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Abstract

This paper proposes a new loss function for lin-

ear autoencoders (LAEs) and analytically iden-

tifies the structure of the associated loss surface.

Optimizing the conventional Mean Square Error

(MSE) loss results in a decoder matrix that spans

the principal subspace of the sample covariance of

the data, but, owing to an invariance that cancels

out in the global map, it will fail to identify the

exact eigenvectors. We show here that our pro-

posed loss function eliminates this issue, so the

decoder converges to the exact ordered unnormal-

ized eigenvectors of the sample covariance matrix.

We characterize the full structure of the new loss

landscape by establishing an analytical expression

for the set of all critical points, showing that it is a

subset of critical points of MSE, and that all local

minima are still global. Specifically, the invariant

global minima under MSE are shown to become

saddle points under the new loss. Additionally,

the computational complexity of the loss and its

gradients are the same as MSE and, thus, the new

loss is not only of theoretical importance but is of

practical value, e.g., for low-rank approximation.

1. Introduction

Promising performance in deep learning has spurred active

research to establish a formal understanding of the method’s

empirical results. Two important and complimentary lines

of research have been brought to bear to analyze the be-

havior of various architectures of linear/non-linear neural

networks: (i) global function approximation theorems de-

scribe structural aspects of networks (Leshno et al., 1993;

Lu et al., 2017); while the dynamics of learning (under SGD)

have been examined via (ii) approaches for analyzing prop-

erties of the loss landscape. Within the latter, a direction

centered on the question of local vs. global minima, or more
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generally the categorization of extreme points, has flour-

ished. Much work extends the results of Baldi & Hornik

(1989) for LAEs to more complex networks (Kunin et al.,

2019; Pretorius et al., 2018; Frye et al., 2019). Most notably,

Zhou & Liang (2018) generalize the LAE results to deep

linear networks and shallow RELU networks, and Laurent &

Brecht (2018) prove global optimality for arbitrary convex

differentiable loss under slightly different conditions.

Related Works Though the aforementioned works have

been very successful in addressing the problem of local vs.

global minima, not all global minima “are created equal”.

While for an LAE with MSE loss all local minima are global

minima, Baldi & Hornik (1989) further show that at these

minima the decoder’s columns and the principal components

of the covariance matrix of the data are not the necessarily

the same but only span the same subspace. In other words,

the LAE fails (almost surely) to identify the exact principal

directions. This is due to the loss possessing a symmetry

under the action of a group of invertible matrices, so that

directions (and orderings/permutations thereto) will not be

discriminated. (For a further elaboration and a more detailed

algebraic characterization of the invariance, see Remark 1.

Fig 1 also provides a visual demonstration.)

Several methods for neural networks compute the exact

eigenvectors (Rubner & Tavan, 1989; Xu, 1993; Kung &

Diamantaras, 1990; Oja et al., 1992), but they depend on

either particular network structures or special optimization

methods. More recent related works, mainly concerned

with regularization, form two separate line of studies: one

explores the effects of implicit regularization and the other

investigates the consequence of adding a weight regularizer.

For implicit regularization, Gidel et al. (2019) extended the

results of Saxe et al. (2019), and show that under some as-

sumptions discrete Gradient Descent (GD) dynamics solves

“a reduced-rank regression with a gradually increasing rank”.

In this approach, with vanishing initialization and time

rescaling of the gradient dynamics, the GD optimizer learns

the eigenvectors sequentially. However, not only this ap-

proach only works for GD optimization, it is approximate

as the exact solution is achieved only when the initialization

converges to zero.

In the case of weight regularization, it was observed by

Plaut (2018), and further explored by Kunin et al. (2019)
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that adding a weight regulizer to the MSE loss causes the

left singular vectors of the decoder to become the exact

eigenvectors of the sample covariance matrix. Recovering

them, however, still requires an extra decomposition step.

As Plaut (2018) points out, no existing method recovers the

eigenvectors from an LAE in an optimization-independent

way on a standard linear network — the present paper fills

that lacuna.

