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ABSTRACT 

Resonant periodic nanostructures provide perfect reflection across small or large spectral bandwidths depending on the choice of 
materials and design parameters. This effect has been known for decades, observed theoretically and experimentally via one-
dimensional and two-dimensional structures commonly known as resonant gratings, metamaterials, and metasurfaces. The physical 
cause of this extraordinary phenomenon is guided-mode resonance mediated by lateral Bloch modes excited by evanescent 
diffraction orders in the subwavelength regime. In recent years, hundreds of papers have declared Fabry-Perot or Mie resonance to 
be basis of the perfect reflection possessed by periodic metasurfaces. Treating a simple one-dimensional cylindrical-rod lattice, here 
we show clearly and unambiguously that Mie resonance does not cause perfect reflection. In fact, the spectral placement of the 
Bloch-mode-mediated zero-order reflectance is primarily controlled by the lattice period by way of its direct effect on the 
homogenized effective-medium refractive index of the lattice. In general, perfect reflection appears away from Mie resonance. 
However, when the lateral leaky-mode field profiles approach the isolated-particle Mie field profiles, the resonance locus tends 
towards the Mie resonance wavelength. The fact that the lattice fields “remember” the isolated particle fields is referred here as “Mie 
modal memory.” On erasure of the Mie memory by an index-matched sublayer, we show that perfect reflection survives with the 
resonance locus approaching the homogenized effective-medium waveguide locus. The results presented here will aid in clarifying 
the physical basis of general resonant photonic lattices.   

	

Introduction 
Periodic arrays of dielectric nanostructures support remarkable 
resonance effects as incident light couples to leaky Bloch-type 
modes.1-8 At resonance, there appears resonant reflection where the 
reflectance approaches 100% across a particular spectral bandwidth 
for subwavelength periods. Thirty years ago, the term “guided-mode 
resonance (GMR)” was coined to communicate clearly the 
fundamental physics governing the effect.9 In earlier literature, 
authors sometimes referred to these effects as “anomalous 
reflection”.1-3 In recent literature, traditional periodic structures 
including GMR resonance devices are commonly called photonic 
crystals, metasurfaces, or metamaterials. It is clear that this class of 
resonance devices can possess one-dimensional (1D) or 2D lateral 
spatial modulation, or periodicity, as the resonance physics is not 
dependent on the type of periodicity in any fundamental way. The 
most expeditious route towards clear understanding is to model the 
canonical 1D lattice as all of the main properties reside therein. This 
is our approach here.  

Fabry-Perot (FP) resonance occurs via reflections between 
parallel planes possessing refractive-index discontinuities and is 
typically associated with thin films. Mie resonance occurs via similar 
reflections but between nonparallel planes and is generally 
associated with isolated cylindrical and spherical particles.  Taking a 
glass particle with refractive index n=1.5 as an example, FP and Mie 
resonances in air would manifest based on ~4% reflection at each 
interface. Thus, intuitively, one would not expect high reflection off 
that particle, or even an array of such particles, via the FP or Mie 

resonance mechanism at any wavelength. In complete contrast, a 
periodic glass-particle lattice supporting guided-mode or leaky-
mode resonance generates ~100% plane-wave reflectance at the 
resonance wavelengths.1-10 

The relevance of this discussion in the present context is that, in 
recent years, hundreds of scientific papers have declared FP or Mie 
resonance as the basis of the perfect reflection possessed by periodic 
1D and 2D metasurfaces. We can cite only a few representative 
examples here.11-17 In these publications, the prior works with a 
plethora of relevant results on perfect reflection are rarely mentioned. 
Consequently, the true physical mechanism behind perfect reflection 
that is grounded in lateral leaky Bloch modes and evanescent-wave 
resonance excitation is not understood or ignored. Objections to the 
FP resonance picture18-19 and the Mie resonance explanation20 have 
been published previously. 

