Selective Edge Shedding in Large Graphs Under
Resource Constraints

Yiling Zeng', Chunyao Song’, Tingjian Ge!
TNankai University, Tianjin, China
jFUnivelrsity of Massachusetts Lowell, Lowell, USA
yilingzeng @mail.nankai.edu.cn, chunyao.song@nankai.edu.cn, ge@cs.uml.edu

Abstract—With the rapid development of the information age,
many complex systems can be modeled as graphs. However, the
unprecedented growth of data makes it extremely difficult for
everyday users to process and mine very large graphs, given
their limited computing resources such as personal computers
and laptops. To address this challenge, we propose selective edge
shedding, which can reduce the data volume, accelerate graph
algorithms and queries, support interactive analysis, and elimi-
nate noises. By estimating the original graph information from
the reduced graph, it provides an efficient solution for network
analysis at a low price. Previous graph reduction/summarization
methods have a high demand on the hardware and are far less
accurate in graph analysis results than ours; hence, there is a
great need for efficient and effective graph reduction methods
under resource constraints.

In this paper, we propose two vertex-degree preserving edge
shedding methods, the core of which are to maintain the expected
vertex degree, so as to capture the basic characteristics of the
network. Both methods allow users to control the process of edge
shedding to generate a reduced graph of a chosen size based
on the computing resource constraint. Using four real-world
datasets in different domains, we have performed an extensive
experimental evaluation of our methods, comparing against the
state-of-the-art graph summarization method on as many as
seven graph analysis tasks. The experimental results show that
the methods proposed in this paper can achieve up to 65% higher
accuracy on graph analysis tasks compared to the competitive
method, while consuming only 26%-57% running time, which
fully demonstrates the advantages of the methods proposed in
this work.

Index Terms—Degree distribution, Edge shedding, Graph re-
duction, Limited resources

I. INTRODUCTION

In modern society, there are various forms of data rep-
resentation and storage methods. Many complex systems
can be represented as graphs, such as social networks,
academic networks and transportation networks. Complex
graphs/information networks contain a lot of information.
Through deep mining of the network, we can discover the
potential connections between the data and make subsequent
use of information effectively.

However, with the rapid development of the information
age, the data volume is expanding rapidly. Daily activities like
social media interaction, smart phone usage, web browsing,
product and service purchases, and wellness sensors generate
large amounts of data, and hence the scale of network models
is gradually expanding. As of the fourth quarter of 2019,
Facebook had nearly 2.5 billion monthly active users, making

it the world’s largest social network [1] . As of the first quarter
of 2019, Twitter, a social platform called “Internet SMS”, had
nearly 330 million users and generated more than 10 million
“tweets” every day [2].

Although the data generated by human activities can be
stored and represented with networks, the speed and comput-
ing feasibility of processing, analysis, and mining of large-
scale networks cannot keep up with the data-volume growth,
using the computers of everyday users. For example, graph
mining tasks such as link prediction and node clustering are
impossible to be executed on the desktop or laptop computer
of an ordinary user, such as a scientist, due to the sheer size
of the graphs. Therefore, it is of great practical significance
to reduce the cost of network analysis using graph reduction
techniques such as edge shedding.

There are four main advantages of performing graph reduc-
tion. First, graph reduction can reduce the size of data, thus
saving storage space. Second, using reduced graphs can speed
up graph processing algorithms and queries. Third, it makes
the visualization of data more feasible. Finally, real datasets
often have many hidden or wrong links and labels. Graph
reduction can filter noises and reveal the pattern characteristics
of the data.

In 2020, the outbreak of COVID-19 has led to a surge in
demand for online platforms since lots of people began to work
from home. Various companies and institutions are having
a hard time trying to keep up with the increasing demand
on computing bandwidth and storage space. This shows the
importance of storage capacity and data processing ability in
the current big data era. At present, most graph reduction
methods have high requirements on hardware resources such
as memory and CPU. Even though hardware becomes cheaper,
most laboratories in schools and small-scale enterprises with
limited funds, as well as individual users such as scientists not
doing large-scale data analysis on a regular basis, cannot afford
the cost of acquiring or maintaining high-end data servers,
resulting in large graph data not being used effectively. In
addition, there has been increasing demand and market for
edge computing [3], where preliminary data processing is
pushed to less powerful devices—our techniques for graph
reduction will be much needed. To the best of our knowledge,
efficient graph reduction methods under resource constraints
have not been proposed before.

A. Related Work

Graph reduction techniques can be divided into several
popular categories, such as grouping or aggregation based, bit
compression based and simplification or sparsification based
techniques.

Grouping-based reduction methods involve node-grouping
based methods and edge-grouping based methods. LeFevre
et al. [4] proposed a method of generating graph reduction
by greedily grouping nodes with the goal of minimizing the
normalized reconstruction errors. Riondato et al. [5] focused
on generating supernodes and superedges with guarantees,
while completely ignoring the preservation of important parts
and regions of the graph. Graph Dedensification [6] is an
edge-grouping based method that compresses neighborhoods
around high-degree nodes, accelerating query processing and
enabling direct operations on the compressed graph. Fan et al.
[7] proposed a “blueprint” for lossless queries on compressed
attributed graphs. Kumar et al. [8] proposed a novel iterative
utility-driven graph reduction approach. The utility is defined
as the useful information of the summarized graph and is
user-specified. This is also the state-of-the-art method, and
we demonstrate the superiority of our methods over it in the
experiments.

Bit Compression-based reduction methods aim to mini-
mize the number of bits needed to describe the input graph.
Navlakha et al. [9] propose a highly compact two-part rep-
resentation, which allows for both lossless and lossy graph
compression with bounds on the introduced error. Ahnert
[10] introduces a framework for the discovery of dominant
relationship patterns in transcription networks, by compressing
the network into a power graph with overlapping power nodes.
Simplification-based reduction methods generate reduced
graphs by removing less “important” nodes or edges from
original graphs. Shen et al. [11] present a visual analytics tool,
OntoVis, which allows users to do structural abstraction and
importance filtering to make large networks manageable. Li
et al. [12] design several abstraction criteria to distill repre-
sentative and important information to construct the abstracted
graphs for visualization. Both of our proposed methods using
selective edge shedding belong to this category.

Papers [13] and [14] are surveys of graph reduction. Most of
the techniques discussed above aim to minimize reconstruction
error or guarantee output utility. However, these reduction
methods have high requirements on hardware resources, which
is not suitable for laboratories in some universities, small
enterprises, or other environments with resource constraints,
as discussed above.

In addition, TCM [15] and GSS [16] are novel graph
stream summarization techniques concentrating on graphs with
multiple edges which appear at different timestamps. Graph
scaling techniques such as [17] and [18], as well as the above
mentioned techniques, focus on different problems from ours.

B. Our Contributions

In this paper, we propose two novel edge shedding based
graph reduction techniques: Centrality Ranking with Rewiring

(CRR) and B-Matching with Bipartite Matching (BM2). Both
of our methods aim to preserve the distribution of vertex de-
grees with edge shedding in different ways. Our contributions
in this work are summarized as follows:

(1) We propose two efficient algorithms for judicious edge
shedding of large graphs to achieve parameterized graph
reduction.

(2) At present, research in the graph reduction field pays
more and more attention to the controllability of the reduced
graph size. Therefore, according to the actual needs of users
in different scenarios, the edge preservation ratio p is used
in our methods to generate graphs of different sizes, where
p € (0,1) represents the size ratio between the reduced and
the original graph.

(3) We conduct a comprehensive experimental study using
real datasets in four different domains performing seven differ-
ent graph analysis tasks. The results show that our methods can
generate reduced graphs with limited resources while assuring
a certain level of accuracy, which has greatly improved the ef-
ficiency and accuracy compared to other competitive methods.

The rest of the paper is organized as follows. In Section II,
we state the problem and introduce the relevant background
knowledge. In Sections III and IV, we present the proposed
CRR and BM2 algorithms, and illustrate them with detailed
running examples. Section V contains comprehensive experi-
ments which evaluate the proposed algorithms’ efficiency and
accuracy on real-world datasets in four different domains. At
last, we conclude the paper in Section VL.

