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ABSTRACT

Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of
materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-
dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical
cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent
diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to
be basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here
we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the
Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the
homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance.
However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends
towards the Mie resonance wavelength. The fact that the lattice fields “remember” the isolated particle fields is referred here as “Mie
modal memory.” On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the
resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying

the physical basis of general resonant photonic lattices.

Introduction

Periodic arrays of dielectric nanostructures support remarkable
resonance effects as incident light couples to leaky Bloch-type
modes.'® At resonance, there appears resonant reflection where the
reflectance approaches 100% across a particular spectral bandwidth
for subwavelength periods. Thirty years ago, the term “guided-mode
resonance (GMR)” was coined to communicate clearly the
fundamental physics governing the effect” In earlier literature,
authors sometimes referred to these effects as “anomalous
reflection”.' In recent literature, traditional periodic structures
including GMR resonance devices are commonly called photonic
crystals, metasurfaces, or metamaterials. It is clear that this class of
resonance devices can possess one-dimensional (1D) or 2D lateral
spatial modulation, or periodicity, as the resonance physics is not
dependent on the type of periodicity in any fundamental way. The
most expeditious route towards clear understanding is to model the
canonical 1D lattice as all of the main properties reside therein. This
is our approach here.

Fabry-Perot (FP) resonance occurs via reflections between
parallel planes possessing refractive-index discontinuities and is
typically associated with thin films. Mie resonance occurs via similar
reflections but between nonparallel planes and is generally
associated with isolated cylindrical and spherical particles. Taking a
glass particle with refractive index n=1.5 as an example, FP and Mie
resonances in air would manifest based on ~4% reflection at each
interface. Thus, intuitively, one would not expect high reflection off
that particle, or even an array of such particles, via the FP or Mie

resonance mechanism at any wavelength. In complete contrast, a
periodic glass-particle lattice supporting guided-mode or leaky-
mode resonance generates ~100% plane-wave reflectance at the
resonance wavelengths. '

The relevance of this discussion in the present context is that, in
recent years, hundreds of scientific papers have declared FP or Mie
resonance as the basis of the perfect reflection possessed by periodic
1D and 2D metasurfaces. We can cite only a few representative
examples here.''"'” In these publications, the prior works with a
plethora of relevant results on perfect reflection are rarely mentioned.
Consequently, the true physical mechanism behind perfect reflection
that is grounded in lateral leaky Bloch modes and evanescent-wave
resonance excitation is not understood or ignored. Objections to the
FP resonance picture'®'” and the Mie resonance explanation’’ have
been published previously.

The papers that claim Mie resonance as origin of high reflection
generally discuss resonance properties of isolated particles in some
detail and then proceed to periodic or quasi-periodic arrays and their
reflection properties. Reflectance plots may label spectral locations
of the electric and magnetic Mie dipoles implying that these provide
the operative mechanisms supporting the spectrum. The connection
of the reflectance spectra with the dominant mechanisms provided
by the periodic lattice is not explained. This lack of clarity has led to
a plethora of works in the literature claiming that the resonances
observed in the isolated particles literally cause perfect reflection.
Thus, we believe that a clear and unambiguous distinction is needed
which is provided herein.
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Fig. 1| Comparison of single-particle resonance spectra (a-c) and lattice-resonance spectra (d-f). a, The particle chosen is an infinite circular cylinder with
diameter D and refractive index n placed in air. b, FDTD-computed TSCS spectra under TE and TM polarized light with n=2. ¢, TSCS spectra for n=3.5 where
the Mie resonance peaks are labeled TEm(7,/) or TMm(7,/) by the azimuthal mode number j and the radial mode number /. d, A photonic lattice arrayed by the
elemental cylinder in a. With a representative period (A), the zeroth-order reflectance (Ro) spectra are calculated by RCWA. e, Ro spectra under TE and TM
polarization for n=2. The resonance peaks are labeled TEL(r1,v) or TML(m,v) where m denotes the evanescent diffraction order and v the waveguide mode. f, Ro
spectra for n=3.5. In this example, there is no correlation between the Mie resonance peaks and the lattice resonance peaks.

