
Test-Time Training with Self-Supervision

for Generalization under Distribution Shifts

Yu Sun 1 Xiaolong Wang 1 2 Zhuang Liu 1 John Miller 1 Alexei A. Efros 1 Moritz Hardt 1

Abstract

In this paper, we propose Test-Time Training, a

general approach for improving the performance

of predictive models when training and test data

come from different distributions. We turn a sin-

gle unlabeled test sample into a self-supervised

learning problem, on which we update the model

parameters before making a prediction. This also

extends naturally to data in an online stream. Our

simple approach leads to improvements on di-

verse image classification benchmarks aimed at

evaluating robustness to distribution shifts.

1. Introduction

Supervised learning remains notoriously weak at generaliza-

tion under distribution shifts. Unless training and test data

are drawn from the same distribution, even seemingly minor

differences turn out to defeat state-of-the-art models (Recht

et al., 2018). Adversarial robustness and domain adapta-

tion are but a few existing paradigms that try to anticipate

differences between the training and test distribution with

either topological structure or data from the test distribution

available during training. We explore a new take on gener-

alization that does not anticipate the distribution shifts, but

instead learns from them at test time.

We start from a simple observation. The unlabeled test

sample x presented at test time gives us a hint about the

distribution from which it was drawn. We propose to take

advantage of this hint on the test distribution by allowing

the model parameters θ to depend on the test sample x, but

not its unknown label y. The concept of a variable decision

boundary θ(x) is powerful in theory since it breaks away

from the limitation of fixed model capacity (see additional

discussion in Section A1), but the design of a feedback

mechanism from x to θ(x) raises new challenges in practice

that we only begin to address here.

1University of California, Berkeley 2University of California,
San Diego. Correspondence to: Yu Sun <yusun@berkeley.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Our proposed test-time training method creates a self-

supervised learning problem based on this single test sample

x, updating θ at test time before making a prediction. Self-

supervised learning uses an auxiliary task that automatically

creates labels from unlabeled inputs. In our experiments,

we use the task of rotating each input image by a multiple

of 90 degrees and predicting its angle (Gidaris et al., 2018).

This approach can also be easily modified to work outside

the standard supervised learning setting. If several test

samples arrive in a batch, we can use the entire batch for

test-time training. If samples arrive in an online stream,

we obtain further improvements by keeping the state of the

parameters. After all, prediction is rarely a single event. The

online version can be the natural mode of deployment under

the additional assumption that test samples are produced by

the same or smoothly changing distribution shifts.

We experimentally validate our method in the context of

object recognition on several standard benchmarks. These

include images with diverse types of corruption at various

levels (Hendrycks & Dietterich, 2019), video frames of

moving objects (Shankar et al., 2019), and a new test set

of unknown shifts collected by (Recht et al., 2018). Our

algorithm makes substantial improvements under distribu-

tion shifts, while maintaining the same performance on the

original distribution.

In our experiments, we compare with a strong baseline

(labeled joint training) that uses both supervised and self-

supervised learning at training-time, but keeps the model

fixed at test time. Recent work shows that training-time self-

supervision improves robustness (Hendrycks et al., 2019a);

our joint training baseline corresponds to an improved imple-

mentation of this work. A comprehensive review of related

work follows in Section 5.

We complement the empirical results with theoretical inves-

tigations in Section 4, and establish an intuitive sufficient

condition on a convex model of when Test-Time Training

helps; this condition, roughly speaking, is to have correlated

gradients between the loss functions of the two tasks.

Project website: https://test-time-training.github.io/.

a
rX

iv
:1

9
0
9
.1

3
2
3
1
v
3

[c

s.
L

G
]

 1
 J

u
l

2
0
2
0

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

2. Method

This section describes the algorithmic details of our method.

To set up notation, consider a standard K-layer neural net-

work with parameters θk for layer k. The stacked parameter

vector θ = (θ1, . . . , θK) specifies the entire model for a

classification task with loss function lm(x, y;θ) on the test

sample (x, y). We call this the main task, as indicated by

the subscript of the loss function.

We assume to have training data (x1, y1), . . . , (xn, yn)
drawn i.i.d. from a distribution P . Standard empirical risk

minimization solves the optimization problem:

min
θ

1

n

n
∑

i=1

lm(xi, yi;θ). (1)

Our method requires a self-supervised auxiliary task with

loss function ls(x). In this paper, we choose the rotation

prediction task (Gidaris et al., 2018), which has been demon-

strated to be simple and effective at feature learning for

convolutional neural networks. The task simply rotates x
in the image plane by one of 0, 90, 180 and 270 degrees

and have the model predict the angle of rotation as a four-

way classification problem. Other self-supervised tasks in

Section 5 might also be used for our method.

The auxiliary task shares some of the model parameters

θe = (θ1, . . . , θκ) up to a certain κ ∈ {1, . . . ,K}. We

designate those κ layers as a shared feature extractor. The

auxiliary task uses its own task-specific parameters θs =
(θ′κ+1, . . . , θ

′
K). We call the unshared parameters θs the

self-supervised task branch, and θm = (θκ+1, . . . , θK) the

main task branch. Pictorially, the joint architecture is a

Y -structure with a shared bottom and two branches. For

our experiments, the self-supervised task branch has the

same architecture as the main branch, except for the output

dimensionality of the last layer due to the different number

of classes in the two tasks.

Training is done in the fashion of multi-task learning (Caru-

ana, 1997); the model is trained on both tasks on the same

data drawn from P . Losses for both tasks are added together,

and gradients are taken for the collection of all parameters.

The joint training problem is therefore

min
θe,θm,θs

1

n

n
∑

i=1

lm(xi, yi;θm,θe) + ls(xi;θs,θe). (2)

Now we describe the standard version of Test-Time Training

on a single test sample x. Simply put, Test-Time Training

fine-tunes the shared feature extractor θe by minimizing the

auxiliary task loss on x. This can be formulated as

min
θe

ls(x;θs,θe). (3)

Denote θ∗
e the (approximate) minimizer of Equation 3. The

model then makes a prediction using the updated parameters

θ(x) = (θ∗
e ,θm). Empirically, the difference is negligible

between minimizing Equation 3 over θe versus over both

θe and θs. Theoretically, the difference exists only when

optimization is done with more than one gradient step.

