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Abstract

Reinforcement learning methods have

been used to compute dialog policies from

language-based interaction experiences. Ef-

ficiency is of particular importance in dialog

policy learning, because of the considerable

cost of interacting with people, and the

very poor user experience from low-quality

conversations. Aiming at improving the effi-

ciency of dialog policy learning, we develop

algorithm LHUA (Learning with Hindsight,

User modeling, and Adaptation) that, for the

first time, enables dialog agents to adaptively

learn with hindsight from both simulated and

real users. Simulation and hindsight provide

the dialog agent with more experience and

more (positive) reinforcements respectively.

Experimental results suggest that, in success

rate and policy quality, LHUA outperforms

competitive baselines from the literature, as

well as its no-simulation, no-adaptation, and

no-hindsight counterparts.

1 Introduction

Dialog systems have enabled intelligent agents to

communicate with people using natural language.

For instance, virtual assistants, such as Siri, Alexa,

and Cortana, have been increasingly popular in

daily life. We are particularly interested in goal-

oriented dialog systems, where the task is to effi-

ciently and accurately exchange information with

people, and the main challenge is on the ubiqui-

tous ambiguity in natural language processing (spo-

ken or text-based). Goal-oriented dialog systems

typically include components for language under-

standing, dialog management, and language syn-

thesis, while sometimes the components can be

constructed altogether, resulting in end-to-end di-

alog systems (Bordes et al., 2016; Williams and

Zweig, 2016; Wen et al., 2017; Young et al., 2018;

Yang et al., 2017). In this paper, we focus on the

problem of policy learning for dialog management.

Reinforcement learning (RL) algorithms aim at

learning action policies from trial-and-error experi-

ences (Sutton and Barto, 2018), and have been used

for learning dialog policies (Young et al., 2013;

Levin et al., 1997). Deep RL methods (e.g. (Mnih

et al., 2013)) have been developed for dialog pol-

icy learning in dialog domains with large state

spaces (Su et al., 2016a; Fatemi et al., 2016; Ser-

ban et al., 2017). While it is always desirable for

RL agents to learn from the experiences of inter-

acting with the real world, such interactions can

be expensive, risky, or both in practice. Back to

the context of dialog systems, despite all the ad-

vances in RL (deep or not), dialog policy learning

remains a challenge. For instance, interacting with

people using natural language is very costly, and

low-quality dialog policies produce very poor user

experience, which is particularly common in early

learning phases. As a result, it is critical to de-

velop sample-efficient RL methods for learning

high-quality dialog policies with limited conversa-

tional experiences.

In this paper, we develop an algorithm called

LHUA (Learning with Hindsight, User modeling,

and Adaptation) for sample-efficient dialog pol-

icy learning. LHUA, for the first time, enables a

dialog agent to simultaneously learn from real, sim-

ulated, and hindsight experiences, which identifies

the key contribution of this research. Simulated

experience is generated using learned user models,

and hindsight experience (of successful dialog sam-

ples) is generated by manipulating dialog segments

and goals of the (potentially many) unsuccessful

samples. Dialog experience from simulation and

hindsight respectively provide more dialog sam-

ples and more positive feedback for dialog policy

learning. To further improve the sample efficiency,

we develop a meta-agent for LHUA that adaptively
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Figure 1: An overview of LHUA. A dialog agent interacts with both real and simulated users while learning a dia-

log policy from this interaction experience. A simulated user is modeled using real dialog samples, and interacting

with this simulated user provides the dialog agent with simulated dialog samples. An adaptive coor learns

from the dialog agent’s recent performance to adaptively assign one user (real or simulated) for the dialog agent

to interact with. A hindsight manager manipulates both real and simulated dialog samples (of mixed qualities) to

“synthesize” successful dialog samples.

learns to switch between real and simulated users in

the dialog-based interactions, which identifies the

second contribution of this research. An overview

of LHUA is shown in Figure 1.

