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1 Introduction

A Markov chain is a model that describes transitions between states in a state space
according to certain probabilistic rules. The defining characteristic of aMarkov chain
is that the transition from one state to another only depends on the current state and
the elapsed time, but not how it arrived there. In other words, a Markov chain is
“memoryless”. Markov chains have many applications, from stock performances,
population dynamics to traffic models.

In this paper, we consider Markov chains with a finite state-space !. The Markov
chain can be described pictorially by its transition diagram, where the vertices are
the states in ! and the labeled directed arrows between the vertices indicate the
transitions. For example,
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(1.1)
is the transition diagram for a Markov chain with state-space ! = {1, a,b, ab}.
Associating the probability 0 ! xa ! 1 to the transition arrows labeled a and 0 !
xb ! 1 to the transition arrows labeled b yields a Markov chain assuming that xa +
xb = 1.As the picture indicates, if theMarkov chain is in state 1, thenwith probability
xa it transitions to state a and with probability xb it transitions to state b, and so on.
Note that every vertex has one outgoing arrow labeled a and one outgoing arrow
labeled b.

The transition matrix T of a Markov chain is a matrix of dimension |!| × |!|.
Let A be the set of all edge labels in the transition diagram. Then the entry Ts ′,s in
row s ′ ∈ ! and column s ∈ ! in T is

Ts ′,s =
∑

a∈A
s

a−→s ′

xa,

where the sum is over all a ∈ A such that s
a−→ s ′ is an edge in the transition diagram.

For the transition diagram in (1.1), the transition matrix is given by (ordering the
states as (1, a,b, ab))

T =





0 xa xb 0
xa 0 0 xb
xb 0 0 xa
0 xb xa 0



 .

Note that, since every vertex has precisely one outgoing edge labeled a ∈ A and
since

∑
a∈A xa = 1, the column sums of T are equal to one, namely

∑
s ′∈! Ts ′,s = 1.

Starting with a distribution ν (where state s ∈ ! occurs with probability νs and∑
s∈! νs = 1), the distribution of states after t steps in the Markov chain is T tν.
Two fundamental questions are to find the stationary distribution and the mixing

time of the Markov chain. Intuitively speaking, the stationary distribution is the
distribution of states that theMarkov chain will tend to when the chain runs for a long
time. For ergodic Markov chains (to be defined later), the stationary distribution is
unique and is the right eigenvector of T of eigenvalue one. Themixing timemeasures
how quickly the distribution approaches the stationary distribution.
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Fig. 1 The right Cayley
graph RCay(D2, {a, b}) of
the dihedral group with
generators A = {a, b}.
Transition edges are
indicated in blue. Double
edges mean that right
multiplication by the label
for either vertex yields the
other vertex

In this paper, we review the approach of [11, 12] to compute the stationary dis-
tribution of a finite Markov chain using expansions of semigroups. For example,
the Markov chain with transition diagram (1.1) can be described using the dihedral
group

D2 = 〈a, b | a2 = b2 = 1, (ab)2 = 1〉,

generated by two reflections a, b. This group is isomorphic to Z2 × Z2. State 1 corre-
sponds to the identity, state a corresponds to a, state b to b, and state ab corresponds
to ab = ba. The transition from state s to s ′ is given by left multiplication by one
of the generators in A = {a, b}. In general, it is always possible to describe a finite
state Markov chain via a semigroup [1, 8] by the random letter representation.

Our focus in this paper is to compute the stationary distribution from theMcCam-
mond and Karnofsky–Rhodes expansion of the right Cayley graph of the underlying
semigroup S with generators in A. The right Cayley graph RCay(S, A) of the dihe-
dral group S = D2 with generators A = {a, b} is depicted in Fig. 1. In Sect. 2, we
will define the right Cayley graph of a semigroup, introduce its Karnofsky–Rhodes
and McCammond expansion, and review the main results from [11, 12] on how to
compute the stationary distribution of theMarkov chain from these.Wewill illustrate
the results in terms of two (running) examples.

2 Stationary Distribution from Semigroup Expansions

2.1 Markov Chains

Let M be a finite Markov chain with state-space ! and transition matrix T . A
Markov chain is irreducible if the transition diagram of the Markov chain is strongly
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connected. It is aperiodic if the greatest common divisor of the cycle lengths in
the transition diagram of the Markov chain is one. Furthermore, a Markov chain is
ergodic if it is both irreducible and aperiodic. By the Perron–Frobenius Theorem,
an ergodic Markov chain has a unique stationary distribution " and T tν converges
to " as t → ∞ for any initial state ν. In fact, the stationary distribution is the right
eigenvector of eigenvalue one of T

T" = ".