The true physics of resonant optical lattices has been presented
in many prior works. For example, the coupled-wave equations
governing wave propagation in periodic films were shown to
convert to the wave equation for a slab waveguide in the limit of
small modulation.* Subsequent rigorous calculations strongly
associated the resonance wavelengths with waveguide modes in the
corresponding waveguide; hence, the descriptive terminology
“guided-mode resonance.” Rosenblatt et al. presented analytic and
numerical models detailing the occurrence of lateral leaky modes
and establishing explicit phase relations supporting resonance
energy transport in reflection.® Niraula et al. addressed the mode-
coupling mechanisms involved in realizing resonant bandpass
filters.”! There, the roles of the lateral evanescent diffraction orders
in sculpting the observed spectral characteristics are clearly
presented. In particular, a mode excited by a second evanescent
diffraction order can attain a dominant strength and generate efficient
transmittance. As an aside, we note that this version of the guided-
mode resonance effect is sometimes, somewhat inaccurately, called
“electromagnetically induced transparency” on account of the full
transmission of a lossless lattice simultaneously providing low
transmittance sidebands via its lateral modal content. One of the
major shortcomings of the local FP or Mie resonance pictures is that
the critical roles of evanescent lateral modes and their contributory
attributes are totally missed.

Our objective here is to clearly differentiate the effect of guided-
mode resonance reflection and Mie resonance in a simple lattice built
with isolated particles. We treat a 1D cylindrical-rod lattice
providing rigorously-computed maps of zero-order reflectance Ry in
wavelength (1) and period (A) for silicon nitride (n=2) and silicon
(n=3.5) holding the rod diameter constant at D=250 nm throughout.
We begin by showing that, in general, there is no connection

between isolated Mie resonance and guided-mode lattice resonance.
Then, by homogenizing the lattice with effective medium theory, we
show a strong correlation between the R¢=1 resonance loci and
spectral loci of the lateral modes belonging to the equivalent film.
We compare the local field profiles in isolated rods with those of the
lattice by numerical computations. We find that when the lateral
leaky-mode field profiles approach the structure of the isolated-
particle Mie field profiles, the resonance locus bends towards the
Mie resonance wavelength. The interesting fact that the lattice fields
“remember” the isolated particle fields is referred here as “Mie
modal memory.” We study the preservation and erasure properties
of this memory effect. This work differs from a prior contribution in
that in Ko et al.” perfect reflectance was retained as the Mie cavity
was destroyed whereas here the cavity is retained. Thus, the present
work provides a new alternate view that is straightforward in its
interpretation.

Mie resonance and lattice resonance: Distinction

Figure 1 illustrates models and spectra pertaining to Mie resonance
in isolated particles and guided-mode resonance in periodic lattices.
The model particle chosen is an infinite circular cylinder with
diameter D and refractive index n placed in air (Fig. 1a). The lattice
is an array of similar particles with period A (Fig. 1d). The lattice
operates in the subwavelength regime such that only the zero-order
reflectance (Ro) and zero-order transmittance (To) are shown in Fig.
1d. The illuminating plane wave is at normal incidence with
wavenumber ki. As usual in diffraction and waveguide optics, we
define TE and TM polarization state as electric field parallel and
perpendicular to the particle axis. Figure 1b presents the total
scattering cross section (TSCS) of a single particle with D =250 nm



and refractive index n=2. Similarly, Fig. 1¢ provides the TCSC for
n=3.5. On account of the cylinder geometry, we label the Mie
resonance field configuration in terms of azimuthal mode number (7)
and radial mode number (/) as TEm(j,/) or TMm(7,)).”> In Fig. Ic,
TEwm(1,1) and TMm(0,1) are located at A =1.179 um and 1.173 pm,
respectively, or close to each other. Obviously, the TE-polarized
TSCS exceeds the TM-polarized TSCS because TM light
encounters Brewster conditions at the cylinder surface resulting in
lower TM reflection and less effective scattering. Figure 1e presents
Ry spectra under TE and TM polarization for n=2. The resonance
peaks are labeled TEi(m,v) or TMi(m,v) where m denotes the
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evanescent diffraction order that generates the resonance and v
marks the corresponding classic waveguide mode. Figure 1f shows
zero-order reflectance for the case of n=3.5. Under guided-mode
lattice resonance in Figs. le and 1f, we see that Rj=1 for both
polarization states at the respective resonance wavelengths. In his
example, with a period chosen arbitrarily, there is no correlation
between the Mie resonance wavelengths and the GMR wavelengths.
This is because there is no causal relationship between the condition
Reg=1 and Mie resonance which is one of the main points of this

