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Abstract

Modern intelligent urban mobility applications are un-
derpinned by large-scale, multivariate, spatiotemporal data
streams. Working with this data presents unique challenges
of data management, processing and presentation that is of-
ten overlooked by researchers. Therefore, in this work we
present an integrated data management and processing frame-
work for intelligent urban mobility systems currently in use
by our partner transit agencies. We discuss the available
data sources and outline our cloud-centric data management
and stream processing architecture built upon open-source
publish-subscribe and NoSQL data stores. We then describe
our data-integrity monitoring methods. We then present a set
of visualization dashboards designed for our transit agency
partners. Lastly, we discuss how these tools are currently be-
ing used for Al-driven urban mobility applications that use
these tools.

Introduction

With the proliferation of affordable sensor and networking
units, urban mobility systems are entering the connected
world at a rapid pace. This has led to a proliferation of re-
search related to improving the experience of using public
transportation. As use of public transit continues to increase,
transit agencies are looking to Al and machine learning to
make existing systems more efficient and thus maximize ex-
isting infrastructure.

Al methods in this context require data from a variety of
real-time streams from a variety of sources. For example,
traffic prediction and transit optimization applications re-
quire high resolution traffic, vehicle telemetry, weather and
road network data. As image processing methods have con-
tinued to progress, video streams offer potential insights to
user behavior and vehicle occupancy.

There are numerous challenges in storing and process-
ing data for Al-driven urban mobility systems. First, these
sources present data in domain-specific formats and at ir-
regular intervals that can vary by provider and source, mak-
ing it challenging to join data streams to be used by down-
stream Al models (Wang, Zhou, and Lu 2000). Second, the
spatiotemporal nature of these data sources presents chal-
lenges in efficient storage, synthesis and data retrieval (Ay-
din, Akkineni, and Angryk 2016), (Wang, Zhong, and Wang

2019). A third challenge is efficiently presenting the data
to Al researchers and transit experts for data exploration
(Thudt, Baur, and Carpendale 2013). In addition, there are
the typical challenges of working with high-velocity, high-
volume streaming data.

Therefore in this work we present an integrated data man-
agement and processing framework for intelligent urban mo-
bility systems that is currently in use by the Chattanooga
Area Regional Transportation Agency (CARTA). We dis-
cuss the available data sources and our experiences with
joining the various data streams for our set of Al driven ap-
plications. We also discuss our methods for monitoring the
integrity of the data and present a set of publicly available vi-
sualization dashboards designed for our transit agency part-
ners. Lastly, we discuss how these tools are currently be-
ing used for Al-driven urban mobility applications in Chat-
tanooga. Through our partnership with transit agencies, we
are making these tools open-source and providing access to
the visualization dashboards and data sets at (sma 2020).

Data Sources

In this section we outline the available real-time and static
data sources. A summary of the available data sources is
provided in table 1.

Real-time Data

CARTA’s vehicle fleet for the fixed-line bus transit system
includes 50 diesel, 3 electric and 7 hybrid vehicles. Each
vehicle has a telematics kit produced by ViriCiti LLC that
provides real time telemetry data at a minimum of 1Hz reso-
lution of all available vehicle operating parameters. In total,
we have already obtained around 32.3 million data points for
electric buses and 29.8 million data points for diesel buses.
The nature of the telemetry data is dependent on the type
of vehicle. For instance diesel and hybrid vehicles include
fuel level and fuel rate where the electric vehicles moni-
tor state-of-charge. All vehicles include GPS and odometer
data. Each data reading from ViriCiti includes the label (i.e.
GPS), a timestamp and a unique vehicle ID. We collect this
telemetry data in real-time from the ViriCiti API (vir 2020).

Additionally, each vehicle is equipped with a kit from
Clever Devices (cle 2020). This data includes GPS, unique
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Figure 1: Data architecture overview - real time data is streamed to an Apache Pulsar cluster consisting of 5 broker/bookie
nodes and 5 zookeeper nodes running on-site in VMWare. A MongoDB cluster running in Google Cloud reads from the Pulsar
cluster, continuously updating its data view and adding spatial indexing for monitoring and dashboard applications.

