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Abstract— Scores of papers show, given some robots, how to
improve the useful work they perform. Continuing this line,
we consider the efficiency of robot experiments by examining
the feasibility of conducting several experiments simultaneously,
interleaving execution and sharing resources between them.
This paper lays theoretical groundwork for that concept and
demonstrates its feasibility and utility.

I. INTRODUCTION

Demonstrations of capabilities or claims on robot hard-
ware are more persuasive than the same in pure simula-
tion. But robot hardware is burdensome: it is expensive
to build or purchase; considerable time must be expended
in maintenance, repair, and also operation. Multiple robot
systems are only more so. Thankfully, the community has
learned to amortize some of these costs through re-use and
sharing: designs, schematics, and configurations for several
platforms have been released and made available so that oth-
ers may benefit [1–5]. Increasingly, we see not only hardware
platforms, but broader test-beds [6–12]. Several existing
robot test-beds directly facilitate experiments, culminating in
shared, remotely-accessible scientific infrastructure [13, 14].
But we ask: to extract greater use from such resources, can
re-use and sharing go further still, be finer-grained and more
dynamic?

Decades of computer systems research and technology
development have shown how to boost the availability,
utilization, and effectiveness of computing devices through
multiprogramming, multitasking, and multiprocessing (via
multithreading and multicore architectures). Notwithstanding
that some later instances grew out of earlier ones, this
multitude of multis can all be understood as being flexible
in how resources are employed. We contend that a similar
approach might be used for robots, with the ultimate aim
of improving availability, utilization, and effectiveness of
robot hardware. In this paper we are specifically interested
in common, general, re-usable robot infrastructure designed
to conduct robot hardware experiments [13]. For already ex-
isting infrastructure, to maximize their benefit, idle portions
may well be put to productive use. The idea explored in this
paper, and illustrated in Figure 1, is to leverage hardware

R. A. Moan is with the Department of Computer Science, Winthrop
University, Rock Hill, South Carolina, USA. D. A. Shell is with the
Department of Computer Science and Engineering, Texas A&M University,
College Station, Texas, USA. J. M. O’Kane is with the Department
of Computer Science and Engineering, University of South Carolina,
Columbia, South Carolina, USA. moanr2@mailbox.winthrop.edu;
dshell@tamu.edu; jokane@cse.sc.edu

This work was supported by the NSF through awards IIS-1453652, IIS-
1659514, IIS-1849249, and IIS-1849291.

Fig. 1. Robot test-beds currently only time multiplex at a coarse-grained
level. For example, to use the Georgia Tech Robotarium for multiple
experiments, one schedules them one after another, as illustrated by three
arenas. This paper shows that it is feasible to overlap several simultaneous
experiments. (One larger, hypothetical, Robotarium allows multiple experi-
ments to proceed in parallel.) The upshot is that tasks previously believed to
be inherently sequential, such as tuning parameters/gains, may be effectively
speeded up.

resources more effectively by intermingling the execution of
more than one robot experiment on the same test-bed.

The question of what constitutes the essence of a valid
robot experiment is a complex, interesting, and even philo-
sophical one. For the present paper the core consideration
is how, without losing that essence, to provide an opening
for the flexible apportioning of resources. We provide an
answer: experiments produce a stream of sensor readings
contingent on states visited and influenced via selection of
actions by robots, such selections being made in light of
earlier sensor readings. This point of view, where sensing
may be manipulated up the perceptual limits of the agents,
has been suggested before in robotics (see [15, 16]), and
is now widely employed in biology (see the entire special-
issue in [17]). Formalizing this sensing-oriented point of
view provides the scaffold over which we build a conception
of multi-experiments. Beyond the degrees-of-freedom of the
robots in the test-bed itself, this context identifies specific
additional freedoms which can be used to optimize execution
of collections of experiments: freedom to warp time, freedom
to distort robot identity.

