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Abstract

Crowdsourced data used in machine learning services might carry sensitive infor-
mation about attributes that users do not want to share. Various methods have been
proposed to minimize the potential information leakage of sensitive attributes while
maximizing the task accuracy. However, little is known about the theory behind
these methods. In light of this gap, we develop a novel theoretical framework for
attribute obfuscation. Under our framework, we propose a minimax optimization
formulation to protect the given attribute and analyze its inference guarantees
against worst-case adversaries. Meanwhile, it is clear that in general there is a
tension between minimizing information leakage and maximizing task accuracy.
To understand this, we prove an information-theoretic lower bound to precisely
characterize the fundamental trade-off between accuracy and information leakage.
We conduct experiments on two real-world datasets to corroborate the inference
guarantees and validate this trade-off. Our results indicate that, among several
alternatives, the adversarial learning approach achieves the best trade-off in terms
of attribute obfuscation and accuracy maximization.

1 Introduction

With the growing demand for machine learning systems provided as services, a massive amount
of data containing sensitive information, such as race, income level, age, etc., are generated and
collected from local users. This poses a substantial challenge and it has become an imperative object
of study in machine learning [18], computer vision [6, 34], healthcare [2, 3], speech recognition [30],
and many other domains. In this paper, we consider a practical scenario where the prediction vendor
requests crowdsourced data for a target task, e.g, scientific modeling. The data owner agrees on
the data usage for the target task while she does not want her other sensitive information (e.g., age,
race) to be leaked. The goal in this context is then to obfuscate sensitive attributes of the sanitized
data released by data owner from potential attribute inference attacks from a malicious adversary.
For example, in an online advertising scenario, while the user (data owner) may agree to share her
historical purchasing events, she also wants to protect her age information so that no malicious
adversary can infer her age range from the shared data. Note that simply removing age attribute
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from the shared data is insufficient for this purpose, due to the redundant encoding in data, i.e., other
attributes may have a high correlation with age.

Under this scenario, a line of work [4, 14, 19, 22, 24, 25, 32–34] aims to address the problem in the
framework of (constrained) minimax problem. However, the theory behind these methods is little
known. Such a gap between theory and practice calls for an important and appealing challenge:

Can we prevent the information leakage of the sensitive attribute while still maxi-
mizing the task accuracy? Furthermore, what is the fundamental trade-off between
attribute obfuscation and accuracy maximization in the minimax problem?

Under the setting of attribute obfuscation, the notion of information confidentiality should be attribute-
specific: the goal is to protect specific attributes from being inferred by malicious adversaries as
much as possible. Note that this is in sharp contrast with differential privacy (we systematically
compare the related notions in Sec. 5 Related Work), where mechanisms are usually designed to resist
worst-case membership query among all the data owners instead of preventing information leakage
of the sensitive attribute [11]. From this perspective, our relaxed definition of attribute obfuscation
against adversaries also allows for a more flexible design of algorithms with better accuracy.

Our Contributions In this paper, we first formally define the notion of attribute inference attack in
our setting and justify why our definitions are particularly suited under our setting. Through the lens
of representation learning, we formulate the problem of accuracy maximization with information
obfuscation constraint as a minimax optimization problem. To provide a formal guarantee on attribute
obfuscation, we prove an information-theoretic lower bound on the inference error of the protected
attribute under attacks from arbitrary adversaries. To investigate the relationship between attribute
obfuscation and accuracy maximization, we also prove a theorem that formally characterizes the
inherent trade-off between these two concepts. We conduct experiments to corroborate our formal
guarantees and validate the inherent trade-offs in different attribute obfuscation algorithms. From our
empirical results, we conclude that the adversarial representation learning approach achieves the best
trade-off in terms of attribute obfuscation and accuracy maximization, among various state-of-the-art
attribute obfuscation algorithms.

2 Preliminaries

Problem Setup We focus on the setting where the goal of the adversary is to perform attribute
inference. This setting is ubiquitous in sever-client paradigm where machine learning is provided
as a service (MLaaS, Ribeiro et al. [27]). Formally, there are two parties in the system, namely the
prediction vendor and the data owner. We consider the practical scenarios where users agree to
contribute their data for specific purposes (e.g., training a machine learning model) but do not want
others to infer their sensitive attributes in the data, such as health information, race, gender, etc. The
prediction vendor will not collect raw user data but processed user data and the target attribute for the
target task. In our setting, we assume the adversary cannot get other auxiliary information than the
processed user data. In this case, the adversary can be anyone who can get access to the processed
user data to some extent and wants to infer other private information. For example, malicious machine
learning service providers are motivated to infer more information from users to do user profiling and
targeted advertisements. The goal of the data owner is to provide as much information as possible to
the prediction vendor to maximize the vendor’s own accuracy, but under the constraint that the data
owner should also protect the private information of the data source, i.e., attribute obfuscation. For
ease of discussion, in our following analysis, we assume the the prediction vendor performs binary
classification on the processed data. Extensions to multi-class classification is straightforward.