Our Contributions This work proposes a loss function

and shows for the first time that under this loss the decoder

converges to the exact ordered unnormalized eigenvectors

of the sample covariance matrix. The idea is simple: for

identifying p principal directions we build up a total loss

function as a sum of p squared error losses, where the ith

loss function identifies only the first i principal directions.

This approach breaks the symmetry since minimizing the

first loss results in the first principal direction, forcing the

second loss to find the first and the second. This constraint

is propagated through the rest of the losses, resulting in all

p principal components being identified. For the new loss,

we prove that all local minima are global minima.

Remarkably, the proposed loss function has both theoretical

and practical implications. From a theoretical point of view,

it provides a better understanding of the loss surface. Specif-

ically, any critical point of our loss L is a critical point of the

original MSE loss but not vice versa. We thus conclude that

L eliminates those undesirable global minima of the original

loss (i.e., exactly those which suffer from the invariance).

As for practical consequences, we show that the loss and

its gradients can be compactly vectorized so that their com-

putational complexity is no different from the MSE loss.

Therefore, the loss L can be used (without needing any

additional post hoc processing) to perform low rank approx-

imation on large datasets via any method of optimization,

where SGD is but one instance. In other words, the loss L

enables low rank decomposition as a single optimization

layer, akin to an instance of a fully differentiable building

block in a larger NN pipeline (Amos & Kolter, 2017).

Another promising area where low rank approximation is of

particular interest is in analysis and control of dynamical sys-

tems (Markovsky, 2014). Recently, research has shown how

to conduct spectral analysis of such problems from an op-

erator point of view by applying deep autoencoders (Lusch

et al., 2018). Recovering the exact eigenfunctions of the

dynamic operator is important in these contexts, which we

address.

Organization of the Paper In the next section we define

the loss and review the overall results. In Section 3, we

provide compact expressions for the gradients, present the

analytical structure of the critical points, and use them to

analyze the loss landscape. Along the way we compare

these results with that of MSE loss to further delineate the

advantages of the new loss. We provide proof sketches and

intuitions, postponing detailed proofs to the supplementary

document. Further, to add concreteness and aid visualiza-

tion, Section 4 presents some experimental results.

2. Main Results

Notation In this paper, the underlying field is always R,

and positive semidefinite matrices are symmetric by defini-

tion. We shall denote the transpose of matrix M by M ′.

The Frobenius inner product and norm are denoted as 〈·, ·〉F ,

and ‖·‖F , respectively. Ii;p is a p × p matrix with all ele-

ments zero except the first i diagonal elements being one.

(Or, equivalently, the matrix obtained by setting the last p−i

diagonal elements of a p× p identity matrix to zero.)

The Linear Autoencoder (LAE) The LAE we consider

here is a neural network consisting of n-dimensional input

and output with a single hidden layer of width p < n. The

network is linear in the sense that all activations are identity

functions. The constraints on dimension and requiring only

a single hidden layer are mainly for simplicity and can be

relaxed without major impact on the results. Remark 9

further elaborates on configurations with multiple hidden

linear layers, and dimensions that differ.

The Loss Let X ∈ R
n×m and Y ∈ R

n×m be the input

and output matrices, where m centered sample points, each

n-dimensional, are stacked column-wise. Let xj ∈ R
n and

yj ∈ R
n be the jth sample input and output (i.e. the jth

column of X and Y , respectively). Define the loss function

L(A,B) as

L(A,B) :=

p
∑

i=1

m
∑

j=1

‖yj −AIi;pBxj‖
2

2

=

p
∑

i=1

‖Y −AIi;pBX‖
2

F
, (1)

where, the matrices A ∈ R
n×p, and B ∈ R

p×n are the

weights of the decoder and encoder of an LAE, respectively.

The results are based on the following standard assumptions

that hold generically:

Assumption 1. For an input X and output Y , let Σxx :=
XX ′, Σxy := XY ′, Σyx := Σ

′
xy and Σyy := Y Y ′ be

their corresponding covariance matrices. We assume:

• The input and output data are centered (zero mean).

• Σxx, Σxy, Σyx and Σyy are positive definite (of full

rank and invertible).