But how this might bear fruit, concretely? Suppose a
roboticist has developed some control software for their
favorite mobile robot, say, a controller based on artificial
potential fields [18]. This controller has several parameters
which manipulate gains and weight various competing fac-
tors. Usually these are understood to be empirical parameters,
items tuned by running the robot and making adjustments
interactively. When some criterion can be provided (such as
straightness of travel subject to exemption from collisions)
then the time to arrive at a set of suitable parameters depends
on completing sufficient runs across the ranges of parameters.
If multiple runs can occur in quick succession, or even
simultaneously, then overall productivity will be increased.
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This is precisely what multi-experiments enable.
The contribution of this paper is to lay a foundation for

understanding this notion of multi-experiments, including
introducing some fundamental definitions (§ II), establishing
conditions on when multi-experiments may be achieved
(§ III), examining differences from standard notions of multi-
processing (§ IV), and demonstrating a simple but practical
multi-experiment (§ V).

II. DEFINITIONS

This section introduces the basic definitions from which
the subsequent analysis proceeds, starting with this definition
of a(n idealized) system in which multiple robots operate.

Definition 1. A deterministic multi-robot transition sys-
tem [16] is a 8-tuple (n,X,U, f, d, Y, h, x0), in which

1) n is a positive integer identifying the number of robots,
2) X = X(1)×· · ·×X(n) denotes a state space, composed

of individual state spaces for each robot,
3) U = U (1) × · · · × U (n) denotes an action space,

composed of individual action spaces for each robot,
4) f : X ×U → X is a state transition function, defined

in terms of transition functions f (1), . . . , f (n) for each
robot, so that
f
(︁
(x(1), . . . , x(n)), (u(1), . . . , u(n))

)︁
=

(︁
f (1)(x, u(1)), . . . , f (n)(x, u(n))

)︁
,

5) d : X × U → [0,∞) is a transition duration func-
tion, indicating the amount of time that elapses when
executing each action from each state,

6) Y = Y (1) × · · · × Y (n) denotes an observation space,
composed of individual observation spaces,

7) h : X → Y is an observation function, defined in
terms of observation functions h(1), . . . , h(n) for each
robot, so that h (x) =

(︁
h(1)(x), . . . , h(n)(x)

)︁
,

8) x0 ∈ X is the system’s initial state.

The execution of such a system proceeds in discrete stages,
indexed k = 1, 2, . . ., through a sequence of states x0, x1, . . .,
influenced by the actions u0, u1, . . . selected by each robot.
Actions and states are related by the state transition equation
xk+1 = f(xk, uk). At each stage, the robots’ sensors provide
observations, determined by the state, so that yk = h(xk).
We allow the duration of the stages to be non-uniform via
the transition duration function d. Writing tk for the time at
the conclusion of action uk, the times obey the recurrence
tk+1 = tk + d(xk, uk) with initial condition t0 = 0.

Example 1. A straightforward example, first introduced
in a prior paper [16], illustrates the concept. See Fig. 2.
Suppose n robots move along a single-lane road. Each
robot ri controls its own speed, within an allowable range
[vmin, vmax]. Sensors enable each robot to detect the distance
to its immediate neighbors both ahead and behind. This
scenario is readily modeled as a deterministic multi-robot
transition system

Sn,vmin,vmax= (n,Rn, [vmin, vmax]
n, f, d,R+× R+, h, x0),

in which each state x ∈ Rn represents the position along
the road of each of the robots, actions represent each robot’s

Fig. 2. An illustration of Example 1 for n = 5.

chosen velocity at a given time step, and each observation
encodes the distance to the nearest robot behind and ahead.
We refer the reader to the original paper [16] for more detail.

Example 2. We note concisely here that public-facing robot
multi-robot test-beds such as the Georgia Tech Robotar-
ium [13] can be modeled as deterministic multi-robot transi-
tion systems, using the appropriate models of transitions and
observations. We used this platform to conduct a number of
proof-of-concept executions of the strategies described in this
paper —see Figure 3— and utilized a simulator mimicking
it to obtain the quantitative results that appear below.

A. (Multi-)illusions

Our primary interest is in the ability of one deterministic
multi-robot transition system to present, to some of its
robots, the appearance of operating within another system.
Particularly relevant is the case in which such illusions are
maintained for multiple systems within the same host. The
next definition formalizes this idea, generalizing an earlier
formulation [16] for single systems.