Notation We use X , Y andA to denote the input, output and adversary’s output space, respectively.
Accordingly, we use X, Y, A to denote the random variables which take values in X ,Y and A.
We note that in our framework the input space X may or may not contain the sensitive attribute
A. For two random variables X and Y, I(X; Y) denotes the mutual information between X and Y.
We use H(X) to mean the Shannon entropy of random variable X. Similarly, we use H(X | Y)
to denote the conditional entropy of X given Y. We assume there is a joint distribution D over
X × Y × A from which the data are sampled. To make our notation consistent, we use DX ,
DY and DA to denote the marginal distribution of D over X , Y and A. Given a feature map
function f : X → Z that maps instances from the input space X to feature space Z , we define
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D f := D ◦ f−1 to be the induced (pushforward) distribution ofD under f , i.e., for any event E′ ⊆ Z ,
PrD f (E′) := PrD({x ∈ X | f (x) ∈ E′}).

To simplify the exposition, we mainly discuss the setting where X ⊆ Rd,Y = A = {0, 1}, but the
underlying theory and methodology could easily be extended to the categorical case as well. In what
follows, we first formally define both the accuracy of the prediction vendor for the individualized
service and the attribute inference advantage of an adversary. It is worth pointing out that our
definition of inference advantage is attribute-specific. In particular, we seek to keep the data useful
while being robust to an adversary on protecting specific attribute information from attack.

A hypothesis is a function h : X → Y . The error of a hypothesis h under the distribution D over
X ×Y is defined as: Err(h) := ED

[
|Y− h(X)|

]
. Similarly, we use Êrr(h) to denote the empirical

error of h on a sample from D. For binary classification problem, when h(x) ∈ {0, 1}, the above
loss also reduces to the error rate of classification. LetH be the space of hypotheses. In the context
of binary classification, we define the accuracy of a hypothesis h ∈ H as:

Definition 2.1 (Accuracy). The accuracy of h ∈ H is ACC(h) := 1−ED
[
|Y− h(X)|

]
.

For binary classification, we always have 0 ≤ ACC(h) ≤ 1, ∀h ∈ H. Similarly, an adversarial
hypothesis is a function of hA : X → A. Next we define a measure of how much advantage of
attribute inference gained from a particular attack space in our framework:

Definition 2.2 (Attribute Inference Advantage). The inference advantage w.r.t. attribute A un-
der attacks from HA is defined as ADV(HA) := maxhA∈HA

∣∣PrD(hA(X) = 1 | A =

1)− PrD(hA(X) = 1 | A = 0)
∣∣.

Again, it is straightforward to verify that 0 ≤ ADV(HA) ≤ 1. Based on our definition, ADV(HA)
then measures maximal inference advantage that the adversary inHA can gain. We can also refine the
above definition to a particular hypothesis hA : X → {0, 1} to measure its ability to steal information
about A: ADV(hA) =

∣∣PrD(hA(X) = 1 | A = 1)− PrD(hA(X) = 1 | A = 0)
∣∣.

Proposition 2.1. Let hA : X → {0, 1} be a hypothesis, then ADV(hA) = 0 iff I(hA(X); A) = 0
and ADV(hA) = 1 iff hA(X) = A almost surely or hA(X) = 1− A almost surely.

Proposition 2.1 justifies Definition 2.2 on how well an adversary hA can infer about A from X: when
ADV(hA) = 0, it means that hA(X) contains no information about the sensitive attribute A. On the
other hand, if ADV(hA) = 1, then hA(X) fully predicts A (or equivalently, 1− A) from input X. In
the latter case hA(X) also contains perfect information of A in the sense that I(hA(X); A) = H(A),
i.e., the Shannon entropy of A. It is worth pointing out that Definition 2.2 is insensitive to the marginal
distribution of A, and hence is more robust than other definitions such as the error rate of predicting A.
In that case, if A is extremely imbalanced, even a naive predictor can attain small prediction error by
simply outputting constant. We call a hypothesis spaceHA symmetric if ∀hA ∈ HA, 1− hA ∈ HA
as well. WhenHA is symmetric, we can also relate ADV(HA) to a binary classification problem:

Proposition 2.2. If HA is symmetric, then ADV(HA) + minhA∈HA Pr(hA(X) = 0 | A = 1) +
Pr(hA(X) = 1 | A = 0) = 1.

Consider the confusion matrix between the actual sensitive attribute A and its predicted variable
hA(X). The false positive rate (eqv. Type-I error) is defined as FPR = FP / (FP + TN) and the
false negative rate (eqv. Type-II error) is similarly defined as FNR = FN / (FN + TP). Using the
terminology of confusion matrix, it is then clear that Pr(hA(X) = 0 | A = 1) = FNR and
Pr(hA(X) = 1 | A = 0) = FPR. In other words, Proposition 2.2 says that if HA is symmetric,
then the larger the attribute inference advantage ofHA, the smaller the minimum sum of Type-I and
Type-II error under attacks fromHA.

