialize D™ « { for storing dialog turns (sim)
17:  whiles ¢ termdo  // The k'" dialog with sim user

18: a+argmaz, Q(s,a’;0g), and execute a

19: Collect next state s, and reward r from
M (s, a;0n)

20: Add dialog turn d = (s, a, r, s') to B® and D5"™

21: Q « QU HeadSegGen(D%™, G5™)

22: s+ 8

23:  end while ‘ )

24: T « I'UTailSegGen(D5'™ G5™ Q)

25: end for

26: Synthesize hindsight experience, and store it in BS:
Dyina<+HindMan(4,T, Q) // Hindsight Manipulation

27: Calculate the success rate SRP' and average rewards
RP' of total interactions

28: Randomly sample a minibatch from both B and BS,
and update agent”'9 viaDQN  // agent®'9 training

29: Randomly sample a minibatch from B*, and update sim-
ulated user via SGD /I User modeling

30: return SRPY, RPY ()

gradient descent (SGD) using real experience in
B* to improve the quality of simulated experience.

Simulated experience generated from interac-
tions between the dialog agent and the simulated
user is stored in the simulated replay buffer B,
which is also manipulated by the hindsight man-
ager to synthesize hindsight experience.

The LHU Algorithm Algorithm 1 presents the
learning process, where our dialog agent interacts
with a real user for one dialog, and a simulated user
for k dialogs. In addition to parameter k, there is
a KL-divergence threshold 9 as a part of the input.
We refer to this algorithm using LHU(k).

Algorithm 1 starts with an initialization of the
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dialog agent’s real and simulated experience replay
buffers (B® and B° respectively), the model of the
simulated user, M (), and two segment sets for
hindsight manager (§2 and T respectively). In the
first while loop (starting in Line 6), the dialog agent
interacts with a real user and stores the real expe-
rience in B, Then, k dialogs with the simulated
user are conducted in the for loop, where simulated
experience is stored in B°. During interactions
with both real and simulated users, head and tail
segment sets are simultaneously collected (Lines
21 and 24). After all dialog interactions end, the
hindsight manager is used to synthesize success-
ful dialog samples and store them in B®. Finally,
the dialog agent is trained on B and B, and the
simulated user is trained on BF.

The output of Algorithm 1 is used in the next
section, where we introduce how to further enable
the dialog agent to learn a meta-policy for adap-
tively determining which user (real or simulated)
to interact with.

4.2 LHU with Adaptation (LHUA)

Adaptively determining which user (real or sim-
ulated) the LHU agent should interact with can
further speed up the dialog policy learning pro-
cess. The idea behind it is that, if a simulated user
can generate high-quality, realistic dialog experi-
ence, interactions with the simulated user should
be encouraged. To enable this adapative “switch-
ing” behaviors, we develop an adaptive coordina-
tor that learns a meta-policy for selecting between
real and simulated users for collecting interaction
experience. We learn this adaptive coordinator us-
ing reinforcement learning, producing the LHUA
algorithm, which is described next.

State In each turn of interaction with the LHU
agent, adaptive coordinator updates the adaptation

state s using the equation below:
4 _ J10,0,0,0] i=0 o
v [SRi,Ri,SRZ‘—SRZ‘71,R¢—R1'71] >0

where S R; and R; are respectively average success
rate and rewards from LHU agent’s training perfor-
mance at i*" episode. In practice, R is normalized
to have values between 0 and 1, same as SR. This
form of adaptation state provides accessible infor-
mation on different training phrases to represent
LHU agent ’s current performance.