Test-Time Training naturally benefits from standard data

augmentation techniques. On each test sample x, we per-

form the exact same set of random transformations as for

data augmentation during training, to form a batch only con-

taining these augmented copies of x for Test-Time Training.

Online Test-Time Training. In the standard version of

our method, the optimization problem in Equation 3 is al-

ways initialized with parameters θ = (θe,θs) obtained by

minimizing Equation 2. After making a prediction on x, θ∗
e

is discarded. Outside of the standard supervised learning

setting, when the test samples arrive online sequentially, the

online version solves the same optimization problem as in

Equation 3 to update the shared feature extractor θe. How-

ever, on test sample xt, θ is instead initialized with θ(xt−1)
updated on the previous sample xt−1. This allows θ(xt) to

take advantage of the distributional information available in

x1, . . . , xt−1 as well as xt.

3. Empirical Results

We experiment with both versions of our method (standard

and online) on three kinds of benchmarks for distribution

shifts, presented here in the order of visually low to high-

level. Our code is available at the project website.

Network details. Our architecture and hyper-parameters

are consistent across all experiments. We use ResNets

(He et al., 2016b), which are constructed differently for

CIFAR-10 (Krizhevsky & Hinton, 2009) (26-layer) and Ima-

geNet (Russakovsky et al., 2015) (18-layer). The CIFAR-10

dataset contains 50K images for training, and 10K images

for testing. The ImageNet contains 1.2M images for train-

ing and the 50K validation images are used as the test set.

ResNets on CIFAR-10 have three groups, each containing

convolutional layers with the same number of channels and

size of feature maps; our splitting point is the end of the

second group. ResNets on ImageNet have four groups; our

splitting point is the end of the third group.

We use Group Normalization (GN) instead of Batch Nor-

malization (BN) in our architecture, since BN has been

shown to be ineffective when training with small batches,

for which the estimated batch statistics are not accurate

(Ioffe & Szegedy, 2015). This technicality hurts Test-Time

Training since each batch only contains (augmented) copies

of a single image. Different from BN, GN is not dependent

on batch size and achieves similar results on our baselines.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Accuracy (%) Airplane Bird Car Dog Cat Horse Ship Average

Object recognition task only 67.9 35.8 42.6 14.7 52.0 42.0 66.7 41.4

Joint training (Hendrycks et al., 2019a) 70.2 36.7 42.6 15.5 52.0 44.0 66.7 42.4

TTT (standard version) 70.2 39.2 42.6 21.6 54.7 46.0 77.8 45.2

TTT-Online 70.2 39.2 42.6 22.4 54.7 46.0 77.8 45.4

Table 2. Class-wise and average classification accuracy (%) on CIFAR classes in VID-Robust, adapted from (Shankar et al., 2019).

Test-Time Training (TTT) and online Test-Time Training (TTT-Online) improve over the two baselines on average, and by a large margin

on “ship” and “dog” classes where the rotation task is more meaningful than in classes like “airplane” (sample images in Figure A7).

3.2. Object Recognition on Video Frames

The Robust ImageNet Video Classification (VID-Robust)

dataset was developed by Shankar et al. (2019) from the Ima-

geNet Video detection dataset (Russakovsky et al., 2015), to

demonstrate how deep models for object recognition trained

on ImageNet (still images) fail to adapt well to video frames.

The VID-Robust dataset contains 1109 sets of video frames

in 30 classes; each set is a short video clip of frames that are

similar to an anchor frame. Our results are reported on the

anchor frames. To map the 1000 ImageNet classes to the 30

VID-Robust classes, we use the max-conversion function

in Shankar et al. (2019). Without any modifications for

videos, we apply our method to VID-Robust on top of the

same ImageNet model as in the previous subsection. Our

classification accuracy is reported in Table 3.

In addition, we take the seven classes in VID-Robust that

overlap with CIFAR-10, and re-scale those video frames to

the size of CIFAR-10 images, as a new test set for the model

trained on CIFAR-10 in the previous subsection. Again, we

apply our method to this dataset without any modifications.

Our results are shown in Table 2, with a breakdown for each

class. Noticing that Test-Time Training does not improve

on the airplane class, we inspect some airplane samples

(Figure A7), and observe black margins on two sides of most

images, which provide a trivial hint for rotation prediction.

In addition, given an image of airplanes in the sky, it is

often impossible even for humans to tell if it is rotated. This

shows that our method requires the self-supervised task to

be both well defined and non-trivial.

3.3. CIFAR-10.1: Unknown Distribution Shifts

CIFAR-10.1 (Recht et al., 2018) is a new test set of size 2000

modeled after CIFAR-10, with the exact same classes and

image dimensionality, following the dataset creation process

documented by the original CIFAR-10 paper as closely as

possible. The purpose is to investigate the distribution shifts

present between the two test sets, and the effect on object

recognition. All models tested by the authors suffer a large

performance drop on CIFAR-10.1 comparing to CIFAR-10,

even though there is no human noticeable difference, and

Method Accuracy (%)

Object recognition task only 62.7

Joint training (Hendrycks et al., 2019a) 63.5

TTT (standard version) 63.8

TTT-Online 64.3

Table 3. Test accuracy (%) on VID-Robust dataset (Shankar et al.,

2019). TTT and TTT-Online improve over the baselines.

Method Error (%)

Object recognition task only 17.4

Joint training (Hendrycks et al., 2019a) 16.7

TTT (standard version) 15.9

Table 4. Test error (%) on CIFAR-10.1 (Recht et al., 2018). TTT is

the first method to improve the performance of an existing model

on this new test set.

both have the same human accuracy. This demonstrates how

insidious and ubiquitous distribution shifts are, even when

researchers strive to minimize them.

