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Abstract— Given a two-dimensional polygonal space, the
multi-robot visibility-based pursuit-evasion problem tasks sev-
eral pursuer robots with the goal of establishing visibility with
an arbitrarily fast evader. The best known complete algorithm
for this problem takes time doubly exponential in the number
of robots. However, sampling-based techniques have shown
promise in generating feasible solutions in these scenarios. One
of the primary drawbacks to employing existing sampling-based
methods is that existing algorithms have long execution times
and high failure rates for complex environments. This paper
addresses that limitation by proposing a new algorithm that
takes an environment as its input and returns a joint motion
strategy which ensures that the evader is captured by one of
the pursuers. Starting with a single pursuer, we sequentially
construct Sample-Generated Pursuit-Evasion Graphs to create
such a joint motion strategy. This sequential graph structure en-
sures that our algorithm will always terminate with a solution,
regardless of the complexity of the environment. We describe
an implementation of this algorithm and present quantitative
results that show significant improvement in comparison to the
existing algorithm.

I. INTRODUCTION

Autonomous reconnaissance tasks, in which robots strive
to observe salient features of objects or agents within their
environments, remain one of the most active threads of
research within the robotics community. Such tasks have
wide-ranging application domains such as environmental
monitoring [5], [6], [15], [39], [40], surveillance [1], [2], [4],
[7], and search-and-rescue [13], [24], [33]. Many of these
tasks can be framed as two-player games played amongst
opposing teams: evaders (who wish to evade capture) and
pursuers (who seek to capture them). This paper is concerned
with a specific form of this two-player game, wherein a team
of pursuers must locate an evader (or group of evaders) in a
polygonal environment.

Specifically, we address one such problem where a group
of pursuers, each equipped with an omni-directional sensor
that extends to the polygonal boundary, must form a motion
plan to locate an arbitrarily fast evader in a polygonal
environment. Figure 1 illustrates this scenario. The literature
has a number of results for this problem in the single-pursuer
case, including algorithms with strong guarantees such as
completeness [11] and path length optimality [37]. However,
the case in which multiple pursuers cooperate is not nearly as
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Fig. 1: An example multi-pursuer solution strategy generated by the pro-
posed algorithm. The filled circle represent the initial location of the pursuer,
while the hollow circles represent its final location.

well understood. A complete algorithm is known, but it runs
in time doubly-exponential in the number of pursuers [34].

One approach to overcome the computational challenge
posed by this multiple-pursuer pursuit-evasion planning
task [35], showed the feasibility of sampling-based tech-
niques to generate joint motion strategies. Nevertheless, that
approach has several important limitations.

(i) The existing algorithm lacks insight into how the sam-
pling should be performed, and treats the sampling
distribution as a “black box.”

(ii) The existing algorithm requires a predetermined number
of pursuers as input; it cannot adapt the number of
pursuers to the complexity of the environment.

(iii) The solutions generated by this approach are of poor
quality, in the sense that there nearly always are motions
by one or more of the pursuers that do not actively
contribute to the search.

After a review of related work (Section II), precise statement
of the problem (Section III), and a summary of important
concepts from prior work on this problem (Section IV),
this paper makes three new contributions that address the
limitations of the existing algorithm.

(i) We introduce a new sampling strategy, tailored to the
visibility-based nature of the problem (Section V-A).

(ii) We describe a method that eliminates the need for the
number of pursuers to be provided as input, instead
iteratively increasing the size of the team (Section V-B).

(iii) We present a post-processing algorithm that improves
solution quality (Section V-C).

Finally, Section VI presents quantitative evaluations of these
new improvements and Section VII previews future work.



II. RELATED WORK

This research blends ideas from two vibrant threads of
prior robotics research: visibility-based pursuit-evasion and
sampling-based motion planning in high dimensional spaces.

In regard to pursuit-evasion, this work is most closely
aligned with the problem first introduced by Suzuki and
Yamashita [38], in which an evader operating in a geometric
environment seeks to locate an unpredictable evader capable
of moving arbitrarily quickly. This work was later expanded
by Guibas, Latombe, LaValle, Lin, and Motwani [11] who
provide a complete algorithm for the single pursuer scenario
in simply-connected environments for a pursuer with an
omnidirectional field-of-view. Park, Lee, and Chwa [25]
identified necessary and sufficient conditions for a search
to be feasible for a single pursuer.