An important question is how quickly does the Markov chain converges to the
stationary distribution. In Markov chain theory, distance is usually the total variation
distance. The total variation distance between two probability distributions ν and µ
is defined as

‖ν − µ‖ = max
A⊆!

|ν(A) − µ(A)|.

For a given small ε > 0, the mixing time tmix is the smallest t such that

‖T tν − "‖ ! ε.

Brown and Diaconis [2, 3] analyzed Markov chains associated to left regular
bands. In particular, they showed [3, Theorem 0] that the total variational distance
from stationarity after t steps is bounded above by the probability Pr(τ > t), where
τ is the first time that the walk hits a certain ideal. The arguments in Brown and
Diaconis [2] were generalized to Markov chains for R-trivial semigroups [1]. A
unified theory for Markov chains for any finite semigroup was developed in [11, 12].

As explained in [8, Proposition 1.5] and [1,Theorem2.3], everyfinite stateMarkov
chainM has a random letter representation, that is, a representation of a semigroup
S acting on the left on the state-space !. In this setting, we transition s

a−→ s ′ with
probability 0 ! xa ! 1, where s, s ′ ∈ !, a ∈ S and s ′ = a.s is the action of a on the
state s. It is enough to consider the semigroup S generated by the elements a ∈ A
with xa > 0.

A two-sided ideal I (or ideal for short) is a subset I ⊆ S such that uIv ⊆ I for all
u, v ∈ S1, where S1 is the semigroup S with the identity 1 added (even if S already
contains an identity). If I, J are ideals of S, then I J ⊆ I ∩ J , so that I ∩ J ,= ∅.
Hence every finite semigroup has a unique minimal ideal denoted K (S). An ideal
K (S) is left zero if xy = x for all x, y ∈ K (S).

We will determine the stationary distribution from certain expansions of the right
Cayley graph RCay(S, A) of the underlying semigroup S with generators A. The
Markov chain itself is a random walk on the minimal ideal K (S) by the left action.
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2.2 Right Cayley Graphs

We begin with the definition of a graph.

Definition 2.1 (Graph) A labeled directed graph # (or graph for short) consists of
a vertex set V (#), an edge set E(#), and a labeling set A. An edge e ∈ E(#) is a
tuple e = (v, a, w) ∈ V (#) × A × V (#). We often also write e : v a−→ w.

A path p from vertex v to vertex w in a graph # is a sequence of edges

p =
(
v = v0

a1−→ v1
a2−→ · · · a$−→ v$ = w

)
,

where each tuple (vi , ai+1, vi+1) ∈ E(#) for 0 ! i < $. The initial (resp. terminal)
vertex v (resp. w) of p is denoted by ι(p) (resp. τ (p)). The length of p is $(p) := $

and a1 . . . a$ is called the label of the path.
We can define a preorder ≺ on V (#) by v ≺ w if there is a path from v tow in #.

This induces an equivalence relation ∼ on V (#), where v ∼ w if v ≺ w and w ≺ v.
A strongly connected component of # is a ∼-equivalence class.

Definition 2.2 (Rooted graph) A rooted graph is a pair (#, r), where # is a graph
and r ∈ V (#), such that r ≺ v for all v ∈ V (#).

A path is called simple if it visits no vertex twice. Empty (or trivial) paths are
considered simple. For a rooted graph (#, r), let Simple(#, r) be the set of simple
paths of # starting at r (including the empty path).

Definition 2.3 (Right Cayley graph) Let (S, A) be a finite semigroup S together
with a set of generators A. The right Cayley graph RCay(S, A) of S with respect to
A is the rooted graph with vertex set V (RCay(S, A)) = S1, root r = 1 ∈ S1, and
edges s

a−→ s ′ for all (s, a, s ′) ∈ S1 × A × S1, such that s ′ = sa in S1.