II. PRELIMINARIES
A. Problem Definition

The primary idea of our graph reduction is to capture
and preserve the structure of the original network. By using
the reduced graph, we can estimate various properties of
the original graph, so as to accelerate the downstream graph
analysis tasks. How to capture and preserve the structure of
the original network efficiently is the key requirement of graph
reduction techniques. Vertex degree is one of the most basic
features in a network topology and plays a crucial role in
network analysis [19]. In current studies, the importance of
vertex degree in capturing network properties has been well
established, including communication network topology [20]
and complex network modeling [21].

Based on these observations, we arrive at the following idea:
with preserving vertex degrees as the main principle, we aim
to capture the essence of the original graph by maintaining
the expected vertex degrees of each node, so as to accurately
preserve and approximate other characteristics.

Table I summarizes the symbols we will use later in the
paper.

Given an undirected graph G = (V,E) and an edge
preservation ratio p, where V' is the set of nodes, & C V x V
is the set of edges, and p € (0,1) is the specified edge
preservation ratio. Let G’ = (V’, E’) be the reduced graph,
where V' is the node set, E' C V' x V" is the edge set, and G’
is a subgraph of G. For the original graph G, Vu € V, degg (u)

TABLE I
LIST OF SYMBOLS USED IN THE PAPER

Symbol Definition

G Initial graph

G’ Reduced graph, which is a subset of G

p Edge preservation ratio

degg (u) Degree of node u in G

deggr (u) Degree of node w in G’

E(degg (u)) Expected degree of node u in G’

E(deggr) Expected average node-degree of G’

dis(u) Discrepancy between the actual and expected

degree of u in G’
A Sum of the absolute values of the discrepancy of
each node in G’

denotes the degree of a single node u. For a reduced graph
G',Yu € V', dege (u) represents the degree of a single node
uw in G'; E(degg (u)) represents this node’s expected degree
in G’; and E(degg:) denotes the average expected degree of
the reduced graph G'.

The edge preservation ratio p is a controllable parameter in
the edge shedding process. The smaller p is, the smaller the
size of the final reduced graph. Therefore,

E(degg(u)) = degg(u) X p (D

The average expected degree of the reduced graph can be
transformed into:

E(deger) :ﬁ Z E(deger (u)) = % Z {dega(u) * p}
ueV ueV

= e S dege(w))

Let dis(u) represent the degree difference between the
original and the reduced graphs of vertex w. It can be expressed
as:

dis(u) = degg: (u) — E(degg: (u)) (3)

The sum of the degree differences of all nodes A between
the two graphs can be computed as:

A=Y |dis(u)| &)
ueV

According to the above description, the measurement of
edge shedding methods based on vertex degrees depends on
the degree difference A between the expected and the reduced
graphs. The smaller the degree difference A is, the closer the
vertex degree distributions are between the reduced and the
expected graphs.

So the problem can be defined as follows. Given an original
graph G, obtain a representative reduced graph G’, where
G = argming-cg A(G*) and G is the set of all possible
reduced graphs of G. According to [22], the problem is NP-
hard; so we decide to provide efficient approximate methods
to solve it. Two different methods in this paper are proposed
to judiciously control the edge shedding process based on the
ratio parameter p, which preserves not only the vertex-degree
distribution but also the key topological connectivity of the
graph.

B. Centrality

To preserve the key topological connectivity, we need to
introduce the notion of centrality. Centrality is a commonly
used concept in social network analysis which is used to
express the importance of vertices or edges in graphs. Among
different centrality computing methods, betweenness centrality
is the one most frequently employed in network analysis [23].

The betweenness centrality of a node v is the sum of
the fraction of all-pairs shortest paths that pass through wv.
Betweenness centrality is computed as:

Cp(v) = Z o(s,t|v)

s,teV o(s,t)

where V is the set of nodes, o(s,t) is the number of shortest
(s,t)-paths, and o(s,t | v) is the number of those paths
passing through some node v other than s, .

For the measurement of centrality of edges, betweenness
centrality is still applicable. The formula is as follows:

Crle) = Z o(s,t|e)

s,teV 0(87 t)

where symbols share similar meanings as Cg(v).

Betweenness centrality focuses on the role of an edge
serving as a “bridge”. Brandes [24] has proposed a fast
algorithm to compute betweenness centrality which requires
O(|V|+]E|) space and runs in O(|V'||E||) time on unweighted
networks.

III. CENTRALITY RANKING WITH REWIRING (CRR)

Preserving the degree distribution of the original graph can
start from preserving the expected average vertex degree. The
proposed algorithm CRR has two phases. Firstly, according
to the importance of all edges, it generates an initial reduced
graph with the same expected average degree computed by
fixing the edge-preservation ratio p following Equation 2.
Since the importance of edges is taken into account, the initial
result violates the goal of minimizing degree difference to
some extent. Therefore, in the second phase, we replace some
edges to reduce the node-degree discrepancy.

Algorithm 1 illustrates the process of CRR.

The first phase (lines 1-6) performs the initial edge-
shedding. According to the discussion in Section II-A, the
expected average degree of the reduced graph E(degq:) is
equal to p times the average degree of the original graph.
That is, when the reduced graph contains p x |E| = P
edges, the required expected average degree is satisfied. Based
on this, we let the reduced graph contain [P] (the nearest
integer of P) edges. Given that edges have different roles in
preserving the graph topology, intuitively, edges that are more
“important” in preserving the graph structure should be kept
(and the rest are subject to edge shedding). As mentioned in
Section II-B, betweenness centrality focuses on the role of an
edge for serving as a “bridge”. The higher the betweenness
centrality of an edge is, the greater its contribution to the
network connectivity. Kumar et al. [8] have confirmed that

Algorithm 1: Centrality Ranking with Rewiring (CRR)

Input: undirected graph G = (V, E), edge preservation ratio
D, steps
Output: reduced graph G’ = (V' E')
1 initialize E' + 0,7 < 0
2 P+ px|E|
3 calculate the betweenness centrality of all edges, and sort £/
in non-increasing order by their betweenness centrality
4 while |E’| < [P] (nearest integer of P) do
e < FE. next ()
6 E' '« FE'uUe

7 for ¢ < 1... steps do
pick a random edge e1 = (u,v) from E’
9 pick a random edge e> = (z,y) from E\E’

10 dy + |dis(u) — 1|+ |dis(v) — 1| — (|dis(u)| 4 |dis(v)])
11 do + |dis(z) + 1| + |dis(y) + 1| — (|dis(z)| + |dis(y)])
12 if di + d2 < 0 then

13 | B+ (E'—{e1}) U{e2}

14 return G’

betweenness centrality has a unique advantage in measuring
edge importance. Therefore, in Phase 1, CRR first calculates
the betweenness centrality of all edges (line 3), and then
selects [P] edges with top betweenness centrality to form the
initial reduced graph (lines 4-6).

The second phase (lines 7-13) takes care of edge rewiring on
the initial reduced graph. In Phase 1, taking [P] top centrality
edges does not ensure the degrees of each node to be near their
expected values. Also, taking edge importance as the basis for
initial selection may compromise the goal of minimizing the
total degree difference A to a certain extent. Therefore, in
Phase 2, CRR performs several iterations of edge swapping
to improve the overall degree difference. During each iterative
step, edge replacement ensures that the number of edges in the
reduced graph is always [P], thereby maintaining the expected
average degree.

The number of iterations steps depends on the user’s
preference for efficiency vs. accuracy. Based on the results
of extensive experiments, it is generally recommended that
users choose steps as [10 x P] (the nearest integer of
10 x P). At each iteration ¢, let the current edge set be
E’. CRR randomly chooses two edges e; = (u,v) €
E'jeq = (x,y) € E\E' (lines 89). di = |dis(u) — 1] +
|dis(v) — 1|— (|dis(u)| + |dis(v)|) represents the change in
overall degree difference caused by removing ey, and do =
|dis(z) + 1| + |dis(y) + 1| — (|dis(x)| + |dis(y)|) represents
the change in overall degree difference caused by adding es
(lines 10-11). If d; 4+ d2 < 0, it means the edge replacement
will reduce the overall degree difference, which should be
performed. Otherwise, we do nothing (lines 12-13). The final
edge set is returned as the reduced graph (line 14).