Other results for the single pursuer scenario that build
upon this foundation provide results such as complete-
ness [11], optimality [37], establishing and maintaining
visibility of a moving agent [29], [30] or consider more
restrictive scenarios with respect to pursuer parameters such
as sensing, actuation and speed [9], [26]–[28], [36], [41].

The community has placed increased emphasis on the
study of richer scenarios where a team of pursuers cooperate
during the search [8], [10], [14], [16], [19], [20], [35].
Stiffler and O’Kane [34] present an algorithm utilizing a
cylindrical algebraic decomposition that, while complete,
relies upon constructing a graph whose size is doubly ex-
ponential in the complexity of the environment. That work
subsequently served as motivation for approaches that utilize
heuristics [35] that seek to overcome the problem complexity
by utilizing sampling techniques.

More generally, sampling based techniques have been
employed in a number of planning contexts where computing
an exact solution proves computationally intractable such as
motion planning [17], [18], [22], [23], [32] and manipulation
planning [12], [21], [31]. One caveat of sampling-based
methods is that they quite often suffer from the curse of
dimensionality [3] whereby, as the number of dimensions
increases, the search space becomes so vast that the number
of samples required for adequate coverage of the space
increases dramatically. A number of different approaches
have been proposed to combat this problem. One recent result
draws samples in lower-dimensional subspaces to search
for a feasible solution, and incrementally reasons about
higher dimensions while utilizing the information gained in
the lower dimensional graph [43]. For the specific multi-
robot case in which the configuration space is a Cartesian
product of the configuration spaces of individual agents in
the system, one novel approach seeks to reason about each
agent independently (a subdimension), and only when the
agents reach a point where they interact with one another is
there a lifting to a higher-dimensional space [42].

III. PROBLEM STATEMENT

A. The environment, the evader, and the pursuers
Let E ⊂ R2 be a bounded, closed, connected polygonal

set called the environment. An evader moves within E.
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Fig. 2: Example evader and pursuer paths. The evader is detected at time t.

We describe the evader’s position via a continuous function
e(t) : [0,∞) → E to represent the location of the evader at
time t. There is no restriction on the speed of the evader, so
long as it is finite.

We task n pursuers with the goal of ensuring capture of
the evaders regardless of the evader trajectories. We can
assume worst case reasoning in the sense that there is a
singular evader which follows a path that maximizes its
time until detection over all evader trajectories. We consider
both scenarios in which the number of pursuers is known
and fixed, an in which the number of pursuers to utilize is
determined by the algorithm as the plan is generated. Let
pi : [0,∞) → E represent the location of the ith pursuer
as a function of time. We refer to such functions as motion
strategies. Each pursuer is equipped with knowledge of E
and an omnidirectional sensor which extends until the nearest
point on the boundary of E in each direction. That is, a
pursuer at point q1 ∈ E can see every point in its visibility
polygon, V (q1) = {q2 ∈ E | q1q2 ⊆ E} where q1q2 denotes
the line segment joining q1 and q2 in E.

B. Objective

The algorithmic problem we address is to find a collection
of motion strategies {p1, p2, . . . , pn} such that, for some
t ≥ 0 and j ∈ {1, . . . , n}, e(t) ∈ V (pj(t)) for any evader
curve e. Such a collection of motion strategies is called a
solution. Specifically, we consider two related problems.

a) Fixed: Given an environment E and a positive
integer n, generate a solution using exactly n pursuers.
Algorithms for this problem can be evaluated by examining
both the time needed to generate a solution as well as the
time needed for the pursuers to execute that solution.

b) Variable: Given an environment E, generate a so-
lution that uses as few pursuers as possible. In addition to
the run time and execution time criteria mentioned above,
algorithms for this variant of the problem can also be judged
by the number of pursuers utilized by the computed solution.