An example of a right Cayley graph is given in Fig. 1.
For a semigroup S, two elements s, s ′ ∈ S are in the same R-class if the corre-

sponding right ideals are equal, that is, sS1 = s ′S1. The strongly connected compo-
nents ofRCay(S, A) are precisely theR-classes of S1. In otherwords, the vertices of
a strongly connected component are exactly the vertices that represent the elements
in anR-class of S1. Edges that go between distinct strongly connected components
will turn out to play an important role in the Karnofksy–Rhodes expansion.

Definition 2.4 (Transition edges) Let# be a graph. Then e = (v, a, w) ∈ E(#)with
v,w ∈ V (#) and a ∈ A is a transition edge if v ! w. In other words, there is no
path from w to v in #.

In Fig. 1, the transition edges are indicated in blue. Note that the edges leaving 1
in the right Cayley graph are always transitional. Other edges might or might not be
transitional. In this example K (S) consists of all vertices in RCay(S, A) except the
root 1.
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Fig. 2 The
Karnofsky–Rhodes
expansion KR(S, A) of the
right Cayley graph of Fig. 1

2.3 The Karnofsky–Rhodes Expansion

To compute explicit expressions for the stationary distributions of Markov chains on
finite semigroups, we need the Karnofsky–Rhodes expansion [7] of the right Cayley
graph RCay(S, A). See also [9, Definition 4.15] and [10, Sect. 3.4].

Denote by (A+, A), the free semigroup with generators in A. In other words, A+

is the set of all words a1 . . . a$ of length $ " 1 over A with multiplication given by
concatenation. Furthermore, let A% = A+ ∪ {1}, so that A% is A+ with the identity
added; it is the free monoid generated by A.

Definition 2.5 (Karnofksy–Rhodes expansion) The Karnofsky–Rhodes expansion
KR(S, A) is obtained as follows. Start with the right Cayley graph RCay(A+, A).
Identify the endpoints of two paths in RCay(A+, A)

p :=
(
1

a1−→ v1
a2−→ · · · a$−→ v$

)
and p′ :=

(
1

a′
1−→ v′

1
a′
2−→ · · ·

a′
$′−→ v′

$′

)

in KR(S, A) if and only if the corresponding paths in RCay(S, A)

[p]S :=
(
1

a1−→ [w1]S
a2−→ · · · a$−→ [w$]S

)
and [p′]S :=

(

1
a′
1−→ [w′

1]S
a′
2−→ · · ·

a′
$′−→ [w′

$′ ]S
)

,

where wi = a1a2 . . . ai and w′
i = a′

1a
′
2 . . . a

′
i end at the same vertex [w$]S = [w′

$′]S
and in addition the set of transition edges of [p]S and [p′]S in RCay(S, A) is equal.

An example for KR(S, A) is given in Fig. 2. In this figure, the paths a2b and aba
are equal because they end in the same vertex when projected onto S and they share
the same transition edge, which is the first a. On the other hand, the paths ab and ba
are distinct even though ab = ba in D2 because for the first path the transition edge
is the first a and for the second path the transition edge is the first b.

Proposition 2.6 ([12, Proposition 2.15]) KR(S, A) is the right Cayley graph of a
semigroup, also denoted by KR(S, A).
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2.4 The McCammond Expansion

The McCammond expansion [9] of a rooted graph is intimately related to the unique
simple path property.

Definition 2.7 (Unique simple path property) A rooted graph (#, r) has the unique
simple path property if for each vertex v ∈ V (#) there is a unique simple path from
the root r to v.

As proven in [9, Proposition 2.32], the unique simple path property is equivalent
to (#, r) admitting a unique directed spanning tree T. Note that the unique simple
path property not only depends on the graph #, but also on the chosen root r . In this
paper, we always choose r = 1. It was established in [9, Sect. 2.7] that every rooted
graph (#, r) has a universal simple cover, which has the unique simple path property.

If p and q are paths, $(q) = k ! $(p), and the first k + 1 vertices and k edges of
p and q agree, we say that q is an initial segment of p, written q ⊆ p.

Definition 2.8 (McCammond expansion) For a rooted graph (#, r), define its
McCammond expansion (#Mc, r) as the graph with

V (#Mc) = Simple(#, r),

E(#Mc) = {(p, a, q) ∈ V (#Mc) × A × V (#Mc) | (τ (p), a, τ (q)) ∈ E(#),

$(q) = $(p)+ 1 or (q ⊆ p and $(q) ! $(p))}.