Definition 2. For some finite set of deterministic multi-robot
transition systems S = S1, . . . , Sd where for each 1 ≤ j ≤ d,
Sj = (nj , Xj , Uj , fj , Yj , hj , x0j ) and ˆ︁S = (ˆ︁n, ˆ︁X, ˆ︁U, ˆ︁f,ˆ︁Y , ˆ︁h, ˆ︁x0) and a positive integer mj , we say that ˆ︁S presents
a multi-illusion for S if there exist

(i) robot policies ˆ︁π(1), . . . , ˆ︁π(ˆ︁n) in ˆ︁S,
(ii) a strictly increasing function zj : Z+ → Z+, and

(iii) an infinite series of functions ρjk : Zmj
→ Zˆ︁n

for any robot policies π
(1)
j , . . . , π

(nj)
j in each Sj , such that

for all k ≥ 0 and all 1 ≤ i ≤ mj , we have

h
(i)
j (xjk) =

ˆ︁h(ρjk(i))
(︁ˆ︁xzj(k)

)︁
. (⋆)

We refer to the specific choices of policies and functions
satisfying this constraint as a realization of the illusion.

Here each of the robots’ policies ˆ︁π(1), . . . , ˆ︁π(ˆ︁n) in ˆ︁S is a
function mapping from information available to that robot

Fig. 3. A collection of 15 robots conspiring to present 2 simultaneous
independent illusions, each of a robot moving through an infinite field of
obstacles. The illusioned robots are circled.



Fig. 4. An illustration of Example 3. A hatted system of 5 vehicles
reproduces the expected observations from two separate 3-vehicle systems.

—namely, its own action-observation history in ˆ︁S along with
the complete state history in each of the systems in S— to
the action that robot should execute.

As already mentioned, what exactly constitutes an experi-
ment is not easy to say. We grant that the notion of presenting
an appearance as just formalized retains, operationally, many
of the aspects which underlie a robot demonstration. Where
the intention is to learn some fact or validate/establish
some property, we will be happy to consider experiments
as demonstrations up to illusion. And, henceforth, multi-
experiments via multi-illusions.

Example 3. Recall the caravan systems from Example 1.
For any two such systems S1 = S3,vmin1

,vmax1
and S2 =

S3,vmin2
,vmax2

, we can form a multi-illusion of the two
systems, with m1 = m2 = 1, within a host system of the
form ˆ︁S = S5,ˆ︁vmin,ˆ︁vmax

.
One way to construct this illusion is to select policies ˆ︁π in

which robot 1 moves at a constant speed (ˆ︁vmin + ˆ︁vmax)/2.
Robots 2 and 3, knowing the desired observation y

(1)
1k

=

(a
(1)
1k

, b
(1)
1k

) from S1, position themselves on opposite sides of
robot 1, moving as fast as possible at each stage in ˆ︁S toward
positions where ˆ︁x(1)

k − ˆ︁x(2)
k = b

(1)
1k

and ˆ︁x(3)
k − ˆ︁x(1)

k = a
(1)
1k

.
Then robots 4 and 5, knowing the desired observation y

(1)
2k

=

(a
(1)
2k

, b
(1)
2k

) from S2, position themselves to the right of robot
3 such that ˆ︁x(4)

k − ˆ︁x(3)
k = b

(1)
2k

and ˆ︁x(5)
k − ˆ︁x(4)

k = a
(1)
2k

. To
satisfy the remaining conditions of Definition 2, we define z1
to return the time when robots 2 and 3 in ˆ︁S have reached their
target positions. Similarly, z2 returns the time when robots
4 and 5 in ˆ︁S have reached their target positions. Figure 4
illustrates the construction, which can, of course, also be
generalized to present a multi-illusion of any number d of
S3,·,· systems within ˆ︁S = S2d+1,vmin,vmin

.

Notice that Definition 2 allows sufficient freedom that, for
a given ˆ︁S capable of presenting an illusion of S for certain
m1, . . . ,md, there may be variety of distinct realizations
of that illusion, differing in the ˆ︁π(i) policies, scheduling
functions zj , and role functions ρjk .

Example 4. Significant differences in the realization of a
multi-illusion may be realized even in the basic case in
which d = 1. For example, prior results [16, Example 5]
demonstrated that a Robotarium-like system can present a
illusion of a mobile robot traversing an arbitrarily large field
of disc-shaped obstacles, by holding the recipient robot fixed
at the center of the workspace and positioning the other
robots at appropriate locations relative to that center, based
on the locations of obstacles visible to the recipient robot.