3 Main Results

Given a set of samples S = {(xi, yi, ai)}n
i=1 drawn i.i.d. from the joint distribution D, how can the

data owner keep the data useful while keeping the sensitive attribute A obfuscated under potential
attacks from malicious adversaries? Through the lens of representation learning, we seek to find a
(non-linear) feature representation f : X → Z from input space X to feature space Z such that f
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still preserves relevant information w.r.t. the target task of inferring Y while hiding sensitive attribute
A. Specifically, we can solve the following unconstrained regularized problem with λ > 0:

min
h∈H, f

max
hA∈HA

Êrr(h ◦ f )− λ
(

Pr
S
(hA( f (X)) = 0 | A = 1) + Pr

S
(hA( f (X)) = 1 | A = 0)

)
(1)

It is worth pointing out that the optimization formulation in (1) admits an interesting game-theoretic
interpretation, where two agents f and hA play a game whose score is defined by the objective
function in (1). Intuitively, hA seeks to minimize the sum of Type-I and Type-II error while f
plays against hA by learning transformation to removing information about the sensitive attribute
A. Algorithmically, for the data owner to achieve the goal of hiding information about the sensitive
attribute A from malicious adversary, it suffices to learn a representation that is independent of A:

Proposition 3.1. Let f : X → Z be a deterministic function and HA ⊆ 2Z be a hypothesis class
over Z . For any joint distribution D over X, A, Y, if I( f (X); A) = 0, then ADV(HA ◦ f ) = 0.

Note that in this sequential game, f is the first-mover and hA is the second. Hence without explicit
constraint f possesses a first-mover advantage so that f can dominate the game by simply mapping
all the input X to a constant or uniformly random noise2. To avoid these degenerate cases, the first
term in the objective function of (1) acts as an incentive to encourage f to preserve task-related
information. But will this incentive compromise the information of A? As an extreme case if the
target variable Y and the sensitive attribute A are perfectly correlated, then it should be clear that
there is a trade-off in achieving accuracy and preventing information leakage of the attribute. In
Sec. 3.2 we shall provide an information-theoretic bound to precisely characterize such trade-off.

3.1 Formal Guarantees against Attribute Inference

In the unconstrained minimax formulation (1), the hyperparameter λ measures the trade-off between
accuracy and information obfuscation. On one hand, if λ→ 0, we barely care about the information
obfuscation of A and devote all the focus to maximize our accuracy. On the other extreme, if λ→ ∞,
we are only interested in obfuscating the sensitive information. In what follows we analyze the true
error that an optimal adversary has to incur in the limit when both the task classifier and the adversary
have unlimited capacity, i.e., they can be any randomized functions from Z to {0, 1}. To study the
true error, we hence use the population loss rather than the empirical loss in our objective function.
Furthermore, since the binary classification error in (1) is NP-hard to optimize even for hypothesis
class of linear predictors, in practice we consider the cross-entropy loss function as a convex surrogate
loss. With a slight abuse of notation, the cross-entropy loss CEY(h) of a probabilistic hypothesis
h : X → [0, 1] w.r.t. Y on a distribution D is defined as follows:

CEY(h) := −ED [I(Y = 0) log(1− h(X)) + I(Y = 1) log(h(X))].

We also use CEA(hA) to mean the cross-entropy loss of the adversary hA w.r.t. A. Using the same
notation, the optimization formulation with cross-entropy loss becomes:

min
h∈H, f

max
hA∈HA

CEY(h ◦ f )− λ ·CEA(hA ◦ f ) (2)

Given a feature map f : X → Z , assume that H contains all the possible probabilistic classifiers
from the feature space Z to [0, 1]. For example, a probabilistic classifier can be constructed by first
defining a function h : Z → [0, 1] followed by a random coin flipping to determine the output label,
where the probability of the coin being 1 is given by h(Z). Under such assumptions, the following
lemma shows that the optimal target classifier under f is given by the conditional distribution
h∗(Z) := Pr(Y = 1 | Z).
Lemma 3.1. For any feature map f : X → Z , assume thatH contains all the probabilistic classifiers,
then minh∈H CEY(h ◦ f ) = H(Y | Z) and h∗(Z) := arg minh∈H CEY(h ◦ f ) = Pr(Y = 1 |
Z = f (X)).

By a symmetric argument, we can also see that the worst-case (optimal) adversary under f is the
conditional distribution h∗A(Z) := Pr(A = 1 | Z) and minhA∈HA CEA(hA ◦ f ) = H(A | Z).