Note that by definition there are two types of edges (p, a, q) ∈ E(#Mc): either
$(q) = $(p)+ 1 or $(q) ! $(p) as paths in Simple(#, r). The spanning tree T
has vertex set V (#Mc) and only those edges (p, a, q) ∈ E(#Mc) such that $(q) =
$(p)+ 1.

From now on choose r = 1. The simple path

1
a1−→ v1

a2−→ · · · a$−→ v$

in Simple(#,1) is naturally indexed by the word a1a2 . . . a$. We will use this
labeling for the McCammond expansion of KR(S, A). In particular, if a1a2 . . . a$ ∈
Simple(#,1) and a1a2 . . . a$a ∈ Simple(#,1), then the edge a1a2 . . .
a$

a−→ a1a2 . . . a$a is in the spanning tree T. Otherwise, we have a1a2 . . . a$
a−→

a1a2 . . . ak for some unique 1 ! k < $. Thus under the right action of a ∈ A on
a1a2 . . . a$, we either move forward in the spanning tree or fall backwards some-
where on the unique geodesic from 1 to a1a2 . . . a$, but staying in the sameR-class.
An example of a McCammond expansion of a Karnofsky–Rhodes graph is given in
Fig. 3.

For a non-simple path in (#Mc,1), we can remove loops; it does not matter in
which order these loops are removed. This is also known as the Church–Rosser
property [4] or a Knuth–Bendix rewriting system. This is proved in [9].
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Fig. 3 The McCammond expansion Mc ◦ KR(D2, {a, b}) of Fig. 2

We denote the McCammond expansion of a semigroup (S, A) with generators in
A byMc(S, A), which is the McCammond expansion of its right Cayley graph.

2.5 Stationary Distribution

Denote by M(S, A), the Markov chain associated with the semigroup (S, A). As
mentioned before, this is the random walk on K (S) by the left action. The probabil-
ity xa is associated with generator a ∈ A. The stationary distribution for M(S, A)
was computed in [12] usingMc ◦ KR(S, A). The treatment depends on whether the
minimal ideal K (S) is left zero or not. We first start with the former case, stated
in [12, Corollaries 2.23 & 2.28].

Theorem 2.9 If K (S) is left zero, the stationary distribution of the Markov chain
M(S, A) labeled by w ∈ K (S) is given by

"M(S,A)
w =

∑

p

∏

a∈p

xa,

where the sum is over all paths p in Mc ◦ KR(S, A) starting at 1 and ending in s
such that [s]S = w.

The case when K (S) is not left zero was treated in [12, Sect. 2.9] by adding a
zero element # to the semigroup S and the generators A. This new generator # has
its own probability x!. The minimal ideal of the semigroup (S ∪ {#}, A ∪ {#}) is
left zero and by taking the limit x! → 0, the stationary distribution of the original
Markov chain (S, A) is retrieved as stated in [12, Corollary 2.33].
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Theorem 2.10 If K (S) is not left zero, the stationary distribution of the Markov
chain M(S, A) labeled by w ∈ K (S) is given by

"M(S,A)
w = lim

x!→0

(∑

p

∏

a∈p

xa
)
, (2.1)

where the sum is over all paths p in Mc ◦ KR(S ∪ {#}, A ∪ {#}) starting at 1 and
ending in s such that [s]S∪{!} = w#.

In [11], we developed a strategy using loop graphs to compute the expressions in
Theorems 2.9 and 2.10 as rational functions in the probabilities xa for a ∈ A. This
is done in two steps:

(1) Using McCammond’s Pict map, we map the McCammond expansion together
with a simple path from 1 to the ideal to a loop graph. See Sect. 2.6.

(2) The set of all paths from 1 to the element in the ideal in a loop graph can be
written as a Kleene expression. The Kleene expression immediately yields a
rational expression for the stationary distribution. See Sect. 2.7.

2.6 Loop Graphs

A loop of size $ is a connected directed graph with $ vertices such that each vertex
has exactly one incoming and one outgoing edge. In other words, a loop is a directed
circle of $ vertices. A loop graph can be defined recursively. Start with a directed
straight line path. Recursively, attach a loop of an arbitrary finite size to any existing
chosen vertex.Repeat or stop. The edges of the loop graph can be labeled.An example
of a loop graph is given in Fig. 4.