Fig. 5. Progress over time of the two illusions described in Example 4
for identical polices executed in S. Each mark indicates that the system
being illusioned has been evolved forward by a step. Smart Fixed refers
to the original illusion in which the recipient robot stays in the center.
Smart Mobile refers to the new approach in which the recipient robot moves
normally, except for occasional resets to the center. The two data series show
the image of the corresponding z functions. That is, each plotted point
denotes a stage in ˆ︁S during which S makes a stage of forward progress.

But that same effect might also be achieved by holding
the robots playing the role of obstacles fixed in place, and
allowing the recipient robot to move normally. Upon nearing
the boundary of the available workspace, the illusion can
‘reset’ to the center, utilizing a suitable z function to halt the
execution until the shift back to center is complete. Figure 5
depicts the relative progress of these two illusions as time
proceeds.

B. Illusion latency and speedup

A primary question for the applicability of multi-illusions
is to understand how efficiently, in terms of time elapsed,
the system ˆ︁S can progress through the executions of each
of the S1, . . . , Sd systems. To that end, we draw inspiration
from the computer systems community to define concepts of
latency and speedup, tailored for the present setting.

Definition 3. If ˆ︁S is a multi-illusion for S1, S2, . . . , Sd. Then
each Sj has latency at a stage-concluding time ˆ︁tˆ︁k defined
as

Lj(ˆ︁tˆ︁k) = ˆ︁tˆ︁k
tk
, (1)

with k = max{κ ∈ Z+ | zj(κ) ≤ ˆ︁k}, should such a k exist.
We may compare two illusions via the notion of speedup.

Definition 4. Given systems ˆ︁S and ˆ︁S′ providing illusions for
S1, . . . , Sd, the system ˆ︁S′ exhibits speedup over ˆ︁S as

S = lim
t→∞

max
j=1,...,d

Lj(t)

max
i=1,...,d

L′
i(t)

, (2)

where Lj and L′
i denote latencies for ˆ︁S and ˆ︁S′, respectively.

Example 5. Recall from Example 4 the different realizations
for the illusion of a robot within a large field of disc-
shaped obstacles, realized with a host system with a finite
workspace. Figure 6 plots the latency of two variations of
each of two realizations, varying the number ˆ︁n of robots inˆ︁S. The results are averaged across 15 trials for each, with
the motions in S varying randomly across the trials. The
figure also shows the speedup in latency of these approaches
compared to the original illusion from our prior work [16].

The ensuing sections establish some conditions on the ex-
istence of multi-illusions and characterize their performance
under those conditions.



Fig. 6. [top] Latency comparison for four realizations of an illusion in the
Robotarium. Smart Fixed and Smart Mobile are the same as in Figure 5.
The non-Smart versions use a more naı̈ve method to plan motions for the
complicit robots. [bottom] Speedup for the same scenario, computed relative
to the Fixed realization.

III. SUFFICIENT CONDITIONS FOR MULTI-ILLUSIONS

This section explores of the possibilities for multi-illusions
by examining conditions under which pairs of individual
illusions can be combined into a single multi-illusion. Those
conditions will depend on a certain type of equivalence
relation on the states, defined next.

Definition 5. For a given deterministic multi-robot transition
system (n,X,U, f, d, Y, h, x0) and equivalence relation on
observations ≑⊆ Y ×Y , a relation on its states ∼⊆ X×X
is an observation-simulation relation if ∼ is an equivalence
relation, and for any x1, x2 ∈ X for which x1 ∼ x2, we
have

1) h(x1) ≑ h(x2), and
2) ∀u1 ∈ U,∃u2 ∈ U such that f(x1, u1) ∼ f(x2, u2).

When the observation equivalence ≑ is taken as equality,
an observation-simulation equivalence relation has much of
the character of a bisimulation relation [19]. Definition 5
generalizes the bisimulation notion, which would have u2 =
u1 in the second condition.

Notice that, given an observation-simulation ∼a using ≑a

on Y , if ≑a is a finer relation on observations than ≑b, then
∼a is an observation-simulation using ≑b as well.