Table 1: Data sources.

Data Source Frequency Scope Features Schema/Format
Diesel vehicles | ViriCiti and Clever Devices | 1 Hz 50 vehicles GPS, fucl-lovel, fuel rate, Viriciti SDK and Clever API
odometer, trip ID, driver ID
Electric vehicles | ViriCiti and Clever Devices | 1 Hz 3 vehicles GPS, charging status, battery current, Viriciti SDK and Clever API
voltage, state of charge, odometer
Hybrid vehicles | Viriciti and Clever Devices | 1 Hz 7 vehicles GPS, fuel-level, fuel rate, odometer, | v, i SK and Clever API
trip ID, driver ID
K TMC ID, free-flow speed, Traffic Message Channel
Traffic HERE and INRIX 1Hz Chattanooga region current speed, jam factor, confidence | (TMC)
Road network OpenStreetMap Static Chattanooga region | Road network map, network graph (O(g)SeK/[S)treetMap
. Temperature, wind speed,
Weather DarkSky 0.1 Hz Chattanooga region precipitation, humidity, visibility Darksky API
Elevation Zellglessee Static Chattanooga region | Location, elevation GIS - Digital Elevation Models
Fixed-line transit . . Scheduled trips and trip times, General Transit Feed Specification
schedules CARTA Static Chattanooga region routes, stops (GTFS)
Video Feeds CARTA 30 Frames/Second j;lllifz:)l(:i_lme Video frames Image
APC Ridership CARTA 1Hz All h xed-line Passenger boarding count Transit authority specific
vehicles per stop

vehicle ID (which corresponds with the vehicle ID from
ViriCiti) and additionally includes a unique driver ID and
the unique trip ID which that vehicle is serving. The unique
vehicle ID maps directly to the GTFES schedule produced by
CARTA.

We also collect weather data from multiple weather sta-
tions in Chattanooga at 5-minute intervals using the Dark-
Sky API. This data includes real-time temperature, humid-
ity, air pressure, wind speed, wind direction, and precipita-
tion. In addition, we collect traffic data at 1-minute intervals
using the HERE API, which provides speed recordings for
segments of major roads, which provides data in the form
of timestamped speed recordings from selected roads. Ev-
ery road segment is identified by a unique Traffic Message
Channel identifier (TMC ID). Each TMC ID is also associ-
ated with a list of latitude and longitude coordinates, which
describe the geometry of the road segment. Lastly, vehicles
are currently being fitted with video equipment that gen-
erates real-time video streams to help monitor capacity re-
quirements.

Static Data Sources

Road network map data was collected from OpenStreetMaps
(Haklay and Weber 2008), which provides road infrastruc-
ture modeled as a graph. In addition, we collect static GIS
elevation data from the Tennessee Geographic Information

Council (Tennessee Department of Finance and Administra-
tion 2019). From this source, we download high-resolution
digital elevation models (DEMs), derived from LIDAR ele-
vation imaging, with a vertical accuracy of approximately 10
cm. We incorporated the elevation data in the OSM network
by adding the elevation from the GIS data to each node in the
OSM network. Lastly, the vehicle scheduling information is
provided by the CARTA in GTFS format.

Data Management

Given the volume and the rate of the data being collected,
we had to design a custom architecture for the project. The
purpose of this architecture is to store the data streams in a
way that provides easy access for offline model training and
updates as well as real-time access for system monitoring
prediction. This architecture consists of a publish-subscribe
cluster implemented with Apache Pulsar, which stores topic-
labeled sensor streams, and a MongoDB database backend.
An overview of the data architecture is provided in figure 1.