• The sample covariance matrix Σ := ΣyxΣ
−1
xxΣxy

is of full rank with n distinct eigenvalues denoted as

λ1 > λ2 > · · · > λn.

• The decoder matrix A has no zero columns.
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and Ŝp are positive definite as well.

Detailed proofs of claims appear in the supplementary doc-

ument. Here, we provide proof sketches and remark on the

implications of the claims. The general strategy to prove

Theorem 1 is as follows. First the analytical gradients of

the loss are derived in a matrix form in Propositions 1 and 2.

We compare the gradients with that of the original Mean

Squared Error (MSE) loss. Then we analyze the loss surface

by solving the gradient equations which gives the general

structure of critical points based on the rank of the decoder

matrix A. Thereafter, we describe several interesting prop-

erties of the critical points analytically. Notably, any critical

point of the loss is also a critical point for the MSE loss but

not the other way around. Finally, by performing second

order analysis on the loss in Theorem 1 the exact equations

for the local minima are derived which are shown to be

global minima as claimed.

Remember the definition of the Loss L(A,B) and MSE

loss L̃(A,B) from Eqs. 1, and 2, respectively. The first step

is to calculate the gradients with respect to A and B and set

them to zero to derive the implicit expressions for the critical

points. To do so, first, as shown in the the supplementary

document for a fixed A, we derive the directional (Gateaux)

derivative of the loss with respect to B along an arbitrary

direction W ∈ R
p×n, denoted as dBL(A,B)W , i.e.

dBL(A,B)W = lim
‖W ‖

F
→0

L(A,B +W )− L(A,B)

‖W ‖F
.

As shown in the proof of the lemma, dBL(A,B)W is

derived by writing the norm in the loss as an inner product,

opening it up using linearity of inner product, disposing

second order terms in W (i.e. O(‖W ‖
2
)) and rearranging

the result as the inner product between the gradient with

respect to B, and the direction W , which yields

dBL(A,B)W=−2〈TpA
′
Σyx−(Sp◦(A

′A))BΣxx,W 〉F ,
(8)

where, ◦ is the (element-wise) Hadamard product. Second,

the same process is followed to derive dAL(A,B)V ; the

derivative of L with respect to A in an arbitrary direction

V ∈ R
n×p, for a fixed B, which is then set to zero to derive

the implicit expressions for the critical points. The results

are formally stated in the two following propositions.

Proposition 1. For any fixed matrix A ∈ R
n×p the function

L(A,B) is convex in the coefficients of B and attains its

minimum for any B satisfying the equation

(Sp ◦ (A
′A))BΣxx = TpA

′
Σyx, (9)

where Tp and Sp are constant matrices defined by Eqs 6

and 7. Further, if A has no zero column, then L(A,B) is

strictly convex in B and has a unique minimum when the

critical B is

B = B̂(A) = (Sp ◦ (A
′A))−1TpA

′
ΣyxΣ

−1
xx , (10)

and in the autoencoder case it becomes

B = B̂(A) = (Sp ◦ (A
′A))−1TpA

′. (10′)

Remark 3. Note that as long as A has no zero column,

Sp ◦ (A
′A) is nonsingular (the reasoning appears below).

In practice, A with zero columns can always be avoided by

nudging the zero columns of A during the gradient decent

process.

Proposition 2. For any fixed matrix B ∈ R
p×n the function

L(A,B) is a convex function in A. Moreover, for a fixed

B, the matrix A that satisfies

A (Sp ◦ (BΣxxB
′)) =ΣyxB

′Tp (11)

is a critical point of L(A,B).

The pair (A,B) is a critical point of L if they make

dBL(A,B)W and dAL(A,B)V zero for any pair of di-

rections (V ,W ). Therefore, the implicit equations for criti-

cal points are given below, next to the ones derived by Baldi

& Hornik (1989) for L̃(A,B).

• For L̃(A,B):

{

A′ABΣxx = A′
Σyx,

ABΣxxB
′ = ΣyxB

′.

• For L(A,B):

{

(Sp ◦ (A
′A))BΣxx = TpA

′
Σyx,

A (Sp ◦ (BΣxxB
′)) = ΣyxB

′Tp.