The distribution shifts from CIFAR-10 to CIFAR-10.1 pose

an extremely difficult problem, and no prior work has been

able to improve the performance of an existing model on

this new test set, probably because: 1) researchers cannot

even identify the distribution shifts, let alone describe them

mathematically; 2) the samples in CIFAR-10.1 are only

revealed at test time; and even if they were revealed during

training, the distribution shifts are too subtle, and the sample

size is too small, for domain adaptation (Recht et al., 2018).

On the original CIFAR-10 test set, the baseline with only

object recognition has error 8.9%, and with joint training

has 8.1%; comparing to the first two rows of Table 4, both

suffer the typical performance drop (by a factor of two).

TTT yields an improvement of 0.8% (relative improvement

of 4.8%) over joint training. We recognize that this improve-

ment is small relative to the performance drop, but see it as

an encouraging first step for this very difficult problem.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Theorem 1. Let lm(x, y;θ) denote the main task loss on

test instance x, y with parameters θ, and ls(x;θ) the self-

supervised task loss that only depends on x. Assume that for

all x, y, lm(x, y;θ) is differentiable, convex and β-smooth

in θ, and both ‖∇lm(x, y;θ)‖ , ‖∇ls(x,θ)‖ ≤ G for all θ.

With a fixed learning rate η = ǫ
βG2 , for every x, y such that

〈∇lm(x, y;θ),∇ls(x;θ)〉 > ǫ, (10)

we have

lm(x, y;θ) > lm(x, y;θ(x)), (11)

where θ(x) = θ − η∇ls(x;θ) i.e. Test-Time Training with

one step of gradient descent.

The proof uses standard techniques in optimization, and is

left for the appendix. Theorem 1 reveals gradient correlation

as a determining factor of the success of Test-Time Training

in the smooth and convex case. In Figure 4, we empirically

show that our insight also holds for non-convex loss func-

tions, on the deep learning model and across the diverse set

of corruptions considered in Section 3; stronger gradient cor-

relation clearly indicates more performance improvement

over the baseline.

5. Related Work

Learning on test instances. Shocher et al. (2018) pro-

vide a key inspiration for our work by showing that image

super-resolution could be learned at test time simply by try-

ing to upsample a downsampled version of the input image.

More recently, Bau et al. (2019) improve photo manipula-

tion by adapting a pre-trained GAN to the statistics of the

input image. One of the earlier examples of this idea comes

from Jain & Learned-Miller (2011), who improve Viola-

Jones face detection (Viola et al., 2001) by bootstrapping

the more difficult faces in an image from the more easily

detected faces in that same image. The online version of

our algorithm is inspired by the work of Mullapudi et al.

(2018), which makes video segmentation more efficient by

using a student model that learns online from a teacher

model. The idea of online updates has also been used in

Kalal et al. (2011) for tracking and detection. A recent work

in echocardiography (Zhu et al., 2019) improves the deep

learning model that tracks myocardial motion and cardiac

blood flow with sequential updates. Lastly, we share the

philosophy of transductive learning (Vapnik, 2013; Gam-

merman et al., 1998), but have little in common with their

classical algorithms; recent work by Tripuraneni & Mackey

(2019) theoretically explores this for linear prediction, in

the context of debiasing the LASSO estimator.

Self-supervised learning studies how to create labels

from the data, by designing various pretext tasks that can

learn semantic information without human annotations, such

as context prediction (Doersch et al., 2015), solving jig-

saw puzzles (Noroozi & Favaro, 2016), colorization (Lars-

son et al., 2017; Zhang et al., 2016), noise prediction (Bo-

janowski & Joulin, 2017), feature clustering (Caron et al.,

2018). Our paper uses rotation prediction (Gidaris et al.,

2018). Asano et al. (2019) show that self-supervised learn-

ing on only a single image, surprisingly, can produce low-

level features that generalize well. Closely related to our

work, Hendrycks et al. (2019a) propose that jointly training

a main task and a self-supervised task (our joint training

baseline in Section 3) can improve robustness on the main

task. The same idea is used in few-shot learning (Su et al.,

2019), domain generalization (Carlucci et al., 2019), and

unsupervised domain adaptation (Sun et al., 2019).

Adversarial robustness studies the robust risk

RP,∆(θ) = Ex,y∼P maxδ∈∆ l(x + δ, y; θ), where l
is some loss function, and ∆ is the set of perturbations; ∆
is often chosen as the Lp ball, for p ∈ {1, 2,∞}. Many

popular algorithms formulate and solve this as a robust

optimization problem (Goodfellow et al., 2014; Madry et al.,

2017; Sinha et al., 2017; Raghunathan et al., 2018; Wong &

Kolter, 2017; Croce et al., 2018), and the most well known

technique is adversarial training. Another line of work

is based on randomized smoothing (Cohen et al., 2019;

Salman et al., 2019), while some other approaches, such as

input transformations (Guo et al., 2017; Song et al., 2017),

are shown to be less effective (Athalye et al., 2018). There

are two main problems with the approaches above. First, all

of them can be seen as smoothing the decision boundary.

This establishes a theoretical tradeoff between accuracy and

robustness (Tsipras et al., 2018; Zhang et al., 2019), which

we also observe empirically with our adversarial training

baseline in Section 3. Intuitively, the more diverse ∆ is, the

less effective this one-boundary-fits-all approach can be for

a particular element of ∆. Second, adversarial methods

rely heavily on the mathematical structure of ∆, which

might not accurately model perturbations in the real world.

Therefore, generalization remains hard outside of the ∆ we

know in advance or can mathematically model, especially

for non-adversarial distribution shifts. Empirically, Kang

et al. (2019) shows that robustness for one ∆ might not

transfer to another, and training on the L∞ ball actually

hurts robustness on the L1 ball.

