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Abstract. We study a model of dislocations in two-dimensional elastic media. In this model,

the displacement satisfies the system of linear elasticity with mixed displacement-traction homo-

geneous boundary conditions in the complement of an open curve in a bounded planar domain,

and has a specified jump, the slip, across the curve, while the traction is continuous there. The

stiffness tensor is allowed to be anisotropic and inhomogeneous. We prove well-posedness of

the direct problem in a variational setting, assuming the coefficients are Lipschitz continuous.

Using unique continuation arguments, we then establish uniqueness in the inverse problem of

determining the dislocation curve and the slip from a single measurement of the displacement

on an open patch of the traction-free part of the boundary. Uniqueness holds when the elasticity

operators admits a suitable decomposition and the curve satisfies additional geometric assump-

tions. This work complements the results in Arch. Ration. Mech. Anal., 236(1):71-111, (2020),

and in Preprint arXiv:2004.00321, which concern three-dimensional isotropic elastic media.

1. Introduction

In this work, we consider a model of dislocations in two-dimensional anisotropic
and inhomogeneous elastic media. The corresponding three-dimensional model
is used in geophysics (see for instance [11, 12] and references therein). We con-
fine ourselves to the two-dimensional setting for technical reasons. We work in a
bounded planar domain Ω, representing a portion of a thin elastic body, where
the dislocation is located. The exposed boundary of this part of the body satis-
fies traction-free (homogeneous Neumann) conditions, while the hidden boundary
satisfies displacement-free (homogeneous Dirichlet) conditions and it is assumed
sufficiently far from the defect. The dislocation itself is represented by a bounded
open curve C, supported away from the boundary, where the displacement jumps,
while the traction is continuous. The jump in the displacement g represents the
relative slip of the elastic material on the two sides of the curve C.
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We study both the direct as well as the inverse dislocation problem. Uniqueness
and stability in the two-dimensional homogeneous and isotropic case has been
proved in [5]. In the direct or forward problem, we solve the linear elasticity system
in the complement of the dislocation curve, given the elastic coefficients and slip
vector along the curve (see Problem (3.3)). The coefficients are taken Lipschitz
continuous. In the inverse problem, we seek to determine the location and shape
of the dislocation curve and the slip vector from a given single measurement of
the displacement on an open section of the exposed boundary of Ω. We refer to
[4, 3] for a more in-depth discussion of the corresponding isotropic 3D model that
motivates this work and its validity in the geophysical context, and for a survey
of the few existing results in the literature ([10, 14]).

Under the assumption that the stiffness tensor is strongly convex and Lipschitz
continuous, we prove the well-posedness of the direct problem in H1(Ω \ C), when

C is an orientable, Lipschitz curve and g belongs to a suitable subspace H
1/2
00 (C)

of the trace space H1/2(C) (see (2.1)). This space has good extension properties.
We utilize a harmonic lift of g to recast Problem 3.3 as a source problem in the
whole Ω, which we solve in variational form. Uniqueness in the inverse problem
is established using unique continuation results for the 2D anisotropic elasticity
operator, which holds when the latter has a certain property that essentially allows
to diagonalize the system [8] (see also [6]). Examples of elastic media satisfying
this condition include orthotropic materials. For the inverse problem, we need to
assume additionally that the curve C is globally a graph of a Lipschitz function with
respect to an arbitrary, but fixed, coordinate system. These results complement
the results in [4, 3], which pertain to the 3D isotropic case.

Well-posedness holds more generally in any space dimension, but unique con-
tinuation for the anisotropic elasticity system needed for the inverse problem is
available only in the planar case. We note that the strong unique continuation
holds for all 2D elasticity operators the principal symbol of which has simple char-
acteristics, provided the coefficients are Gevrey-class [6]. This regularity is rather
strong for applications. As a matter of fact, both the direct as well as the inverse
problem can be addressed assuming the coefficients are piecewise Lipschitz contin-
uous following the approach in [4], which included the important case of composite
media. We confine ourselves to the case of Lipschitz coefficients to keep the article
more self-contained and for ease of presentation.