IV. BACKGROUND

This section concisely summarizes some essential prior
results upon which our new contributions build. Specifically,
we describe how the pursuers’ knowledge about the evader’s
possible position can be maintained (Section IV-A) and
present a data structure that encapsulates the progress of a
search for a complete solution (Section IV-B).



Fig. 3: An example of a cleared (right) and contaminated (left) shadow,
given the pursuer’s movement history. Here, the white region displays the
visibility polygon of a pursuer located at the red circle.

A. Shadows and shadow events

In general, the pursuers will be able to see only a subset of
the environment at any particular time, while the remaining
parts of the environment are out of view of all of the
pursuers. Formally, at time t, the shadow region, S(t), is
E \

⋃︁n
i=1 V (pi(t)). We call the maximally path-connected

components of S(t) shadows.
The crucial information about each shadow is whether

or not the evader may be hiding within that shadow. A
shadow s is called cleared at time t if, based on the pursuers’
joint motions up to time t, it is not possible for the evader
to be within s without having been seen by one of the
pursuers. Analogously, a shadow is said to be contaminated
if it is possible for the evader to be hiding within it given
the pursuers’ motions up to time t. As the pursuers move
through the environment, the individual shadows change
continuously. However, the cardinality of the set of shadows
changes only when a shadow event occurs, i.e. a shadow
appears, disappears, splits, or merges with another shadow.
The shadow events induce the following changes to the status
of a shadow:

• Appear: A shadow can appear if the pursuers lose vision
of a region within the environment. In this event, the
new shadow has a cleared status.

• Disappear: A shadow can disappear if the pursuers gain
vision of a region which was previously a shadow. The
label corresponding to the shadow that disappears is
discarded.

• Merge: Two or more shadows can merge into a larger
shadow. In this event, the new shadow is assigned the
label cleared only if all merging shadows were cleared;
otherwise, the new shadow is labeled contaminated.

• Split: If a shadow becomes path disconnected, we say
it was split. The newly formed shadows have the status
of the initial from which they were formed.

More detail about these types of shadow events and their
clear/contaminated labels may be found in the work of
Guibas, Latombe, LaValle, Lin, and Motwani [11].

B. Sample-generated pursuit-evasion graphs

To aid in the search for a joint motion strategy for the
pursuers, we utilize the Sample-Generated Pursuit-Evasion
Graph (SG-PEG) data structure; additional details about the

SG-PEG appear in the original paper [35]. An SG-PEG is
a directed graph G = (VG, EG), representing a portion of
the connectivity of the joint configuration space for a fixed
number n of pursuers. Each vertex in VG represents a joint
configuration for the pursuers (p1, . . . , pn) ∈ En. Edges in
EG connect pairs of vertices for which it is possible for each
pursuer to make a collision-free straight line motion between
the two corresponding configurations. That is, if an edge
exists between two vertices representing joint configurations
(p1, . . . , pn) and (q1, . . . , qn), then piqi ⊂ E for each
i ∈ {1, . . . , n}. One vertex, corresponding to the starting
joint configuration of the robots, is designated as the root of
the graph. Each vertex maintains a list of non-dominated
shadow labels (i.e. clear/contaminated statuses) that are
reachable by traversing the graph along some (possibly non-
simple) path from the root.

The primary operation that can be performed on a stan-
dard SG-PEG is ADDSAMPLE(p1, . . . , pn) which, given a
collision-free joint configuration, performs three main steps:

(i) It inserts a new vertex v at the given joint configuration.
(ii) For any other vertex u within a pre-defined connection

distance in En, it checks whether the straight-line
connection between v and u would be collision-free.
If so, and if the shortest path in the graph between v
and u is sufficiently long, it creates edges vu and uv.

(iii) For each new edge thusly added, ADDSAMPLE com-
putes the shadow events described in Section IV-A
induced by motion along that edge. It then propagates
the reachable shadow label information across the new
edge and then recursively across the graph, to determine
what new reachable shadow labels, if any, are now
possible at which vertices, due to this new edge.

The utility of the SG-PEG is that if any vertex v has a
reachable shadow label that is fully cleared (i.e. it has a
reachable shadow label set in which each shadow bears a
clear label), then a solution can be extracted from the graph
by tracing back via the appropriate edges to the root vertex.