paper.
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Fig. 2 | Perfect reflection bands generated by resonant photonic lattices and their association with effective-medium mode loci. Displayed are wavelength
—period (A-A) zero-order reflectance (Ro) color maps for cylinder arrays with D=250 nm as well as A-A modal curves for equivalent slab waveguides where the
full Rytov EMT refractive index (n(EOA;’ T is used. a-d, Resonance maps and modal curves for both polarization states for n=2. e-h, Resonance maps and modal
curves for both polarization states for n=3.5. In the figures, the subwavelength regime resides below the dashed lines marking the Rayleigh wavelength A=A. In

the Ro maps, 100% reflectance is featured by dark red color.

Perfect reflection: Correlation with lateral modes

In Fig. 2, the zero-order A-A reflectance maps are computed with
rigorous coupled-wave analysis (RCWA)>. The mode loci pertinent
to the homogenized lattice are computed with effective medium
theory (EMT) and waveguide theory. We apply the full Rytov
formalism *** to extract the zero-order EMT (n(g) ") and use it to
model the slab waveguide. We note that this effective index is a
function of A, A, and period-dependent fill factor F(A). Finally, we
solve the eigenproblem such that the propagation constant is the
wavevector of first-order diffraction (8 = 21/A). The details of this
calculation are explained in Supplementary Information.

Figure 2a provides a zero-order TE reflectance map for the
lattice under study with n=2 corresponding approximately to SizNs.
In the wavelength range shown, there appears one Mie resonance at
2=0.63 um (as seen in Fig. 1b) within the perfect-reflectance locus
in the figure. There ensues no variation of any reflectance features at
this point, demonstrating that Ro=1 holds at Mie resonance as well
as away from it. The high-reflectance region borders the Rayleigh
line A=A for part of the way and then diverges from it. The reason
for this is that for the smaller periods, the particles (D=250 nm fixed)
are relatively close together, forming a lattice with a substantial

effective value of refractive index. This particle density thus allows
the effective lattice to support two lateral leaky modes, namely the
TE, and TE; modes. The TE; mode appears at shorter wavelengths
and thus resides near the Rayleigh line as seen in Fig. 2a. As the
period increases and reaches a value of A ~750 nm, the effective
index drops sufficiently to cut the TE; mode off, accounting for the
variation in the locus. Thereafter, as A increases, the resonance
proceeds on the TE; mode alone on an increasingly sparse lattice; we
recall that the fundamental waveguide mode is never cut off. These
arguments are well supported by Fig. 2b showing the mode loci of
the homogenized lattice. There is quantitative agreement between
the locus of the homogenized TE; mode labeled TE¢ (1,1) and the
Re=1 locus. For the fundamental mode TEr (1,0), there is good
quantitative agreement for A>0.7 pm.

The case for TM polarization with n=2 is depicted in Fig. 2c.
According to Fig. 1b, there is no Mie resonance within the perfect
reflection region. Because TM effective index is lower than the TE
index for the same lattice, only the fundamental TMy. (1,0) mode
survives here. There is excellent agreement with the mode locus in
Fig. 2d. Because of the low effective index, the mode locus
approaches the Rayleigh line more rapidly than in the TE case as the
period increases.