Remark 4. Notice similar structure with the only difference

being the presence of the Hadamard product by Sp on the

left and by diagonal Tp on the right. Therefore, practically,

the added computational cost of evaluating the gradients is

negligible compared to that of MSE loss.

The next step is to determine the structure of (A,B) that

satisfies the above equations, and find the subset of those

solutions that account for local minima. For the MSE loss,

the first expression (A′ABΣxx = A′
Σyx) is used to solve

for B and is substituted into the second expression to derive

an expression solely of A. To solve the first expression

for B, two cases are considered separately: the case where

A is of full rank p, so A′A is invertible, and the case of

A being of rank r < p. Here we do the same but for us

there is only one case. As long as the (not necessarily full

rank) matrix A has no zero column, Sp ◦ (A
′A) is positive

definite and hence, is invertible. We give only a brief dis-

cussion here, with a detailed explanation in the first lemma

of the supplementary document. As shown in the lemma,

Sp is positive definite and by the Shur product theorem

for any A (of any rank), Sp ◦ (A′A) is positive semidef-

inite. However, as a result of the Oppenheim inequality

(see Horn & Johnson, 2012, Thm 7.8.16), which in our case
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becomes det(Sp)
∏

i(A
′A)ii ≤ det(Sp ◦ (A

′A)), as long

as A has no zero column,
∏

i(A
′A)ii > 0 and therefore

det(Sp ◦ (A′A)) > 0. Here, we assume A of any rank

r ≤ p has no zero column (since this can be easily avoided

in practice) and consider Sp ◦(A
′A) to be always invertible.

Therefore, (A,B) define a critical point of losses L̃ and L

if the following equations for critical points hold:

• For L̃(A,B) and full rank A:

{

B = B̂(A) = (A′A)−1A′
ΣyxΣ

−1
xx ,

ABΣxxB
′ = ΣyxB

′.

• For L(A,B) and no zero column A:

{

B = B̂(A) = (Sp ◦ (A
′A))−1TpA

′
ΣyxΣ

−1
xx ,

A (Sp ◦ (BΣxxB
′)) = ΣyxB

′Tp.

Before we state the main theorem we need the following

definitions and notation. First, a rectangular permutation

matrix Πr ∈ R
r×p is a matrix where each column consists

of at most one nonzero element with the value 1. If the

rank of Πr is r with r < p then clearly, Πr has p − r

zero columns. Also when those zero columns are discarded

the resulting r × r submatrix of Πr is a standard square

permutation matrix.

Second, under the conditions provided in Assumption 1, the

matrix Σ := ΣyxΣ
−1
xxΣxy has an eigenvalue decomposi-

tion Σ = UΛU ′, where the ith column of U , denoted as

ui, is an eigenvector of Σ corresponding to the ith largest

eigenvalue of Σ, namely λi. Also Λ = diag(λ1, · · · , λn)
is the diagonal vector of ordered eigenvalues of Σ, with

λ1 > λ2 > · · · > λn > 0. We use the following notation

to organize a subset of the eigenvectors of Σ into a rect-

angular matrix. For any r ≤ p, let Ir = {i1, · · · , ir}(1 ≤
i1 < · · · < ir < n) be any ordered r-index set. Define

UIr
∈ R

n×p as UIr
= [ui1 , · · · ,uir ]. That is the columns

of UIr
are the ordered orthonormal eigenvectors of Σ associ-

ated with eigenvalues λi1 < · · · < λir . Clearly when r = p,

we have UIr
= [ui1 , · · · ,uip ] corresponding to a p-index

set Ip = {i1, · · · , ip}(1 ≤ i1 < · · · < ip < n). Similarly,

we define ΛIr
∈ R

p×p as ΛIr
= diag(λi1 , · · · , λir ).

Theorem 2. Let A ∈ R
n×p and B ∈ R

p×n be such that

A is of rank r ≤ p. Under the conditions of Assumption 1,

the matrices A and B define a critical point of L(A,B) if

and only if for any given r-index set Ir, and a nonsingular

diagonal matrix D ∈ R
r×r, A and B are of the form

A = UIr
CD, (12)

B = D−1
ΠCU ′

Ir
ΣyxΣ

−1
xx , (13)

where, C ∈ R
r×p is of full rank r with nonzero and normal-

ized columns such that ΠC := (Sp ◦ (C
′C))

−1
TpC

′ is a

rectangular permutation matrix of rank r and CΠC = Ir.