The papers that claim Mie resonance as origin of high reflection 
generally discuss resonance properties of isolated particles in some 
detail and then proceed to periodic or quasi-periodic arrays and their 
reflection properties. Reflectance plots may label spectral locations 
of the electric and magnetic Mie dipoles implying that these provide 
the operative mechanisms supporting the spectrum. The connection 
of the reflectance spectra with the dominant mechanisms provided 
by the periodic lattice is not explained. This lack of clarity has led to 
a plethora of works in the literature claiming that the resonances 
observed in the isolated particles literally cause perfect reflection. 
Thus, we believe that a clear and unambiguous distinction is needed 
which is provided herein.   



 

Fig. 1 | Comparison of single-particle resonance spectra (a-c) and lattice-resonance spectra (d-f). a, The particle chosen is an infinite circular cylinder with 
diameter D and refractive index n placed in air. b, FDTD-computed TSCS spectra under TE and TM polarized light with n=2. c, TSCS spectra for n=3.5 where 
the Mie resonance peaks are labeled TEM(j,l) or TMM(j,l) by the azimuthal mode number j and the radial mode number l. d, A photonic lattice arrayed by the 
elemental cylinder in a. With a representative period (Λ), the zeroth-order reflectance (R0) spectra are calculated by RCWA. e, R0 spectra under TE and TM 
polarization for n=2. The resonance peaks are labeled TEL(m,v) or TML(m,v) where m denotes the evanescent diffraction order and v the waveguide mode. f, R0 
spectra for n=3.5. In this example, there is no correlation between the Mie resonance peaks and the lattice resonance peaks.  

The true physics of resonant optical lattices has been presented 
in many prior works. For example, the coupled-wave equations 
governing wave propagation in periodic films were shown to 
convert to the wave equation for a slab waveguide in the limit of 
small modulation.4 Subsequent rigorous calculations strongly 
associated the resonance wavelengths with waveguide modes in the 
corresponding waveguide; hence, the descriptive terminology 
“guided-mode resonance.” Rosenblatt et al. presented analytic and 
numerical models detailing the occurrence of lateral leaky modes 
and establishing explicit phase relations supporting resonance 
energy transport in reflection.6 Niraula et al. addressed the mode-
coupling mechanisms involved in realizing resonant bandpass 
filters.21 There, the roles of the lateral evanescent diffraction orders 
in sculpting the observed spectral characteristics are clearly 
presented. In particular, a mode excited by a second evanescent 
diffraction order can attain a dominant strength and generate efficient 
transmittance. As an aside, we note that this version of the guided-
mode resonance effect is sometimes, somewhat inaccurately, called 
“electromagnetically induced transparency” on account of the full 
transmission of a lossless lattice simultaneously providing low 
transmittance sidebands via its lateral modal content. One of the 
major shortcomings of the local FP or Mie resonance pictures is that 
the critical roles of evanescent lateral modes and their contributory 
attributes are totally missed.   

Our objective here is to clearly differentiate the effect of guided-
mode resonance reflection and Mie resonance in a simple lattice built 
with isolated particles. We treat a 1D cylindrical-rod lattice 
providing rigorously-computed maps of zero-order reflectance R0 in 
wavelength () and period () for silicon nitride (n=2) and silicon 
(n=3.5) holding the rod diameter constant at D=250 nm throughout. 
We begin by showing that, in general, there is no connection 

between isolated Mie resonance and guided-mode lattice resonance. 
Then, by homogenizing the lattice with effective medium theory, we 
show a strong correlation between the R0=1 resonance loci and 
spectral loci of the lateral modes belonging to the equivalent film. 
We compare the local field profiles in isolated rods with those of the 
lattice by numerical computations. We find that when the lateral 
leaky-mode field profiles approach the structure of the isolated-
particle Mie field profiles, the resonance locus bends towards the 
Mie resonance wavelength. The interesting fact that the lattice fields 
“remember” the isolated particle fields is referred here as “Mie 
modal memory.” We study the preservation and erasure properties 
of this memory effect. This work differs from a prior contribution in 
that in Ko et al.20 perfect reflectance was retained as the Mie cavity 
was destroyed whereas here the cavity is retained. Thus, the present 
work provides a new alternate view that is straightforward in its 
interpretation.   