2The extension of Proposition 3.1 to randomized function is staightforward as long as the randomness is
independent of the sensitive attribute A.
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Hence we can further simplify the optimization formulation (2) to the following form where the only
optimization variable is the feature map f :

min
f

H(Y | Z = f (X))− λH(A | Z = f (X)) (3)

Since Z = f (X) is a deterministic feature map, it follows from the basic properties of Shannon
entropy that

H(Y | X) ≤ H(Y | Z = f (X)) ≤ H(Y), H(A | X) ≤ H(A | Z = f (X)) ≤ H(A)

which means that H(Y | X)− λH(A) is a lower bound of the optimum of the objective function in
(3). However, such lower bound is not necessarily achievable. To see this, consider the simple case
where Y = A almost surely. In this case there exists no deterministic feature map Z = f (X) that is
both a sufficient statistics of X w.r.t. Y while simultaneously filters out all the information w.r.t. A
except in the degenerate case where A(Y) is constant. Next, to show that solving the optimization
problem in (3) helps to remove sensitive information, the following theorem gives a bound of attribute
inference in terms of the error that has to be incurred by the optimal adversary:
Theorem 3.1. Let f ∗ be the optimal feature map of (3) and define H∗ := H(A | Z = f ∗(X)).
Then for any adversary Â such that I(Â; A | Z) = 0, PrD f ∗ (Â 6= A) ≥ H∗/2 lg(6/H∗).

Remark Theorem 3.1 shows that whenever the conditional entropy H∗ = H(A | Z = f ∗(X)) is
large, then the inference error of the protected attribute incurred by any (randomized) adversary has
to be at least Ω(H∗/ log(1/H∗)). The assumption I(Â; A | Z) = 0 says that, given the processed
feature Z, the adversary Â could not use any external information that depends on the true sensitive
attribute A. As we have already shown above, the conditional entropy essentially corresponds to
the second term in our objective function, whose optimal value could further be flexibly adjusted by
tuning the trade-off parameter λ. As a final note, Theorem 3.1 also shows that representation learning
helps to remove the information about A since we always have H(A | Z = f (X)) ≥ H(A | X) for
any deterministic feature map f so that the lower bound of inference error by any adversary is larger
after learning the representation Z = f (X).

3.2 Inherent trade-off between Accuracy and Attribute Obfuscation

In this section we shall provide an information-theoretic bound to quantitatively characterize the
inherent trade-off between these accuracy maximization and attribute obfuscation, due to the discrep-
ancy between the conditional distributions of the target variable given the sensitive attribute. Our
result is algorithm-independent, hence it applies to a general setting where there is a need to preserve
both terms. To the best of our knowledge, this is the first information-theoretic result to precisely
quantify such trade-off. Due to space limit, we defer all the proofs to the appendix.

Before we proceed, we first define several information-theoretic concepts that will be used in our
analysis. For two distributions D and D′, the Jensen-Shannon (JS) divergence DJS(D,D′) is:
DJS(D,D′) := 1

2 DKL(D ‖ DM) + 1
2 DKL(D′ ‖ DM), where DKL(· ‖ ·) is the Kullback–Leibler

(KL) divergence and DM := (D +D′)/2. The JS divergence can be viewed as a symmetrized and
smoothed version of the KL divergence, However, unlike the KL divergence, the JS divergence is
bounded: 0 ≤ DJS(D,D′) ≤ 1. Additionally, from the JS divergence, we can define a distance metric
between two distributions as well, known as the JS distance [13]: dJS(D,D′) :=

√
DJS(D,D′).

With respect to the JS distance, for any feature space Z and any deterministic mapping f : X → Z ,
we can prove the following lemma via the celebrated data processing inequality:

Lemma 3.2. Let D0 and D1 be two distributions over X and let D f
0 and D f

1 be the induced

distributions of D0 and D1 over Z by function f , then dJS(D
f
0 ,D f

1 ) ≤ dJS(D0,D1).

Without loss of generality, any method aiming to predict the target variable Y defines a Markov chain

as X
f−→ Z h−→ Ŷ, where Ŷ is the predicted target variable given by hypothesis h and Z is the

intermediate representation defined by the feature mapping f . Hence for any distribution D0(D1) of
X, this Markov chain also induces a distribution Dh◦ f

0 (Dh◦ f
1 ) of Ŷ and a distribution D f

0 (D
f
1 ) of Z.

Now let DY
0 (DY

1 ) be the underlying true conditional distribution of Y given A = 0(A = 1). Realize
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that the JS distance is a metric, the following chain of triangular inequalities holds:

dJS(DY
0 ,DY

1 ) ≤ dJS(DY
0 ,Dh◦ f

0 ) + dJS(D
h◦ f
0 ,Dh◦ f

1 ) + dJS(D
h◦ f
1 ,DY

1 ).