V. ALGORITHM DESCRIPTION

Our approach to this problem is based on two significant
additions and one modification to the prior algorithm of
Stiffler and O’Kane [35]. The basic idea of that prior
algorithm is to generate random samples in En and use
them to construct an SG-PEG, continuing until the SG-PEG
indicates that it contains a solution. Algorithm 1 shows the
enhancements that we propose. New elements in comparison
to the prior algorithm are highlighted: modifications to the
sampling strategy in purple text and new additions in blue
text. Note that, n, the number of robots has been removed
in our variant. Details about these changes appear below.

A. Web sampling

Stiffler and O’Kane proposed a handful of sampling
distributions, but none of them proved significantly more
effective than simple uniform random sampling of the joint
configuration space. This approach appears not to be partic-
ularly effective in this domain, because the environment is



Algorithm 1 SOLVE(E, n, C, S)
Input: an environment E, a number of pursuers n,

an expansion criterion C and a sampler S
1: G← empty SG-PEG for n pursuers 1 pursuer
2: p← S.GETSAMPLE()
3: G.ADDSAMPLE(p)
4: G.SETROOT(p)
5: while no solution has been found do
6: p← S.GETSAMPLE()
7: G.ADDSAMPLE(p)
8: if C is met then
9: G.ADDPURSUER()

10: X ← EXTRACTSOLUTION()
11: X ′ ← REFINESOLUTION(X)
12: return X ′

Fig. 4: [left] An example web. Red points are initial points; the blue
are intersection points. Green edges connect each intersection point to the
initial points from which it is induced. [right] The distribution induced by
web sampling, based upon 750 generated webs. Note the higher density at
junctions and corners.

comprised of regions whose surveyance is essential to finding
a solution. To combat this issue, we propose a new strategy
for generating samples, which specifically takes into account
the visibility component of the problem. Specifically, the goal
is to generate a small collection of samples W that has two
properties: (a) each point in E is seen by at least one point
in W , and (b) a pursuer moving between points in W along
straight line segments in E can travel between any pair of
points in W , i.e. W forms a ‘connected roadmap’ of E.

The approach is based on a randomized structure called
a web in E, which is constructed in two steps. First, we
construct a set of initial points P ⊂ E. Each initial point is
selected sequentially and randomly, from the region outside
the union of visibility polygons of the previously selected
points. The process continues until

⋃︁
p∈P V (p) = E. Then

the algorithm selects a collection of intersection points
Q ⊆ E by examining pairs of initial points {pi, pj} ⊆ P , and
placing a point uniformly at random within V (pi) ∩ V (pj),
if that intersection is non-empty. A web is simply the
combination W = P ∪Q. Figure 4 illustrates this concept.

We utilized webs to generate samples from En in Lines 2
and 6 by generating a separate web for each pursuer and
sampling, without replacement, from those points. If the
points in any of the webs are exhausted, we generate another
set of webs and continue.

B. Variable numbers of pursuers

In the prior algorithm, the number of pursuers in the
solution was required as an input. This information was

necessary because the SG-PEG data structure stores joint
configurations drawn from En; thus n must be known to
construct an SG-PEG.

To alleviate this limitation, we instead propose a sequen-
tial process, in which the number of pursuers is gradually
increased as the algorithm proceeds. Realizing this approach
in the planner requires us to resolve two complications.

First, the algorithm requires a mechanism to transition,
in mid-stream, from an n-pursuer SG-PEG to an (n + 1)-
pursuer SG-PEG (Line 9). One straightforward approach is
to simply discard the existing vertices and edges and restart
the search with an additional pursuer. (This is referred to as
the ‘Clear’ option in Section VI.)

However, it may be preferable to ensure that our previous
effort is not wasted. To this end, we propose a new method
that clones the first pursuer in each vertex of the SG-PEG.
That is, for each vertex in the SG-PEG, we replace its joint
configuration (p1, p2, . . . , pn) with (p1, p2, . . . , pn, p1). This
adds an additional pursuer to the graph, without changing any
of the reachable labels or edges. Thus, the cloning option is
extremely efficient, but it leads to an SG-PEG in which the
newly-added pursuer moves in parallel with another pursuer.
Future edges added at the (n + 1)-th layer will correspond
to independent motions for these two robots (as they draw
from their own unique set of webs).