Example 1. Running example of CRR: Figure I(a) shows
an original graph before edge shedding, where the number
next to each node represents the expected degree for the
reduced graph with the edge preservation ratio p = 0.4.
First, CRR computes [P] = [p x |E|] = [04 x 11] = 4,

and then it calculates the importance of each edge using the
betweenness centrality formula Cp(e) =3, oy Uo(f;frltj) The
importance of edges is shown in red, while the importance
of unmarked edges is 0.182 in Figure 1(b). According to
the above calculation, the four most important edges are
selected as the initial chosen edge set, where edges of the
same importance are selected randomly. The result is shown in
Figure 1(b), where the number next to each node indicates the
degree difference dis,, and the yellow edges form the initial

selected edge set.

:0.4 : :0.6
w04 & u5:0.8 ;06 g

u3:0.4 uz:-0.4
uy: 0.4 410:0.8 uy:-0.4 Uy 12
[]
us: 0.4 410.4 upp: 0.4 us:0.6 yg:-0.4 up:-0.4

(a) The original graph with p=0.4 (b) The initial selected edge set

1,1 0.6 31:0'6 uge:0.8 1y:0.6 zl:o.e U502
uz:—0.4
Ug}| - Ug: —0.6
ug—04 8 0o * g
Uq9:-0.8 7+ U Up0:0.2
uyy:-0.4 us: =04y: 0.4 uyy:—0.4

(c) The i-th iteration (d) The final reduced graph

Fig. 1. An illustration of running CRR
Next, CRR starts the second phase. First, we compute
steps = [10 x P] = 44, the number of iterations. At the
i-th iteration, CRR randomly chooses e; = (us,u7) and
es = (usg,u1p) for an edge replacement attempt, which is

shown in Figure I(c). Then we compute di = [0.6 — 1| +
112 — 1] — (|0.6] + [1.2]) = —1.2 and dy = | — 0.8 +
1|+ |—-084+1]— (] — 08/ +|—0.8|) = —1.2. Because

di + dy < 0, the edges are swapped. The overall degree
difference is reduced by 2.4, and the current E' is composed of
{(u1,u7), (ug,uz), (ur,ug), (ug,u10)}. The subsequent iter-
ation steps are similar, and the final selected edge set returned
by CRR is &' = {(Ul, U7) ; (UQ, U/7) ; (U7, Ug) ; (U/g, ulO)}; as
shown in Figure 1(d). The black nodes correspond to the
reduced graph’s node set V', and the yellow edges form the
final selected edge set E’.

Theorem 1. The average absolute difference between the
degree of a node in the graph produced by CRR and its
expectation is in the range (0,4p(1 — p)%)

Proof. We first prove the claim that an upper bound of A
(i.e., the total absolute difference between node degrees in
the reduced graph and their expectations) is achieved when a
subset U of nodes all have degree 0 and the remaining nodes
V\U all keep their original degrees (except possibly one node,
which may have a smaller degree), subject to the constraint
that the total number of edges is p|E|.

To prove this claim, suppose in the reduced graph G’
with the maximum A, there is a subset U of nodes whose
degrees are below their expectations (i.e., p- degg(u)) and the
remaining nodes V' \ U have degrees above or equal to their
expectations. Suppose we can keep the node degree statistics,
but can arbitrarily rewire the edges while keeping the same

number of edges. That is, each node has the same number of
“half edges” or “spokes” as its degree and we are allowed to
arbitrarily reconnect two half edges into one edge. Thus, in
the above reduced graph G’ with the maximum A, as long as
there is a node in V'\ U with a degree in G’ less than that in G,
we can keep moving edges in G’ to be connecting two nodes
in V'\ U only—this could only increase A towards the upper
bound. In particular, for every two “bridge” edges crossing U
and V'\ U, we can rewire them and have one edge connecting
the same 2 nodes in U and one edge connecting the same 2
nodes in V' \ U.

At the end of this moving process, one of the following two
cases will happen: (1) All nodes in V' \ U have full degrees
and U may have some internal edges; (2) All nodes in U have
degree 0. In case (1), within the node set U, we can keep
moving all remaining internal edges towards any particular
node u or several nodes as self-edges until they reach their
maximum degree in G. This does not change A initially when
the degree of v in G’ is below its expectation, and will increase
A once the degree of u reaches above the expectation. So
in the end, we will reach the scenario as described in the
claim, i.e., a rewired graph G’ with a subset of nodes have full
degrees, possibly another node with a positive degree, and all
remaining nodes with degree 0, will give an upper bound of
A. In the same vein, for case (2), we can move the internal
edges in V' \ U to saturate the degrees of a subset of nodes
without decreasing A. Thus, the claim above is proven.

Let U’ be the set of nodes with degree 0 and V \ U’
has all the p|F| edges at the end of the proof construction
above. Based on the result of the claim, we have A <
> uerr dega(u) xp+ ZueV\U/ dege(u) x (1—p)=px (1—
p) X 2|E| + (1 — p) x 2p|E| = 4p(1 — p)|E|, and we obtain
the result for the range of the average absolute difference as
in the theorem.

O

Let us now analyze the complexity of CRR. The first
phase involves the calculation and ranking of between-
ness centrality, whose time complexity is O(|V||E|) and
O(|E|log2|E|), respectively, and the initial edge selection has
a cost of O(]E|). The second phase is a linear process of
edge replacement. So the overall time complexity of CRR is
O(|VI||E| + |E|log2| E| + |E| + steps), which is simplified to
O(|VI||E| + | Ellogz| E| + steps).

IV. B-MATCHING WITH BIPARTITE MATCHING (BM2)

In this section, we first introduce the maximum b-matching
problem [25], which is also an edge shedding problem, and
then propose the BM2 algorithm, drawing the connection
between the maximum b-matching problem and the graph
reduction problem.

A. B-Matching

Let us consider an undirected graph G = (V,E) and a
set of capacity constraints b(u) : V' — N. For the subgraph
H = (V,Ep) of G, if the degree of any vertex « € V in H is
at most b(u), then H is a b-matching of G. If the addition of

any edge violates at least one capacity constraint, the current
b-matching is maximal. A maximum b-matching is a maximal
b-matching with the largest number of edges. Figure 2 shows
a b-Matching instance, where the number next to each node
indicates its capacity constraint, and the matched edges are
shown in yellow.

Uyl

us:1 us: 1

(b) A b-matching of G

us: 1 us: 1
(a) G and the constraints
Uyl

u;rl w2 up:l

'\u& L .

uz: 1 Usz: Us:

(c) A maximal b-matching of G (d) The maximum b-matching of G

Fig. 2. A B-Matching example

Parchas et al. [22] have studied the connection between the
maximum b-matching problem and the problem of extracting
representative instances from uncertain graphs. It turns out that
a solution to the maximum b-matching problem would also
be a good initial constraint enforcer for our edge shedding
problem. We may use F(degg(u)) in the reduced graph as
the b(wu) in a b-matching problem.

B. B-Matching with Bipartite Matching (BM?2)

Since the edge preservation ratio p is in (0,1), E(degg (u))
is possibly a fraction number. Thus, the b-matching model
described in Section IV-A cannot be applied directly to the
graph reduction problem, and we need to round the expected
vertex degrees to integers. Therefore, BM2 involves two
phases. First, it performs b-matching on a transformed graph to
obtain an initial edge set. Next, it picks additional edges which
can improve the total degree difference A by performing a
bipartite matching. Algorithm 2 illustrates the process of BM2.

The first stage (lines 1-7) generates the initial selected edge
set. First, we use Equation 1 to calculate the expected vertex
degree for each node (line 1) and initialize the vertex degrees
in the reduced graph (line 2). In order to solve our problem
with real-value constraints, BM2 rounds the expected degrees
to the closest integers and runs b-matching to get a maximum
b-matching using the rounded values as capacity constraints
(lines 3-7). Although there may be more than one maximum b-
matching, our algorithm only finds one of them, and proceeds
to the second phase using that one.