 
Mie resonance and lattice resonance: Distinction 
Figure 1 illustrates models and spectra pertaining to Mie resonance 
in isolated particles and guided-mode resonance in periodic lattices. 
The model particle chosen is an infinite circular cylinder with 
diameter D and refractive index n placed in air (Fig. 1a). The lattice 
is an array of similar particles with period  (Fig. 1d). The lattice 
operates in the subwavelength regime such that only the zero-order 
reflectance (R0) and zero-order transmittance (T0) are shown in Fig. 
1d. The illuminating plane wave is at normal incidence with 
wavenumber ki. As usual in diffraction and waveguide optics, we 
define TE and TM polarization state as electric field parallel and 
perpendicular to the particle axis. Figure 1b presents the total 
scattering cross section (TSCS) of a single particle with D = 250 nm 



and refractive index n = 2.  Similarly, Fig. 1c provides the TCSC for 
n=3.5. On account of the cylinder geometry, we label the Mie 
resonance field configuration in terms of azimuthal mode number (j) 
and radial mode number (l) as TEM(j,l) or TMM(j,l).22 In Fig. 1c, 
TEM(1,1) and TMM(0,1) are located at λ = 1.179 µm and 1.173 µm, 
respectively, or close to each other. Obviously, the TE-polarized 
TSCS exceeds the TM-polarized TSCS because TM light 
encounters Brewster conditions at the cylinder surface resulting in 
lower TM reflection and less effective scattering. Figure 1e presents 
R0 spectra under TE and TM polarization for n=2. The resonance 
peaks are labeled TEL(m,v) or TML(m,v) where m denotes the 

evanescent diffraction order that generates the resonance and v 
marks the corresponding classic waveguide mode. Figure 1f shows 
zero-order reflectance for the case of n=3.5. Under guided-mode 
lattice resonance in Figs. 1e and 1f, we see that R0=1 for both 
polarization states at the respective resonance wavelengths. In his 
example, with a period chosen arbitrarily, there is no correlation 
between the Mie resonance wavelengths and the GMR wavelengths. 
This is because there is no causal relationship between the condition 
R0=1 and Mie resonance which is one of the main points of this 
paper.   

 

Fig. 2 | Perfect reflection bands generated by resonant photonic lattices and their association with effective-medium mode loci. Displayed are wavelength 
–period (-zero-order reflectance (R0) color maps for cylinder arrays with D=250 nm as well as - modal curves for equivalent slab waveguides where the 
full Rytov EMT refractive index (݊ሺ଴ሻ

ாெ்) is used. a-d, Resonance maps and modal curves for both polarization states for n=2. e-h, Resonance maps and modal 
curves for both polarization states for n=3.5. In the figures, the subwavelength regime resides below the dashed lines marking the Rayleigh wavelength λ=Λ. In 
the R0 maps, 100% reflectance is featured by dark red color.           

 
Perfect reflection: Correlation with lateral modes 
In Fig. 2, the zero-order - reflectance maps are computed with 
rigorous coupled-wave analysis (RCWA)23. The mode loci pertinent 
to the homogenized lattice are computed with effective medium 
theory (EMT) and waveguide theory. We apply the full Rytov 
formalism 24, 25 to extract the zero-order EMT (݊ሺ଴ሻ

ாெ்) and use it to 
model the slab waveguide. We note that this effective index is a 
function of , , and period-dependent fill factor F(). Finally, we 
solve the eigenproblem such that the propagation constant is the 
wavevector of first-order diffraction (ߚ ൌ 2π Λ⁄ ). The details of this 
calculation are explained in Supplementary Information. 