Next, we must decide when to expand the number of
pursuers (Line 8). We consider two options. First, we propose
a method that devotes fixed effort to each stage of the search.
The process begins by rapidly generating a trivial solution
by placing pursuers until their visibility fully covers the
environment, which results in a solution that requires no
movement from the pursuers. This gives a (generally very
loose) upper bound N on the number of pursuers required.
Then, given a target total run time of Tlimit seconds, we
apportion the time between the possible numbers of pursuers
1, . . . , N via a Poisson distribution. The Poisson distribution
was selected due to the placement of the mean, as well as
its skew and shape. We choose a tunable parameter α which
determines the fraction of time to spend on the final step that
utilizes N pursuers, so that according to the definition of the
Poisson distribution, we have α = λNe−λ/N !. From this
equation, the algorithm numerically computes the Poisson
parameter λ and allocates Tlimitλ

i−1e−λ/(i−1)! to the search
with i pursuers before proceeding to i + 1. Because of the
existence of the upper bound N , this method will always
produce a solution, although it may require a large number
of pursuers.

As an alternative, we also consider a stalled progress
approach, based upon monitoring the minimum sum of the
contaminated shadow area across all vertices of the graph.
(n.b. We have a solution if and only if this value reaches 0.)
If this value fails to improve by at least 5% after adding M
samples, we add a new pursuer. To enable a fair comparison
to the fixed effort method, we once again return a trivial
solution if no solution is found with fewer pursuers.
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Fig. 5: A cut of length c during solution refinement.

Fig. 6: Refining a solution. [left] Before. [right] After.

C. Solution refinement

Because of the sampling-based nature of this algorithm,
its outputs are likely to have extraneous motions. This issue
is noticeably more severe in our context than for traditional
sampling-based motion planning because the generated so-
lutions may travel several times along certain edges in an
effort to clear specific shadows. In this section, we introduce
a post processing method which takes a joint motion strategy
and optimizes it by removing unnecessary pursuer motions.

Our method is similar to standard shortcut-based path
smoothing. We select two points za and zb at distance c
along the solution path in En, and check whether taking
a shortcut directly from za to zb yields a path that is
still a correct solution. Figure 5 depicts the process. Our
check features one important difference from traditional path
smoothing: In addition to ensuring that the refined solution
is collision-free, we must also ensure that it remains a
correct solution, i.e. that the refinement does not allow any
shadows to remain contaminated. We do this by tracking
forward through the shortened path, applying the shadow
events experienced along that path —Recall Section IV-A—
to update the shadow labels.

Given this shortcut operation, we greedily optimize the
path, proceeding systematically over decreasing values of c
and increasing positions of za. (From these two, zb is readily
computed.) Each time we discover a shortcut yielding a
correct solution, that shortened solution replaces the previous
solution, and the process continues. See Figure 6.

VI. EVALUATION

This section evaluates the performance of the proposed
approach. We implemented the algorithm in C++ and exe-
cuted it on a computer with an Intel i7-7500U processor and
12GB of memory, running Ubuntu 18.04.2 64-bit.

We performed simulations in the environments shown in
Figures 1 (Office), 4 (H), and 6 (Spider). This selection
of environments is intended to provide a variety common
environmental traits. The H environment contains narrow
corridors, the Spider environment possesses numerous hard

to reach areas, and the Office environment is somewhat
uniformly spread out, with a complex boundary.

We generated solution strategies for these environments
using both classes of algorithms described thus far: those that
utilize a fixed number of pursuers and those that can vary
the number of pursuers. In the former case, we considered
both web sampling (WS) and uniform random sampling
(SO14) [35] and varied the fixed number of robots between 2
and 5. In the latter case, we considered all four combinations
of expansion criterion (fixed effort (FE) or stalled progress
(SP)) and graph expansion method (clone pursuer (Clone) or
clear progress (Clear)).