For all 1 ≤ r ≤ p, such C always exists. In particular, if

matrix A is of full rank p, i.e. r = p, the two given condi-

tions on ΠC are satisfied iff the invertible matrix C is any

squared p× p permutation matrix Π. In this case (A,B)
define a critical point of L(A,B) iff they are of the form

A = UIp
ΠD, (14)

B = D−1
Π

′U ′
Ip
ΣyxΣ

−1
xx . (15)

Remark 5. The above theorem provides explicit equations

for the critical points of the loss surface in terms of the

rank of the decoder matrix A and the eigenvectors of Σ.

This explicit structure allows us to further analyze the loss

surface and its local/global minima.

Here, we provide a proof sketch for the above theorem to

clarify the claims. Recall the EVD of Σ := ΣyxΣ
−1
xxΣxy

is Σ = UΛU ′. For both L̃ and L, B on the RHS of critical

point equations is replaced by the corresponding B̂(A). For

the L, as shown in the proof, the simplification yields

U ′A
(

Sp ◦
(

B̂ΣxxB̂
′
))

A′U = Λ∆, (16)

where ∆ := U ′ATp(Sp ◦ (A′A))−1TpA
′U is symmet-

ric and positive semidefinite. The LHS of eq. (16) is

symmetric so the RHS is symmetric too, hence Λ∆ =
(Λ∆)′ = ∆

′
Λ

′ = ∆Λ. Therefore ∆ commutes with

the diagonal matrix of eigenvalues Λ. Since the eigen-

values are assumed to be distinct, ∆ has to be diago-

nal as well. The matrix Tp(Sp ◦ (A′A))−1Tp is posi-

tive definite and U is an orthogonal matrix. Therefore,

r = rank(A) = rank(∆) = rank(U ′
∆U), which implies

that the diagonal matrix ∆, has r nonzero and positive diag-

onal entries. There exists an r-index set Ir corresponding to

the nonzero diagonal elements of ∆. Forming a diagonal

matrix ∆Ir
∈ R

r×r by filling its diagonal entries (in order)

by the nonzero diagonal elements of ∆, we have

U∆U ′ = UIr
∆Ir

U ′
Ir

Def of ∆
====⇒

ATp(Sp ◦ (A
′A))−1TpA

′ = UIr
∆Ir

U ′
Ir
, (17)

which indicates that the matrix A has the same column space

as UIr
. Hence there exists a full rank matrix C̄ ∈ R

r×p

such that A = UIr
C̄. Since A has no zero column, C̄ has

no zero column. Further, by normalizing the columns of C̄

we can write A = UIr
CD, where D ∈ R

p×p is a diagonal

matrix that contains the norms of columns of C̄.

Baldi & Hornik (1989) did something similar for full rank

A for the loss L̃ to derive (AL̃ = UIp
C̃). But their C̃

can be any invertible p× p matrix. In our case, the matrix

C ∈ R
r×p corresponding to rank r ≤ p matrix A, has to

satisfy eq. (17) by replacing A by UIr
CD and eq. (16)

by replacing B̂(A) by B̂(UIr
CD). For the original loss

L̃, equations similar to eq. (17) and eq. (16) appear but
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they are are satisfied trivially by any invertible matrix C̃.

However, in our case, simplifying those equations by using

A = UIr
CD results (after some algebraic manipulation)

in the following two conditions for C:

∆Ir
= CTp (Sp ◦ (C

′C))
−1

TpC
′, and (18)

ΛIr
∆Ir

= C
(

Sp ◦
(

(Sp ◦ (C
′C))−1TpC

′
ΛIr

CTp

(Sp ◦ (C
′C))−1

))

C ′. (19)

As detailed in proof of Theorem 2, solving for C leads to

the specific structure given in the theorem statement.