Definition 6. For a given deterministic multi-robot transition
system (n,X,U, f, d, Y, h, x0), an observation-simulation re-
lation ∼ ⊆ X × X , the quotient graph is a directed graph
whose vertex set is the set of equivalence classes of ∼. Each
such class can be represented by an arbitrary representative:
[x] := {x′ ∈ X | x ∼ x′}. Between any two vertices [x1]
and [x2], an edge [x1] → [x2] exists if and only if there exists
some action u ∈ U for which [x2] = [f(x1, u)].

Note that the quotient graph may not necessarily be a finite

Fig. 7. Execution progress of two single Smart Mobile illusions executed
in two separate simulated Robotaria, compared against progress of the time-
sliced multi-illusion as constructed for Theorem 1.

graph (if the state space X is infinite) nor even locally finite
(if the action space U is infinite).

Example 6. Referring again to Example 1, consider the
system Sn,vmin,vmax

. Take ≑ to be the identity relation and
define ∼ such that for any pair of states x1 and x2 we
have x1 ∼ x2 if and only if h(x1) = h(x2), which occurs
precisely when the inter-vehicle spacing is identical between
the two states, regardless of those states’ absolute positions
along the roadway. Notice that the construction does indeed
produce an observation-simulation relation. Moreover, the
quotient graph in this case is strongly connected, since the
robots can, in some finite series of stages, adjust positions
relative to each other arbitrarily. Note in particular that this
remains true even if vmin > 0 — because ∼ ensures that
only the relative positions of the robots are relevant, paths
exist between any pair of equivalence classes, without the
need for any robot to move backward in absolute position.

A. Time-sliced multi-illusions

We can now use the idea of the quotient graph to give
conditions under which a sort of ‘time slicing’ illusion can
be guaranteed to exist.

Theorem 1. Let S1, S2, and ˆ︁S denote three systems, and
suppose there exist illusions of S1 by ˆ︁S and of S2 by ˆ︁S.
If there exists an observation-simulation relation for ˆ︁S for
which the quotient graph is strongly connected, then there
exists a multi-illusion of both S1 and S2 by ˆ︁S.

Proof roadmap: Under the presumed conditions, por-
tions of the execution of the individual illusions for S1 and
S2 may be interleaved. Let τ ∈ Z+ denote an arbitrary
positive time slice, to be interpreted as a number of stages
elapsed in ˆ︁S. We can construct a realization of the multi-
illusion for both S1 and S2 that cycles through four phases:
(1) an execution of the illusion for S1 for τ stages, (2) an
interregnum of actions that transition to a state suitable to
begin or continue the S2 illusion, (3) an execution of the
illusion for S2 for τ stages, and (4) an interregnum of actions
that transition to a state suitable to continue the S1 illusion.
The key observation is that the strong connectedness of the
quotient graph ensures action sequences always exist that can
achieve phases (2) and (4).

Example 7. Figure 7 shows a progress plot for an example
in which the construction for Theorem 1 is utilized to time
share two of the sorts of illusions introduced in Example 4
within a single simulated Robotarium.



Corollary 1. Under the same premises as Theorem 1,
suppose the construction in its proof is used to provide a
multi-illusion for S = {S1, S2} by ˆ︁S. For j ∈ {1, 2}, let
LS
j (ˆ︁tˆ︁k) denote the latency for Sj in this combined illusion.

Then

LS
j (ˆ︁tˆ︁k) ≤ ˆ︁tˆ︁kˆ︁tβ(ˆ︁k)Lj

(︂ˆ︁tβ(ˆ︁k))︂
in which β(ˆ︁k) = τ

⌊︂ ˆ︁k
2(τ+diam(G))

⌋︂
.

Proof roadmap: Observe that after ˆ︁k stages, the number
complete cycles of the four phases of the constructed illusion
is at least ⌊ˆ︁k/(2(τ + diam(G))⌋, since each instance of
phases (1) or (3) consumes precisely τ stages, and each
instance of phases (2) or (4) consumes at most diam(G)
stages. The illusion for Sj executes for τ stages in each of
these cycles, amounting to τ

⌊︂ˆ︁k/(2(τ + diam(G))
⌋︂

stages

in total for Sj . Let km
j = max{κ ∈ Z+ | zSj

j (κ) ≤ β(ˆ︁k)}
and observe that

LS
j (ˆ︁tˆ︁k) = ˆ︁tˆ︁k

tkS
j

≤
ˆ︁tˆ︁k
tkm

j

=
ˆ︁tˆ︁kˆ︁tβ(ˆ︁k)Lj

(︂ˆ︁tβ(ˆ︁k))︂ ,

applying Definition 3 in the final step to complete the proof.