Experiments were conducted using a realistic

movie-ticket booking platform (Li et al., 2017).

LHUA has been compared with state-of-the-art

methods (Peng et al., 2018; Lu et al., 2019; Su

et al., 2018) in dialog policy learning tasks. Results

suggest that ablations of LHUA produce compa-

rable (or better) performances in comparison to

competitive baselines in success rate, and LHUA

as a whole performed the best.

2 Related Work

In this section, we summarize three different ways

of improving the efficiency of dialog policy learn-

ing (namely user modeling, hindsight experience

replay, and reward shaping), and qualitatively com-

pare them with our methods.

Researchers have developed “two-step” algo-

rithms that first build user models through super-

vised learning with real conversational data, and

then learn dialog policies by interacting with the

simulated users (Schatzmann et al., 2007; Li et al.,

2016b). In those methods, user modeling must be

conducted offline before the start of dialog policy

learning. As a result, the learned policies are poten-

tially biased toward the historical conversational

data. Toward online methods for dialog policy

learning, researchers have developed algorithms for

simultaneously constructing models of real users,

and learning from the simulated interaction experi-

ence with user models (Asri et al., 2016; Su et al.,

2016b; Lipton et al., 2016; Zhao and Eskenazi,

2016; Williams et al., 2017; Dhingra et al., 2017; Li

et al., 2017; Liu and Lane, 2017; Peng et al., 2017;

Wu et al., 2019; Li et al., 2016a). Those methods

enable agents to simultaneously build and leverage

user models in dialog policy learning. However,

the problem of learning high-quality user models

by itself can be challenging. Our algorithms sup-

port user modeling, while further enabling agents

to adaptively learn from both hindsight and real

conversations.

In comparison to many other RL applications,

goal-oriented dialog systems have very sparse feed-

back from the “real world” (human users), where

one frequently cannot tell dialogs being success-

ful or not until reaching the very end. Positive

feedback is even rarer, when dialog policies are

of poor qualities. Hindsight experience replay

(HER) (Andrychowicz et al., 2017) methods have

been developed to convert unsuccessful trials into

successful ones through goal manipulation. The

“policy learning with hindsight” idea has been ap-

plied to various domains, including dialog (Lu

et al., 2019). Our methods support the capabil-

ity of learning from hindsight experience, while

further enabling user modeling and learning from

simulated users.

Within the dialog policy learning context, re-

ward shaping is another way of providing the dialog

agents with extra feedback, where a dense reward

function can be manually designed (Su et al., 2015),

or learned (Su et al., 2016b). Researchers also de-

veloped efficient exploration strategies to speed

up the policy learning process of dialog agents,

e.g., (Pietquin et al., 2011; Lagoudakis and Parr,

2003). Those methods are orthogonal to ours, and
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can potentially be combined to further improve

the dialog learning efficiency. In comparison to

all methods mentioned in this section, LHUA is

the first that enables dialog policy learning from

real, simulated, and hindsight experiences simulta-

neously, and its performance is further enhanced

through a meta-policy for switching between inter-

actions with real and simulated users.

3 Background

In this section, we briefly introduce the two build-

ing blocks of this research, namely Markov de-

cision process (MDP)-based dialog management,

and Deep Q-Network (DQN).

3.1 MDP-based Dialog Management

Markov Decision Processes (MDPs) can be speci-

fied as a tuple < S,A, T,R, s0 >, where S is the

state set, A is the action set, T is the transition

function, R is the reward function, and s0 is the ini-

tial state. In MDP-based dialog managers, dialog

control can be modeled using MDPs for selecting

language actions. s ∈ S represents the current

dialog state including the agent’s last action, the

user’s current action, the distribution of each slot,

and other domain variables as needed. a ∈ A rep-

resents the agent’s response. The reward function

R : S × A → R gives the agent a big bonus in

successful dialogs, a big penalty in failures, and a

small cost in each turn.