Combining the above inequality with Lemma 3.2 to show dJS(D
h◦ f
0 ,Dh◦ f

1 ) ≤ dJS(D
f
0 ,D f

1 ), we
immediately have:

dJS(DY
0 ,DY

1 ) ≤ dJS(DY
0 ,Dh◦ f

0 ) + dJS(D
f
0 ,D f

1 ) + dJS(D
h◦ f
1 ,DY

1 ).

Intuitively, dJS(DY
0 ,Dh◦ f

0 ) and dJS(DY
1 ,Dh◦ f

1 ) measure the distance between the predicted and the
true target distribution on A = 0/1 cases, respectively. Formally, let Erra(h ◦ f ) be the prediction
error of function h ◦ f conditioned on A = a. With the help of Lemma A.2, the following result
establishes a relationship between dJS(DY

a ,Dh◦ f
a ) and the accuracy of h ◦ f :

Lemma 3.3. Let Ŷ = h( f (X)) ∈ {0, 1} be the predictor, then for a ∈ {0, 1}, dJS(DY
a ,Dh◦ f

a ) ≤√
Erra(h ◦ f ).

Combine Lemma 3.2 and Lemma 3.3, we get the following key lemma that is the backbone for
proving the main results in this section:
Lemma 3.4 (Key lemma). Let D0, D1 be two distributions over X ×Y conditioned on A = 0 and

A = 1 respectively. Assume the Markov chain X
f−→ Z h−→ Ŷ holds, then ∀h ∈ H:

dJS(DY
0 ,DY

1 ) ≤
√

Err0(h ◦ f ) + dJS(D
f
0 ,D f

1 ) +
√

Err1(h ◦ f ).

We emphasize that for a ∈ {0, 1}, the term Erra(h ◦ f ) measures the conditional error of the predicted
variable Ŷ by the composite function h ◦ f overDa. Similarly, we can define the conditional accuracy
for a ∈ {0, 1} : ACCa(h ◦ f ) := 1− Erra(h ◦ f ). The following main theorem then characterizes a
fundamental trade-off between accuracy and attribute obfuscation:

Theorem 3.2. Let HA ⊆ 2Z be the hypothesis space of all the classifiers from Z to {0, 1}.
Assume the conditions in Lemma 3.4 hold, then ∀h ∈ H, ACC0(h ◦ f ) + ACC1(h ◦ f ) ≤ 2−
1
3 DJS(DY

0 ,DY
1 ) + ADV(HA ◦ f ).

The upper bound given in Theorem 3.2 shows that when the marginal distribution of the target
variable Y differ between two cases A = 0 or A = 1, then it is impossible to perfectly maximize
accuracy and prevent the sensitive attribute being inferred. Furthermore, the trade-off due to the
difference in marginal distributions is precisely given by the JS divergence DJS(DY

0 ,DY
1 ). Next,

if we would like to decrease the advantage of adversaries, ADV(HA ◦ f ), through learning proper
feature transformation f , then the upper bound on the sum of conditional accuracy also becomes
smaller, for any predictor h. Note that in Theorem 3.2 the upper bound holds for any adversarial
hypothesis hA in the richest hypothesis classHA that contains all the possible binary classifiers. Put
it another way, if we would like to maximally obfuscate information w.r.t. sensitive attribute A, then
we have to incur a large joint error:

Theorem 3.3. Assume the conditions in Theorem 3.2 hold. If ADV(HA ◦ f ) ≤ DJS(DY
0 ,DY

1 ), then

∀h ∈ H, Err0(h ◦ f ) + Err1(h ◦ f ) ≥ 1
2
(
dJS(DY

0 ,DY
1 )−

√
ADV(HA ◦ f )

)2.

Remark The above lower bound characterizes a fundamental trade-off between information ob-
fuscation of the sensitive attribute and joint error of target task. In particular, up to a certain level
DJS(DY

0 ,DY
1 ), the larger the inference advantage that the adversary can gain, the smaller the joint

error. In light of Proposition 3.1, this means that although the data-owner, or the first-mover f , could
try to maximally filter out the sensitive information via constructing f such that f (X) is independent
of A, such construction will also inevitably compromise the joint accuracy of the prediction vendor.
It is also worth pointing out that our results in both Theorem 3.2 and Theorem 3.3 are attribute-
independent in the sense that neither of the bounds depends on the marginal distribution of A. Instead,
all the terms in our results only depend on the conditional distributions given A = 0 and A = 1.
This is often more desirable than bounds involving mutual information, e.g., I(A, Y), since I(A, Y)
is close to 0 if the marginal distribution of A is highly imbalanced.

6



4 Experiments

In this section, we conduct experiments to investigate the following questions:

Q1 Are our formal guarantees valid for different attribute obfuscation methods and the inherent
trade-offs between attribute information obfuscation and accuracy maximization exist in all
methods?

Q2 Which attribute obfuscation algorithms achieve the best trade-offs in terms of attribute
obfuscation and accuracy maximization?