If we plot analogous resonance maps for increasing rod
refractive index, we see that the slanted-V type locus arising for n=2
in Fig. 2a gradually morphs into the locus for n=3.5 approximating
Si in Fig. 2e with similar modal content. For this high value of
refractive index, the homogenization is less accurate and the modal
lines in Fig. 2f only qualitatively resemble the full numerical maps
in Fig. 2e. Nevertheless, Fig. 2f marks the approximate cutoff of
TEi(1,1) and shows the mild bow shape of the TE;(1,0) locus. It also
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shows the near vertical nature of the TE;, (1,2) locus seen in Fig. 2e
near wavelength of 0.8 pm. Similar comments apply to the TM case
in Figs. 2g and 2h. With increasing index n, the Rj=1 locus morphs
into the final shape in Fig. 2g. The mode line for TMy, (1,0) overlaps
a part of the reflectance locus in Fig. 2g from ~0.8 to ~1.2 um
wavelength. The mode line for TML, (1,1) approximates the vertical
locus near 0.8 um.
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Fig. 3 | Quantification of local/lateral mode matching. We model a single circular cylinder with D=250 nm and n=3.5 and a corresponding lattice. a, Total
scattering cross section (TSCS) spectra in TE and TM polarized light. Mie resonance peaks are labeled TEm(7,/) or TMm(j,/) by azimuthal mode number (7) and
radial mode number (/). b, Electric and magnetic field profiles at Mie resonance wavelengths corresponding to a. E and H indicate the amplitudes of electric and
magnetic fields. ¢, Photonic lattice spectra Ro(A) at values of A chosen to match overlapping Mie/lattice resonance locations in Fig. 2e for TE polarization and
Fig. 2g for TM polarization. The guided-mode resonance peaks are labeled as TEL(m,v) or TML(m,v) with m denoting the diffraction order and v the waveguide
mode. d, E and H profiles at lattice resonance points corresponding to ¢. Comparing b and ¢ verifies the local/lateral mode matching at these (A,A) coordinates.

Lateral/local mode matching
Within the spectral range covered in Fig. 2e, there appear single-
particle Mie resonances marked by vertical lines labeled TEwm(1,1)
and TEwm(2,1) to identify the type of Mie modal profile. Similarly, in
Fig. 2g, Mie resonance wavelengths are noted and labeled TMm
(0,1) and TMy (1,1) for TM polarized single-particle Mie modes. It
is notable that the perfect-reflectance Ry=1 loci bend towards these
spectral locations such that there is strong correlation with the
individual-particle resonance wavelengths and the lattice-resonance
wavelengths at these locations. We explain this physical
manifestation by spatial field matching between the Mie modes and
the lateral modes generating the resonance. As the individual
cylinders possess characteristic Mie resonance field profiles at the
Mie resonance wavelengths, the lateral Bloch modes must match
those at least approximately at these specific spectral (A,A)
coordinates.

To confirm this idea, we compare TSCS (A) and Ro()) spectra
and attendant field profiles at values of A chosen to match

overlapping Mie/lattice resonance locations in Figs. 2¢ and 2g. In
Fig. 3a, Mie modes TE (1,1) and TMwm (0,1) occur atA=1.179 um
and 1.173 um. At higher energy states, TEm (2,1) and TMw (1,1) are
found at A = 0.745 pm and 0.774 pm. With periods chosen for
resonance coincidence to the extent possible, Ro(A) lattice spectra are
displayed in Fig. 3¢ and compared to the Mie resonance wavelengths
in Fig. 3a with vertical lines. For A=1.1 pum, the TE_ (1,1) locates
near TEw (1,1) and TEp (1,2) is closely matched to TEwm (2,1) at
A=0.7 um. Similarly, TMy, (1,1) is close to TMy (1,1) at A=0.5 um.
We now compare the localized field structures in the cylindrical
single particles in Fig. 3b with the fields residing in the photonic
lattice in Fig. 3d. We see that the resonant-lattice field patterns
approximate the single-particle fields with good qualitative
agreement. This is in spite of the fact that the guided-mode resonance
wavelengths differ somewhat from the exact Mie resonance
wavelengths as quantified in Figs. 3b and 3d. This wavelength
difference is reasonable because of the geometric difference of the
two physical arrangements. In the lattice, at resonance, there are
contradirectional leaky Bloch modes interacting with the particles in



addition to the incident wave in stark contrast with the single-particle
case. The evanescent-wave-excited lateral modes interacting with
the incident wave generate the perfect reflection with the
approximate mode matching shown here bending the loci towards
the Mie resonance wavelengths as illustrated in Figs. 2¢ and 2g. We
conjecture that the mode-matching principle set forth here is general
and will apply to any dielectric resonant optical lattice independent
of the shape of the building block particles constituting the array.