The paper is organized as follows. In Section 2, we introduce some needed
notation and discuss the function spaces we utilize for our work. In Section 3, we
present the direct problem and prove its well-posedness Finally, in Section 4, we
discuss the inverse problem and prove its uniqueness.

2. Notation and Functional Setting

We begin by setting notation that we will use throughout. Next, we discuss the
functional setting to which our results apply.
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Notation 2.1 (Tensors). Scalar quantities are denoted in italics, e.g. λ, µ, ν,
points and vectors in bold italics, e.g. x,y, z and u,v,w, matrices and second-
order tensors in bold face, e.g. A,B,C, and fourth-order tensors in blackboard
face, e.g. A,B,C.

The symmetric part of a second-order tensor A is denoted by Â = 1
2

(
A + AT

)
,

where AT is the transpose matrix. In particular, ∇̂u represents the deformation
tensor. We utilize standard notation for inner products, that is, u · v =

∑
i uivi,

and A : B =
∑

i,j aijbij . |A| denotes the norm induced by the inner product on
matrices:

|A| =
√

A : A.

Notation 2.2 (Function spaces). We follow standard notation for Lebesgue
and Sobolev spaces. In particular, Hs(Ω), s ≥ 0, denote L2-based Sobolev spaces
on Ω. C∞0 (Ω) is the space of smooth functions with compact support in Ω. A
vector-valued function belongs to a function space if every component belongs to
the same space. With slight abuse of notation, we employ the same notation for
spaces of vector-valued or scalar-valued functions (e.g. for vector fields in R2 we
write H1(R2) instead of [H1(R2)]2).

In the sequel, we will utilize function spaces on bounded Lipschitz curves.
These are defined in the usual way via a partition of unity and local coordinate
charts. We will also need to introduce suitable weighted spaces that have a good
extension property on such curves. Let C be a bounded open curve, such that its
closure is a Lipschitz curve. Following [7, 9], we let

H
1/2
00 (C) :=

{
u ∈ H1/2

0 (C), δ−1/2u ∈ L2(C)
}
, (2.1)

where δ(x) = dist(x, ∂C), for x ∈ C, and H
1/2
0 (C) is the closure of the space of

smooth functions with compact support in C with respect to the H1/2(C) norm.
This space is equipped with its natural norm, that is,

‖f‖
H

1/2
00 (C) := ‖f‖H1/2(C) + ‖δ−1/2 f‖L2(C),

We note that the distance δ(x) is comparable here with the intrinsic distance on the
curve C, given the hypotheses we made on C. We can extend C to a closed Lipschitz

curve C̃. Then H
1/2
00 (C) coincides with the space of functions g ∈ H1/2(C) that

can be continuously extended by zero to a function g̃ ∈ H1/2(C̃). Indeed, every

elements of H
1/2
00 (C) has zero trace at the boundary of C. Since we will consider

mixed boundary conditions, given a subset Γ ⊂ ∂Ω, we also introduce the space

H1
Γ(Ω) :=

{
f ∈ H1(Ω) : f|Γ = 0}, (2.2)

where the restriction is in trace sense. We refer to [4] for a more in-depth discussion
of these spaces and the functional setting for our work.

Finally, we denote the duality pairing between a Banach space X and its
dual X ′ with 〈·, ·〉(X′,X). When clear from the context, we will omit the explicit
dependence on the spaces, writing 〈·, ·〉.
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Notation 2.3 (Linear elasticity). We recall that the displacement vector u =
[u1, u2]T satisfies the following linear system

div(C∇̂u) = 0, in Ω

where C is the elasticity tensor, a fourth-order tensor describing the elastic prop-
erties of the medium. When we have a need to write the system in components,
we shall use the following short-hand notation:

(∇u)hk = ∂kuh, and (divA)i =
2∑

j=1

∂jAij , for any matrix A

and

(CA)ij =

2∑
h,k=1

CijhkAhk .