For each of these scenarios, we executed 25 trials and
recorded the computation time in seconds, number of pur-
suers used in the returned solution, as well as the total
numbers of vertices and edges generated. Each experiment
was allotted 10 minutes of computation time; if no solution
was produced in that time, we considered the trial to be
a failure. Failed trials are excluded from the statistics, but
it should be noted that if they were included, they would
contribute a run time of at least 10 minutes. The results,
summarized via the means (µ) and standard deviations (σ),
appear in Tables II, I and III. A number of conclusions may
be drawn from the results.

a) WS improves performance over SO14: First, in all of
the tested environments, our WS method outperformed SO14
by a wide margin. The smallest improvement in computation
time occurred in the Office environment, perhaps due to the
uniform nature of the environment and the complexity of the
geometry calculations.

b) Clone and Clear appear to be complementary: For
the simulations with a variable number of pursuers, we look
to compare the performance between the cloning method and
the clear method when expanding a graph. When using FE
as the expansion criterion, the results are remarkably similar
between the two methods. At first glance, one may assume
the cloning method should outperform the clearing method
due to the larger amount of information the graph contains.
This however, is not always the case, because an increased
number of vertices means an increased amount of time to add
each new sample, due to the propagation of reachable labels
across the graph. When SP was the expansion criterion,
clearing has a faster computation time, but also a much
higher mean and standard deviation for the number of
pursuers. It was often the case that SP with clearing would
return a trivial solution, as the algorithm cleared a substantial
amount of meaningful calculations performed.

c) Allowing the number of pursuers to vary incurs only
a modest computational cost: Lastly, we compare the fixed
number of pursuers using WS, to the variable number of
pursuers methods. For each environment, the run times of
the variable number of pursuers were within approximately a
factor of 2 of that of the fixed number of pursuers. A portion
of this additional time comes from the variable number of
pursuers constructing a single pursuer graph, in environments
which all require at least 2 pursuers to solve.

Finally, for each environment, we refined all 25 solutions



Table I. Simulation results for the Office environment (Figure 1).

success comp time (s) num robots num vertices num edges
rate µ σ µ σ µ σ µ σ

WS (n = 2) 100% 87.201 58.707 2.000 0.000 74.360 50.392 137.440 103.644
SO14 (n = 2) 96% 96.890 78.231 2.000 0.000 117.875 62.007 219.167 131.542
WS (n = 3) 100% 68.953 56.738 3.000 0.000 109.160 55.984 157.040 105.265
SO14 (n = 3) 100% 63.205 25.110 3.000 0.000 330.440 210.853 542.080 453.409
WS (n = 4) 100% 57.248 52.329 4.000 0.000 177.760 73.723 167.960 103.567
SO14 (n = 4) 100% 73.448 65.325 4.000 0.000 1258.480 774.096 1830.920 1655.530
WS (n = 5) 100% 91.633 80.529 5.000 0.000 392.520 229.407 275.920 224.627
SO14 (n = 5) 80% 235.866 129.786 5.000 0.000 4081.000 1361.404 4495.150 2546.067
FE Clone (α = 0.001) 100% 138.097 71.992 3.440 0.768 138.720 88.246 186.720 89.464
FE Clear (α = 0.001) 100% 111.114 112.003 3.280 2.390 866.360 2702.653 732.200 1379.524
SP Clone (M = 30) 100% 193.867 55.951 2.520 2.365 117.280 79.072 192.200 120.596
SP Clear (M = 30) 100% 84.824 29.878 7.640 4.636 222.360 107.938 185.160 35.873

Table II. Simulation results for the H environment (Figure 4).