Mie modal memory: Preservation and erasure

Figure 3 demonstrates preservation of Mie resonance signature
when the lattice resonance wavelength approximates the Mie
resonance wavelength. Thus, whereas the lattice supports
counterpropagating Bloch modes forming a standing wave, there
appear field patterns reminiscent of the single-particle Mie resonance
fields. Thereby, the photonic lattice acts as a Mie modal memory.
Here, we briefly investigate the robustness of this memory effect
relative to perturbation of the Mie cavity with a continuum layer as
illustrated in Fig. 4a. When the homogeneous layer thickness is d, =
D/10, the particle cavity persists in large measure and the Mie
signatures remain in the (A,A) reflectance map to the degree

a >4
TE(=35) @& @& @ d,=Dx10%

quantified in Fig. 4a. As d, gradually increases, the Mie memory
fades. For example, for dy = 0.3D, as can be seen in Fig. 4b, the
resonant Mie memory is erased due to the destruction of the cavity.
Perfect reflectance endures without any connection to Mie
resonance; this map now follows the effective-medium mode loci in
Fig. 2f more closely. To visualize the subtleties of the resonant
memory effect, we characterize the localized fields at points marked
()-(ii1) in Fig. 2e and Figs. 4a and 4b respectively. Figures 4c-e
illustrate the transition of the resonant memory. First, in the discrete
lattice of Fig. 2e at point (i), the perfect reflection band resides near
the Mie resonance line. The lattice mode TEL (1,1) and the Mie
mode TEwm (1,1) have similar signatures as summarized in Fig. 4c.
Figure 4d shows the conditions at point (ii). There, the Mie signature
is largely retained with an additional field concentration appearing in
the thin sublayer. However, at point (iii) in Fig. 4e, the thicker
sublayer destroys the cavity thus erasing the Mie memory. The
localized mode field merges into the sublayer showing a
characteristic standing-wave profile.

The example in Fig. 4 pertains to TE polarization; similar
effects are also observed in TM polarization.
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Fig. 4 | Properties of Mie modal memory in TE polarization. a, Ro (A,A) reflectance map with dn = D/10. b, Ro (A,A) reflectance map with dn = 0.3D. ¢,
Original local fields and mode alignment at point (i). b, Fields and mode relationship at point (ii) upon perturbation with a thin sublayer. ¢, Local fields and mode

alignment at point (iii) with Mie memory erased with a thick sublayer.

Conclusions
In summary, we address the physics and origin of perfect reflection
by resonant photonic lattices. The cause of this extraordinary effect
is guided-mode resonance mediated by lateral Bloch modes excited
by evanescent diffraction orders in the subwavelength regime. As we
show clearly, Mie resonance is not causative in the perfect reflection
by the lattice. Under conditions defined here, isolated-particle Mie
resonance can, however, affect the spectral resonance location while
not affecting the reflection efficiency.

For simplicity and clarity, we treat 1D arrays of dielectric
cylinders with two representative materials with refractive indices

n=2 and n=3.5. For arbitrary periods, single-particle resonance
spectra and lattice-resonance spectra are uncorrelated. Maps of zero-
order reflectance Ry (A,A) chart clear loci with Ry =1 that are shown
to associate strongly with simple waveguide modes supported by a
homogenized effective-medium model of the lattice. For n=2, the
agreement between the Ry =1 loci and homogenized-slab mode loci
is very good whereas for n=3.5 qualitative agreement is found.
Moreover, for n=2, in TM polarization, there is perfect reflection for
a range of (A,A) coordinates even though there exists no Mie
resonance in the region. For higher values of refractive index, the Ro
=1 loci bend towards the isolated-particle Mie resonance