Figure 2a provides a zero-order TE reflectance map for the 
lattice under study with n=2 corresponding approximately to Si3N4. 
In the wavelength range shown, there appears one Mie resonance at 
=0.63 µm (as seen in Fig. 1b) within the perfect-reflectance locus 
in the figure. There ensues no variation of any reflectance features at 
this point, demonstrating that R0=1 holds at Mie resonance as well 
as away from it. The high-reflectance region borders the Rayleigh 
line= for part of the way and then diverges from it. The reason 
for this is that for the smaller periods, the particles (D=250 nm fixed) 
are relatively close together, forming a lattice with a substantial 

effective value of refractive index. This particle density thus allows 
the effective lattice to support two lateral leaky modes, namely the 
TE0 and TE1 modes. The TE1 mode appears at shorter wavelengths 
and thus resides near the Rayleigh line as seen in Fig. 2a. As the 
period increases and reaches a value of  ~750 nm, the effective 
index drops sufficiently to cut the TE1 mode off, accounting for the 
variation in the locus. Thereafter, as increases, the resonance 
proceeds on the TE0 mode alone on an increasingly sparse lattice; we 
recall that the fundamental waveguide mode is never cut off. These 
arguments are well supported by Fig. 2b showing the mode loci of 
the homogenized lattice. There is quantitative agreement between 
the locus of the homogenized TE1 mode labeled TEL (1,1) and the 
R0=1 locus. For the fundamental mode TEL (1,0), there is good 
quantitative agreement for >0.7 µm. 

The case for TM polarization with n=2 is depicted in Fig. 2c. 
According to Fig. 1b, there is no Mie resonance within the perfect 
reflection region. Because TM effective index is lower than the TE 
index for the same lattice, only the fundamental TML (1,0) mode 
survives here. There is excellent agreement with the mode locus in 
Fig. 2d. Because of the low effective index, the mode locus 
approaches the Rayleigh line more rapidly than in the TE case as the 
period increases.  



If we plot analogous resonance maps for increasing rod 
refractive index, we see that the slanted-V type locus arising for n=2 
in Fig. 2a gradually morphs into the locus for n=3.5 approximating 
Si in Fig. 2e with similar modal content. For this high value of 
refractive index, the homogenization is less accurate and the modal 
lines in Fig. 2f only qualitatively resemble the full numerical maps 
in Fig. 2e. Nevertheless, Fig. 2f marks the approximate cutoff of 
TEL(1,1) and shows the mild bow shape of the TEL(1,0) locus. It also 

shows the near vertical nature of the TEL (1,2) locus seen in Fig. 2e 
near wavelength of 0.8 µm. Similar comments apply to the TM case 
in Figs. 2g and 2h. With increasing index n, the R0=1 locus morphs 
into the final shape in Fig. 2g. The mode line for TML (1,0) overlaps 
a part of the reflectance locus in Fig. 2g from ~0.8 to ~1.2 µm 
wavelength. The mode line for TML (1,1) approximates the vertical 
locus near 0.8 µm.  

 

 

Fig. 3 | Quantification of local/lateral mode matching. We model a single circular cylinder with D=250 nm and n=3.5 and a corresponding lattice. a, Total 
scattering cross section (TSCS) spectra in TE and TM polarized light. Mie resonance peaks are labeled TEM(j,l) or TMM(j,l) by azimuthal mode number (j) and 
radial mode number (l). b, Electric and magnetic field profiles at Mie resonance wavelengths corresponding to a. E and H indicate the amplitudes of electric and 
magnetic fields. c, Photonic lattice spectra R0() at values of  chosen to match overlapping Mie/lattice resonance locations in Fig. 2e for TE polarization and 
Fig. 2g for TM polarization. The guided-mode resonance peaks are labeled as TEL(m,v) or TML(m,v) with m denoting the diffraction order and v the waveguide 
mode. d, E and H profiles at lattice resonance points corresponding to c. Comparing b and c verifies the local/lateral mode matching at these (,) coordinates. 