Solving an MDP-based dialog management

problem produces π, a dialog policy. A dialog

policy maps a dialog state to an action, π : S → A,

toward maximizing the discounted, accumulative

reward in dialogs, i.e., Rt =
∑

∞

i=t γ
i−tri, where

γ ∈ [0, 1] is a discount factor that specifies how

much the agent favors future rewards.

3.2 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) is

a model-free RL algorithm. The approximation

of the optimal Q-function, Q∗ = Q(s, a; θ), is

used by a neural network, where a is an action

executed at state s, and θ is a set of parame-

ters. Its policy is defined either in a greedy way:

πQ(s) = argmaxa∈AQ(s, a; θ) or being ǫ-greedy,

i.e., the agent takes a random action in probability

ǫ and action πQ(s) otherwise. The loss function

for minimization in DQN is usually defined using

TD-error:

L = Es,a,r,s′ [(Q(s, a; θ)− y)2], (1)

where y = r + γmaxa′∈AQ(s′, a′; θ).

To alleviate the problem of unstable or non-

convergence of Q values, two techniques are widely

used. One is called target network whose param-

eters are updated by θ once every many iterations

in the training phase. The other technique is expe-

rience replay, where an experience pool ε stores

samples, each in the form of (st, at, rt, st+1). It

randomly selects small batches of samples from

ε each time during training. Experience replay

can reduce the correlation between samples, and

increases the data efficiency.

4 Algorithms

In this section, we first introduce Learning with

Hindsight, and User modeling (LHU), and then

present LHU with Adaptation (LHUA), where al-

gorithms LHU and LHUA point to the main contri-

bution of this research.

LHU, for the first time, enables a dialog agent

to learn dialog policies from three dialog sources,

namely real users, simulated users, and hindsight

dialog experience. More specifically, a real user

refers to the human who converses with the dialog

agent, and a simulated user refers to a learned user

model that captures real users’ interactive behav-

iors with our dialog agent. In this way, a simulated

user is used for generating “human-like” dialog

experience for speeding up the process of dialog

policy learning. The last dialog source of “hind-

sight dialog experience” is used for creating many

successful dialog samples using both successful

and unsuccessful dialog samples, where the source

samples are from both real and simulated users.

Different from “simulated users” that generate di-

alog samples of mixed qualities, hindsight expe-

rience produces only successful (though not real)

dialog samples, which is particularly useful for di-

alog policy learning at the early phase due to the

very few successful samples.

Among the three dialog sources, hindsight ex-

perience is “always on”, and synthesizes dialog

samples throughout the learning process. The “real”

and “simulated” dialog sources bring in the selec-

tion problem: At a particular time, from which

source should the agent obtain dialog experience

for policy learning? The “adaptation” capability

of LHUA aims at enabling the dialog agent to learn

to, before starting a dialog, select which user (real

or simulated) to interact with.
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4.1 Learning with Hindsight, and User

Modeling

In this subsection, we focus on two components

of LHUA, including user modeling, and hindsight

management, which together form LHU, an ab-

lation algorithm of LHUA. The two components’

shared goal is to generate additional dialog experi-

ence (simulated and hindsight experiences respec-

tively) to speed up dialog policy learning.

Dialog (Sub)Goal and Segmentation Goal-

oriented dialog agents help users accomplish their

goals via language-based multi-turn communica-

tions. Goal G includes a set of constraints C and a

set of requests R, where G = (C,R). Consider a

service request “I’d like to purchase one ticket of Ti-

tanic for this evening. Which theater is available?”

In this example, the goal is of the form:

G =
(

C = [ticket = one, time = eve,

movie = titanic],

R = [theater =?]
)

We define G′ as a subgoal of G = (C,R): G′ =
(C ′, R′), where C ′ ⊆ C, R′ ⊆ R, and G′ cannot

be empty. Continuing the “titanic” example, one of

its subgoals is

G′ =
(

C ′ = [ticket = one,movie = titanic],

R′ = ∅
)

.