3. The direct problem

We are now ready to present the direct or forward problem and prove its solvability.
In the remainder of the paper, Ω is a given bounded Lipschitz domain in R2.

We first recall the definitions of strong convexity and strong ellipticity for the
stiffness tensor C.

Definition 3.1. The stiffness tensor C is called uniformly strongly convex if, for
any x ∈ Ω, there exists a constant c > 0 such that

C(x)Â : Â ≥ c|Â|2. (3.1)

That is, C defines a positive-definite quadratic form on symmetric matrices.

Definition 3.2. The stiffness tensor C is called uniformly strongly elliptic if, for
any x ∈ Ω, there exists a constant δ > 0 such that for any vector a and b we have∑

ijhk

Cijhk(x)aibjahbk ≥ δ|a|2|b|2. (3.2)

Remark 3.3. It is well-known that strong convexity implies strong ellipticity.

We continue with discussing the main assumptions we make on the dislocation
curve C and on the stiffness tensor C. We assume that the material is neither
homogeneous nor isotropic.

Assumption 1 - elasticity tensor. The stiffness tensor C = C(x)

• satisfies minor and major symmetries, i.e.,

Cijkh(x) = Cjikh(x) = Ckhij(x), x ∈ Ω, 1 ≤ i, j, k, h ≤ 2,



Dislocations in 2D anisotropic media 187

• belongs to C0,1(Ω),

• is uniformly strongly convex, Definition 3.1 above.

C satisfies both major and minor symmetries when the material is hyperelastic.
Most materials in normal conditions are hyperelastic. If the material is prestressed,
however, then only some symmetries of the tensor are preserved in general.

Assumption 2 - dislocation curve. The dislocation curve C is an open, ori-
ented curve with Lipschitz closure

C ⊂ Ω.

C can be extended to a closed, orientable Lipschitz curve C̃ satisfying

C̃ ∩ ∂Ω = ∅.

Ω is partitioned by C̃ into two subsets, Ω+ and Ω−. We denote by Ω+ the connected
component such that ∂Ω+ ∩ ∂Ω 6= ∅. We choose the orientation of C such that the
associated unit normal vector n coincides with the unit outer normal to Ω−.

We also assume that ∂Ω is partitioned into two disjoint subsets, denoted ∂ΩD

and ∂ΩN , with ∂ΩD the closure of an open subset in ∂Ω. The direct problem
consists in solving the following interface-mixed-boundary-value problem:

div (C∇̂u) = 0, in Ω \ C,
(C∇̂u)ν = 0, on ∂ΩN ,

u = 0, on ∂ΩD

[u]C = g,

[(C∇̂u)n]C = 0,

(3.3)

where n is the normal vector induced by the orientation on C (see Assumption 2)
and ν is the unit outer normal vector on ∂Ω. Above, [ ]C denotes the jump across
the dislocation curve C, defined as follows. Given a sufficiently regular function (or
vector field) f on Ω, we let f± denote its restriction to Ω± and we let f±C denote
the restriction of f± to C, obtained as a non-tangential limit. Then

[f ]C := f+
C − f

−
C .

The vector field g on C models the slip undergone by the elastic material on the
two sides of the curve C.