Remark 6. When A is of rank r < p, and

with no zero columns, the invariant matrix C is

not necessarily a rectangular permutation matrix but

ΠC := (Sp ◦ (C
′C))

−1
TpC

′ is a rectangular permutation

matrix with CΠC = Ir. It is only when r = p that the

invariant matrix C becomes a permutation matrix. Never-

theless, as we show in the following corollary, the global

map is always ∀r ≤ p : G = AB = UIr
U ′

Ir
ΣyxΣ

−1
xx . It is

possible to find further structure (in terms of block matrices)

for the invariant matrix C when r < p. However this is not

necessary, as we will shortly show that all rank-deficient

matrix As are saddle points for the loss and ideally should

be passed by during the gradient decent process. Based on

some numerical results our conjecture is that when r < p

the matrix C can only start with a r × k rectangular permu-

tation matrix of rank r with r ≤ k ≤ p and the remaining

p− k columns of C may be arbitrary but nonzero.

Corollary 1. Let (A,B) be a critical point of L(A,B)
under the conditions provided in Assumption 1 and

rankA = r ≤ p. Then the following hold:

1. The matrix BΣxxB
′ is a p × p diagonal matrix of

rank r.

2. For all 1 ≤ r ≤ p, for any critical pair (A,B), the

global map G := AB becomes

G = UIr
U ′

Ir
ΣyxΣ

−1
xx . (20)

For the autoencoder case (Y = X) the global map is

simply G = UIr
U ′

Ir
.

3. (A,B) is also the critical point of the classical loss

L̃(A,B) =
∑p

i=1 ‖Y −ABX‖
2

F .

Remark 7. The above corollary implies that L(A,B) not

only does not add any extra critical points compared to

the original loss L̃(A,B), it provides the same global map

G := AB. It only limits the structure of the invariance

matrix C as described in Theorem 2 so that the decoder

matrix A can recover the exact eigenvectors of Σ.

Lemma 1. The loss function L(A,B) can be written as

L(A,B) = pTr(Σyy)− 2Tr (ATpBΣxy)

+ Tr (B′ (Sp ◦ (A
′A))BΣxx) . (21)

Remark 8. The above identity shows that the number of

matrix operations required for computing the loss L(A,B)
is constant and thereby independent of the value of p.

Remark 9 (Relaxing the assumptions). The proposed loss

is still applicable for LAEs with multiple hidden layers

because, owing to linearity, any multilayer LAE may be

reduced via matrix multiplication to a network with one

hidden layer (that layer being no wider than the narrowest

of the original hidden layers). The only modification being

that the analytical form of the gradients should be evalu-

ated for each layer separately via the procedure underlying

Propositions 1 and 2.

The second and third conditions in Assumption 1 can be

relaxed by requiring only Σxx to be full rank. The output

data may have a different dimension than the input. That is

Y ∈ R
n×m and X ∈ R

n′×m, where n 6= n′. The reason

is that the given loss function is very similar to MSE loss

structurally and can be represented as a Frobenius norm on

the space of n × m matrices. In this case the covariance

matrix Σ := ΣyxΣ
−1
xxΣxy is still n× n. Clearly, for under-

constrained systems, with n < n′, the full rank assumption

of Σ is still feasible. For the over-determined case, where

n′ > n, the second and third conditions in Assumption 1

can be relaxed: we only require Σxx to be full rank since

this is the only matrix that is inverted in the theorems. Note

that if p > min(n′, n) then ΛIp
: the p× p diagonal matrix

of eigenvalues of Σ for a p-index-set Ip inevitably has some

zeros. If it has rank r, then r < p, which in turn results in

the decoder A having rank r. However, Theorem 2 holds

for decoders of any rank r ≤ p. Finally then, following

Theorem 1, the first r columns of the decoder A converge

to ordered eigenvectors of Σ while the p − r remaining

columns span the kernel space of Σ.

Finally, Σ need not have distinct eigenvectors. In such cases

∆Ir
becomes a block diagonal matrix, where the blocks

correspond to identical eigenvalues and the corresponding

eigenvectors in A∗ are not unique but they span the respec-

tive eigenspace.