Action Based on the state s, adaptive coordina-
tor chooses action k to determine, after each dialog



Algorithm 2 LHU with Adaptation (LHUA)

Input: H, the max length of adaptation episode; 0, K L-
divergence threshold; N, training times

Output: IT, the dialog policy;
1: Initialize A(s*,k;04) of agent™®?, and replay buffer
B* as empty
2: fori=1: Ndo
3 Initialize adaptation state s** using Eqn. 6
4: Initialize turn counter h: h = 0
5:  while h < H do
6 Select action k: k < argmaz A(s?, k';04)
7 Execute action k:

SRDLH7 RDZ.‘J’ Q() <+ LHUl(k7 5)

8: Collect reward * via Eqn. 7, and next adaptation
state 5 using E(}\n. 6

9: BA « BAU(s? k4, 54), s* « 5, and h +
h+1

10: end while

11:  Sample a minibatch from B“, and update 64 via DQN
12: end for

13: forall s € S: II(s) + argmaz Q(s,a’;0q)

14: return II(-)

with the real user, how many dialogs should be
conducted with the simulated user. The value of
action k ranges from 1 to K.

Reward Adaptive coordinator receives imme-
diate rewards after executing an action k (i.e.
LHU(k)) each time. We use success rate incre-
ment of LHU agent to design the reward function,
as shown below:

r;l:iSRfS};Rl ! % (0<i<H) (7
where k; is the i*" action chosen by adaptive co-
ordinator, and L; means the total number of times
of interactions with both real and simulated users,
i.e.L; = k; + 1. Reward is continuously harvested,
until the H*" turn.

Due to the continuous state space, the approxi-
mated value function of adaptive coordinator is im-
plemented using a two-layer fully connected neural
network, A(SA7 k;04), parameterized by 6 4. Inter-
actions between the adaptive coordinator and the
LHU agent start with an initial state. In each turn,
the adaptive coordinator obtains the state s using
Eqn. 6, and selects the action k via e-greedy policy
to execute. Then, the current training performance
of LHU agent is used for acquiring the reward
using Eqn. 7, and updating the next state 5. Fi-
nally, the experience (s4, k,r4, 34) is stored for
meta-policy learning. We improve the value func-
tion by adjusting 6 4 to minimize the mean-squared
loss function.
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The LHUA Algorithm Algorithm 2 presents the
dialog policy learning process, where our dialog
agent adaptively learns from both simulated and
real users. In addition to parameter § for KL-
divergence threshold, there is parameter H rep-
resenting the length of one episode for adaptive
coordinator as a part of the input.

Algorithm 2 starts with an initialization of replay
buffer B for adaptive coordinator, and the value
function A(s4,k;604). Before the start of each
episode, a turn counter h is initialized as zero for
turn counting. Adaptive coordinator interacts with
LHU agent for H turns while collecting and saving
experience in B“. At the end of each adaptation
episode, we use DQN to update 6 4.

LHUA enables the dialog agent to simultane-
ously learn from the dialogs with both real and sim-
ulated users. At the same time, hindsight manager
manipulates both real and simulated dialog samples
to synthesize more successful dialog samples. The
adaptive coordinator is learned at runtime for adap-
tively switching between real and simulated users
in the dialog policy learning process to further im-
prove the sample efficiency. So far, LHUA enables
dialog agents to adaptively learn with hindsight
from both simulated and real users.

5 Experiment

Experiments have been conducted in a dialog sim-
ulation platform, called TC-bot (Li et al., 2016b,
2017).! TC-bot provides a realistic simulation plat-
form for goal-oriented dialog system research. We
use its movie-ticket booking domain that consists of
29 slots of two types, where one type is on search
constraints (e.g., number of people, and date), and
the other is on system-informable properties that
are needed for database queries (e.g., critic rating,
and start time). The dialog agent has 11 dialog ac-
tions, representing the system intent (e.g., confirm
question, confirm answer, and thanks).

A dialog is considered successful only if movie
tickets are booked successfully, and the provided
information satisfies all the user’s constraints. By
the end of a dialog, the agent receives a bonus
(positive reward) of 2 x L if successful, or a penalty
(negative reward) of —L for failure, where L is
the maximum number of turns allowed in each
dialog. We set L = 40 in our experiments. The

'To avoid possible confusions, we use “real user” to refer
to the user directly provided by TC-bot, and use “simulated
user” to refer to the user model learned by our dialog agents.



agent receives a unit cost in each dialog turn to
encourage shorter conversations.