Given an intact dialog D, we say Dseg is a seg-

ment of D, if Dseg includes a consecutive sequence

of turns of D. With the concepts of dialog segment

and subgoal, we introduce two segment sets (head

and tail), which are later used in hindsight manager.

A head segment set Ω consists of dialog segments

Dhead that include the early turns in the intact dia-

log with the corresponding completed subgoal G′.

Ω = {(Dhead, G
′)} (2)

We use function HeadSegGen to collect a

head segment set Ω during dialog interactions.

HeadSegGen receives a dialog segment Dseg,

and a goal G, then checks all subgoals of G, and

finally outputs pairs (Dseg, G
′) where Dseg accom-

plishes subgoal G′ of G.

A tail segment set Γ consists of dialog segments

Dtail that include the late turns in the intact dialog

with the corresponding completed subgoal G′.

Γ = {(Dtail, G
′)} (3)

Function TailSegGen is implemented to gener-

ate tail segments after interactions terminate. It

receives a dialog D, a goal G and a corresponding

head segment Ω. If the dialog D accomplishes the

goal G, for each pair (Dhead, G
′) from the head

segment set Ω, TailSegGen outputs a correspond-

ing pair (D⊖Dhead, G
′), where D1⊖D2 produces

a dialog segment by removing D2 from D1.

Hindsight Manager Given head and tail seg-

ment sets (Ω and Γ), the hindsight manager is

used for stitching two tuples, (Dhead, G
′

head) and

(Dtail, G
′

tail), respectively to “synthesize” success-

ful dialog samples. There are two conditions for

synthesization:

1. The two subgoals from head and tail segments

are identical, G′

head == G′

tail, and

2. The last state of Dhead, slast, and the first state

of Dtail, s
′

first, are of sufficient similarity.

We use KL Divergence to measure the similarity

between two states:

DKL(slast||s
′

first) ≤ δ (4)

where δ ∈ R is a threshold parameter. We im-

plement a function to synthesize successful dialog

samples as hindsight experience for dialog policy

learning, as follows:

Dhind ← HindMan(δ,Ω,Γ) (5)

HindMan takes a threshold δ, a head segment

set Ω, and a tail segment set Γ. It generates suc-

cessful dialog samples Dhind that satisfy the above

two conditions of synthesization.

Dialog with Simulated Users In dialog policy

learning, dialog agents can learn from interactions

with real users, where the generated real experience

is stored in reply buffer BR. To provide more expe-

rience, we develop a simulated user for generating

simulated dialog experience to further speed up the

learning of dialog policies.

The simulated user is of the form:

s′, r ← M(s, a; θM )

where, M(s, a; θM ) takes the current dialog state

s and the last dialog agent action a as input, and

generates the next dialog state s′, and reward r. M

is implemented by a Multi-Layer Perceptron (MLP)

parameterized by θM , and refined via stochastic
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Algorithm 1 Algorithm LHU

Input: K, the times of interactions with the simulated user; δ,
KL-divergence threshold

Output: the success rate SRDlg , and average rewards RDlg

of agentDlg; Q(·) for agentDlg

1: Initialize Q(s, a; θQ) of agentDlg and M(s, a; θM ) of
the simulated user via pre-training on human conversa-
tional data

2: Initialize experience replay buffers BR and BS for the
interaction of agentDlg with real and simulated users

3: Initialize head and tail dialog segment sets:

Ω ← ∅, and Γ ← ∅

4: Collect initial state, s, by interacting with a real user
following goal GReal

5: Initialize DReal ← ∅ for storing dialog turns (real)
6: while s /∈ term do // Start a dialog with real user
7: Select a ← argmaxa′Q(s, a′; θQ), and execute a
8: Collect next state s′, and reward r
9: Add dialog turn d = (s, a, r, s′) to BR and DReal