Since g jumps across C, the solution cannot be in H1(Ω). One would expect
the displacement u to belongs to H1(Ω\C). This condition is equivalent to having
u± ∈ H1(Ω±) and [u]C̃\C = 0 (see Remark 3.5 below). Therefore, we seek to

extend g to

g̃(x) =

{
0 x ∈ C̃ \ C,
g x ∈ C,

(3.4)
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remaining in the trace space H1/2(C̃). As discussed in [9], the optimal subspace of

H1/2(C), where extension by zero is a bounded operator from H1/2(C) to H1/2(C̃)
is the space H

1/2
00 (C), introduced in [7] for domains in Rn and defined for a curve

in (2.1). We hence assume that

g ∈ H1/2
00 (C),

We can then recast Problem (3.3) as the following interface-mixed-boundary-value
problem, where the transmission conditions are given on a closed curve:

div (C∇̂u) = 0, in Ω \ C̃,
(C∇̂u)ν = 0, on ∂ΩN ,

u = 0, on ∂ΩD

[u]C̃ = g̃,

[(C∇̂u)n]C̃ = 0,

(3.5)

We can prove well-posedness of the forward problem in a variational setting,
thanks to the regularity and convexity of the elasticity tensor, by a suitable lifting
of the jump to reduce the problem to a source problem in the whole Ω. Since
the jump is concentrated on a curve, a good choice for the lifting operator is a
suitable double layer potential, as, for instance, in [15]. We first recall a key result
on Sobolev spaces (see e.g. [1, 2]).

Lemma 3.4. Let Ω+ and Ω− be defined as in Assumption 2 so that Ω = Ω+∪Ω−.
Let

HC̃ :=
{
f ∈ L2(Ω) : f+ ∈ H1(Ω+), f− ∈ H1(Ω−), and [f ]C̃ = 0}, (3.6)

where f+ and f− are restrictions of f in Ω+ and Ω−, respectively. Then

H1(Ω) ' HC̃ .

Remark 3.5. We observe that, if condition [f ]C̃ = 0 in (3.6) is replaced by
[f ]C̃\C = 0, i.e., we consider the space

HC̃\C :=
{
f ∈ L2(Ω) : f+ ∈ H1(Ω+), f− ∈ H1(Ω−), and [f ]C̃\C = 0},

then, obviously,
H1(Ω \ C) ' HC̃\C . (3.7)

For details, see [4].

Definition 3.6. Let Φ be a cut-off function in C∞0 (Ω) such that Φ = 1 in a collar

neighborhood of the curve C̃ small enough so that it doesn’t intersect ∂Ω. We let

ug̃(x) =
Φ(x)

2π

∫
C̃
∇y (ln |x− y|) · ny g̃(y) dσ(y)

= −Φ(x)

2π

∫
C̃

(x− y) · ny

|x− y|2
g̃(y) dσ(y).

(3.8)
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The double layer potential ug̃ is the lift of the jump on the displacement via the

Newtonian potential localized to a neighborhood of the curve C̃, so that ug̃ satisfies
homogeneous boundary conditions on ∂Ω.

By classical results on layer potentials (see for instance [13]), u±g̃ ∈ H
1(Ω±),

since g̃ ∈ H1/2(C̃), Φ ∈ C∞0 (Ω) and ∇y ln |x − y|, y ∈ C̃, is a harmonic function
in Ω+ and Ω−. Moreover, [ug̃]C̃ = g̃ thanks to the jump relations satisfied by the
double layer potential, that is, in view of (3.4),

[ug̃]C̃\C = 0, and [ug̃]C = g. (3.9)

Therefore, it follows that ug̃ ∈ H1(Ω \ C) by (3.7).

Next, we define w := u − ug̃. By the linearity of (3.5) and Lemma 3.4, the
well-posedness of (3.5) is reduced to finding w ∈ H1

∂ΩD
(Ω) such that∫

Ω

C∇̂w · ∇̂v dx = −
∫

Ω\C̃
C∇̂ug̃ · ∇̂v dx, for any v ∈ H1

∂ΩD
(Ω), (3.10)

where H1
∂ΩD

(Ω) is defined in (2.2).

Theorem 3.7. There exists a unique solution w ∈ H1
∂ΩD

(Ω) of Problem (3.10).

Proof. Let aΩ(w,v) and aΩ\C̃(ug̃,v) be the bilinear forms, respectively on the

left-hand and right-hand sides of (3.10). We will show coercivity and continuity
of aΩ(w,v) and continuity of aΩ\C̃(ug̃,v).