Non-adversarial robustness studies the effect of corrup-

tions, perturbations, out-of-distribution examples, and real-

world distribution shifts (Hendrycks et al., 2019b;a; 2018;

Hendrycks & Gimpel, 2016). Geirhos et al. (2018) show

that training on images corrupted by Gaussian noise makes

deep learning models robust to this particular noise type,

but does not improve performance on images corrupted by

another noise type e.g. salt-and-pepper noise.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Unsupervised domain adaptation (a.k.a. transfer learn-

ing) studies the problem of distribution shifts, when an

unlabeled dataset from the test distribution (target domain)

is available at training time, in addition to a labeled dataset

from the training distribution (source domain) (Chen et al.,

2011; Gong et al., 2012; Long et al., 2015; Ganin et al.,

2016; Long et al., 2016; Tzeng et al., 2017; Hoffman et al.,

2017; Csurka, 2017; Chen et al., 2018). The limitation of

the problem setting, however, is that generalization might

only be improved for this specific test distribution, which

can be difficult to anticipate in advance. Prior work try to

anticipate broader distributions by using multiple and evolv-

ing domains (Hoffman et al., 2018; 2012; 2014). Test-Time

Training does not anticipate any test distribution, by chang-

ing the setting of unsupervised domain adaptation, while

taking inspiration from its algorithms. Our paper is a follow-

up to Sun et al. (2019), which we explain and empirically

compare with in Section 3. Our update rule can be viewed

as performing one-sample unsupervised domain adaptation

on the fly, with the caveat that standard domain adaptation

techniques might become ill-defined when there is only one

sample from the target domain.

Domain generalization studies the setting where a meta

distribution generates multiple environment distributions,

some of which are available during training (source), while

others are used for testing (target) (Li et al., 2018; Shankar

et al., 2018; Muandet et al., 2013; Balaji et al., 2018; Ghifary

et al., 2015; Motiian et al., 2017; Li et al., 2017a; Gan et al.,

2016). With only a few environments, information on the

meta distribution is often too scarce to be helpful, and with

many environments, we are back to the i.i.d. setting where

each environment can be seen as a sample, and a strong

baseline is to simply train on all the environments (Li et al.,

2019). The setting of domain generalization is limited by

the inherent tradeoff between specificity and generality of a

fixed decision boundary, and the fact that generalization is

again elusive outside of the meta distribution i.e. the actual

P learned by the algorithm.

One (few)-shot learning studies how to learn a new task

or a new classification category using only one (or a few)

sample(s), on top of a general representation that has been

learned on diverse samples (Snell et al., 2017; Vinyals et al.,

2016; Fei-Fei et al., 2006; Ravi & Larochelle, 2016; Li

et al., 2017b; Finn et al., 2017; Gidaris & Komodakis, 2018).

Our update rule can be viewed as performing one-shot self-

supervised learning and can potentially be improved by

progress in one-shot learning.

Continual learning (a.k.a. learning without forgetting)

studies the setting where a model is made to learn a sequence

of tasks, and not forget about the earlier ones while training

for the later (Li & Hoiem, 2017; Lopez-Paz & Ranzato,

2017; Kirkpatrick et al., 2017; Santoro et al., 2016). In

contrast, with Test-Time Training, we are not concerned

about forgetting the past test samples since they have already

been evaluated on; and if a past sample comes up by any

chance, it would go through Test-Time Training again. In

addition, the impact of forgetting the training set is minimal,

because both tasks have already been jointly trained.

Online learning (a.k.a. online optimization) is a well-

studied area of learning theory (Shalev-Shwartz et al., 2012;

Hazan et al., 2016). The basic setting repeats the following:

receive xt, predict ŷt, receive yt from a worst-case oracle,

and learn. Final performance is evaluated using the regret,

which colloquially translates to how much worse the online

learning algorithm performs in comparison to the best fixed

model in hindsight. In contrast, our setting never reveals

any yt during testing even for the online version, so we do

not need to invoke the concept of the worst-case oracle or

the regret. Also, due to the lack of feedback from the envi-

ronment after predicting, our algorithm is motivated to learn

(with self-supervision) before predicting ŷt instead of after.

Note that some of the previously covered papers (Hoffman

et al., 2014; Jain & Learned-Miller, 2011; Mullapudi et al.,

2018) use the term “online learning” outside of the learning

theory setting, so the term can be overloaded.

6. Discussion

The idea of test-time training also makes sense for other

tasks, such as segmentation and detection, and in other fields,

such as speech recognition and natural language process-

ing. For machine learning practitioners with prior domain

knowledge in their respective fields, their expertise can be

leveraged to design better special-purpose self-supervised

tasks for test-time training. Researchers for general-purpose

self-supervised tasks can also use test-time training as an

evaluation benchmark, in addition to the currently prevalent

benchmark of pre-training and fine-tuning.

More generally, we hope this paper can encourage re-

searchers to abandon the self-imposed constraint of a fixed

decision boundary for testing, or even the artificial division

between training and testing altogether. Our work is but

a small step toward a new paradigm where much of the

learning happens after a model is deployed.

Acknowledgements. This work is supported by NSF

grant 1764033, DARPA and Berkeley DeepDrive. This

paper took a long time to develop, and benefited from con-

versations with many of our colleagues, including Ben Recht

and his students Ludwig Schmidt, Vaishaal Shanker and

Becca Roelofs; Ravi Teja Mullapudi, Achal Dave and Deva

Ramanan; and Armin Askari, Allan Jabri, Ashish Kumar,

Angjoo Kanazawa and Jitendra Malik.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

References

Asano, Y. M., Rupprecht, C., and Vedaldi, A. Surprising

effectiveness of few-image unsupervised feature learning.

arXiv preprint arXiv:1904.13132, 2019.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated

gradients give a false sense of security: Circumvent-

ing defenses to adversarial examples. arXiv preprint

arXiv:1802.00420, 2018.

Balaji, Y., Sankaranarayanan, S., and Chellappa, R. Metareg:

Towards domain generalization using meta-regularization.

In Advances in Neural Information Processing Systems,

pp. 998–1008, 2018.

Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu,

J.-Y., and Torralba, A. Semantic photo manipulation with

a generative image prior. ACM Transactions on Graphics

(TOG), 38(4):59, 2019.

Bojanowski, P. and Joulin, A. Unsupervised learning by

predicting noise. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 517–

526. JMLR. org, 2017.

Carlucci, F. M., D’Innocente, A., Bucci, S., Caputo, B., and

Tommasi, T. Domain generalization by solving jigsaw

puzzles. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 2229–2238,

2019.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep

clustering for unsupervised learning of visual features. In

Proceedings of the European Conference on Computer

Vision (ECCV), pp. 132–149, 2018.