10: Ω ← Ω ∪HeadSegGen(DReal, GReal)
11: s ← s′

12: end while
13: Γ ← Γ ∪ TailSegGen(DReal, GReal,Ω)
14: for k = 1 : K do // K interactions with simulated user
15: Sample goal GSim, and initial state s
16: Initialize DSim ← ∅ for storing dialog turns (sim)
17: while s /∈ term do // The kth dialog with sim user
18: a←argmaxa′Q(s, a′; θQ), and execute a
19: Collect next state s′, and reward r from

M(s, a; θM )
20: Add dialog turn d = (s, a, r, s′) to BS and DSim

21: Ω ← Ω ∪HeadSegGen(DSim, GSim)
22: s ← s′

23: end while
24: Γ ← Γ ∪ TailSegGen(DSim, GSim,Ω)
25: end for
26: Synthesize hindsight experience, and store it in BS :

Dhind←HindMan(δ,Γ,Ω) // Hindsight Manipulation

27: Calculate the success rate SRDlg and average rewards
RDlg of total interactions

28: Randomly sample a minibatch from both BR and BS ,
and update agentDlg via DQN // agentDlg training

29: Randomly sample a minibatch from BR, and update sim-
ulated user via SGD // User modeling

30: return SRDlg , RDlg , Q(·)

gradient descent (SGD) using real experience in

BR to improve the quality of simulated experience.

Simulated experience generated from interac-

tions between the dialog agent and the simulated

user is stored in the simulated replay buffer BS ,

which is also manipulated by the hindsight man-

ager to synthesize hindsight experience.

The LHU Algorithm Algorithm 1 presents the

learning process, where our dialog agent interacts

with a real user for one dialog, and a simulated user

for k dialogs. In addition to parameter k, there is

a KL-divergence threshold δ as a part of the input.

We refer to this algorithm using LHU(k).

Algorithm 1 starts with an initialization of the

dialog agent’s real and simulated experience replay

buffers (BR and BS respectively), the model of the

simulated user, M(θM ), and two segment sets for

hindsight manager (Ω and Γ respectively). In the

first while loop (starting in Line 6), the dialog agent

interacts with a real user and stores the real expe-

rience in BR. Then, k dialogs with the simulated

user are conducted in the for loop, where simulated

experience is stored in BS . During interactions

with both real and simulated users, head and tail

segment sets are simultaneously collected (Lines

21 and 24). After all dialog interactions end, the

hindsight manager is used to synthesize success-

ful dialog samples and store them in BS . Finally,

the dialog agent is trained on BR and BS , and the

simulated user is trained on BR.

The output of Algorithm 1 is used in the next

section, where we introduce how to further enable

the dialog agent to learn a meta-policy for adap-

tively determining which user (real or simulated)

to interact with.

4.2 LHU with Adaptation (LHUA)

Adaptively determining which user (real or sim-

ulated) the LHU agent should interact with can

further speed up the dialog policy learning pro-

cess. The idea behind it is that, if a simulated user

can generate high-quality, realistic dialog experi-

ence, interactions with the simulated user should

be encouraged. To enable this adapative “switch-

ing” behaviors, we develop an adaptive coordina-

tor that learns a meta-policy for selecting between

real and simulated users for collecting interaction

experience. We learn this adaptive coordinator us-

ing reinforcement learning, producing the LHUA

algorithm, which is described next.

State In each turn of interaction with the LHU

agent, adaptive coordinator updates the adaptation

state sA using the equation below:

sAi =

{

[0, 0, 0, 0] i = 0

[SRi, Ri, SRi − SRi−1, Ri −Ri−1] i > 0
(6)

where SRi and Ri are respectively average success

rate and rewards from LHU agent’s training perfor-

mance at ith episode. In practice, R is normalized

to have values between 0 and 1, same as SR. This

form of adaptation state provides accessible infor-

mation on different training phrases to represent

LHU agent ’s current performance.