The second stage (lines 8-25) picks an edge set to further
reduce the overall degree difference. The rounding strategy
in Phase 1 leads to some differences between the actual and
the expected degrees of the reduced graph. This requires
deviation correction of the initial selected edge set to obtain
the closest vertex degree distribution. BM2 first classifies
nodes according to each node’s degree difference. Specifically,
nodes are divided into three groups A, B, and C, such that
Yu € A,dis(u) < —0.5, Vu € B,—0.5 < dis(u) < 0, and

Algorithm 2: B-Matching with Bipartite Matching (BM2)

Input: undirected graph G = (V, E), edge preservation ratio

p
Output: reduced graph G' = (V', E')
calculate the expected degree E(degg () for all vertices in
v
initialize F,, < 0,degg’ (i) + 0
b; + round(E(degg:(i))) for each vertex i
for each (u,v) € E do
if deger (u) < by and deggr(v) < b, then
E,, + EnU{e}
B deggr (u) < deggr (u)+1,deggr (v) < deggr (v)+1
A+ 0,B+0,C«+ 0
9 for each v € V do
10 dis(u) = deger (u) — E(deggr (u))
1 if dis(u) < —0.5 then

9 a m AW -

®

12 | A+ AU{u}

13 else if —0.5 < dis(u) < O then
14 | B+ BU{u}

15 else

16 | C+ CU{u}

17 "+ FE—E,

18 for each e = (u,v) € E* do

19 gain = |dis(u)| + 2|dis(v)| — |1 + dis(u)| — 1
20 if u € A and v € B and gain > 0 then

21 | w(e) < gain

22 else

23 | discard e from E*

24 let G* be (AU B), E*,W) where W is the set {w(e)}
25 Epp = bipartite (G™)
% F' = FE..UFEp

Vu € C,dis(u) > 0 (lines 8-16). For a node in group A, its
absolute degree difference will decrease by adding a connected
edge in the reduced graph. For a node in group B, its absolute
degree difference will increase by less than 1 by adding a
connected edge in the reduced graph. For a node in group C,
its absolute degree difference will increase by 1 since it has
already reached or exceeded its expected degree.

Next, let us discuss the different situations with respect to
the membership of two endpoints of an edge in the sets A, B,
and C.

For edges connecting nodes (1) within group B (2) between
groups A and C (3) between groups B and C (4) within group
C, the addition of an edge will definitely lead to an increase
in the overall degree difference. Furthermore, those edges e =
(u,v) € E, where u € A and v € A, must have all been added
to F,,, in Phase 1—so we do not need to consider them at this
point. Therefore, we only focus on those edges e = (u,v) €
E, where u € A and v € B or vice versa.

Lemma 1. Let ¢ = (u,v) where u € A and v € B. The
addition of e to the reduced graph changes the overall degree
difference A by gain = |dis(u)|+2|dis(v)| —|dis(u)+1]—1.

Proof. For e = (u,v) € E, where u € A and v € B, let us
calculate the degree differences caused by its addition. Before
adding this edge to the selected edge set, the total degree
difference of vertices u and v is di = |dis(u)| + |dis(v)].

After its addition, the total degree difference is dy = |dis(u)+
1| + |dis(v) + 1] = |dis(u) + 1] + (1 — |dis(v)]). Define
gain as the change by adding e, i.e., gain = dy — dy =
(Idis(u)| + |dis(v)]) — (Jdis(u) + 1| + (1 — |dis(v)]) =
|dis(u)| + 2|dis(v)| — |dis(u) + 1] — 1. If gain > 0, the
degree difference between the reduced graph and the original
is reduced. This concludes the proof. O

According to Lemma 1, in the second phase, BM2 adds
edges connecting nodes between groups A and B into graph
G* if the gain is > 0 to form a weighted bipartite graph,
where the weight of an edge is the gain (lines 17-23). Next, it
performs an approximate maximum weight bipartite matching
on graph G* to identify the edge set that minimizes the overall
degree difference (lines 24-25). The final selected edge set of
BM2 is composed of F,, and Egp (line 26).

Algorithm 3 illustrates the bipartite algorithm called in line
25 of Algorithm 2.

Algorithm 3: bipartite
Input: bipartite graph G* = (AU B, E*, W)
Output: edge set Egp C E*

1 initialize Epp <+ &

2 sort edges e € E™ in non-increasing order of their weights

w(e) and add them into a priority queue Q

3 while Q # @ do

4 e = (a,b) + Q.next()

5 Epp + Epp U {6}

6 discard all edges in @ incident to b

7

8

9

dis(a) «+ dis(a) + 1
if —1 < dis(a) < —0.5 then

for each €' = (a,x) € E* do
10 w(e') + |dis(a)| + 2|dis(z)| — |1 + dis(a)| — 1
11 if w(e’) > 0 then
12 | update order of ¢’ in Q
13 else
14 | discard edge e’ from Q
15 else if dis(a) > —0.5 then
16 for each €' = (a,x) € E* do
17 | discard edge €’ from Q

First, edges are sorted in non-increasing order of weights
and then added to a priority queue () (line 2). At each iteration,
we add the head e = (a,b) of @ to the bipartite set Epp
(lines 4-5). Due to the addition of edge e, we need to modify
the degree differences of the relevant vertices, and update the
bipartite graph and @ (lines 6-17). Algorithm 3 terminates
when @ is empty.

Due to the addition to the selected edge set, the degree
difference is dynamically changing. The algorithm needs to
keep the correctness of vertex classification and the order of
Q. The discussion is as follows.

Take the head e = (a, b) of () and add it to Ezp, then BM2
updates the classification of relevant vertices. The new degree
difference of b is dispew (b) = dis(b)+1 > 0, which does not
meet the requirement of group B; so b and the edges adjacent
to b are removed from the bipartite graph (line 6). For a, there
are different situations.

Lemma 2. Let ¢ = (a,b) € Q where dis(a) < —2. The
change of dis(a) does not influence the gains of edges adjacent
to a.

Proof. The gain of e is |dis(a)|+2|dis(b)| — |dis(a) + 1| — 1.
Since dis(a) < —2, it can be computed as |dis(a)| +
2|dis(b)| — (|dis(a)| — 1) — 1 = 2|dis(b)|. So it depends only
on |dis(b)| and cannot be influenced by dis(a). O

According to Lemma 2, if dis(a) < —2, the gains of edges
adjacent to a do not change, and we do nothing. If —2 <
dis(a) < —1.5, we just update the gains of edges adjacent
to a using the formula in Lemma 1. If the new gain of an
edge becomes negative, we remove it from @ (lines 8-14). If
dis(a) > —1.5, dis(a) +1 > —0.5, the new degree difference
of vertex a does not meet the requirement of group A; so a
and the edges adjacent to a are removed from the bipartite
graph (lines 15-17).

Example 2. Running example of BM2: Figure I(a) shows
an original graph to be reduced. For the compression ratio
p = 0.4, the number next to each node represents the
expected degree for the reduced graph. First, the original
graph is rounded and transformed to Figure 3(a). Figure 3(b)
shows the maximum b-matching of the transformed graph,
where the number next to each node indicates the degree
difference between the current selected result and the ex-
pected reduced vertex degree. The initial selected edge set is
E,, = {(ur,u9), (usg, u10)}.

According to Figure 3(b), the vertices are classified as A =
{ur,ug}, B = {uy,u2,us,us,us,ue,u11},C = {ug,u10}.
Figure 3(c) shows the weighted bipartite graph, including the
degree differences and the gains of each edge.

At the first iteration, Algorithm bipartite first selects the
edge e = (u7,uy) with the largest gain to join Egp. Then
it updates the degree difference of ur to -0.8, deletes uq,
and updates the gains of all edges connected to u;. The
result is shown in Figure 3(d). At the second iteration, edge
e = (uy,us) is selected to be added to Egp. Also, bipartite
updates uz’s degree difference to 0.2 and deletes uy. Because
w7 no longer belongs to group A, u; and all edges connected
to it are removed. Since the gain of e = (ug, u11) is 0 as shown
in Figure 3(e), it can be selected or discarded according to
user’s preference. If it is discarded, the bipartite algorithm
ends, and Egp = {(ur,u1), (u7,us)}. The final edge set
of BM2 is E' = {(ur,ug), (us,u10), (ur,u1), (ur,u)}. The
final reduced graph is shown in Figure 3(f), where the yellow
edges and the black nodes are selected.