Caruana, R. Multitask learning. Machine learning, 28(1):

41–75, 1997.

Chen, M., Weinberger, K. Q., and Blitzer, J. Co-training for

domain adaptation. In Advances in neural information

processing systems, pp. 2456–2464, 2011.

Chen, X., Sun, Y., Athiwaratkun, B., Cardie, C., and Wein-

berger, K. Adversarial deep averaging networks for cross-

lingual sentiment classification. Transactions of the Asso-

ciation for Computational Linguistics, 6:557–570, 2018.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified

adversarial robustness via randomized smoothing. arXiv

preprint arXiv:1902.02918, 2019.

Croce, F., Andriushchenko, M., and Hein, M. Provable

robustness of relu networks via maximization of linear

regions. arXiv preprint arXiv:1810.07481, 2018.

Csurka, G. Domain adaptation for visual applications: A

comprehensive survey. arXiv preprint arXiv:1702.05374,

2017.

Ding, G. W., Wang, L., and Jin, X. AdverTorch v0.1: An

adversarial robustness toolbox based on pytorch. arXiv

preprint arXiv:1902.07623, 2019.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised

visual representation learning by context prediction. In

Proceedings of the IEEE International Conference on

Computer Vision, pp. 1422–1430, 2015.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning of

object categories. IEEE transactions on pattern analysis

and machine intelligence, 28(4):594–611, 2006.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-

learning for fast adaptation of deep networks. In Proceed-

ings of the 34th International Conference on Machine

Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Gammerman, A., Vovk, V., and Vapnik, V. Learning by

transduction. In Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pp. 148–155.

Morgan Kaufmann Publishers Inc., 1998.

Gan, C., Yang, T., and Gong, B. Learning attributes equals

multi-source domain generalization. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 87–97, 2016.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,

H., Laviolette, F., Marchand, M., and Lempitsky, V.

Domain-adversarial training of neural networks. The

Journal of Machine Learning Research, 17(1):2096–2030,

2016.

Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge,

M., and Wichmann, F. A. Generalisation in humans and

deep neural networks. In Advances in Neural Information

Processing Systems, pp. 7538–7550, 2018.

Ghifary, M., Bastiaan Kleijn, W., Zhang, M., and Balduzzi,

D. Domain generalization for object recognition with

multi-task autoencoders. In Proceedings of the IEEE

international conference on computer vision, pp. 2551–

2559, 2015.

Gidaris, S. and Komodakis, N. Dynamic few-shot visual

learning without forgetting. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 4367–4375, 2018.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised rep-

resentation learning by predicting image rotations. arXiv

preprint arXiv:1803.07728, 2018.

Gong, B., Shi, Y., Sha, F., and Grauman, K. Geodesic flow

kernel for unsupervised domain adaptation. In 2012 IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 2066–2073. IEEE, 2012.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L. Coun-

tering adversarial images using input transformations.

arXiv preprint arXiv:1711.00117, 2017.

Hazan, E. et al. Introduction to online convex optimization.

Foundations and Trends® in Optimization, 2(3-4):157–

325, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings

in deep residual networks. In European conference on

computer vision, pp. 630–645. Springer, 2016b.

He, K., Girshick, R., and Dollár, P. Rethinking imagenet

pre-training. arXiv preprint arXiv:1811.08883, 2018.

Hendrycks, D. and Dietterich, T. Benchmarking neural

network robustness to common corruptions and perturba-

tions. arXiv preprint arXiv:1903.12261, 2019.

Hendrycks, D. and Gimpel, K. A baseline for detecting

misclassified and out-of-distribution examples in neural

networks. arXiv preprint arXiv:1610.02136, 2016.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K.

Using trusted data to train deep networks on labels cor-

rupted by severe noise. In Advances in neural information

processing systems, pp. 10456–10465, 2018.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training

can improve model robustness and uncertainty. arXiv

preprint arXiv:1901.09960, 2019a.

Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D.

Improving model robustness and uncertainty estimates

with self-supervised learning. arXiv preprint, 2019b.

Hoffman, J., Kulis, B., Darrell, T., and Saenko, K. Discover-

ing latent domains for multisource domain adaptation. In

European Conference on Computer Vision, pp. 702–715.

Springer, 2012.

Hoffman, J., Darrell, T., and Saenko, K. Continuous man-

ifold based adaptation for evolving visual domains. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 867–874, 2014.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P.,

Saenko, K., Efros, A. A., and Darrell, T. Cycada: Cycle-

consistent adversarial domain adaptation. arXiv preprint

arXiv:1711.03213, 2017.

Hoffman, J., Mohri, M., and Zhang, N. Algorithms and

theory for multiple-source adaptation. In Advances in

Neural Information Processing Systems, pp. 8246–8256,

2018.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,

K. Q. Deep networks with stochastic depth. In European

conference on computer vision, pp. 646–661. Springer,

2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015.

Jain, V. and Learned-Miller, E. Online domain adaptation

of a pre-trained cascade of classifiers. In CVPR 2011, pp.

577–584. IEEE, 2011.

Kalal, Z., Mikolajczyk, K., and Matas, J. Tracking-learning-

detection. IEEE transactions on pattern analysis and

machine intelligence, 34(7):1409–1422, 2011.

Kang, D., Sun, Y., Brown, T., Hendrycks, D., and Steinhardt,

J. Transfer of adversarial robustness between perturbation

types. arXiv preprint arXiv:1905.01034, 2019.

Kannan, H., Kurakin, A., and Goodfellow, I. Adversarial

logit pairing. arXiv preprint arXiv:1803.06373, 2018.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-

jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,

Grabska-Barwinska, A., et al. Overcoming catastrophic

forgetting in neural networks. Proceedings of the national

academy of sciences, 114(13):3521–3526, 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers

of features from tiny images. Technical report, Citeseer,

2009.

Larsson, G., Maire, M., and Shakhnarovich, G. Colorization

as a proxy task for visual understanding. In CVPR, 2017.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,

broader and artier domain generalization. In Proceed-

ings of the IEEE International Conference on Computer

Vision, pp. 5542–5550, 2017a.

Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.-Z., and

Hospedales, T. M. Episodic training for domain gen-

eralization. arXiv preprint arXiv:1902.00113, 2019.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K.,

and Tao, D. Deep domain generalization via conditional

invariant adversarial networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pp.

624–639, 2018.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Li, Z. and Hoiem, D. Learning without forgetting. IEEE

transactions on pattern analysis and machine intelligence,

40(12):2935–2947, 2017.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-sgd: Learning

to learn quickly for few-shot learning. arXiv preprint

arXiv:1707.09835, 2017b.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-

thinking the value of network pruning. arXiv preprint

arXiv:1810.05270, 2018.

Long, M., Cao, Y., Wang, J., and Jordan, M. I. Learn-

ing transferable features with deep adaptation networks.

arXiv preprint arXiv:1502.02791, 2015.

Long, M., Zhu, H., Wang, J., and Jordan, M. I. Unsupervised

domain adaptation with residual transfer networks. In

Advances in Neural Information Processing Systems, pp.

136–144, 2016.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory

for continual learning. In Advances in Neural Information

Processing Systems, pp. 6467–6476, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017.

Motiian, S., Piccirilli, M., Adjeroh, D. A., and Doretto,

G. Unified deep supervised domain adaptation and gen-

eralization. In Proceedings of the IEEE International

Conference on Computer Vision, pp. 5715–5725, 2017.

Muandet, K., Balduzzi, D., and Schölkopf, B. Domain

generalization via invariant feature representation. In

International Conference on Machine Learning, pp. 10–

18, 2013.

Mullapudi, R. T., Chen, S., Zhang, K., Ramanan, D., and

Fatahalian, K. Online model distillation for efficient

video inference. arXiv preprint arXiv:1812.02699, 2018.

Noroozi, M. and Favaro, P. Unsupervised learning of visual

representations by solving jigsaw puzzles. In European

Conference on Computer Vision, pp. 69–84. Springer,

2016.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified

defenses against adversarial examples. arXiv preprint

arXiv:1801.09344, 2018.

Ravi, S. and Larochelle, H. Optimization as a model for

few-shot learning. IEEE transactions on pattern analysis

and machine intelligence, 2016.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do

cifar-10 classifiers generalize to cifar-10? arXiv preprint

arXiv:1806.00451, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale

Visual Recognition Challenge. International Journal of

Computer Vision (IJCV), 115(3):211–252, 2015. doi:

10.1007/s11263-015-0816-y.

Salman, H., Yang, G., Li, J., Zhang, P., Zhang, H., Razen-

shteyn, I., and Bubeck, S. Provably robust deep learn-

ing via adversarially trained smoothed classifiers. arXiv

preprint arXiv:1906.04584, 2019.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and

Lillicrap, T. Meta-learning with memory-augmented neu-

ral networks. In International conference on machine

learning, pp. 1842–1850, 2016.

Shalev-Shwartz, S. et al. Online learning and online con-

vex optimization. Foundations and Trends® in Machine

Learning, 4(2):107–194, 2012.

Shankar, S., Piratla, V., Chakrabarti, S., Chaudhuri, S.,

Jyothi, P., and Sarawagi, S. Generalizing across

domains via cross-gradient training. arXiv preprint

arXiv:1804.10745, 2018.

Shankar, V., Dave, A., Roelofs, R., Ramanan, D., Recht, B.,

and Schmidt, L. Do image classifiers generalize across

time? arXiv, 2019.

Shocher, A., Cohen, N., and Irani, M. zero-shot super-

resolution using deep internal learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3118–3126, 2018.

Sinha, A., Namkoong, H., and Duchi, J. Certifying some dis-

tributional robustness with principled adversarial training.

arXiv preprint arXiv:1710.10571, 2017.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks

for few-shot learning. In Advances in Neural Information

Processing Systems, pp. 4077–4087, 2017.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N.

Pixeldefend: Leveraging generative models to understand

and defend against adversarial examples. arXiv preprint

arXiv:1710.10766, 2017.

Su, J.-C., Maji, S., and Hariharan, B. Boosting supervi-

sion with self-supervision for few-shot learning. arXiv

preprint arXiv:1906.07079, 2019.

Sun, Y., Tzeng, E., Darrell, T., and Efros, A. A. Unsuper-

vised domain adaptation through self-supervision. arXiv

preprint, 2019.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Tripuraneni, N. and Mackey, L. Debiasing linear prediction.

arXiv preprint arXiv:1908.02341, 2019.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and

Madry, A. Robustness may be at odds with accuracy.

arXiv preprint arXiv:1805.12152, 2018.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adver-

sarial discriminative domain adaptation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 7167–7176, 2017.

Vapnik, V. The nature of statistical learning theory. Springer

science & business media, 2013.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.

Matching networks for one shot learning. In Advances in

neural information processing systems, pp. 3630–3638,

2016.

Viola, P., Jones, M., et al. Rapid object detection using a

boosted cascade of simple features. CVPR (1), 1(511-

518):3, 2001.

Wong, E. and Kolter, J. Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

arXiv preprint arXiv:1711.00851, 2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and Jor-

dan, M. I. Theoretically principled trade-off between ro-

bustness and accuracy. arXiv preprint arXiv:1901.08573,

2019.

Zhang, R., Isola, P., and Efros, A. A. Colorful image col-

orization. In European conference on computer vision,

pp. 649–666. Springer, 2016.

Zhu, W., Huang, Y., Vannan, M. A., Liu, S., Xu, D., Fan, W.,

Qian, Z., and Xie, X. Neural multi-scale self-supervised

registration for echocardiogram dense tracking. arXiv

preprint arXiv:1906.07357, 2019.

Appendix: Test-Time Training with Self-Supervision

for Generalization under Distribution Shifts

A1. Informal Discussion on Our Variable

Decision Boundary

In the introduction, we claim that in traditional supervised

learning θ gives a fixed decision boundary, while our θ gives

a variable decision boundary. Here we informally discuss

this claim.