Implementation Details In line with existing re-
search (Peng et al., 2018), all dialog agents are
implemented using Deep Q-Network (DQN). The
DQN includes one hidden layer with 80 hidden
nodes and ReLU activation, and its output layer of
11 units corresponding to 11 dialog actions. We set
the discount factor v = 0.95. The techniques of
target network and experience replay are applied.
Both B and B® share the buffer size of 5000, and
we use uniform sampling in experience replay. The
target value function is updated at the end of each
epoch. In each epoch, Q(-) and M(-) are refined
using one-step 16-tuple-minibatch update. We then
pre-filled the experience replay buffer with 100 di-
alogs before training. The simulated experience
buffer B is initialized as empty. Neural network
parameters are randomly initialized, and optimized
using RMSProp (Hinton et al., 2012).

The simulated user model, M (-), is a multi-task
neural network (Liu et al., 2015), and contains two
shared hidden layers and three task-specific hidden
layers, where each layer has 80 nodes. Stitching
threshold of hindsight manager 9§ is set 0.2. The
policy network of adaptive coordinator is a single-
layer neural network of size 64. Parameters k£ and
H are described in Algorithm 2, and have the value
of k =20and H = 8.

LHUA and Three Baselines Our key hypothesis
is that adaptively learning from real, simulated, and
hindsight experiences at the same time performs
better than baselines from the literature. To evalu-
ate this hypothesis, we have selected three competi-
tive baselines for goal-oriented dialog policy learn-
ing, including DDQ (Su et al., 2018), D3Q (Wu
et al., 2019), and S-HER (Lu et al., 2019). In im-
plementing the DDQ agent, the ratio of interaction
experiences between simulated and real users is ten,
which is consistent with the original implementa-
tion (Su et al., 2018). The differences between
LHUA and the baseline methods are qualitatively
discussed in Section 2.

It is necessary to explain how the curves are
generated in the figures to be reported. For each
of the four methods (LHUA and three baselines),
we have conducted five “runs”, where each run
includes 250 episodes. In each run, after every
single episode for learning, we let the dialog agent
interact with the real user for 50 dialogs, only for

0 50 100 150 200 250
Episode

Figure 2: The performances of LHUA (ours), and three
baseline methods, including DDQ (Su et al., 2018),
D3Q (Wu et al., 2019), and S-HER (Lu et al., 2019).
We see that, except for the very early phase (first 50
episodes), LHUA outperformed all baselines.

evaluation. We then compute the success rate over
the 50 dialogs. Each data point in the figure is an
average over the five success rates collected from
the five runs of each method.

Figure 2 presents the key results of this research
on the quantitative comparisons between LHUA
and the three baselines. We can see that, except for
the very early learning phase, LHUA performed
consistently better than the three baseline meth-
ods. In particular, LHUA reached the success rate
of 0.75 after about 70 episodes, whereas none of
the baselines were able to achieve comparable per-
formance within 150 episodes. The gap between
LHUA and S-HER in early phase is due to the fact
that LHUA needs to learn a user model, which re-
quires extra interaction in early phase. Once the
user model is of reasonable quality, LHUA is able
to learn from the interaction experience with sim-
ulated users, and soon (after 45 episodes) LHUA
outperformed S-HER.