Recall that an important property of the McCammond expansion is the unique
simple path property (see Definition 2.7). We now define the map Pict from the set
of tuples (#, p), where # is a graph with the unique simple path property and p is
a simple path in # starting at 1, to the set of loop graphs. The straight line, which
the loop graph is based on, corresponds to the chosen simple path p. We follow [11,
Sect. 3.2].

Definition 2.11 (McCammond [11,Definition 3.5]) Let# be a graphwith the unique
simple path property and p a simple path in# starting at1. ThenPict(#, p) is defined
by the principle of induction.

Induction basis: Set P = p and start at vertex v0 = 1.
Induction step: Suppose one is at vertex v0 ,= τ (p) on path p. Take the edge e

from v0 to v1 in p.

(1) If there is no edge in # coming into v1 besides e, continue with the unique next
vertex in p, now denoted v1 (with the current vertex v1 relabeled v0), unless
v1 = τ (p). If v1 = τ (p), then output Pict(#, p) = P .
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Fig. 4 Loop graph for (Mc ◦ KR(D2 ∪ {#}, {a, b,#}), ab#)

(2) Otherwise there is at least one edge e′ ,= e in # going into v1, given by e′ =(
v′ a−→ v1

)
for some a ∈ A. Since # has the unique simple path property by

assumption, there must be a unique simple path starting at 1 going to v0 along
the path p followed by the path p′ starting at v0, going along e to v1, and ending
at v′.

(a) Run the induction on p′ in a subgraph #’ of #, consisting of all edges and
vertices on circuits containing a vertex of p′. Note that p′ is simple in #’.
The output is P ′ = Pict(#′, p′).

(b) Modify P by attaching P ′ disjointly except at v1 and adding edge e′ from
v′ in P ′ back to v1.

(3) Repeat step (2) for each edge e′ ,= e at vertex v1.
(4) Continue with the induction step unless v1 = τ (p). If v1 = τ (p), then output

Pict(#, p) = P .

Remark 2.12 The map Pict has the property that the set of all paths in # from 1 to
τ (p) is in bijection with the set of all paths in Pict(#, p) from 1 to τ (p) such that
the labels of the paths are preserved.
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Example 2.13 Let us compute the examplePict(#, ab#),where#=Mc ◦ KR(D2 ∪
{#}, {a, b,#}). The McCammond expansion is given in Fig.3 if we attach to each
vertex an edge labeled# to the ideal {#}. The straight path is ab#. The vertex labeled
a in Fig. 3 has four dashed edges coming in. Two are labeled a and two are labeled
b. By the algorithm described in Definition 2.11, the long dashed arrows labeled a
and b give rise to loops of length 4. The other two dashed arrows give rise to loops
of length 2. Repeating the process yields the loop graph in Fig. 4.

2.7 Kleene Expressions

Denote the set of all paths in a loop graph G starting at 1 and ending at τ (p), where
p is the straight line the loop graph is based on, by PG . We represent a path q ∈ PG

by
1

a1−→ v1
a2−→ · · · ak−→ vk = τ (p),

where vi are vertices in G and ai ∈ A are the labels on the edges.
There is a simple inductive way to describePG usingKleene expressions (see [11,

Sect. 1.3]). Given a set L , define L0 = {ε} given by the empty string, L1 = L , and
recursively Li+1 = {wa | w ∈ Li , a ∈ L} for each integer i > 0. Then the Kleene
star is

L% =
⋃

i"0

Li .

A Kleene expression only involves letters in A, concatenation, unions, and %. To
obtain a Kleene expression for PG , perform the following doubly recursive proce-
dure:
Algorithm 1. Assume that the straight line path corresponding to the loop graph G
is indexed as

1 2 · · · τ(p)

Induction basis: Start at vertex 1 and with the empty expression E .
Induction step: Suppose one is at vertex i ,= τ (p) (or 1) on the straight line path

underlying G.

(1) Continue to the next vertex i + 1 (or 1) on the straight line path underlying G
and append the label a on the edge from i

a−→ i + 1 (or 1
a−→ 1) to E .

(2) If there are loops $1, $2, . . . , $k at vertex i + 1 (or 1), append the formal expres-
sion

{$1, $2, . . . , $k}%

to E . The loops $1, $2, . . . , $k are in one-to-one correspondence with the edges
coming into vertex i + 1.