4.1 Datasets and Setup

In our experiments, we use: (1) Adult dataset [8]: The Adult dataset is a benchmark dataset for
classification. The task is to predict whether an individual’s income is greater or less than 50K/year
based on census data. In our experiment we set the target task as income prediction and the malicious
task done by the adversary as inferring gender, age and education, respectively. (2) UTKFace
dataset [38]: The UTKFace dataset is a large-scale face benchmark dataset containing more than
20,000 images with annotations of age, gender, and ethnicity. In our experiment, we set our target
task as gender classification and we use the age and ethnicity as the protected attributes. We refer
readers to Sec. C in the appendix for detailed descriptions about the data pre-processing pipeline and
the data distribution for each dataset.

We conduct experiments with the following methods to verify our theoretical results and provide a
thorough practical comparison among these methods. 1). Privacy Partial Least Squares (PPLS) [14],
2). Privacy Linear Discriminant Analysis (PLDA) [33], 3). Minimax filter with alternative update
(ALT-UP) [19], 4) Maximum Entropy Adversarial Representation Learning (MAX-ENT) [28] 5).
Gradient Reversal Layer (GRL) [17] 6). Principal Component Analysis (PCA) 7). Normal Training
(NORM-TRAIN), 8) Local Differential Privacy (LDP) with Laplacian mechanism, 9). Differentially
Private SGD (DPSGD) [1]. Among the first seven methods, the first five are state-of-the-art minimax
methods for protecting against attribute inference attacks while the latter two are normal representation
learning baselines for comprehensive comparison. Although DP is not tailored to attribute obfuscation,
we can still add two DP baselines to examine the accuracy and attribute obfuscation trade-off for
comparison3. To ensure the comparison is fair among different methods, we conduct a controlled
experiment by using the same network structure as the baseline hypothesis among all the methods
for each dataset. For each experiment on the Adult dataset and UTKFace dataset, we repeat the
experiments for ten times to report both the average performance and their standard deviations. Sec. C
in the appendix provides detailed descriptions about the methods and the hyperparameter settings.

Note that in practice due to the non-convex nature of optimizing deep neural nets, we cannot guarantee
to find the global optimal conditional entropy H∗. Hence in order to compute the formal guarantee
given by our lower bound in Theorem 3.1, we use the cross-entropy loss of the optimal adversary
found by our algorithm on inferring the sensitive attribute A. Furthermore, since our analysis only
applies to representation learning based approaches, we do not have similar guarantee for DP-related
methods in our context. We visualize the performances of the aforementioned algorithms on attribute
obfuscation and accuracy maximization in Figure 1 and Figure 2, respectively.

4.2 Results and Analysis

Validation of Our Theory (Q1) From Figure 1, we can see that the formal guarantees are valid for
all representation learning approaches. With the results in Figure 2, we also see that no methods are
perfect in both achieving both attribute obfuscation and accuracy maximization: the methods with
small accuracy loss comes with relative low inference errors and vice versa.

Comparison with Different Methods (Q2) Among all methods, LDP, PLDA, ALT-UP, MAX-
ENT and GRL are effective in attribute obfuscation by forcing the optimal adversary to incur a large
inference error in Figure 1. On the other hand, PCA and NORM-TRAIN are the least effective ones.
This is expected as neither NORM-TRAIN nor PCA filters information in data about the sensitive
attribute A.

3Some other methods [24, 31] in the literature are close variants of the above, so we do not include them
here due to the space limit.
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Figure 1: Performance on attribute obfuscation of different methods (the larger the better). The
horizontal lines across the bars indicate the corresponding formal guarantees given by our lower
bound in Theorem 3.1.
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Figure 2: The joint conditional error (Err0 + Err1, the smaller the better) of different methods.

From Figure 2, we can also see a sharp contrast between DP-based methods and other methods in
terms of the joint conditional error on the target task: both LDP and DPSGD could incur significant
accuracy loss compared with other methods. Combining this one with our previous observation from
Figure 1, we can see that DP-based methods either make data private by adding large amount of noise
to filter out both target-related information and sensitive-related information available in the data, or
add insufficient amount of noise so that both target-related and sensitive-related information is well
preserved. As a comparison, representation learning based approaches leads to a better trade-off.

Among the representation learning methods, PLDA, ALT-UP, MAX-ENT and GRL perform the best
in attribute obfuscation. Compared to PLDA and GRL, ALT-UP and MAX-ENT incur significant
drops in accuracy when λ is large. It is also worth to note that different adversarial representation
learning methods have different sensitivity on λ: a large λ for MAX-ENT might lead to an unstable
model training process and result in a large accuracy loss. In contrast, GRL is often more stable,
which is consistent to the results shown in [7].