Theorem 2. For p € (0,1), the average absolute difference
between the degree of a node in the graph produced by BM?2
and the expectation is in (0, 5 + (1 — p)m)

Proof. During the Phase 1 of BM2, we first perform the
rounding operation, which would cause 0.5 degree difference
for each node at most. Then we give a linear time approxima-
tion algorithm for the Cardinality b-Matching Problem [25],
and the A after Phase 1 should be at most Y, ., 3 + 3 X

ug: 1

Ug: 0 up1:0

(a) The rounded graph

/@y —0.4

u:0.6 ug: 0.2
u,: 0.6
° [] []
uz:—0.4
A Ug:—0.6 °
uy:—0.4 u;:0.2 110:0.2
us: =04 304 Uyp:—0.4

(e) The result of bipartite (f) The final reduced graph

Fig. 3. An illustration of running BM2

> wey | —dega(u) x p| = % x V| + % XPY ey dega(u) =
LV + 1 xpx2|B| = 1|V|+p|E|

Consider the process of BM2, it starts to add edges from
0 and will not cause edge overload except for the 0.5 degree
rounding. So the maximum degree difference before Phase 1

starts is), oy, | — dega(u) x p| = 2p|E| for BM2. We define

1
sIVI+plE| _ V] 1 o di imizati i
B = Tp]F] + 5 to indicate the optimization ratio of

degree difference from BM2 under different values of p. It
shows that a larger p results in a smaller degree difference.
Thus, the A for p > 0.5 should be less than that of p < 0.5.

When p < 0.5, we have p|E| < (1—p)|E|, so A < 3|V|+
(1 — p)|E|. Thus, overall, we have A < 1|V|+ (1 — p)|E|,
which gives the range of the average absolute difference as
stated in the theorem.

O

In Phase 1 of BM2, it includes the linear-time processing
of nodes and edges. In Phase 2, the vertex classification and
edge selection are also in linear-time; so the time complexity
of these two parts is O(|V| + |E|). The rest of BM2 involves
bipartite edge sorting and selection in which each edge of
E* can be processed at most |B| times. So the overall time
complexity of BM2 is O(|V|+|E|+|E*|loga| E*| + | B|| E*]).

The time complexity of CRR is O(|V||E| + |E|log2|E| +
|E|+steps), where steps is set to xx P and P = px|E|. Since
x and p are constants, steps depends only on |E|. In addition,
|B| is smaller than |V| and |E*| is smaller than |E|, thus
|B||E*| is smaller than |V'||E| and |E*|logz|E*| is smaller
than |E|logs| F|. This analysis shows that the time complexity
of CRR is greater than that of BM2, which is consistent with
our experimental results in Section V-B.

V. EXPERIMENTAL EVALUATION
A. Experimental Settings

Setup. We perform the experiments on a desktop with 16GB
memory, Intel Core i7 processor and 3.40GHz frequency. We
use Python and create graphs using the snap library provided
by Stanford Network Analysis Project [26]. The complete
experimental codes and results can be found at [27].
Datasets. Table II summarizes the undirected graphs used in
our experiments. Among them, ca-GrQc and ca-HepPh are
author collaboration networks in different domains; email-
Enron is an email communication network from Enron; com-
LiveJournal is an online blogging and gaming network. All of
these datasets are downloaded from SNAP [28].

TABLE II
REAL-WORLD NETWORK DATASETS
Dataset # of Nodes # of Edges Description
ca-GrQc 5242 14,496 Collaboration network
ca-HepPh 12,008 118,521 Collaboration network
email-Enron 36,692 183,831 Email communication network
com-LiveJournal 3,997,962 34,681,189 Online social network

Competitive method. We compare with a state-of-the-art
graph reduction algorithm, which is a grouping-based method
UDS (Utility-Driven Graph Summarization) proposed by Ku-
mar et al. [8]. It has achieved the best experimental results so
far. Although Kumar et al. [8] have introduced a memorization
technique as a scalable approach to UDS, the performance
issues such as huge storage cost and high time complexity
still cannot be improved much. It takes about 10° seconds to
process a dataset containing 1 billion edges on a server with
16 vCPU, 64GB memory and 300GB SSD storage.

07 6 07 300

- 250
: 200
04
2 2

02 02

06

05

f

Average delta

S 04

Time(s)

€ o3

01

0 0 0 0
2 4 & 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

(a) ca-GrQc (b) ca-HepPh

Fig. 4. Performances of steps
Iteration steps. For CRR, the number of iterations affects
its reduction quality and operating efficiency. In order to
determine the values of steps in the subsequent experiments, a
preliminary experiment was first conducted. According to the
nature of the iterative process, we set steps to be [z x PJ,
where x is a variable that can be controlled. The graph
reduction quality is measured by the average delta between the
reduced graph G’ and the initial graph G (Average deltazﬁ),
with a lower average delta indicating a higher graph reduc-
tion quality, and the operating efficiency is measured by the
running time. For the two smaller datasets ca-GrQc and ca-
HepPh, the experimental results are shown in Figure 4, where
the red curve represents the graph reduction quality and the
green histograms represent the running time. According to the
charts, on these two datasets, the graph reduction quality of
CRR has improved significantly when = > 4, and tends to be

flat when = > 10. In addition, for ca-GrQc, the rising trend
of time slowed down when =z > 10. For ca-HepPh, the time
increasing is relatively stable. Based on the above experiments,
we observe that x should be set to greater than 4, and there
is no need to be a very large number. Therefore, steps is set
to [10 x P] in the subsequent experiments.

Parameter Settings. For UDS, the vertex importance nodel S
and edge importance edgelS are set as the betweenness
centrality. Also, the utility threshold 7y = p. For all methods,
p € [0.1,0.9], with a step size 0.1.

Evaluation Tasks. We evaluate our techniques using five
common characteristics of graphs and two popular graph
analysis applications, compared against the baseline method.
For each application, utility is defined to show the usefulness
with respect to the initial graph. A higher utility means a better
graph reduction quality.

(1) Vertex degree corresponds to the percentage of vertices
with a certain degree value. CRR and BM2 are edge shedding
methods based on vertex degrees, which are closely related
to this property. (2) Shortest-path distance refers to the per-
centage of reachable vertex pairs with different shortest path
distances among all reachable vertex pairs. This property is
crucial for any graph analysis tasks involving shortest path
calculation. (3) Betweenness centrality represents node’s im-
portance in the network. It is related to the number of shortest
paths through it in the graph. (4) Clustering coefficient is
used to measure how close neighbors of the average k-degree
vertex to form a clique. In particular, clustering coefficient is
an important property in social networks. (5) Hop-plot is the
percentage of all reachable vertex pairs in the network under
the restriction of a certain distance k. (6) Top-k Query: Top-k
or Top-t% Query is one of the most common applications. By
running PageRank algorithm to rank the vertices, the top &
vertices are selected. Given the value of ¢, we can compute
k =|V] x t% for the initial graph and k = |V’| x t% for the
reduced graph. If we run PageRank on both graphs G and G,
we let Vo be the set of top & nodes in G, and V5, be the set
of top k nodes in G’ based on PageRank values. Therefore,
the utility of Top-k query is defined as:)

Utility of Top-k Query="Y0Vexl

For UDS, we adopt its own processing method of supernodes
to get Top-k utility. (7) Link prediction within community
(abbreviated as link prediction) is another tested application.
It predicts whether a given pair of vertices belongs to the
same community. In our experiments, it is performed on all
2-hop vertex pairs in G and G’ respectively. Suppose L is the
prediction result for G and Ly is the result for G’, the utility
of link prediction is defined as follows:

Utility of Link Prediction=2:"1

B. Experimental Results

The experiments include the graph reduction and graph
analysis tasks on the first 3 datasets, ca-GrQc, ca-HepPh and
email-Enron. Due to the huge cost of UDS, on the com-
LiveJournal dataset, we only perform graph reduction using
CRR and BM2, and perform the Top-k queries.