Lateral/local mode matching 
Within the spectral range covered in Fig. 2e, there appear single-
particle Mie resonances marked by vertical lines labeled TEM(1,1) 
and TEM(2,1) to identify the type of Mie modal profile. Similarly, in 
Fig. 2g, Mie resonance wavelengths are noted and labeled TMM 
(0,1) and TMM (1,1) for TM polarized single-particle Mie modes. It 
is notable that the perfect-reflectance R0=1 loci bend towards these 
spectral locations such that there is strong correlation with the 
individual-particle resonance wavelengths and the lattice-resonance 
wavelengths at these locations. We explain this physical 
manifestation by spatial field matching between the Mie modes and 
the lateral modes generating the resonance. As the individual 
cylinders possess characteristic Mie resonance field profiles at the 
Mie resonance wavelengths, the lateral Bloch modes must match 
those at least approximately at these specific spectral (,) 
coordinates.  

To confirm this idea, we compare TSCS () and R0() spectra 
and attendant field profiles at values of  chosen to match 

overlapping Mie/lattice resonance locations in Figs. 2e and 2g. In 
Fig. 3a, Mie modes TEM (1,1) and TMM (0,1) occur at λ = 1.179 µm 
and 1.173 µm. At higher energy states, TEM (2,1) and TMM (1,1) are 
found at λ = 0.745 µm and 0.774 µm. With periods chosen for 
resonance coincidence to the extent possible, R0() lattice spectra are 
displayed in Fig. 3c and compared to the Mie resonance wavelengths 
in Fig. 3a with vertical lines. For Λ=1.1 µm, the TEL (1,1) locates 
near TEM (1,1) and TEL (1,2) is closely matched to TEM (2,1) at 
Λ=0.7 µm. Similarly, TML (1,1) is close to TMM (1,1) at Λ=0.5 µm. 
We now compare the localized field structures in the cylindrical 
single particles in Fig. 3b with the fields residing in the photonic 
lattice in Fig. 3d. We see that the resonant-lattice field patterns 
approximate the single-particle fields with good qualitative 
agreement. This is in spite of the fact that the guided-mode resonance 
wavelengths differ somewhat from the exact Mie resonance 
wavelengths as quantified in Figs. 3b and 3d. This wavelength 
difference is reasonable because of the geometric difference of the 
two physical arrangements. In the lattice, at resonance, there are 
contradirectional leaky Bloch modes interacting with the particles in 



addition to the incident wave in stark contrast with the single-particle 
case. The evanescent-wave-excited lateral modes interacting with 
the incident wave generate the perfect reflection with the 
approximate mode matching shown here bending the loci towards 
the Mie resonance wavelengths as illustrated in Figs. 2e and 2g. We 
conjecture that the mode-matching principle set forth here is general 
and will apply to any dielectric resonant optical lattice independent 
of the shape of the building block particles constituting the array.  

 
Mie modal memory: Preservation and erasure  
Figure 3 demonstrates preservation of Mie resonance signature 
when the lattice resonance wavelength approximates the Mie 
resonance wavelength. Thus, whereas the lattice supports 
counterpropagating Bloch modes forming a standing wave, there 
appear field patterns reminiscent of the single-particle Mie resonance 
fields. Thereby, the photonic lattice acts as a Mie modal memory. 
Here, we briefly investigate the robustness of this memory effect 
relative to perturbation of the Mie cavity with a continuum layer as 
illustrated in Fig. 4a. When the homogeneous layer thickness is dh = 
D/10, the particle cavity persists in large measure and the Mie 
signatures remain in the (,) reflectance map to the degree 

quantified in Fig. 4a. As dh gradually increases, the Mie memory 
fades. For example, for dh = 0.3D, as can be seen in Fig. 4b, the 
resonant Mie memory is erased due to the destruction of the cavity. 
Perfect reflectance endures without any connection to Mie 
resonance; this map now follows the effective-medium mode loci in 
Fig. 2f more closely. To visualize the subtleties of the resonant 
memory effect, we characterize the localized fields at points marked 
(i)-(iii) in Fig. 2e and Figs. 4a and 4b respectively. Figures 4c-e 
illustrate the transition of the resonant memory. First, in the discrete 
lattice of Fig. 2e at point (i), the perfect reflection band resides near 
the Mie resonance line. The lattice mode TEL (1,1) and the Mie 
mode TEM (1,1) have similar signatures as summarized in Fig. 4c. 
Figure 4d shows the conditions at point (ii). There, the Mie signature 
is largely retained with an additional field concentration appearing in 
the thin sublayer. However, at point (iii) in Fig. 4e, the thicker 
sublayer destroys the cavity thus erasing the Mie memory. The 
localized mode field merges into the sublayer showing a 
characteristic standing-wave profile.   