This architecture solves two challenges. The first chal-
lenge is the persistent storage of the high-velocity, high-
volume data streams. The second challenge is that the data is
highly unstructured and irregular and different data streams
have to be synchronized and joined efficiently. With this
architecture, we stream each data source to a topic-based
publish-subscribe (pub-sub) layer that persistently stores



each data stream as a separate topic. Further, we used a
three-tiered naming convention for topic labeling. The first
tier represents the name of the data tenant and all authenti-
cation and access is managed at this level. The second tier
is the data category, i.e., vehicle telemetry, traffic, weather,
etc. The third tier is the topic name, which represents the
data source or provider, such as ViriCiti, HERE, or DarkSky.
For ViriCiti, the fleet name is appended to the topic name to
separate electric, diesel, and hybrid vehicles. The tenant, cat-
egory, and topic names together form a topic, which down-
stream applications can use to access the data streams. We
persistently store all messages on each topic in an append-
only ledger. Therefore, the topic can be used to read data
in near real-time or to playback previous data streams to
synchronize new downstream applications. All replication is
handled at the ledger level, which allows downstream stor-
age and applications to adapt and expand without concern
for data resiliency. For this system we used Apache Pulsar
(apa 2019) due to its native support for authentication and
access at the tenant level and high throughput. We run Pul-
sar on-site on a VMWare cluster.

We include two methods for long term, structured access
to the data streams. First, Pulsar includes support for Presto
SQL which is a distributed SQL query engine for big data
(pre 2020). Presto SQL integrates with the Pulsar data stores
to provide an SQL interface on top of the Pulsar topics. This
is useful for analytics teams comfortable with SQL, however
as it is designed for large scale batch queries and does not
support geospatial indexing it is not optimal for user-centric
applications such as visualization dashboards. Therefore, we
implemented a downstream MongoDB (mon 2019) cluster
running in Google Cloud. MongoDB was chosen for its na-
tive support of geospatial, r-tree indexing which optimizes
our system for aggregate geospatial queries for monitoring
and visualization applications discussed in the next section.

Data Synthesis and Stream Processing

The various downstream applications such as monitoring
systems, visualization dashboards and energy and ridership
prediction models require data from various streams to be
merged. Typical implementations of stream processing ar-
chitectures require external processing frameworks such as
Apache Spark and Storm. For our implementation we de-
cided to join the data streams within Apache Pulsar. This
process involves designing functions that read from a set of
data stream topics, merge the streams in a series of time win-
dows, and output the joined data on a new Pulsar topic.

As our framework has expanded, we are running numer-
ous streaming join functions within Pulsar. An example is
provided in figure 2, which outputs a data stream that is used
for our energy prediction models and energy dashboard. The
input is the telemetry data from Viriciti, route, trip and driver
data from Clever Devices, weather from DarkSky, traffic
from HERE and the video feeds. Additionally, our predic-
tive models rely road level information from OSM. As this
data is static the latest OSM network is stored in a MongoDB
collection which the function queries each evening to keep
up-to-date. These data sources are merged at 1 second time

Output Stream

- Vehicle ID
- Trip ID

MongoDB Query
Static Data

Input Streams

- Viriciti v - Route ID
- CleverDevices Merge -S0C
- DarkSky Function - OSM Segment

- HERE (traffic)
- Video Feed

- Timestamp

- Temperature
- Humidity
- Elevation

Figure 2: An example stream data join. Real-time telemetry
and routing data from CleverDevices and Viriciti is com-
bined with weather from DarkSky, traffic from HERE and
the video feed. The output stream includes all fields from
these sources, as well as static data from OSM, GTFS and
elevation. The output stream is a sliding time window at 5
second intervals.

windows, which is the resolution required by the predictive
models.

Running our stream processing applications within Pul-
sar has two benefits. First it provides real-time access to
consumers that subscribe to the output topic of these ap-
plications. Second, we include a subscriber that continu-
ously adds geospatial indexing the the streams and writes
to MongoDB. One disadvantage of this approach is that
there is some additional overhead regarding development
time working with the Pulsar API’s instead of more ma-
ture, streaming specific frameworks. However since we do
not require the overhead of incorporating a separate stream
processing framework we are able to reduce complexity of
the overall system and reduce costs that would be associated
with running this external system.