B. Leveraging role reassignments

Moving now beyond mere time slicing, note that in
Definition 2, for the (⋆) equation corresponding to system
Sj , the ith element may be re-mapped (via the ρj function)
to be some arbitrary element observed in ˆ︁S. Since there
is no requirement that ρj be injective, duplicate values
are entirely superfluous. Thus, though prior discussion of
specific cases, as in Example 6, has been for an observation-
simulation relation ∼ using ≑ as equality on elements of Y ,
equality is stronger than is strictly necessary for illusions.
This motivates the following function, π, which repackages
data from an n-vector into a set:(︂

y(1), . . . , y(n)
)︂

∈

Y (1) × · · · × Y (n)

π↦−→
{︂
y(1), . . . , y(n)

}︂

⊆⋃︁
i

Y (i)

.

And, hence, let equivalence relation S= ⊆ Y × Y be defined
as y′ S=y if and only if π(y′) = π(y).

Using S= on Y for some deterministic multi-robot tran-
sition system (n,X,U, f, d, Y, h, x0), if we are given some
observation-simulation equivalence relation S∼, we can con-
struct the quotient graph G

S∼. (In this case we may think
of the vertices of the graph as labelled by sets.) Theorem 1
holds for S∼, but observe that the time-slicing used in the
construction as part of the proof argument only modifies the
zj functions; essentially it is purely a strict interleaving the
illusions for S1 and S2. Under S∼, one might do better: rather
than reaching a state x ∈ [x]∼ where the ρj for the multi-
illusion is identical with the original illusion for Sj , instead
one reaches x′ ∈ [x]

S∼ and uses ρ′j constructed to map to
some robot producing the required observation (different x′

will have different ρ′j).
Further, because the identity relation is finer than S=, i.e.,

idY ⊆ S=, every observation-simulation relation ∼ via the

Fig. 8. A multi-illusion of two systems executing simultaneously in a
single host. The cyan-marked robot represents a sort as shared resource as
it plays different roles at the same in both illusions.

former, is one for S= too. We would expect there to be ad-
ditional observation-simulation relations S∼ for S=, generally.
(This needn’t be so always, however, e.g., if every Y (i) and
Y (j), with i ̸= j are disjoint.) When some S∼ ⊃∼ this
has practical advantages because the multi-illusion can do
less work transitioning on the graph (for interregnum steps)
because the set of acceptable targets has grown. The added
flexibility to give more efficient illusions manifests in the
bounds on latency because, one might expect generally that
diam(G

S∼) ≪ diam(G).

C. Multi-illusions via lim sup

To give a different, tighter characterization for sufficiency
than the preceding, two additional definitions are needed.

Definition 7. Given a multi-robot transition system S =
(n,X,U, f, d, Y, h, x0), the observation footprint of S is

F (S) =
⋃︂

π(1),...,π(n)⏞ ⏟⏟ ⏞
All policies

⋃︂
k≥0

{︁
π(h(xk))

}︁
.

Intuitively, the observation footprint is a collection all the
sets of observations that might be seen by the system at any
particular point in time.

Definition 8. A walk on graph G = (V,E) starting at [x0] ∈
V is a function w : Z+ → V , with w(0) = [x0] and such
that, for n ≥ 1, there is an edge ([xn−1] → [xn]) in E.

Now, denoting the powerset by P(·), we state the theorem.

Theorem 2. There exists a multi-illusion for S =
S1, . . . , Sd, on ˆ︁S, if there exists an observation-simulation
relation for ˆ︁S, which induces a quotient graph G, and some
walk w on G exists such that⋃︂

j=1...d

F (Sj) ⊆ lim sup
n→∞

P(π(w(n))).