TABLE III
GRAPH REDUCTION TIME (SEC)

[ca-GrQc ca-HepPh email-Enron com-LiveJournal
P | ups] CRR [BM2 [UDS | CRR [BM2 | UDS [CRR BM2 | UDS [CRR BM2 |
0.9 15.212 14.861 | 0.257 268.972 275619 | 1.084 6879.807 1885.879 | 2.645 3626.847 | 357.569
0.8 15.207 14.925 | 0.250 271.939 204.612 | 1250 | 55965.467 1829.306 | 2.537 3312434 | 397.061
0.7 15.426 14.965 | 0.258 302.764 315.623 | 1423 | 160353.568 | 1956.268 | 2.889 3223.822 | 365409
0.6 16.599 14789 | 0.279 890.657 318.554 | 1.543 | 231575.210 | 1956.607 | 3.101 2631.308 | 459.907
0.5 19.217 14.934 | 0.257 3054.891 202.064 | 1.642 | 296826.905 | 1822.863 | 3.674 2426.456 | 293.872
04 | 27516 14510 | 0297 | 5269.170 | 307.329 | 1.758 | 422570.755 | 1873.002 | 3.639 2043.653 | 323.950
03 | 66.699 14510 | 0.283 8057.549 | 300.614 | 1.880 | 497718257 | 1832783 | 3.837 1776.021 | 314.252
02 | 179200 | 13.895 | 0359 | 11284.950 | 274.653 | 2.039 | 562725.773 | 1819.197 | 4.058 1419.634 | 343.632
0.1 | 365766 | 13246 | 0349 | 15773.001 | 241.629 | 2.399 | 604679.461 | 1857.304 | 4.161 1096.614 | 330.989
TABLE IV
TOTAL PROCESSING TIME ON CA-GRQC I (SEC)
Link prediction SP distance Betweenness centrality Hop-plot

T 321.68 74.182 110.466 141.429

p UDS CRR BM2 UDS | CRR BM2 UDS | CRR [BM2 UDS CRR BM2
0.9 [326,706 | 316.573 | 201.951 71.094 [80.760 | 61.623 | 76372 | 92.765 | 76.167 | 124388 | 117.438 | 135.114
0.5 | 130.072 | 106.264 | 71.391 38.245 54798 | 24530 | 40.779 | 65520 | 32.388 | 47.340 81.070 50.492
0.1 | 385975 23.507 5.552 366.462 | 13.575 0.522 | 366.588 | 14.851 1.014 | 367.006 14.326 0.836

Running time. The total running time includes the graph
reduction time on the initial graph and the graph analysis time
on the reduced graph. Table III shows the graph reduction time
of three methods with different values of p. It can be seen
that when the size of the datasets grows exponentially, the
graph reduction time of BM2 is almost unchanged, and CRR
can achieve nearly linear growth. The time cost of UDS is so
large that it cannot finish graph reduction on com-LiveJournal
dataset within 10 times of CRR’s reduction time; so we have
to give up on com-LiveJournal with UDS. By contrast, BM2
can complete the corresponding graph reduction tasks within
500s. The above results fully demonstrate the superiority of
CRR and BM2 in their edge shedding abilities, indicating that
these two techniques can achieve fast graph reduction under
resource constraints.

Next, let us examine the whole processing time (graph
reduction time plus graph analysis time on reduced graphs)
for different graph analysis tasks. We only show the results
on ca-GrQc with p = 0.9, 0.5, and 0.1 for clarity. Results on
other datasets with other p values show similar trends, and can
be found in [27].

TABLE V
TOTAL PROCESSING TIME ON CA-GRQC I (SEC)

Top-k Vertex degree Clustering coefficient
T 1.016 0.075 0.202
p UDS [CRR [BM2 | UDS | CRR [BM2 | UDS [CRR [BM2
0.9 16.165 15.822 1.127 15.312 14.907 0.290 15.415 15.049 0.435
0.5 19.693 15.763 0.956 19.293 14.955 0.276 19.550 15.046 0.345
0.1 365.873 13.483 0.526 365.801 13.252 0.353 365.805 13.271 0.365

The results are displayed in Tables IV-V, where the “T”
lines show the processing time on initial graphs. For Table

V, since the time complexity of these three graph analysis
tasks, Top-k query, Vertex degree and Clustering coefficient,
is low, and the size of ca-GrQc is small, the whole processing
time using edge shedding methods does not present significant
advantages compared to performing the graph analysis tasks
directly on the initial graph. However, we can still find CRR
and BM2 surpass UDS a lot especially when we need a
small compression ratio. Moreover, in practical scenarios, the
reduced graph can be reused after being generated and the
time-saving is more. As a conclusion, CRR and BM2 can
further reduce the processing time for graph analysis tasks
with low time complexities.

Table IV shows the results for the remaining four graph
analysis tasks with relatively high time complexities. Again,
we can see that CRR and BM2 perform much better than UDS.
Moreover, CRR and BM?2 exhibit great efficiency compared to
performing graph analysis tasks directly on the original graphs,
especially when the compression ratio is small.

Next, we briefly show the graph analysis time of all graph
analysis tasks on reduced graphs in Tables VI-VII, using the
email-Enron dataset as an illustration. The “T” lines represent
processing time on the initial graph. The three graph reduction
methods can directly reduce the evaluation time of graph
analysis tasks in most cases, but the performances of the three
methods are not consistent on different graph analysis tasks
since it mainly depends on the size of the reduced graph.

In general, both CRR and BM2 can greatly improve the time
performance compared to UDS, especially when the dataset is
large, and under resource constraints.

Graph reduction quality. Next we focus on the graph reduc-

TABLE VI
GRAPH ANALYSIS TIME ON REDUCED GRAPHS ON EMAIL-ENRON [(SEC)

Link prediction SP distance Betweenness centrality Hop-plot

T 3302.558 13716.537 20290.111 16568.052
p UDS CRR BM2 UDS CRR BM2 UDS CRR [BM2 UDS CRR BM2

0.9 | 2643.240 | 3533.481 2804.757 11828.763 14585.398 11652.593 13299.943 22405.572 14688.822 12015.097 16560.067 12049.356
0.5 682.331 2657.078 1688.226 1212.559 7811.894 3158.780 1030.596 11397.758 3816.374 1300.628 10465.631 3729.803
0.1 122.399 801.788 499.911 34.253 637.284 196.764 36.333 890.703 274.340 33.591 1003.209 344.473

—o— Practical —o— Practical —o— initial —o— initial
4 Theoretical(CRR) 25 Theoretical(BM2) 08 uDs 08 uDs
—o— CRR —o— CRR
© © n n
3 520 gos | BM2 $ 0.6 BM2
CE! 3 S S
() [T \ T
g g > 0a] | 4
52 5 5 0.4 5 0.4 \
z z10 N3 \ R \
1 ™~ 02 | 0.2
— 05 T~ \
—— .] ——— \
% 0.9 = 0.0 . s
1 02 03 04 05 06 07 08 09 1 02 03 04 05 06 07 08 09 0 30 60 90 120 150 180 210 240 270 300 0 30 60 90 120 150 180 210 240 270 300
P P degree degree

(a) Error bounds of CRR on caGrQc (b) Error bounds of BM2 on CaGrQc

(c) email-Enron with p=0.8 (d) email-Enron with p=0.3

Fig. 5. Vertex degree

0.6
—— initial —— initial 06 —— initial 0.6 —— initial
05 ups 05/ ubs 05 ubs ubs
—— CRR —— CRR i —— CRR 05 —— CRR
g 0.4 3 3 3
g —— BM2 goa BM2 Yoa —— BM2 Soa —— BM2
% & § 5
0.3
2 203 203 203
o [s} (=} o
®02 ®02 N K02 £02 \
0.1 0.1 0.1 0.1
— -
3 6 9 12 15 18 3 6 9 12 15 18 3 6 9 12 15 18 3 6 9 12 15 18
degree degree degree degree
(a) email-Enron with p=0.7 (b) email-Enron with p=0.6 (c) email-Enron with p=0.5 (d) email-Enron with p=0.4
Fig. 6. Vertex degree (zoom-in)
—— initial 0.4 —o— initial 06 —o— initial 0.6 —— initial
0.4 ups uDs ubs ubs
0.5
2 —— CRR | £ —— CRR | £05 —— CRR | £ —>— CRR
203 —— BM2 303 —— BM2 g ‘ —— BM2 S04 —— BM2
x X x 0.4 x
]]] s
[302 %03 503
> 0.2 > > >
s s G G
. . <02 < 02
X X X X
01 01
0.1 0.1
0.0 == e 0.0 = = e 0.0 - 00=£ —
01234567 891011121314151617 0123456 7 8 910111213 01 23 456 7 8 910111213 01234567 8910111213

SP distance SP distance

(a) ca-GrQc with p=0.3 (b) ca-HepPh with p=0.3

SP distance SP distance

(c) email-Enron with p=0.8 (d) email-Enron with p=0.3

Fig. 7. Shortest-path distance

tion quality of CRR and BM2 with respect to UDS on different
graph analysis tasks. Since the three methods all perform well
when p is large, we display the results mainly with small p
for clarity.