5 Related Work

Attribute Obfuscation Various minimax formulations and algorithms have been proposed to
defend against inference attack in different scenarios [4, 14, 16, 19, 22, 24, 25, 33, 34]. Bertran et al.
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[4] proposed the optimization problem where the terms in the objective function are defined in terms
of mutual information. Under their formulation, they analyze a trade-off between between utility loss
and attribute obfuscation: under the constraint of the attribute obfuscation I(A; Z) ≤ k, what the
maximum utility loss I(Y; X | Z) is. Compared with these works, we study the inherent trade-off
between the accuracy and attribute obfuscation and provide formal guarantees to quantify worst-case
inference error given the transformation.

Differential Privacy Differential privacy (DP) has been proposed and extensively investigated to
protect the individual privacy of collected data [9] and DP mechanisms were used in the training of
deep neural network recently [1, 26]. DP ensures the output distribution of a randomized mechanism
to be statistically indistinguishable between any two neighboring datasets, and provides formal
guarantees for privacy problems such as defending against the membership query attacks [21, 29].
From this perspective, DP is closely related to the well-known membership inference attack [29]
instead. As a comparison, our goal of attribute obfuscation is to learn a representation such that
the sensitive attributes cannot be accurately inferred. Although the two goals differ, Yeom et al.
[36] show the there are deep connections between membership inference and attribute inference.
An interesting direction to explore is to draw more formal connections to these two notions. Last
but not least, It is also worth to mention that the notion of individual fairness may be viewed as a
generalization of DP [10].

Algorithmic Fairness Recent work has shown that unfair models could lead to the leakage of
users’ sensitive information [35]. In particular, adversarial learning methods have been used as a
tool in both fields to achieve the corresponding goals [12, 19]. However, the motivations and goals
significantly differ between these two fields. Specifically, the widely adopted notion of group fairness,
namely equalized odds [20], requires equalized false positive and false negative rates across different
demographic subgroups. As a comparison, in applications where information leakage is a concern,
we mainly want to ensure that adversaries cannot steal sensitive information from the data. Hence our
goal is to give a worst case guarantee on the inference error that any adversary has at least to incur.
To the best of our knowledge, our results in Theorem 3.1 is the first one to analyze the performance of
attribute obfuscation in such scenarios. Furthermore, no prior theoretical results exist on discussing
the trade-off between attribute obfuscation and accuracy under the setting of representation learning.
Our proof techniques developed in this work could also be used to derive information-theoretic lower
bounds in related problems as well [39, 40]. On a final note, the relationships of the above notions
are visualized in Figure 3.

Individual Fairness
(Dwork et al., 2012)

Group Fairness
(Zemel et al., 2013)

Membership Inference
(Shokri et al., 2017)

Attribute Inference
(Fredrikson et al., 2015)

Figure 3: Relationships between different notions of fairness and inference attack.

6 Conclusion

We develop a theoretical framework for analyzing attribute obfuscation through adversarial representa-
tion learning. Specifically, the framework suggests using adversarial learning techniques to obfuscate
the sensitive attribute and we also analyze the formal guarantees of such techniques in the limit of
worst-case adversaries. We also prove an information-theoretic lower bound to quantify the inherent
trade-off between accuracy and obfuscation of attribute information. Following our formulation,
we conduct experiments to corroborate our theoretical results and to empirically compare different
state-of-the-art attribute obfuscation algorithms. Experimental results show that the adversarial
representation learning approaches are effective against attribute inference attacks and often achieve
the best trade-off in terms of attribute obfuscation and accuracy maximization. We believe our work
takes an important step towards better understanding the trade-off between accuracy maximization
and attribute obfuscation, and it also helps inspire the future design of attribute obfuscation algorithms
with adversarial learning techniques.
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Broader Impact

In the process of data collection and information sharing, the data might contain sensitive infor-
mation that the users are unwilling to disclose. This poses severe challenges for regulations such
as GDPR [15] that aims to control the uses and purposes of the collected and shared data. Our
work takes a step towards better understanding the trade-off therein and suggests a practical method
to mitigate the potential information leakage in such high-stakes scenarios. That being said, the
adversarial learning techniques might inevitably lead to degradation in target performance, and more
work is needed to explore the best trade-off that could be achieved.
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Appendix

In this appendix we provide the missing proofs of theorems and claims in our main paper. We also
describe detailed experimental settings here.

A Technical Tools

In this section we list the lemmas and theorems used during our proof.

Lemma A.1 (Theorem 2.2, [5]). Let H−1
2 (s) be the inverse binary entropy function for s ∈ [0, 1],

then H−1
2 (s) ≥ s/2 lg(6/s).

Lemma A.2 (Lin [23]). Let D and D′ be two distributions, then DJS(D,D′) ≤ 1
2‖D −D′‖1.

Theorem A.1 (Data processing inequality). Let X ⊥ Y | Z, then I(X; Z) ≥ I(X; Y).

B Missing Proofs

Proposition 2.1. Let hA : X → {0, 1} be a hypothesis, then ADV(hA) = 0 iff I(hA(X); A) = 0
and ADV(hA) = 1 iff hA(X) = A almost surely or hA(X) = 1− A almost surely.