(3) If i + 1 ,= τ (p), continue with the next induction step. Else stop and output E .
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Algorithm 2. For each symbol $i in the expression for E , do the following:

(1) Consider the loop $i =
(
v0

a1−→ v1
a2−→ · · · ak−→ vk = v0

)
from vertex v0 to v0

in G. Consider the subgraph of G with straight line v1
a2−→ · · · ak−→ vk and all

further loops that are attached to any of the vertices vi in G. Attach 1 to v1. The
resulting graph G(i) is a new loop graph. Perform Algorithm 1 on G(i) to obtain
a Kleene expression E (i). Replace the symbol $i in E by E (i).

(2) Continue this process until E does not contain any further expressions $i for
some loop $i , that is, E only contains unions, % and elements in the alphabet A.
Then the Kleene expression for PG is E .

The resulting expressions can be made into unionless expressions by using Zimin
words

{a}% = a% and {a, b}% = (a%b)%a% for a,b ∈ A. (2.2)

Expressions for larger unions can be obtained by induction using (2.2).

Example 2.14 Let us continue Example 2.13 and compute the Kleene expression
for PPict(#,ab!) for # = Mc ◦ KR(D2 ∪ {#}, {a, b,#}). By Algorithm 1, we obtain
the expression

E = a{$1, $2, $3, $4}%b$%
5#.

Using Algorithm 2 repeatedly for $1, . . . , $5, we obtain

$1 = a(b(aa)%b)%b(aa)%ab,

$2 = a(b(aa)%b)%a,

$3 = b(a(bb)%a)%a(bb)%ba,

$4 = b(a(bb)%a)%b,

$5 = a(bb)%a.

2.8 From Kleene Expressions to Rational Functions

Our aim is to evaluate the expressions for "M(S,A)
w in Theorems 2.9 and 2.10. Let G

be a loop graph with straight line path p. Define

"G(x1, . . . , xn) =
∑

q

∏

a∈q
xa, (2.3)

where the sum is over all paths q from 1 to τ (p) in G. In [11, Definition 1.3] this
is also called the normal distribution of the loop graph G. Note that "M(S,A)

w is the
sum of "G(x1, . . . , xn) for various loop graphs with straight line paths p such that
τ (p) = w (see also [11, Theorem 1.4]). The Kleene expressions from Sect. 2.7 give
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us an expression for the set of relevant paths q in G. Nowwe discuss how to get from
the Kleene expressions to rational functions.

The main idea is that concatenation in Kleene expressions corresponds to prod-
ucts, unions corresponds to sums, and % corresponds to the geometric series. More
concretely, for a path p = a1 · · · ak we obtain

∏

a∈p

xa = xa1xa2 · · · xak .

For %-expressions with a single letter a, we obtain

∑

s∈a%

∏

i∈s
xi =

∞∑

$=0

x$
a = 1

1 − xa
.

Similarly

∑

s∈{a,b}%

∏

i∈s
xi =

∑

s∈a%(ba%)%

∏

i∈s
xi =

1
1 − xa

· 1
1 − xb

1−xa

= 1
1 − xa − xb

.

In general, using the recursion (2.2) we derive by induction

∑

s∈{a1,a2,...,an}%

∏

i∈s
xi =

1
1 − xa1 − xa2 − · · · − xan

. (2.4)

Example 2.15 Let us now compute

"ab! =
∑

p∈E

∏

a∈p

xa

for the Kleene expression E of Example 2.14. We find (see also [11, Example 3.8])

"ab! = xaxbx!

1 − x2a x
2
b(

1− x2b
1−x2a

)
(1−x2a )

− x2a

1− x2b
1−x2a

− x2a x
2
b(

1− x2a
1−x2b

)
(1−x2b )

− x2b

1− x2a
1−x2b




(
1 − x2a

1−x2b

)

= xaxbx!(1 − x2b )(
1 − 2x2a x

2
b

1−x2a−x2b
− x2a (1−x2a )

1−x2a−x2b
− x2b (1−x2b )

1−x2a−x2b

)
(1 − x2a − x2b )

= xaxbx!(1 − x2b )
1 − 2x2a − 2x2b + (x2a − x2b )2

.

In the limit as x! → 0, we obtain



154 J. Rhodes and A. Schilling

lim
x!→0

"ab! = 1 − x2b
8

.