Continuity of aΩ(w,v). By Assumption 1, there exists a constant C > 0 such that

|aΩ(w,v)| ≤ C‖∇̂w‖L2(Ω)‖∇̂v‖L2(Ω) ≤ C‖w‖H1(Ω)‖v‖H1(Ω).

Coercivity of aΩ(w,v). By the strong convexity of the elasticity operator, Korn’s
and Poincaré inequalities (which hold in H1

∂ΩD
(Ω)), and by choosing v = w, there

exists a constant C > 0 such that

aΩ(w,w) ≥ c‖∇̂w‖2L2(Ω) ≥ C‖∇w‖
2
L2(Ω) ≥ C‖w‖

2
H1(Ω).

Continuity of aΩ\C̃(ug̃,v). Similarly to the case of the bilinear form aΩ(w,v),

since ug̃ ∈ H1(Ω \ C), there exists a constant C > 0 such that

|aΩ\C̃(ug̃,v)| ≤ C‖∇̂ug̃‖L2(Ω\C̃)‖∇̂v‖L2(Ω\C̃) ≤ C‖ug̃‖H1(Ω\C̃)‖v‖H1(Ω).

The assertion now follows by the Lax-Milgram Theorem.

As a consequence, we have the following result.

Corollary 3.8. There exists a unique solution u ∈ H1
∂ΩD

(Ω \ C) of Problem (3.3).
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Proof. Existence of a weak solution u ∈ H1
∂ΩD

(Ω \ C) is guaranteed by Theorem
3.7, Equation (3.9), Remark 3.5, and the fact that u = w + ug̃. Uniqueness
immediately follows by standard arguments. In fact, assume that there exist two
solutions u1 and u2 in H1

∂ΩD
(Ω \ C). Then, their difference, z = u1−u2, satisfies

the following problem with homogeneous jump and boundary conditions
div(C∇̂z) = 0 in Ω

(C∇̂z)ν = 0 on ∂Ω \ ∂ΩD

z = 0 on ∂ΩD.

From Lemma 3.4, we have that z ∈ H1
∂ΩD

(Ω) and the only solution to the previous
boundary value problem is z = 0. Hence, u1 = u2.

4. The Inverse Problem

This section is devoted to the study of the following inverse problem: Determine
uniquely the dislocation curve C and the slip vector g on C from given displacement
measurements on an open section Σ ⊂ ∂Ω \ ∂ΩD.

To this end, we need to make additional assumptions on the curve C and on the
form of the elasticity operator, in order to guarantee a unique continuation prop-
erty for the elasticity system when C is anisotropic. In fact, unique continuation
is the key tool in our proof of uniqueness for the inverse problem.

We first rewrite the elasticity system in non-divergence form, following [8]:

div(C∇̂u) = Λ11∂
2
1u+ Λ12∂1∂2u+ Λ22∂

2
2u+R(u) = 0, a.e. in Ω,

where
Λ11 = Ci1k1, Λ22 = Ci2k2, Λ12 = Ci2k1 + CT

i2k1,

and
R(u) =

∑
jhk

(∂jCijhk)∂kuh.

Note that ∂jCijhk is locally bounded, thanks to the Lipschitz regularity of the
elasticity tensor, and Λ11 and Λ22 are invertible (they are positive definite), due
to the strong ellipticity condition, see Assumption 1 and Remark 3.3.

Assumption 3 - further assumption on the elastic operator [8]. There ex-
ists a neighborhood of each point x0 ∈ Ω with the property that, at every
point x in this neighborhood, the quadratic operator pencil Λ11p

2 + Λ12p+
Λ22 has at least one Lipschitz eigenvalue θ(x) with associated Lipschitz eigen-
vector z(x), i.e.,

(Λ11θ
2(x) + Λ12θ(x) + Λ22)z(x) = 0,

such that the matrix [z z], where z is the complex conjugate of z, is non
singular.
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Orthotropic media are an example of anisotropic materials that satisfy this as-
sumption. It was shown in [8] that, under Assumption 3, the system of anisotropic
elasticity enjoys the unique continuation property.