Data Monitoring

The incoming data, particularly vehicle telemetry data is
provided by cutting edge telemetry kits from our partner
companies ViriCiti and Clever Devices. These kits are in-
stalled on a variety of fleets bought over the last 25 years,
each with different specifications and requirements. The
challenges associated with this work require careful moni-
toring to ensure the quality of the incoming data. Addition-
ally, it is useful to monitor our data architecture itself to iden-
tify gaps in coverage or failures in the system. Therefore we
implemented a custom monitoring system to notify our data
management team and CARTA of when issues arise.

Our monitoring includes automated programs which send
nightly emails summarizing the state of the system as well
as the incoming data. We use historical data regarding the
number of messages on each topic per day of the week to
compare with the number of messages on that topic over
the previous day. If the number of messages over the pre-
vious day was more than two standard deviations less than
expected, an email is triggered to notify us there was a dis-
crepancy on one of the data streams. This application runs
on all registered topics within Pulsar.

We found that this monitoring application was insufficient
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Figure 3: Energy visualization dashboard: (a) energy con-
sumed per route for electric vehicles from January 1, 2020 to
May 1, 2020. (b) Energy consumption per fleet between Jan-
uary 1,2020 to May 1, 2020. Energy measured in kWh/Mile.

regarding the ViriCiti data since failures with the telemetry
kits were highly correlated between vehicle models. For in-
stance, early in this project there were issues regarding the
kits for the 10 diesel vehicles bought in the late 1990s. Since
these had issues immediately, they never showed up in the
historical averages and thus were not identified as an issue.
Therefore, a second application was designed specifically
for the ViriCiti data. This application queries all vehicles,
identified by unique vehicle ID, that serviced a trip that day.
We then query the ViriCiti data to ensure there was telemetry
data on that vehicle during that time window.

Visualization Dashboards

As our framework developed, we also implemented a set
of visualization web dashboards using Python, Plotly and
Dash. These dashboards are connected to our MongoDB
backend to query data for presentation to the user. An exam-
ple of our energy visualization dashboard is shown in figure
3. In this dashboard, the user can query based on time, fleet
and route. The data is presented to the user over the map of
Chattanooga as shown in figure 3a and as a series of statisti-
cal visualizations, one of which is energy per fleet as shown
in figure 3b. This dashboard is used by the data manage-
ment team and CARTA to monitor the performance of the
CARTA fleets over time and is available to the public (ene

2020). Additionally, we developed a ridership dashboard to
visualize occupancy of the vehicles throughout the bus tran-
sit network. The presentation of the occupancy dashboard
is similar to the energy dashboard, and is available at (occ
2020).

Al Applications

In addition to the visualization dashboard applications, we
are currently running a set of Al applications that rely upon
the data management framework and data sources discussed
in this paper. The first of which is an energy prediction
model presented in (Ayman et al. 2020). These prediction
models use the output features as shown in figure 2 to train
regression and neural network models to predict the energy
that will be consumed on a route by the diesel, hybrid and
electric vehicles. We are currently working on incorporating
these models in the energy dashboard to help CARTA with
vehicle scheduling and operational guidance.

Additionally, we are working training statistical models to
predict vehicle occupancy to better schedule vehicles in the
context of social distancing regulations from COVID-19. In
this way we can help to ensure these safety requirements are
met and help CARTA better schedule vehicles on popular
routes. These models will be incorporated in the ridership
dashboards so CARTA operators have real-time access to
these models.

Conclusion and Future Work

In this work we presented our integrated data management
and processing framework for intelligent urban mobility sys-
tems, which is currently in use by our partner transit agen-
cies. We also covered our associated monitoring systems, vi-
sualization dashboards and briefly discussed the current Al
applications using these tools which we are making open-
source and providing access to the visualization dashboards
and data sets at (sma 2020).

In future work we are interested in investigating decen-
tralized edge-cloud hybrid architectures for Al-driven urban
mobility systems. We have done some work on Al-driven,
decentralized routing applications using federated learning
(Wilbur et al. 2020) and fog-cloud middleware for smart mo-
bility systems (Talusan et al. 2019), (Talusan et al. 2020). We
are interested in studying problems related to data storage
and retrieval for these systems in future work.
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