Proof roadmap: Given such a walk w, one can ensure
progress is made in any of the d systems. In Si, any set
of observations you wish to concoct appears in F (Si). The
condition, thus, ensures that, at any point in time, a set
containing it will appear in finite time. Constructing the
illusion requires choosing zi so it progresses when such a
set appears, and having ρi unpack the subset of observations
needed and dispatching them to the intended recipients.



Fig. 9. Progress chart for each of the 10 trials in the parameter tuning
experiment, executed in pairs across 5 runs of the host system.

IV. SEEMINGLY PARADOXICAL SPEED-UP

Our investigation of concepts like latency and speedup
has been inspired by the longstanding application of those
concepts to understand computational processes. Though
much has followed by close analogy to existing conceptions,
in other ways the present setting holds some surprises. For
example, in some purely computational contexts, there are
theoretical limits on the speedup that may be obtained.

Example 8. Suppose we want to execute d copies of a
system S, i.e., S = S0, S0, . . . , S0 = Sd

0 , within test-
bed ˆ︁S. It is tempting to define a multi-illusion in which
these copies are executed sequentially. But ˆ︁S can illusion all
of S in a single swoop by bookkeeping; each requirement
in Definition 2 is satisfied d times by mere copying. The
speedup between between the two multi-illusions is S = d.
Thus, by selecting a large d, we can obtain arbitrarily large
speedup.

Since Example 8 has the appearance of chicanery (and
seems perhaps to connote some definitional flaw) it is worth
examining what, precisely, accounts for this windfall. In
essence, the observations obtained by robots in ˆ︁S may be
used productively for any system(s) Si that make progress
after seeing a subset of those observations. Further, because
there is indirection between state configurations and obser-
vations, a single robot in ˆ︁S may simultaneously service
multiple illusions. Indeed, we witness this in practice, as
noted below.

V. CASE STUDY: PARAMETER OPTIMIZATION

To bring our analysis full circle back to the promise
of efficient experimentation in multi-robot test-beds, this
section describes a simple example realization of that idea.
To maintain focus on the novel aspects of the setting, let
us consider the straightforward and well-understood task
of optimizing a parameter in an artificial potential field
controller.

Recall that this sort of controller uses parameters η and ζ
to weight the forces pushing the robot away from obstacles
and toward the goal, respectively. One may desire to conduct

Fig. 10. Results for the parameter optimization experiment, computed via
parallel multi-illusions.

an experiment to determine the best values for η and ζ to
balance these forces and to achieve the fastest travel time
to a goal. In such a scenario, we might hold the sum η + ζ
fixed, and conduct a series of trials, varying ζ and measuring
the robot’s travel time for each trial.

We conducted this experiment via multi-illusion in a sim-
ulated Robotarium. The specific form of the multi-illusion
divides the workspace into left and right halves, and executes
a distinct trial on each side. However, the two sides are
sufficiently close together that some robots representing
obstacles sometimes play different roles at the same time
in both ongoing trials. Figure 8 shows an example: Two
illusioned robots (#1 highlighted in green, #2 highlighted in
purple) are observing what they believe to be an obstacle, as
concocted by robot #4 (in the cyan square) for both of them
simultaneously. This resource sharing enables the illusions
to proceed more rapidly than might have been expected.
Figure 9 shows the overall progress of the process for an
experiment with 10 trials, executed in simultaneous pairs. Of
particular interest there is the high density of simultaneous
execution. We also conducted a larger scale version of
this experiment, using more finely-grained selection of ζ
values and conducting 10 trials for each value to account
for randomness in obstacle placement. Figure 10 shows the
results, in which potential field controller parameter ζ = 12.5
gave the best performance.

VI. CONCLUSION

Identifying the concept multi-experiments as a topic of
study, this paper lays the initial foundations on which further
development should build. It provides definitions and condi-
tions for the existence of multiplexing, as well as results
of a more quantitative nature in the form of performance
bounds. Further, the paper has presented demonstrations
of the feasibility of the concept in practice. Though the
implemented examples are simple, they already showcase
the utility of the approach, for instance, in parameter tuning.
Perhaps most significant is that different multi-illusions can
be seen to have vastly different performance characteristics.
Further work would need to explore these aspects more
completely, potentially offering tighter bounds on the basis of
opportunities for optimization, and expand the theory beyond
the basic deterministic model.
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