wavelengths. We explain this observation by spatial field matching
between the Mie modes and the lateral modes inducing the guided-
mode resonance. The individual cylinders possess characteristic
local electric and magnetic field profiles at the Mie resonance
wavelengths. We show that the lateral Bloch modes will match those
profile shapes, at least approximately, at these specific spectral (A,A)
coordinates. The interesting fact that the resonance lattice fields
“remember” the isolated particle local fields is referred here as “Mie
modal memory.” Expectedly, this memory effect is strongest in
lattices built with high-index materials. By connecting the individual
lattice particles by an index-matched sublayer of sufficient thickness,
the Mie memory can be erased. This is due to the destruction of the
local Mie cavity. We find that perfect reflection survives the memory
erasure with the resonance locus further approaching the effective-
medium waveguide locus. The ideas presented here can be extended
to two-dimensional lattices including sphere or pillar elements. The
results presented here have potential to advance the field of
nanophotonics, including metamaterials and metasurfaces, by
solidifying the understanding of the physical basis of resonant
photonic lattices.

Methods

The isolated-cylinder scattering problem is solved by two-
dimensional (2D) finite-difference time-domain (FDTD) methods
utilizing commercial computational tools (Rsoft, FullWAVE
module). In the simulation, we use an enclosed input source that
launces a plane wave within the boundary surrounding the element.”®
To calculate reflectance spectra of periodic structures, we perform
rigorous  coupled-wave analysis (RCWA).” To establish
connections between the high reflection bands and equivalent slab
modes, we homogenize the lattice with effective-medium theory
(EMT) models. The solution details are contained in Supplementary
Information.
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Fig. S1 | Approximation of a slab waveguide with Rytov EMT. a, Discrete array of cylinders where A, D, F, nu and nv are period, diameter,
refractive indices of cylinder (n=2, 3.5) and air (n=1). b, Extraction of full effective refractive index (n(Eé‘;’ T). The grating parameter set {A, D, F,
ny, L} is applied in the Rytov formula. ¢, Modeling of a slab waveguide with nﬁ% T For the Bloch mode with first-order diffraction (m=1), the
eigenvalue problem is solved satisfying f = 2m/A.

To analyze the high reflection bands, we calculate GMR modal curves with an equivalent slab waveguide as explained
in Fig. S1. In the beginning, we treat the discrete cylinder array with grating parameter set {A, D, F(A), nu, n.} where
A, D, F, ng and n; are period, diameter, refractive indices of cylinder and background (Fig. S1a). Here, the effective
fill factor F is given by Dm/4A. Then, as illustrated in Fig. S1b, the grating parameter set is applied in the Rytov
formulas for TE and TM polarization given by!

JnE = GEI?tan [5 (1 = P)nZ = GEIT?| = nf = B tan [5 (1 - FYnZ = GEED?| ()

-y’ (nEMT A JnE=GEMTY

YE ™ tan [n Fyn% — EMT)2] imn nTF ng — (n?%T)Z] )
Where we used the lowest-order solution nfg)" (A, 1) by solving Egs. (1) and (2). Using the extracted Rytov EMT, we
solve the eigenvalue problem of the single slab waveguide as shown in Fig. Slc. For modeling, the single layer is
homogenized by n(Eé‘;’T. Then, the modal curves are calculated by solving eigenvalue equation for the effective slab

waveguide as?



(Vm D) - tan[(yy, D) + vir] = \/V? — (y;,, D)? (v is even) 3)
(Ym D) - cot[(ysy D) + vrr] = —\/V2 = (¥, D)?> (v is odd) “4)

where the V-parameter and ¥,,, are obtained by V = 2D/ (nEMT)2 — 1/ and y,, = 21/ (nEMT)Z — (Am/A)?/A. In
the eigenvalue problem, we label the solution as TE (m, v) when the GMR forms at the mth diffraction order coupled

to the vth guided mode. In a similar way, we obtain the TM,(m, v) mode set by solving the TM slab waveguide
problem.
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