success comp time (s) num robots num vertices num edges
rate µ σ µ σ µ σ µ σ

WS (n = 2) 100% 18.716 9.816 2.000 0.000 71.600 49.019 119.160 103.625
SO14 (n = 2) 100% 33.885 14.777 2.000 0.000 105.760 77.638 193.640 158.844
WS (n = 3) 100% 20.151 11.281 3.000 0.000 143.200 46.871 168.720 84.149
SO14 (n = 3) 100% 35.965 20.354 3.000 0.000 212.560 152.480 349.840 305.536
WS (n = 4) 100% 27.131 10.502 4.000 0.000 261.520 94.841 211.920 116.173
SO14 (n = 4) 96% 43.636 42.848 4.000 0.000 639.042 365.724 972.042 704.745
WS (n = 5) 100% 47.967 24.342 5.000 0.000 413.840 119.927 196.800 77.066
SO14 (n = 5) 96% 81.949 62.208 5.000 0.000 1743.708 1512.375 2422.125 2732.005
FE Clone (α = 0.001) 100% 27.065 9.973 2.000 0.000 48.120 16.269 79.440 31.466
FE Clear (α = 0.001) 100% 21.538 8.483 2.000 0.000 71.360 24.124 115.520 48.321
SP Clone (M = 30) 100% 42.422 13.620 2.400 1.607 76.120 29.992 129.320 46.703
SP Clear (M = 30) 100% 19.637 6.906 7.920 3.081 204.840 62.487 136.640 31.579

Table III. Simulation results for the Spider environment (Figure 6).

success comp time (s) num robots num vertices num edges
rate µ σ µ σ µ σ µ σ

WS (n = 2) 100% 151.738 87.515 2.000 0.000 54.240 34.170 90.920 65.193
SO14 (n = 2) 84% 312.341 115.955 2.000 0.000 152.952 90.760 296.619 182.206
WS (n = 3) 100% 91.825 41.326 3.000 0.000 50.120 36.003 68.280 58.533
SO14 (n = 3) 96% 211.234 89.930 3.000 0.000 90.167 33.983 160.750 65.811
WS (n = 4) 100% 84.356 26.550 4.000 0.000 55.520 26.590 61.880 40.169
SO14 (n = 4) 96% 216.941 83.815 4.000 0.000 142.708 283.093 257.083 560.368
WS (n = 5) 100% 92.822 42.587 5.000 0.000 75.800 33.582 72.920 47.970
SO14 (n = 5) 92% 222.129 77.185 5.000 0.000 81.261 31.517 123.087 55.083
FE Clone (α = 0.001) 100% 249.742 116.423 5.080 1.631 107.720 40.658 117.200 46.227
FE Clear (α = 0.001) 100% 258.762 124.280 5.080 2.159 196.200 188.685 184.200 110.659
SP Clone (M = 30) 88% 403.098 91.530 3.727 0.827 163.682 35.301 275.955 50.614
SP Clear (M = 30) 100% 236.300 134.572 4.200 4.021 139.680 102.347 184.440 65.614

Table IV. Refinement results for the solutions produced by WS (n = 2).

comp length length
time (s) before (m) after (m)
µ σ µ σ µ σ

Office 29.6 37.5 254.5 114.5 136.9 97.4
H 6.4 5.6 256.5 109.4 100.0 31.7
Spider 50.9 61.9 360.3 222.3 168.8 139.0

generated by WS with 2 pursuers. The results are sum-
marized in Table IV, which shows the mean and standard
deviation of the computation time (in seconds) along with
the length of the solution path (in meters) before and after it
was refined. The results show that this approach effectively
and consistently reduces the path lengths.

VII. CONCLUSION

This paper presents a sampling-based algorithm for a
visibility-based pursuit-evasion problem that generates a
joint motion strategy for a team of robots in a polygonal

environment. The three primary contributions are a novel
sampling strategy for this domain, an iterative algorithm
for generating a joint motion strategy for the pursuers, and
a post-processing path-smoothing algorithm that refines the
strategy returned by the main algorithm. The algorithm was
shown to outperform existing techniques.

Future work might build upon the results in this paper.
First, possibilities remain for enhancing the post processing
step. There remain a number of open questions on how these
kinds of path smoothing algorithms can be best applied to
the pursuit-evasion domain. Second, is the development of an
anytime algorithm that begins with an uninteresting solution
—for example, one utilizing enough pursuers to ensure that
their visibility polygons fully cover the environment— and
attempts to work backwards, eliminating robots, by searching
for solutions in the reduced joint sub-space.
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