Assumption 4 - further assumption on the curve C. The curve C is assumed
to be globally the graph of a Lipschitz function with respect to an arbitrary
coordinate frame.

We can now state and prove our uniqueness result on the inverse problem.

Theorem 4.1. Assume that Assumption 3 is satisfied. Let C1, C2 be two Lipschitz
curves satisfying Assumption 2, and further satisfying Assumption 4 with respect

to the same coordinate frame. Let gi ∈ H1/2
00 (Ci), for i = 1, 2, with Supp gi = Ci,

for i = 1, 2, and ui, for i = 1, 2, be the unique solution of (3.3) in H1
∂ΩD

(Ω \ C)
where g = gi and C = Ci. If u

1
∣∣
Σ

= u
2
∣∣
Σ

, then C1 = C2 and g1 = g2.

We introduce some notation used in the proof of uniqueness. Let

G be the connected component of Ω \ C1 ∪ C2 such that Σ ⊂ ∂G. (4.1)

By definition,

G ⊆ Ω \ C1 ∪ C2. (4.2)

In addition, we define G := ∂G \ ∂Ω, which can be characterized as follows.

Lemma 4.2. Let C1, C2 as in the assumptions of Theorem 4.1. Then G = C1 ∪ C2.

For a proof, we refer to [3, 4] both for bounded and unbounded domains.

Proof of Theorem 4.1. By contradiction, we assume that C1 6= C2. The rest of the
proof is divided into two parts. Let U := u1−u2. In the first part, we show that,
since U|Σ = 0 and ((C∇̂U)ν)|Σ = 0 then, by the unique continuation property for
anisotropic elastic system, U = 0 in G, where G is defined in (4.1). Then, thanks
to (4.2), in the second step, we study the cases G = Ω\C1 ∪ C2 and G ⊂ Ω\C1 ∪ C2
separately, showing that we get a contradiction in both cases.

Thanks to the vanishing of the conormal derivative, the traction, on ∂ΩN in
(3.3), and the hypothesis that u

1
∣∣
Σ

= u
2
∣∣
Σ

we have that

U = 0, (C∇̂U)ν = 0, on Σ.

Fixing a point xΣ ∈ Σ, we consider an open disk Br(xΣ), choosing r sufficiently
small such that Br(xΣ)∩Σ ⊆ Σ. We denote B+

r (xΣ) := Br(xΣ)∩Ω and B−r (xΣ) =
(B+

r (xΣ))C , the complementary domain. We also let

Ũ :=

{
U in B+

r (xΣ)

0 in B−r (xΣ)
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We can assume, for simplicity, that Σ is the graph of a Lipschitz function in some
coordinate system (x1, x2), say with respect to the x2-axis. This is possible due to
the global Lipschitz regularity of ∂Ω we assumed. We extend the stiffness tensor
C to a Lipschitz tensor C̃ in Br(xΣ) as follows: for each x ∈ Σ, we extend C in
B−r (xΣ), keeping the value C(x) constant along the x2-direction. We show that

Ũ is H1(Br(xΣ)). In fact, testing the elasticity system with ϕ ∈ H1
0 (Br(xΣ)) and

then integrating by parts, we obtain∫
Br(xΣ)

div(C̃∇̂Ũ) ·ϕ dx = −
∫
B+

r (xΣ)

C∇̂U : ∇̂ϕ dx = 0,

where we have used the fact that U is solution to the homogeneous elasticity
system. Therefore, Ũ is a weak solution in Br(xΣ) of

div(C̃∇̂Ũ) = 0.