The example in Fig. 4 pertains to TE polarization; similar 
effects are also observed in TM polarization. 

 

 

Fig. 4 | Properties of Mie modal memory in TE polarization. a, R0 () reflectance map with dh = D/10. b, R0 () reflectance map with dh = 0.3D. c, 
Original local fields and mode alignment at point (i). b, Fields and mode relationship at point (ii) upon perturbation with a thin sublayer. c, Local fields and mode 
alignment at point (iii) with Mie memory erased with a thick sublayer. 

Conclusions 
In summary, we address the physics and origin of perfect reflection 
by resonant photonic lattices. The cause of this extraordinary effect 
is guided-mode resonance mediated by lateral Bloch modes excited 
by evanescent diffraction orders in the subwavelength regime. As we 
show clearly, Mie resonance is not causative in the perfect reflection 
by the lattice. Under conditions defined here, isolated-particle Mie 
resonance can, however, affect the spectral resonance location while 
not affecting the reflection efficiency.  

For simplicity and clarity, we treat 1D arrays of dielectric 
cylinders with two representative materials with refractive indices 

n=2 and n=3.5. For arbitrary periods, single-particle resonance 
spectra and lattice-resonance spectra are uncorrelated.  Maps of zero-
order reflectance R0 () chart clear loci with R0 =1 that are shown 
to associate strongly with simple waveguide modes supported by a 
homogenized effective-medium model of the lattice. For n=2, the 
agreement between the R0 =1 loci and homogenized-slab mode loci 
is very good whereas for n=3.5 qualitative agreement is found. 
Moreover, for n=2, in TM polarization, there is perfect reflection for 
a range of () coordinates even though there exists no Mie 
resonance in the region. For higher values of refractive index, the R0 
=1 loci bend towards the isolated-particle Mie resonance 



wavelengths. We explain this observation by spatial field matching 
between the Mie modes and the lateral modes inducing the guided-
mode resonance. The individual cylinders possess characteristic 
local electric and magnetic field profiles at the Mie resonance 
wavelengths. We show that the lateral Bloch modes will match those 
profile shapes, at least approximately, at these specific spectral (,) 
coordinates. The interesting fact that the resonance lattice fields 
“remember” the isolated particle local fields is referred here as “Mie 
modal memory.” Expectedly, this memory effect is strongest in 
lattices built with high-index materials. By connecting the individual 
lattice particles by an index-matched sublayer of sufficient thickness, 
the Mie memory can be erased. This is due to the destruction of the 
local Mie cavity. We find that perfect reflection survives the memory 
erasure with the resonance locus further approaching the effective-
medium waveguide locus. The ideas presented here can be extended 
to two-dimensional lattices including sphere or pillar elements. The 
results presented here have potential to advance the field of 
nanophotonics, including metamaterials and metasurfaces, by 
solidifying the understanding of the physical basis of resonant 
photonic lattices. 

 
Methods  
The isolated-cylinder scattering problem is solved by two-
dimensional (2D) finite-difference time-domain (FDTD) methods 
utilizing commercial computational tools (Rsoft, FullWAVE 
module). In the simulation, we use an enclosed input source that 
launces a plane wave within the boundary surrounding the element.26 
To calculate reflectance spectra of periodic structures, we perform 
rigorous coupled-wave analysis (RCWA).23 To establish 
connections between the high reflection bands and equivalent slab 
modes, we homogenize the lattice with effective-medium theory 
(EMT) models. The solution details are contained in Supplementary 
Information. 
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Slab waveguide with Rytov EMT   
 

 

Fig. S1 | Approximation of a slab waveguide with Rytov EMT. a, Discrete array of cylinders where Λ, D, F, nH and nL are period, diameter, 
refractive indices of cylinder (n=2, 3.5) and air (n=1). b, Extraction of full effective refractive index (݊ሺ଴ሻ

ாெ்). The grating parameter set {Λ, D, F, 

nH, nL} is applied in the Rytov formula. c, Modeling of a slab waveguide with ݊ሺ଴ሻ
ாெ். For the Bloch mode with first-order diffraction (m=1), the 

eigenvalue problem is solved satisfying			ߚ ൌ 2π Λ⁄ . 