Action Based on the state sA, adaptive coordina-

tor chooses action k to determine, after each dialog
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Algorithm 2 LHU with Adaptation (LHUA)

Input: H , the max length of adaptation episode; δ, KL-
divergence threshold; N , training times

Output: Π, the dialog policy;

1: Initialize A(sA, k; θA) of agentAdp, and replay buffer

BA as empty
2: for i = 1 : N do
3: Initialize adaptation state sA using Eqn. 6
4: Initialize turn counter h: h = 0
5: while h ≤ H do
6: Select action k: k ← argmaxk′A(sA, k′; θA)
7: Execute action k:

SRDlg, RDlg, Q(·) ← LHU1(k, δ)

8: Collect reward rA via Eqn. 7, and next adaptation
state ŝA using Eqn. 6

9: BA ← BA ∪ (sA, k, rA, ŝA), sA ← ŝA, and h ←
h+ 1

10: end while
11: Sample a minibatch from BA, and update θA via DQN

12: end for
13: for all s ∈ S: Π(s) ← argmaxa′Q(s, a′; θQ)
14: return Π(·)

with the real user, how many dialogs should be

conducted with the simulated user. The value of

action k ranges from 1 to K.

Reward Adaptive coordinator receives imme-

diate rewards after executing an action k (i.e.

LHU(k)) each time. We use success rate incre-

ment of LHU agent to design the reward function,

as shown below:

rAi =
SRi − SRi−1

SRi
·
ki

Li
(0 < i ≤ H) (7)

where ki is the ith action chosen by adaptive co-

ordinator, and Li means the total number of times

of interactions with both real and simulated users,

i.e.Li = ki + 1. Reward is continuously harvested,

until the Hth turn.

Due to the continuous state space, the approxi-

mated value function of adaptive coordinator is im-

plemented using a two-layer fully connected neural

network, A(sA, k; θA), parameterized by θA. Inter-

actions between the adaptive coordinator and the

LHU agent start with an initial state. In each turn,

the adaptive coordinator obtains the state sA using

Eqn. 6, and selects the action k via ǫ-greedy policy

to execute. Then, the current training performance

of LHU agent is used for acquiring the reward rA

using Eqn. 7, and updating the next state ŝA. Fi-

nally, the experience (sA, k, rA, ŝA) is stored for

meta-policy learning. We improve the value func-

tion by adjusting θA to minimize the mean-squared

loss function.

The LHUA Algorithm Algorithm 2 presents the

dialog policy learning process, where our dialog

agent adaptively learns from both simulated and

real users. In addition to parameter δ for KL-

divergence threshold, there is parameter H rep-

resenting the length of one episode for adaptive

coordinator as a part of the input.

Algorithm 2 starts with an initialization of replay

buffer BA for adaptive coordinator, and the value

function A(sA, k; θA). Before the start of each

episode, a turn counter h is initialized as zero for

turn counting. Adaptive coordinator interacts with

LHU agent for H turns while collecting and saving

experience in BA. At the end of each adaptation

episode, we use DQN to update θA.

LHUA enables the dialog agent to simultane-

ously learn from the dialogs with both real and sim-

ulated users. At the same time, hindsight manager

manipulates both real and simulated dialog samples

to synthesize more successful dialog samples. The

adaptive coordinator is learned at runtime for adap-

tively switching between real and simulated users

in the dialog policy learning process to further im-

prove the sample efficiency. So far, LHUA enables

dialog agents to adaptively learn with hindsight

from both simulated and real users.

5 Experiment

Experiments have been conducted in a dialog sim-

ulation platform, called TC-bot (Li et al., 2016b,

2017).1 TC-bot provides a realistic simulation plat-

form for goal-oriented dialog system research. We

use its movie-ticket booking domain that consists of

29 slots of two types, where one type is on search

constraints (e.g., number of people, and date), and

the other is on system-informable properties that

are needed for database queries (e.g., critic rating,

and start time). The dialog agent has 11 dialog ac-

tions, representing the system intent (e.g., confirm

question, confirm answer, and thanks).