We first examine the error bounds of our methods. We show
the result on caGrQc in Figures 5(a)-5(b). It can be seen that
although the error bounds we give are not tight, CRR and
BM2 both perform very well and has very small errors (no
more than 1 for all values of p). That is, our methods are
effective and can generate the reduced graph with little error.
(1) Vertex degree. Figures 5(c)- 5(d) shows the vertex degree
distributions on email-Enron. Since this dataset has a wide
degree range, the vertex degrees larger than 300 are aggregated
as 300. From Figures 5(c) and 5(d), we can see that the results
from CRR and BM2 are very close to the initial vertex degree

TABLE VII
GRAPH ANALYSIS TIME ON REDUCED GRAPHS ON EMAIL-ENRON /] (SEC)

Top-k Vertex degree Clustering coefficient
T 10.407 1.152 10.489
p UDS [CRR | BM2 | UDS | CRR [BM2 | UDS | CRR [BM2
0.9 10216 | 8299 | 7.146 | 1.171 0.655 | 0.547 | 15.012 | 14.749 | 8.206
0.5 4.402 5406 | 4818 | 0.857 0373 | 0279 | 7.507 4.635 2.999
0.1 3.211 1.501 1.318 | 0.865 0.088 | 0.063 | 2.350 0.574 0.416

distributions, while UDS deviates more than CRR and BM2.
To better illustrate the result, we zoom-in the most probable
vertex degrees (1 to 18) on it. The result is shown in Figure
6. We can see that curves of CRR and BM2 fit the original
graph precisely, which shows the high accuracy of our reduced
graphs.

(2) Shortest-path distance. Figure 7 illustrates the shortest-
path distance distributions. For all datasets, when p is larger,
the distributions of the three techniques are nearly the same
as the initial graph. When p = 0.3, the results of CRR and
BM2 still conform to the trend of the curve, but UDS deviates
significantly from the original curve. It can be seen that CRR
and BM2 maintain the shortest-path distance much better,
while UDS basically has lost this feature when p is small.
(3) Betweenness centrality. Figure 8 shows the betweenness
centrality versus the vertex degree. We can see that CRR
and BM2 measure the betweenness centrality of vertices with
lower degrees very accurately in all cases, but the measure
of vertices with higher degrees is relatively unstable. But on
the whole, the performance of both is significantly better than
UDS, due to the nature of supernode aggregation in UDS.
(4) Clustering coefficient. Figure 9 illustrates the clustering

0.0175{ —° initial 0,010 —°— initial —o— initial — initial
2 : uDs g‘ uDs ED.OIO uDs ED.D]O uDs
£O0107 o crR € 0.008] —— CRR E —o— CRR e —o— CRR
§ 0.0125 BM2 g BM2 / § o008 BM2 § o008 BM2
g 0.0100 g 0.006 g 0.006 g 0.006
§ 0.0075 g:j 0.004 g:j 0.004 4 g:g 0.004
2 0.0050 2 2 p Z
B ooz a— 2 0.002 2 0.002 //\/% £ 000 /M
“ e——) |
10 20 30 40 50 60 70 80 50 100 150 200 250 300 350 400 450 30 60 90 120 150 180 210 240 270 300 30 60 90 120 150 180 210 240 270 300
degree degree degree degree
(a) ca-GrQc with p=0.3 (b) ca-HepPh with p=0.3 (c) email-Enron with p=0.8 (d) email-Enron with p=0.3
Fig. 8. Betweenness centrality
14 —o— initial 12 —— initial 0s —— initial ! . —— initial
210 ubs e ubs o ups 206 ubs
% —o— CRR .5 10 —o— CRR %M —o— CRR Ag —o— CRR
£10 BM2 £ BM2 = —— BM2 £ —— BM2
[[3
Sos) 8 o3 g os .
Fos | N 3 g 2, S~
g / 8 o2] N —
for "/ E E 5. N
lJ0.2 — © o1 o uol\
0 10 20 30 40 50 60 70 80 50 100 150 200 250 300 350 400 450 100 200 300 400 500 600 700 800 9;0 looolloolgo(;izoo 100 200 300 400 500 60:00 800 900 1000110012001300
degree degree degree degree
(a) ca-GrQc with p=0.3 (b) ca-HepPh with p=0.3 (c) email-Enron with p=0.8 (d) email-Enron with p=0.3
Fig. 9. Clustering coefficient
= 1.0 = 1.0 = 1.0
—o— initial —o— initial —o— initial —o— initial
uDs 0.8 ubs 0.8 ups 0.8 ubs /
2 —=— CRR 2 —o— CRR 2 —o— CRR 2 —o— CRR
5 —— BM2 50_6 BM2 50_6 BM2 50_6 BM2
£ £ £ £
[ﬂ) [ﬂ)
2 204 204 204
o o o o
N N N N
0.2 0.2 0.2
/ -
2 4 6 8 10 12 14 16 18 20 0'00 1 2 3 4 5 6 7 8 9 10 00 1 5 6 7 8 9 10 0'00 1 2 3 4 5 6 7 8 9 10
distance distance distance distance
(a) ca-GrQc with p=0.3 (b) ca-HepPh with p=0.3 (c) email-Enron with p=0.8 (d) email-Enron with p=0.3
Fig. 10. Hop-plot TABLE VIII
. . UTILITY OF ToP-10% I
coefficient versus the vertex degree. The results are consistent I Yo ey l
with the results of shortest-path distance. When p is larger, P [UPS [CRR [BMZ | UDS [CRR [BMZ |
CRR and BM2 are accurate in estimating the original graph. 0.9 0876 | 0.966 | 0.935 | 0.947 | 0978 | 0.943
: 0.8 0735 | 0937 | 0908 | 0927 | 0963 | 0917
When pis smaller, CRR pe'rforms the best on the ca-GrQc 07 o6t | 0016 | 070 | 087 | ooa1 | o887
and email-Enron datasets while BM2 performs the best on the 06 0571 | 0863 | 0828 | 0.609 | 0917 | 0851
ca-HepPh dataset. 05 0498 | 0.809 | 0702 | 0419 | 0865 | 0756
0.4 0443 | 0731 | 0693 | 0320 | 0838 | 0733
(5) Hop-plot. Figure 10 illustrates the hop-plot distribution. 03 0370 | 0.681 | 0586 | 0.230 | 0.772 | 0.684
On all d h o £ the th hni for th 02 0269 | 0500 | 0460 | 0.151 | 0.685 | 0.604
n all datasets, the estimations ot the three techniques tfor the 0.1 0174 | 0313 | 0254 | 0092 | 0514 | 0439
initial graph are slightly different in different regions, but they TABLE IX
all perform well on the whole. UTILITY OF ToP-10% IT
e [email-Enron [com-LiveJournal [
(6) Top—k;. Query. Tables VIII-IX show the utility results of P [UPS [CRR [BM2 [UDS | CRR [BMZ |
our experiments where we compare CRR, BM2, and UDS 09 0775 | 0966 | 0833 0963 | 0984
with respect to top-k queries, and ¢ is set to 10. From the 0.8 0537 | 0939 | 0.798 0.900 | 0.986
. 0.7 0357 | 0.898 | 0.750 0.856 | 0.976
Fable we can see that the p.e.rformance fJf CRR is excellent as 06 0283 | 0850 | 0696 0823 | 0957
it can reach almost 60% utility when p is reduced to 0.3 on all 05 0226 | 0812 | 0.595 0797 | 0938
datasets. BM2’s performance is also good, ranking only second 8‘3‘ gii? gzgé ggz 8;; g-z;g
to CRR. When p is 01, the utility of UDS is below 02, which 0:2 0:105 0:586 0:454 0:642 0:850
means it has lost a lot of information. It is worth mentioning 0.1 0075 | 0.394 | 0292 0787 | 0.893

that, on large dataset such as com-LiveJournal, CRR and BM2
both perform very well with utilities greater than 75% even
though p is only 0.1, demonstrating the proposed methods’
power again for large datasets.

(7) Link prediction. Table X shows the utility results of link
prediction. In order to reduce the influence of link prediction
methods, we select Node2vec [29] to generate models using

graph embedding, and then use K-means to classify nodes
on the models. The classification result is the basis of link
prediction. Among them, we set the parameter p to 1, g to 1 of
Node2vec, n_clusters to 5 of K-means. The results show that
the performances of link prediction are different on various
datasets. For ca-GrQc, all three techniques perform similarly.
But for ca-HepPh and email-Enron, the utility of UDS drops
very fast, which is much worse than CRR and BM2.