Denote the input space X and output space Y . A decision

boundary is simply a mapping f : X → Y . Let Θ be a

model class e.g R
d. Now consider a family of parametrized

functions gθ : X → Y , where θ ∈ Θ. In the context of deep

learning, g is the neural network architecture and θ contains

the parameters. We say that f is a fixed decision boundary

w.r.t. g and Θ if there exists θ ∈ Θ s.t. f(x) = gθ(x)
for every x ∈ X , and a variable decision boundary if for

every x ∈ X , there exists θ ∈ Θ s.t. f(x) = gθ(x). Note

how selection of θ can depend on x for a variable decision

boundary, and cannot for a fixed one. It is then trivial to

verify that our claim is true under those definitions.

A critical reader might say that with an arbitrarily large

model class, can’t every decision boundary be fixed? Yes,

but this is not the end of the story. Let d = dim(X) ×
dim(Y), and consider the enormous model class Θ′ = R

d

which is capable of representing all possible mappings be-

tween X and Y . Let g′
θ′ simply be the mapping represented

by θ′ ∈ Θ′. A variable decision boundary w.r.t. g and Θ
then indeed must be a fixed decision boundary w.r.t. g′ and

Θ′, but we would like to note two things. First, without any

prior knowledge, generalization in Θ′ is impossible with

any finite amount of training data; reasoning about g′ and

Θ′ is most likely not productive from an algorithmic point

of view, and the concept of a variable decision boundary is

to avoid such reasoning. Second, selecting θ based on x for

a variable decision boundary can be thought of as “training”

on all points x ∈ R
d; however, “training” only happens

when necessary, for the x that it actually encounters.

Altogether, the concept of a variable decision boundary is

different from what can be described by traditional learning

theory. A formal discussion is beyond the scope of this

paper and might be of interest to future work.

A2. Computational Aspects of Our Method

At test time, our method is 2 × batch size ×
number of iterations times slower than regular test-

ing, which only performs a single forward pass for each

sample. As the first work on Test-Time Training, this

paper is not as concerned about computational efficiency

as improving robustness, but here we provide two poten-

tial solutions that might be useful, but have not been thor-

oughly verified. The first is to use the thresholding trick

on ls, introduced as a solution for the small batches prob-

lem in the method section. For the models considered in

our experiments, roughly 80% of the test instances fall

below the threshold, so Test-Time Training can only be

performed on the other 20% without much effect on per-

formance, because those 20% contain most of the sam-

ples with wrong predictions. The second is to reduce

the number of iterations of test-time updates. For

the online version, the number of iterations is al-

ready 1, so there is nothing to do. For the standard ver-

sion, we have done some preliminary experiments setting

number of iterations to 1 (instead of 10) and learn-

ing rate to 0.01 (instead of 0.001), and observing results

almost as good as the standard hyper-parameter setting. A

more in depth discussion on efficiency is left for future

works, which might, during training, explicitly make the

model amenable to fast updates.

A3. Proofs

Here we prove the theoretical results in the main paper.

A3.1. The Toy Problem

The following setting applies to the two lemmas; this is

simply the setting of our toy problem, reproduced here for

ease of reference.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Consider a two layer linear network parametrized by A ∈
R

h×d (shared) and v,w ∈ R
h (fixed) for the two heads,

respectively. Denote x ∈ R
d the input and y1, y2 ∈ R the

labels for the two tasks, respectively. For the main task loss

lm(A;v) =
1

2

(

y1 − v⊤Ax
)2

, (12)

and the self-supervised task loss

ls(A;w) =
1

2

(

y2 −w⊤Ax
)2

, (13)

Test-Time Training yields an updated matrix

A′ ← A− η
(

y2 −w⊤Ax
) (

−wx⊤
)

, (14)

where η is the learning rate.

Lemma 1. Following the exposition of the main paper, let

η∗ =
(y1 − v⊤Ax)

(y2 − w⊤Ax)v⊤wx⊤x
. (15)

Assume η∗ ∈ [ǫ,∞) for some ǫ > 0. Then for any η ∈ (0, ǫ],
we are guaranteed an improvement on the main loss i.e.

lm(A′) < lm(A).

Proof. From the exposition of the main paper, we know that

lm(A− η∗∇lsA)) = 0,

which can also be derived from simple algebra. Then by

convexity, we have

lm (A− η∇ls(A)) (16)

= lm

((

1−
η

η∗

)

A+
η

η∗
(A− η∗∇ls(A))

)

(17)

≤

(

1−
η

η∗

)

lm(A) + 0 (18)

≤
(

1−
η

ǫ

)

lm(A) (19)

< lm(A), (20)

where the last inequality uses the assumption that lm(A) >
0, which holds because η∗ > 0.

Lemma 2. Define 〈U ,V 〉 = vec (U)
⊤

vec (V) i.e. the

Frobenious inner product, then

sign (η∗) = sign (〈∇lm(A),∇ls(A)〉) . (21)

Proof. By simple algebra,

〈∇lm(A),∇ls(A)〉

= 〈
(

y1 − v⊤Ax
) (

−vx⊤
)

,
(

y2 −w⊤Ax
) (

−wx⊤
)

〉

=
(

y1 − v⊤Ax
) (

y2 −w⊤Ax
)

Tr
(

xv⊤wx⊤
)

=
(

y1 − v⊤Ax
) (

y2 −w⊤Ax
)

v⊤wx⊤x,

which has the same sign as η∗.

A3.2. Proof of Theorem 1

For any η, by smoothness and convexity,

lm(x, y;θ(x)) = lm(x, y;θ − η∇ls(x;θ))

≤ lm(x, y;θ) + η〈∇lm(x, y;θ),∇ls(x,θ)〉

+
η2β

2
‖∇ls(x;θ)‖

2
.

Denote

η∗ =
〈∇lm(x, y;θ),∇ls(x,θ)〉

β ‖∇ls(x;θ)‖
2

.