A dialog is considered successful only if movie

tickets are booked successfully, and the provided

information satisfies all the user’s constraints. By

the end of a dialog, the agent receives a bonus

(positive reward) of 2 ∗L if successful, or a penalty

(negative reward) of −L for failure, where L is

the maximum number of turns allowed in each

dialog. We set L = 40 in our experiments. The

1To avoid possible confusions, we use “real user” to refer
to the user directly provided by TC-bot, and use “simulated
user” to refer to the user model learned by our dialog agents.
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agent receives a unit cost in each dialog turn to

encourage shorter conversations.

Implementation Details In line with existing re-

search (Peng et al., 2018), all dialog agents are

implemented using Deep Q-Network (DQN). The

DQN includes one hidden layer with 80 hidden

nodes and ReLU activation, and its output layer of

11 units corresponding to 11 dialog actions. We set

the discount factor γ = 0.95. The techniques of

target network and experience replay are applied.

Both BR and BS share the buffer size of 5000, and

we use uniform sampling in experience replay. The

target value function is updated at the end of each

epoch. In each epoch, Q(·) and M(·) are refined

using one-step 16-tuple-minibatch update. We then

pre-filled the experience replay buffer with 100 di-

alogs before training. The simulated experience

buffer BS is initialized as empty. Neural network

parameters are randomly initialized, and optimized

using RMSProp (Hinton et al., 2012).

The simulated user model, M(·), is a multi-task

neural network (Liu et al., 2015), and contains two

shared hidden layers and three task-specific hidden

layers, where each layer has 80 nodes. Stitching

threshold of hindsight manager δ is set 0.2. The

policy network of adaptive coordinator is a single-

layer neural network of size 64. Parameters k and

H are described in Algorithm 2, and have the value

of k = 20 and H = 8.

LHUA and Three Baselines Our key hypothesis

is that adaptively learning from real, simulated, and

hindsight experiences at the same time performs

better than baselines from the literature. To evalu-

ate this hypothesis, we have selected three competi-

tive baselines for goal-oriented dialog policy learn-

ing, including DDQ (Su et al., 2018), D3Q (Wu

et al., 2019), and S-HER (Lu et al., 2019). In im-

plementing the DDQ agent, the ratio of interaction

experiences between simulated and real users is ten,

which is consistent with the original implementa-

tion (Su et al., 2018). The differences between

LHUA and the baseline methods are qualitatively

discussed in Section 2.

It is necessary to explain how the curves are

generated in the figures to be reported. For each

of the four methods (LHUA and three baselines),

we have conducted five “runs”, where each run

includes 250 episodes. In each run, after every

single episode for learning, we let the dialog agent

interact with the real user for 50 dialogs, only for

Figure 2: The performances of LHUA (ours), and three

baseline methods, including DDQ (Su et al., 2018),

D3Q (Wu et al., 2019), and S-HER (Lu et al., 2019).

We see that, except for the very early phase (first 50

episodes), LHUA outperformed all baselines.

evaluation. We then compute the success rate over

the 50 dialogs. Each data point in the figure is an

average over the five success rates collected from

the five runs of each method.

Figure 2 presents the key results of this research

on the quantitative comparisons between LHUA

and the three baselines. We can see that, except for

the very early learning phase, LHUA performed

consistently better than the three baseline meth-

ods. In particular, LHUA reached the success rate

of 0.75 after about 70 episodes, whereas none of

the baselines were able to achieve comparable per-

formance within 150 episodes. The gap between

LHUA and S-HER in early phase is due to the fact

that LHUA needs to learn a user model, which re-

quires extra interaction in early phase. Once the

user model is of reasonable quality, LHUA is able

to learn from the interaction experience with sim-

ulated users, and soon (after 45 episodes) LHUA

outperformed S-HER.