In [11, Example 3.8], the remaining stationary distributions were computed using
that xa + xb + x! = 1 and by taking the limit x! → 0

"! = x!
x!→0−→ 0

"a! = xa(1 − x2a − x2b )x!
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ xa
4

"ab! = xaxbx!(1 − x2b )
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ 1 − x2b
8

"aba! = x2a xbx!
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ xa
8

"abab! = x2a x
2
b x!

1 − 2x2a − 2x2b + (x2a − x2b )2
x!→0−→ xaxb

8

"a2! = x2a (1 − x2a )x!
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ xa(1+ xa)
8

"a2b! = x2a xbx!
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ xa
8

"a2ba! = x3a xbx!
1 − 2x2a − 2x2b + (x2a − x2b )2

x!→0−→ x2a
8

and similarly for the cases with a and b interchanged by symmetry.
For a word w in {a, b}, denote by [w] the corresponding element in D2. For

example, in D2 we have [a] = [bab] = [b2a]. Note that by Theorem 2.10

"M(D2,{a,b})
s = 1

4
for all s ∈ D2

by summing the appropriate results for limx!→0 "w! as above. For example,

"
M(D2,{a,b})
[ab] = lim

x!→0

(
"ab! + "ba! + "a2ba! + "b2ab!

)
= 1 − x2b

8
+ 1 − x2a

8
+ x2a

8
+ x2b

8
= 1

4
.

This shows that the stationary distribution is uniform.

Remark 2.16 Note that the Markov chain in (1.1) is not ergodic since the greatest
common divisor of the cycle length is 2 and not 1. We can make the Markov chain
ergodic by introducing a new generator c, which acts as the identity. In other words,
this would introduce loops at each vertex in (1.1) labeled c. In turn, this would
introduce loops labeled c at each vertex in the McCammond expansion in Fig. 3 and
the loop graph in Fig. 4. This would change the Kleene expressions in Example 2.14
to
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E = a{$1, $2, $3, $4, c}%b{$5, c}%#

with
$1 = a{b{ac%a, c}%b, c}%b{ac%a, c}%ac%b,

$2 = a{b{ac%a, c}%b, c}%a,
$3 = b{a{bc%b, c}%a, c}%a{bc%b, c}%bc%a,

$4 = b{a{bc%b, c}%a, c}%b,
$5 = a{bc%b, c}%a.

In this setting, we find

"ab! = xaxbx!

1 − x2a x
2
b

1− x2b

1− x2a
1−xc

−xc

−xc




(
1− x2a

1−xc
−xc

)
(1−xc)

− x2a

1− x2b

1− x2a
1−xc

−xc

−xc

1

− x2a x
2
b

1− x2a

1−
x2b

1−xc
−xc

−xc




(
1− x2b

1−xc
−xc

)
(1−xc)

− x2b

1− x2a

1−
x2b

1−xc
−xc

−xc
− xc





(

1 − x2a

1− x2b
1−xc

−xc
− xc

)

= xaxbx!(1+ xb − xc)(1 − xb − xc)
(1 − xa − xb − xc)(1+ xa + xb − xc)(1 − xa + xb − xc)(1+ xa − xb − xc)

.

Using xa + xb + xc + x! = 1,we see that the term (1 − xa − xb − xc) in the denom-
inator cancels with x! in the numerator. Hence in the limit x! → 0, we obtain

lim
x!→0

"ab! = (1+ xb − xc)(1 − xb − xc)
8(xa + xb)

.

As xc → 0, we recover the result from Example 2.15.

2.9 Mixing Time

Recall from Sect. 2.1, that for a given small ε > 0, themixing time tmix is the smallest
t such that

‖T tν − "‖ ! ε.

Many references about mixing time can be found in [5, 8].
Let τ be the first time that the Markov chain hits the ideal (when starting at 1

in RCay(S, A) or Mc ◦ KR(S, A)). Denote by Pr(τ > t) the probability that τ is
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bigger than a given t . In [1], it was shown thatPr(τ > t) gives a bound on the mixing
time.

Theorem 2.17 ([1]) Let S be a finite semigroup whose minimal ideal K (S) is a left
zero semigroup and let T be the transition matrix of the associated Markov chain.
Then

‖T tν − "‖ ! Pr(τ > t).