From the unique continuation property [8], it follows that Ũ = 0 in Br(xΣ), that
is U = 0 in B+

r (xΣ). Since B+
r (xΣ), for r sufficiently small, is contained in the

connected component G defined in (4.1), we can apply the unique continuation
property repeatedly to conclude that U = 0 in G. This completes the first part
of the proof. Next, we distinguish two cases:

(i) G = Ω \ C1 ∪ C2;

(ii) G ⊂ Ω \ C1 ∪ C2.

We first analyze case (i). Using the hypothesis that the curves are Lipschitz and
the fact that C1 6= C2, without loss of generality we can assume that there exist a
point y ∈ C1 such that y /∈ C2, and a ball Br(y), with r sufficiently small, that
does not intersect C2. Consequently,

0 = [U ]Br(y)∩C1 = [u1]Br(y)∩C1 = g1,

which is a contradiction, since by hypothesis supp(g1) = C1. It follows that C1 = C2

so that
0 = [U ]C1 = [U ]C2 ⇒ [u1]C1 = [u2]C2 ⇒ g1 = g2.

Next, we analyze Case (ii). This cases arises only if C1 ∪ C2 contains a closed
curve. We can assume without loss of generality that the complement of G in
Ω \ C1 ∪ C2 consists only of one connected component Ω−, because if there is more
than one connected component we can treat each component separately. Since by
hypothesis the two curves are Lipschitz graphs with respect to an arbitrary, but
common frame, by Lemma 4.2 we can also assume that C1 ∪ C2 is a closed Lipschitz
curve, that is, C1 and C2 have common endpoints, q1 and q2, with q1 6= q2, and
that ∂Ω− = C1 ∪ C2. In fact, if this is not the case, any remaining part of the two
curves C1 and C2 can be reached on both of its sides with a connected path from
Σ and hence treated as in Case (i). Then G = Ω \ Ω− =: Ω+.
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From the first part of the proof, we know U = 0 in Ω+, that is, in a neigh-
borhood of ∂Ω−. As [(C∇̂u1)n]C1 = 0 and [(C∇̂u2)n]C2 = 0 in trace sense from
(3.3), it follows that

(C∇̂U−)n = 0, (4.3)

in H−1/2(∂Ω−), where U− again denotes the restriction of U to Ω− and n is the
outward unit normal to Ω−. Moreover, again thanks to (3.3), U− satisfies

div(C∇̂U−) = 0 in Ω−. (4.4)

We conclude from (4.3) and (4.4) that U− is in the kernel of the operator for
elastostatics in H1(Ω−), i.e., it is a rigid motion:

U− = Ax+ c,

where c ∈ R2 and A ∈ R2×2 is a skew-symmetric matrix. We conclude the proof
by showing that this rigid motion can only be the trivial one. We observe that

U− = [U ]Ci = gi on Ci, and by hypothesis gi ∈ H1/2
00 (Ci), hence gi(qi) = 0 for

i = 1, 2. This implies that

Aq1 + c = 0, Aq2 + c = 0. (4.5)

Subtracting the two equations in (4.5) gives

A(q1 − q2) = 0 . (4.6)

Since A is skew, A =

[
0 a12

−a12 0

]
, a12 ∈ R. It follows from (4.6), given that

q1 6= q2, that necessarily a12 = 0, i.e., A = 0. Then from (4.5), it also follows
that c = 0. Consequently, U− = 0 in Ω− so that [U ] = 0 on ∂Ω−. In particular,
[U ]C1 = 0 = [u1] = g1 6= 0, by the assumption that Supp(gi) = Ci. We reach a
contradiction and, therefore, Case (ii) does not occur.

Remark 4.3. The well-posedness of Problem (3.3) holds in Rn for arbitrary
n ≥ 2, and for piecewise Lipschitz coefficients that are regular on a given Lip-
schitz partition of Ω. In this case, Problem (3.3) is augmented with classical
homogeneous transmission conditions at the interfaces between elements of this
partition. Uniqueness of the inverse problem can be extended to this case if n = 2.
We refer to [4] for more details.
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