LHUA and Its Ablations Results reported in

Figure 2 have shown the advantage of LHUA over

the three baseline methods. However, it is still

unclear how much each component of LHUA con-

tributes to its performance. We removed compo-

nents from LHUA, and generated four different

ablations of LHUA, including DQN, DDQ (LU,

or Learning with User modeling), S-HER (LH, or

Learning with Hindsight), LHU, and LHUA.

Figure 3 shows the ablation experiment’s results.

From the results, we see that LHUA performed

much better than no-hindsight (LU), and no-user-

modeling (S-HER, or LH) ablations. When both

“hindsight” and “user modeling” are activated, there

is LHUA’s ablation of LHU, which performed bet-
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Figure 3: Comparisons between

tions: DQN (no hindsight manager

and no adaptive coordinator), DDQ (no hindsight man-

ager, and no adaptive coordinator), S-HER (no user

modeling, and no adaptive coordinator), and LHU (no

adaptive coordinator). A complete LHUA includes all

the components, including DQN (for naive dialog pol-

icy learning), hindsight manager, user modeling, and

adaptive coordinator.

Figure 4: Success rate on the left, and Area under

Curve (AUC) on the right, where we implemented six

different versions of LHU with different k values, rang-

ing from 6 to 16 at an interval of 2.

ter than all the other ablations. LHU still can-

not generate comparable performance, c.f., LHUA,

which justified the necessity of the adapative co-

ordinator. It should be noted that performances of

two of the ablations have been reported in Figure 2.

We intentionally include their results in Figure 3

for the completeness of comparisons.

Adaptive Coordinator Learning Results re-

ported in Figure 3 have shown the necessity of our

adaptive coordinator in xperiment,

we look into the learning adaptive

coordinator. More specifically interested in

how the value of k is Algorithm 2).

We have implemented erent val-

ues of k, and their performances reported in

Figure 4, where the left subfigure is on success

rate, and the right is on Area under Curve (AUC).

The AUC metric has been used for the evaluation

of learning speed (Taylor and Stone, 2009; Stadie

et al., 2015). We see that, in early learning phase

(within 100 episodes), the k value of 10 produced

performance overall, though the perfor-

comparable to that with k = 12 to some

Figure 5: The k values selected

by the adaptive coordinator of

our LHUA agent

reports

of

our

coordina-

bar

corresponds to an

average over the

k values of 25

episodes. We see

that the value of k

was suggested to

be around 10 within the first 100 episodes, which

is consistent to our observation from the results

of Figure 4. The consistency further justified our

adaptive coordinator’s capability of learning the

interaction strategy in switching between real and

simulated users.

6 Conclusions and Future Work

In this work, we develop an algorithm called

LHUA (Learning with Hindsight, User modeling,

and Adaptation) for sample-efficient dialog policy

learning. LHUA enables dialog agents to adap-

tively learn with hindsight from both simulated and

real users. Simulation and hindsight provide the

dialog agent with more experience and more (pos-

itive) reinforcements respectively. Experimental

results suggest that LHUA outperforms compet-

itive baselines (including success rate and learn-

ing speed) from the literature, including its no-

simulation, no-adaptation, and no-hindsight coun-

terparts. This is the first work that enables a dialog

agent to adaptively learn from real, simulated, and

hindsight experiences all at the same time.

In the future, we plan to evaluate our algorithm

using other dialog simulation platform, e.g., Py-

Dial (Ultes et al., 2017). Another direction is to

combine other efficient exploration strategies, in-

cluding learning directed exploration policies with

different trade-offs between exploration and ex-

ploitation (Puigdomènech Badia et al., 2020). We

will also focus on generating more synthetic dialog

experience of different quality (Lu et al., 2020), to

further improve the dialog learning efficiency.
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Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
Proceedings of the 17th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue.