To analyze the high reflection bands, we calculate GMR modal curves with an equivalent slab waveguide as explained 
in Fig. S1. In the beginning, we treat the discrete cylinder array with grating parameter set {Λ, D, F(Λ), nH, nL} where 
Λ, D, F, nH and nL are period, diameter, refractive indices of cylinder and background (Fig. S1a). Here, the effective 
fill factor F is given by ߨܦ 4Λ⁄ . Then, as illustrated in Fig. S1b, the grating parameter set is applied in the Rytov 
formulas for TE and TM polarization given by1  

ඥ݊௅
ଶ െ ሺ்݊ா

ாெ்ሻଶ݊ܽݐ ቂ
గஃ

ఒ
ሺ1െ ሻඥ݊௅ܨ

ଶ െ ሺ்݊ா
ாெ்ሻଶቃ ൌ ඥ݊௅

ଶ െ ሺ்݊ா
ாெ்ሻଶ݊ܽݐ ቂ

గஃ

ఒ
ሺ1െ ሻඥ݊௅ܨ

ଶ െ ሺ்݊ா
ாெ்ሻଶቃ    (1) 

ට௡ಽ
మି൫௡೅ಾ

ಶಾ೅൯
మ

௡ಽ
మ ݊ܽݐ ቂ

గஃ

ఒ
ඥ݊ுܨ

ଶ െ ሺ்݊ெ
ாெ்ሻଶቃ ൌ െ

ට௡ಽ
మି൫௡೅ಾ

ಶಾ೅൯
మ

௡ಹ
మ ݊ܽݐ ቂ

గஃ

ఒ
ඥ݊ுܨ

ଶ െ ሺ்݊ெ
ாெ்ሻଶቃ                     (2) 

Where we used the lowest-order solution ݊ሺ଴ሻ
ாெ்ሺΛ,  ሻ by solving Eqs. (1) and (2). Using the extracted Rytov EMT, weߣ

solve the eigenvalue problem of the single slab waveguide as shown in Fig. S1c. For modeling, the single layer is 
homogenized by ݊ሺ଴ሻ

ாெ். Then, the modal curves are calculated by solving eigenvalue equation for the effective slab 
waveguide as2 



ሺߛ௠	ܦሻ ∙ ሻܦ	௠ߛሾሺ݊ܽݐ ൅ ሿߨݒ ൌ ඥܸଶ െ ሺߛ௠	ܦሻଶ								ሺݒ	ݏ݅	݊݁ݒ݁ሻ          (3) 

ሺߛ௠	ܦሻ ∙ ሻܦ	௠ߛሾሺݐ݋ܿ ൅ ሿߨݒ ൌ െඥܸଶ െ ሺߛ௠	ܦሻଶ     ሺݒ	ݏ݅	݀݀݋ሻ               (4) 

where the ܸ-parameter and ߛ௠ are obtained by ܸ ൌ ඥሺ்݊ாܦߨ2
ாெ்ሻଶ െ 1 ⁄ߣ  and ߛ௠ ൌ ඥሺ்݊ாߨ2

ாெ்ሻଶ െ ሺ݉ߣ Λ⁄ ሻଶ ⁄ߣ . In 
the eigenvalue problem, we label the solution as ܶܧ௅ሺ݉,  ሻ when the GMR forms at the ݉th diffraction order coupledݒ
to the ݒth guided mode. In a similar way, we obtain the ܶܯ௅ሺ݉,  ሻ mode set by solving the TM slab waveguideݒ
problem. 
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