Then Equation 22 becomes

lm(x, y;θ − η∗∇ls(x;θ)) (22)

≤ lm(x, y;θ)−
〈∇lm(x, y;θ),∇ls(x,θ)〉

2

2β ‖∇ls(x;θ)‖
2

. (23)

And by our assumptions on the gradient norm and gradient

inner product,

lm(x, y;θ)− lm(x, y;θ − η∗∇ls(x;θ)) ≥
ǫ2

2βG2
. (24)

Because we cannot observe η∗ in practice, we instead use

a fixed learning rate η = ǫ
βG2 , as stated in Theorem 1.

Now we argue that this fixed learning rate still improves

performance on the main task.

By our assumptions, η∗ ≥ ǫ
βG2 , so η ∈ (0, η∗]. Denote

g = ∇ls(x;θ), then by convexity of lm,

lm(x, y;θ(x)) = lm(x, y;θ − ηg) (25)

= lm

(

x, y;

(

1−
η

η∗

)

θ +
η

η∗
(θ − η∗g)

)

(26)

≤

(

1−
η

η∗

)

lm(x, y;θ) +
η

η∗
lm(x, y;θ − η∗g) (27)

Combining with Equation 24, we have

lm(x, y;θ(x)) ≤

(

1−
η

η∗

)

lm(x, y;θ)

+
η

η∗

(

lm(x, y;θ)−
ǫ2

2βG2

)

= lm(x, y;θ)−
η

η∗
ǫ2

2βG2

Since η/η∗ > 0, we have shown that

lm(x, y;θ)− lm(x, y;θ(x)) > 0. (28)

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

A4. Additional Results on the Common

Corruptions Dataset

For table aethetics, we use the following abbreviations: B

for baseline, JT for joint training, TTT for Test-Time Train-

ing standard version, and TTT-Online for online Test-Time

Training i.e. the online version.

We have abbreviated the names of the corruptions, in order:

original test set, Gaussian noise, shot noise, impulse noise,

defocus blur, glass blue, motion blur, zoom blur, snow, frost,

fog, brightness, contrast, elastic transformation, pixelation,

and JPEG compression.

A4.1. Results Using Batch Normalization

As discussed in the results section, Batch Normalization

(BN) is ineffective for small batches, which are the inputs

for Test-Time Training (both standard and online version)

since there is only one sample available when forming each

batch; therefore, our main results are based on a ResNet

using Group Normalization (GN). Figure A2 and Table A1

show results of our method on CIFAR-10-C level 5, with a

ResNet using Batch Normalization (BN). These results are

only meant to be a point of reference for the curious readers.

In the early stage of this project, we have experimented

with two potential solutions to the small batches problem

with BN. The naive solution is to fix the BN layers during

Test-Time Training. but this diminishes the performance

gains since there are fewer shared parameters. The better

solution, adopted for the results below, is hard example

mining: instead of updating on all inputs, we only update

on inputs that incur large self-supervised task loss ls, where

the large improvements might counter the negative effects

of inaccurate statistics.

Test-Time Training (standard version) is still very effective

with BN. In fact, some of the improvements are quite dra-

matic, such as on contrast (34%), defocus blue (18%) and

Gaussian noise (22% comparing to joint-training, and 16%

comparing to the baseline). Performance on the original

distribution is still almost the same, and the original error

with BN is in fact slightly lower than with GN, and takes

half as many epochs to converge.

We did not further experiment with BN because of two rea-

sons: 1) The online version does not work with BN, because

the problem with inaccurate batch statistics is exacerbated

when training online for many (e.g. 10000) steps. 2) The

baseline error for almost every corruption type is signifi-

cantly higher with BN than with GN. Although unrelated

to the main idea of our paper, we make the interesting note

that GN significantly improves model robustness.

A4.2. Additional Baseline: Adversarial Logit Pairing

As discussed in the results section, Hendrycks & Dietterich

(2019) point to Adversarial Logit Pairing (ALP) (Kannan

et al., 2018) as an effective method for improving model

robustness to corruptions and perturbations, even though

it was designed to defend against adversarial attacks. We

take ALP as an additional baseline on all benchmarks based

on CIFAR-10 (using GN), following the training proce-

dure in Kannan et al. (2018) and their recommended hyper-

parameters. The implementation of the adversarial attack

comes from the codebase of Ding et al. (2019). We did not

run ALP on ImageNet because the two papers we reference

for this method, Kannan et al. (2018) and Hendrycks & Di-

etterich (2019), did not run on ImageNet or make any claim

or recommendation.

A4.3. Results on CIFAR-10-C and ImageNet-C, Level 5

Table A2 and Table A3 correspond to the bar plots in the

results section. Two rows of Table A2 have been presented

as Table 1 in the main text.

A4.4. Results on CIFAR-10-C, Levels 1-4

The following bar plots and tables are on levels 1-4 of

CIFAR-10-C. The original distribution is the same for all

levels, so are our results on the original distribution.

A4.5. Direct Comparison with Hendrycks et al. (2019a)

The following comparison has been requested by an anony-

mous reviewer for our final version. Our joint training

baseline is based on Hendrycks et al. (2019a), but also incor-

porates some architectural changes (see below). We found

these changes improved the robustness of our method, and

felt that it was important to give the baseline the same ben-

efit. Note that our joint training baseline overall performs

better than Hendrycks: Compare Table S2 to Figure 3 of

Hendrycks et al. (2019a) (provided by the authors), our

baseline has average error of 22.8% across all corruptions

and levels, while their average error is 28.6%.

Summary of architectural changes: 1) Group Normalization

(GN) instead of Batch Normalization (BN). For complete-

ness, the results with BN are provided in Table S1; c.f. GN

results in Table S2 which significantly improves robustness,

with or without self-supervision. 2) We split after the sec-

ond residual group, while they split after the third residual

group right before the linear layer. This consistently gives

about 0.5% - 1% improvement. 3) We use a ResNet-26,

while they use a 40-2 Wide ResNet. But our baseline still

performs better than their method even though our network

is 4x smaller, due to the two tricks above.

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Figure A7. Sample Images from the VID-Robust dataset (Shankar et al., 2019) in the results section adapted to CIFAR-10. Each row

shows eight sample images from one class. The seven classes shown are, in order: airplane, bird, car, dog, cat, horse, ship.