TABLE X
UTILITY OF LINK PREDICTION

‘ ca-GrQc [ca-HepPh email-Enron]
P | UDS [CRR | BM2 | UDS [CRR [BM2 | UDS [CRR [BM2 |
09 [0772 0748] 0.797 | 0.865 | 0.865 [0.897 | 0.748 | 0.888 | 0.888
08 | 0701 | 0732 | 075 0.898 | 0.853 | 0.845 | 0.566 | 0.872 | 0.778
0.7 | 07 0.664 | 0.682 | 0.805 | 0.824 | 0.828 | 0.556 | 0.838 | 0.664
0.6 | 0631 | 0626 | 0.659 | 0.665 | 0.807 | 0.772 | 0.494 | 0.816 | 0.6
0.5 | 0617 | 0.634 | 0597 | 0.516 | 0.755 | 0.717 | 046 | 0.784 | 0.602
04 | 0559 | 057 0.541 | 0.447 | 0.694 | 0.647 | 0472 | 0.742 | 0.538
03 | 0529 | 0485 | 0463 | 0423 | 0.648 | 0.602 | 0448 | 0.69 | 0.506
02 | 0452 | 0483 | 0426 | 0401 | 0.57 0.545 | 0.444 | 0.634 | 0.486
0.1 | 0445 | 0419 | 0434 | 0329 | 0.531 | 0495 | 0442 | 056 | 0.484

Summary. First, we aim to propose efficient graph reduction
techniques under resource constraints. CRR and BM2 are
running on a desktop with 16GB memory, while UDS is
poorly adapted to large-scale datasets in this case. In terms of
operating efficiency, it takes less than half of the time of UDS
for CRR and BM2 to generate the reduced graph. Moreover,
when the size of datasets increases exponentially, CRR and
BM2 can maintain a linear increase in time, which is more
feasible compared to UDS. In terms of the graph reduction
quality, CRR and BM2 are much better than UDS in various
graph analysis tasks. In general, BM2 is more efficient than
CRR, while CRR shows a better graph reduction quality in
most cases. So users could choose different methods according
to their needs. In summary, the two methods proposed in
this paper, CRR and BM2, have achieved significantly better
performance than UDS in graph reduction, and meet the needs
of processing large graphs under resource constraints.

VI. CONCLUSIONS

In this paper, we introduce two novel methods for graph
reduction. Given the importance of vertex degree in capturing
network characteristics, we aim at generating the reduced
graph by preserving the expected degree distribution. The
proposed methods have greatly reduced the graph reduction
time compared to the state-of-the-art method UDS, and make
processing large graph datasets under resource constraints be-
come reality. For instance, CRR takes up to 25% of the graph
reduction time of UDS on ca-GrQc and BM2 takes 1% at
most. Meanwhile, a comprehensive experimental evaluations
on real-world datasets confirm that CRR and BM2 indeed
preserve well a number of important graph characteristics. In
addition, with the continuous improvement of graph reduction
techniques, users’ various needs in different scenarios make
autonomous control becoming the development trend. The
controllability of CRR and BM2 for size reduction is one of
the highlights of the proposed techniques.

[1]

[2]

[3]

[4]
[5]

[6]
[7]
[8]
[9]
[10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

REFERENCES

J. Clement, “Number of facebook users worldwide 2008-2019,”
https://www.statista.com/statistics/2648 10/number-of-monthly-active-f

acebook-users-worldwide, 2020.

J. Clement, “Twitter: number of monthly active users 2010-2019,”
https://www.statista.com/statistics/282087/number-of-monthly-active-t

witter-users, 2019.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,

2016.

K. LeFevre and E. Terzi, “Grass: Graph structure summarization,” in

SIAM, 2010, pp. 454-465.

M. Riondato, D. Garcia-Soriano, and F. Bonchi, “Graph summarization

with quality guarantees,” Data Min. Knowl. Discov., vol. 31, no. 2, pp.

314-349, 2017.

A. Maccioni and D. J. Abadi, “Scalable pattern matching over com-

pressed graphs via dedensification,” in SIGKDD, 2016, p. 1755-1764.

W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph compres-

sion,” in SIGMOD, 2012, pp. 157-168.

K. A. Kumar and P. Efstathopoulos, “Utility-driven graph summariza-

tion,” VLDB, vol. 12, no. 4, pp. 335-347, 2019.

S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with

bounded error,” in SIGMOD, 2008, p. 419-432.

S. E. Ahnert, “Power graph compression reveals dominant relationships

in genetic transcription networks,” Mol. BioSyst., vol. 9, pp. 2681-2685,

2013.

Zeqian Shen, Kwan-Liu Ma, and T. Eliassi-Rad, “Visual analysis of large

heterogeneous social networks by semantic and structural abstraction,”

IEEE Trans Visual Comput Graphics, vol. 12, no. 6, pp. 1427-1439,

2006.

C. Li and S. Lin, “Egocentric information abstraction for heterogeneous

social networks,” in ASONAM, 2009, pp. 255-260.

P. Hu and W. C. Lau, “A survey and taxonomy of graph sampling,”

ArXiv, vol. abs/1308.5865, 2013.

Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization

methods and applications,” CSUR, vol. 51, pp. 1 — 34, 2018.

N. Tang, Q. Chen, and P. Mitra, “Graph stream summarization: From

big bang to big crunch,” in SIGMOD, 2016, pp. 1481-1496.

X. Gou, L. Zou, C. Zhao, and T. Yang, “Fast and accurate graph stream

summarization,” in /CDE, 2019, pp. 1118-1129.

J. Zhang and Y. Tay, “Gscaler: Synthetically scaling a given graph.” in

EDBT, vol. 16, 2016, pp. 53-64.

A. Musaafir, A. Uta, H. Dreuning, and A.-L. Varbanescu, “A sampling-

based tool for scaling graph datasets,” in /CPE, 2020, pp. 289-300.

T. Bu and D. Towsley, “On distinguishing between internet power law

topology generators,” in Proc [EEE INFOCOM, vol. 2, 2002, pp. 638—

647.

P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “Systematic

topology analysis and generation using degree correlations,” SIGCOMM,

vol. 36, no. 4, pp. 135-146, 2006.

M. Mihail and N. K. Vishnoi, “On generating graphs with prescribed

vertex degrees for complex network modeling,” Position Paper, Approx.

and Randomized Algorithms for Communication Networks (ARACNE),

vol. 142, 2002.

P. Parchas, F. Gullo, D. Papadias, and F. Bonchi, “The pursuit of a good

possible world: extracting representative instances of uncertain graphs,”

in SIGMOD, 2014, pp. 967-978.

M. Barthelemy, “Betweenness centrality in large complex networks,”

The European physical journal B, vol. 38, no. 2, pp. 163-168, 2004.

U. Brandes, “A faster algorithm for betweenness centrality,” Journal of

mathematical sociology, vol. 25, no. 2, pp. 163-177, 2001.

S. Hougardy, “Linear time approximation algorithms for degree con-

strained subgraph problems,” in Research Trends in Combinatorial

Optimization. Springer, 2009, pp. 185-200.

J. Leskovec and R. Sosi¢, “Snap: A general-purpose network analysis

and graph-mining library,” TIST, vol. 8, no. 1, p. 1, 2016.

Y. Zeng, C. Song, and T. Ge, “Selective edge shedding in large graphs

under resourceconstraints,” https://github.com/ZYLpro/Selective-Edg

e-Shedding-in-Large- Graphs-Under-Resource-Constraints/.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, 2014.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for

networks,” SIGKDD, 2016.

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users
https://github.com/ZYLpro/Selective-Edge-Shedding-in-Large-Graphs-Under-Resource-Constraints/
https://github.com/ZYLpro/Selective-Edge-Shedding-in-Large-Graphs-Under-Resource-Constraints/
http://snap.stanford.edu/data

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Problem Definition
	Centrality

	Centrality Ranking with Rewiring (CRR)
	B-Matching with Bipartite Matching (BM2)
	B-Matching
	B-Matching with Bipartite Matching (BM2)

	Experimental evaluation
	Experimental Settings
	Experimental Results

	Conclusions
	References