LHUA and Its Ablations Results reported in
Figure 2 have shown the advantage of LHUA over
the three baseline methods. However, it is still
unclear how much each component of LHUA con-
tributes to its performance. We removed compo-
nents from LHUA, and generated four different
ablations of LHUA, including DQN, DDQ (LU,
or Learning with User modeling), S-HER (LH, or
Learning with Hindsight), LHU, and LHUA.
Figure 3 shows the ablation experiment’s results.
From the results, we see that LHUA performed
much better than no-hindsight (LU), and no-user-
modeling (S-HER, or LH) ablations. When both
“hindsight” and “user modeling” are activated, there
is LHUA’s ablation of LHU, which performed bet-
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Figure 3: Comparisons between LHUA and its abla-
tions: DQN (no hindsight manager, no user modeling,
and no adaptive coordinator), DDQ (no hindsight man-
ager, and no adaptive coordinator), S-HER (no user
modeling, and no adaptive coordinator), and LHU (no
adaptive coordinator). A complete LHUA includes all
the components, including DQN (for naive dialog pol-
icy learning), hindsight manager, user modeling, and
adaptive coordinator.

—— LHU (k=6)
LHU (k=8)
40— LHU (k=10)
LHU (k=12)

0 — LHU(k=14)
—— LHU (k=16)

Success rate
AUC

| —— LHU (k=6) 2
—— LHU (k=8)
—— LHU (k=10)

LHU (k=12) 10
— LHU (k=14)
—— LHU (k=16)

o 20 40 60 80 100 o 20 40 60 80 100
Episode Episode

Figure 4: Success rate on the left, and Area under
Curve (AUC) on the right, where we implemented six
different versions of LHU with different & values, rang-
ing from 6 to 16 at an interval of 2.

ter than all the other ablations. LHU still can-
not generate comparable performance, c.f., LHUA,
which justified the necessity of the adapative co-
ordinator. It should be noted that performances of
two of the ablations have been reported in Figure 2.
We intentionally include their results in Figure 3
for the completeness of comparisons.

Adaptive Coordinator Learning Results re-
ported in Figure 3 have shown the necessity of our
adaptive coordinator in LHUA. In this experiment,
we look into the learning process of the adaptive
coordinator. More specifically, we are interested in
how the value of k is selected (see Algorithm 2).
We have implemented LHU with six different val-
ues of k, and their performances are reported in
Figure 4, where the left subfigure is on success
rate, and the right is on Area under Curve (AUC).

The AUC metric has been used for the evaluation
of learning speed (Taylor and Stone, 2009; Stadie
et al., 2015). We see that, in early learning phase
(within 100 episodes), the k value of 10 produced
the best performance overall, though the perfor-
mance is comparable to that with &£ = 12 to some
level.

Figure 5 reports
the selection of 12
k values by our
adaptive coordina- £
tor. Each bar
corresponds to an
average over the o 25 so 5 100
k values of 25 oo
episodes. We see
that the value of &
was suggested to
be around 10 within the first 100 episodes, which
is consistent to our observation from the results
of Figure 4. The consistency further justified our
adaptive coordinator’s capability of learning the
interaction strategy in switching between real and
simulated users.

average k of each 25 episodes

Figure 5: The k values selected
by the adaptive coordinator of
our LHUA agent

6 Conclusions and Future Work

In this work, we develop an algorithm called
LHUA (Learning with Hindsight, User modeling,
and Adaptation) for sample-efficient dialog policy
learning. LHUA enables dialog agents to adap-
tively learn with hindsight from both simulated and
real users. Simulation and hindsight provide the
dialog agent with more experience and more (pos-
itive) reinforcements respectively. Experimental
results suggest that LHUA outperforms compet-
itive baselines (including success rate and learn-
ing speed) from the literature, including its no-
simulation, no-adaptation, and no-hindsight coun-
terparts. This is the first work that enables a dialog
agent to adaptively learn from real, simulated, and
hindsight experiences all at the same time.

In the future, we plan to evaluate our algorithm
using other dialog simulation platform, e.g., Py-
Dial (Ultes et al., 2017). Another direction is to
combine other efficient exploration strategies, in-
cluding learning directed exploration policies with
different trade-offs between exploration and ex-
ploitation (Puigdomenech Badia et al., 2020). We
will also focus on generating more synthetic dialog
experience of different quality (Lu et al., 2020), to
further improve the dialog learning efficiency.
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