4. Experiments

Comparison of the Two Losses We will verify the loss

function L(A,B) defined in eq. (1) by setting the input

matrix X ∈ R
n×m equal to the output matrix Y ∈ R

n×m

(Y = X), where the linear autodecoder (LAE) becomes a

solution to PCA. In order for comparison, we train another

LAE using the MSE loss L̃(Ã, B̃) defined as

L̃(Ã, B̃) =
∥

∥

∥
Y − ÃB̃X

∥

∥

∥

2

F
,

where Y = X is also applied.

The weights of networks are initialized to random numbers

with a small enough standard deviation (10−7 in our case).
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Second, using the loss L results in finding more correct

principal directions, with RatioTP continuously rising;

and ultimately affords all correct and ordered principal di-

rections, with RatioTP ending with 100%. Notice that

occasionally and temporarily, some principal direction is

found but not at their correct position, which is indicated

by the small fluctuations of RatioFP in the plot. However,

as optimization continues, they are shifted back to the right

column, which results in RatioFP going back to zero, and

RatioTP reaching one. As for L̃, we see that it fails to

identify any principal direction correctly; both RatioTP

and RatioFP for L̃ stay at 0, which indicates that none

of the columns of the decoder Ã, aligns with any principal

direction.

Third, as shown in the figure, while the optimizer finds

almost all the principal directions rather quickly, it requires

much more iterations to find some final ones. This is because

some eigenvalues in the empirical covariance matrix of

the finite 2000 samples become very close (the difference

becomes less than 1). Therefore, the loss has to get very

close to the optimal loss, making the gradient of the loss

hard to distinguish between the two.

Real Data Experiments On the MNIST dataset, we set

the number of principal components (PCs) as 100, i.e., the

dimension is to be reduced from 784 to 100. We also show

reconstruction with the first 10 columns of the decoder that

results from optimization of the respective losses. The re-

sults are depicted in Fig. 3: comparing (c) and (f), it is clear

that the reconstruction performance of L is consistently

better than L̃.

The reason for this superiority in reconstruction is that op-

timization with L results in decoder weights converging to

the ordered eigenvectors of the sample covariance matrix.

Hence, the most significant 10 columns are simply the first

10 columns of the decoder matrix. For MSE loss, L̃, we

again use the first 10 columns of the decoder. However, in

this case, there is no way to determine which columns are

more significant than others as none of them necessarily

represent the exact eigenvectors, they merely span the prin-

cipal eigenspace collectively. This experiment gives visual

confirmation that L̃ does not identify PCs, while applying

L performs PCA directly.

5. Conclusion

This paper introduces and analyzes a new loss function. We

have proved that all local minima are global minima and that

optimizing the given loss L results in a decoder matrix that

converges to the exact ordered unnormalized eigenvectors of

the sample covariance matrix. Given that the set of critical

points of L was shown to be a subset of the critical points of

the standard MSE loss, much prior work on loss surfaces of

(a) Original (b) Full decoder
with loss L

(c) 10 columns
with loss L

(d) Original (e) Full decoder
with loss L̃

(f) 10 columns
with loss L̃

Figure 3: Experimental comparison of reconstruction perfor-

mance using real data from MNIST images. First column:

original image. Second column: reconstructed image using

all the decoder’s columns. Third column: reconstructed

image using the first 10 columns. Top row: using L. Bottom

row: using L̃. For loss L, the first 10 columns of the de-

coder matrix are the most significant. For MSE loss, L̃, the

columns do not represent principal directions and the matrix

does not have them ordered in any way. The reconstruction

in (c) is far superior to the one in (f).

more complex networks likely extends as well. In light of

the removal of undesirable global minima through L, exam-

ining more complex networks is certainly a very promising

direction. For practitioners, the new loss function is valuable

for low-rank approximation problems, for instance in per-

forming principal component analysis and linear regression

with linear autoencoders. There are several other possible

generalizations of this approach we are currently working

on. Informed by our experimental results on synthetic data,

one promising thread is to improve the performance when

the corresponding eigenvalues of two principal directions

are very close and another is generalization of the loss for

tensor decomposition.
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