In [13], we provide a way to compute Pr(τ > t) from particular rational expres-
sions for the stationary distribution. LetG be a loop graph and recall"G(x1, . . . , xn)
from (2.3), which is a rational function in x1, . . . , xn . Let PrG(τ " t) be the prob-
ability that the length of the paths in the loop graph G from 1 to s in the ideal is
weakly bigger than t . Let "

"t
G (x1, . . . , xn) be the truncation of the formal power

series associated to the rational function "G(x1, . . . , xn) to terms of degree weakly
bigger than t and let "<t

G (x1, . . . , xn) be the truncation of the formal power series
associated to the rational function "G(x1, . . . , xn) to terms of degree strictly smaller
than t . Note that

"G(x1, . . . , xn) = "<t
G (x1, . . . , xn)+ "

"t
G (x1, . . . , xn).

Theorem 2.18 ([13]) Suppose the Markov chain satisfies the conditions of Theo-
rem 2.17. If"G(x1, . . . , xn) is represented by a rational function such that each term
of degree $ in its formal power sum expansion corresponds to a path in G of length
$, we have

PrG(τ " t) = "
"t
G (x1, . . . , xn)

"G(x1, . . . , xn)
= 1 − "<t

G (x1, . . . , xn)
"G(x1, . . . , xn)

.

By Markov’s inequality (see for example [6, 8]), we have

Pr(τ > t) ! E[τ ]
t + 1

, (2.5)

where E[τ ] is the expected value for τ , the first time the walk hits the ideal. Hence
knowing E[τ ] gives an upper bound on the mixing time. In [13], we find a way to
compute E[τ ] from certain representations of the stationary distribution.

Theorem 2.19 ([13]) Suppose the Markov chain satisfies the conditions of Theo-
rem 2.17. If"G(x1, . . . , xn) is represented by a rational function such that each term
of degree $ in its formal power sum expansion corresponds to a path in G of length
$, we have

EG[τ ] =
(

n∑

i=1

xi
∂

∂xi

)

ln"G(x1, . . . , xn). (2.6)
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Fig. 5 The right Cayley graph RCay(S, A) of the semigroup that gives the Markov chain in
Sect. 2.10

2.10 Another Example

Let us illustrate the concepts and algorithms in terms of another example. Consider
the Markov chain with state-space ! = {1, 2} given by the transition diagram:

1 2

2,3

1

1,3

2

(2.7)
The transition matrix of this Markov chain is given by

T =
(

x1 x1 + x3
x2 + x3 x2

)
.

Pick as generators of the semigroup A = {1, 2, 3}. Then the right Cayley graph of
the semigroup that gives the above Markov chain by left multiplication is depicted
in Fig. 5, where K (S) = {1, 2}. Indeed, the left action 11 = 1, 21 = 2, and 31 = 2,
which gives all the edges out of 1 in (2.7). Similarly, the left action 12 = 1, 22 = 2,
and 32 = 1, which gives all the edges out of 2 in (2.7).

The McCammond and Karnofsky–Rhodes expansion of the right Cayley graph is
given in Fig. 6.

The Kleene expression for all paths from 1 to 32 ∈ K (S) is 3(33)%2 and similarly
for paths with other endpoints. From this we easily compute
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Fig. 6 Mc ◦ KR(S, A) of RCay(S, A) in Fig. 5 with loops on the ideal omitted

"1 = x1 "2 = x2,

"32 =
x2x3
1 − x23

"31 =
x1x3
1 − x23

,

"331 =
x1x23
1 − x23

"332 =
x2x23
1 − x23

.

Furthermore,

"
M(S,A)
1 = "1 + "32 + "331 =

x1 + x2x3
1 − x23

,

"
M(S,A)
2 = "2 + "31 + "332 =

x2 + x1x3
1 − x23

.

Using that x1 + x2 + x3 = 1, we find indeed that "M(S,A)
1 + "

M(S,A)
2 = 1.

Since the expressions for "
M(S,A)
1 and "

M(S,A)
2 were computed directly from

Mc ◦ KR(S, A) (or the corresponding loop graphs) without using that x1 + x2 +
x3 = 1, each term of degree $ in the expansion of the rational function corresponds
to a path in the graph. Hence we may use Theorem 2.19 to give an upper bound on
the mixing time

E1[τ ] =
(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
ln"

M(S,A)
1 = x1

x1 + x2x3
+ 2x2x3

x1 + x2x3
+ 2x23

1 − x23
.

Inserting x1 = x2 = x3 = 1
3 yields E1[τ ] = E2[τ ] = 3

2 , so that tmix ! 3 if ε = 1
2 .
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