Proof. We first prove the first part of the proposition. By definition, ADV(hA) = 0 iff PrD(hA(X) =
1 | A = 1) = PrD(hA(X) = 1 | A = 0), which is also equivalent to hA(X) ⊥⊥ A. It then follows
that hA(X) ⊥⊥ A⇔ I(hA(X); A) = 0.

For the second part of the proposition, again, by definition of ADV(hA), it is clear to see that
we either have PrD(hA(X) = 1 | A = 1) = 1 and PrD(hA(X) = 1 | A = 0) = 0, or
PrD(hA(X) = 1 | A = 1) = 0 and PrD(hA(X) = 1 | A = 0) = 1. Hence we discuss by these
two cases. For ease of notation, we omit the subscript D from PrD when it is obvious from the
context which probability distribution we are referring to.

1. If Pr(h(X) = 1 | A = 1) = 1 and Pr(h(X) = 1 | A = 0) = 0, then we know that:

Pr(hA(X) 6= A) = Pr(A = 0)Pr(hA(X) 6= A | A = 0) + Pr(A = 1)Pr(hA(X) 6= A | A = 1)
= Pr(A = 0)Pr(hA(X) = 1 | A = 0) + Pr(A = 1)Pr(hA(X) = 0 | A = 1)
= Pr(A = 0) · 0 + Pr(A = 1) · 0
= 0.

2. If Pr(hA(X) = 1 | A = 1) = 0 and Pr(hA(X) = 1 | A = 0) = 1, similarly, we have:

Pr(hA(X) 6= 1− A) = Pr(A = 0)Pr(hA(X) 6= 1− A | A = 0) + Pr(A = 1)Pr(hA(X) 6= 1− A | A = 1)
= Pr(A = 0)Pr(hA(X) = 0 | A = 0) + Pr(A = 1)Pr(hA(X) = 1 | A = 1)
= Pr(A = 0) · 0 + Pr(A = 1) · 0
= 0.

Combining the above two parts completes the proof. �

Proposition 2.2. If HA is symmetric, then ADV(HA) + minhA∈HA Pr(hA(X) = 0 | A = 1) +
Pr(hA(X) = 1 | A = 0) = 1.

Proof. By definition, we have:

1− ADV(HA) := 1− max
hA∈HA

ADV(hA)

= min
hA∈HA

1−
∣∣Pr(hA(X) = 1 | A = 1)− Pr(hA(X) = 1 | A = 0)

∣∣
= min

hA∈HA
1−

(
Pr(hA(X) = 1 | A = 1)− Pr(hA(X) = 1 | A = 0)

)
= min

h∈H
Pr(hA(X) = 0 | A = 1) + Pr(hA(X) = 1 | A = 0),
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where the third equality holds due to the fact that maxhA∈HA

∣∣Pr(hA(X) = 1 | A = 1) −
Pr(hA(X) = 1 | A = 0)

∣∣ = maxhA∈HA

(
Pr(hA(X) = 1 | A = 1)− Pr(hA(X) = 1 | A = 0)

)
.

To see this, for any specific hA such that the term inside the absolute value is negative, we can find
1− hA ∈ HA such that it becomes positive, due to the assumption thatHA is symmetric. �

Proposition 3.1. Let f : X → Z be a deterministic function and HA ⊆ 2Z be a hypothesis class
over Z . For any joint distribution D over X, A, Y, if I( f (X); A) = 0, then ADV(HA ◦ f ) = 0.

Proof. First, by the celebrated data-processing inequality, ∀hA ∈ HA:

0 ≤ I(hA( f (X)); A) ≤ I( f (X); A) = 0.

By Proposition 2.1, this means that ∀hA ∈ HA, ADV(hA) = 0, which further implies that
ADV(HA ◦ f ) = 0 by definition. �

Lemma 3.1. For any feature map f : X → Z , assume thatH contains all the probabilistic classifiers,
then minh∈H CEY(h ◦ f ) = H(Y | Z) and h∗(Z) := arg minh∈H CEY(h ◦ f ) = Pr(Y = 1 |
Z = f (X)).

Proof. Let D f be the induced (pushforward) distribution of D under the map f : X → Z . By the
definition of cross-entropy loss, we have:

CEY(h ◦ f ) = −ED [I(Y = 0) log(1− h( f (X))) + I(Y = 1) log(h( f (X)))]

= −ED f [I(Y = 0) log(1− h(Z)) + I(Y = 1) log(h(Z))]
= −EZEY|Z [I(Y = 0) log(1− h(Z)) + I(Y = 1) log(h(Z))]

= −EZ [Pr(Y = 0 | Z) log(1− h(Z)) + Pr(Y = 1 | Z) log(h(Z))]
= EZ [DKL(Pr(Y | Z) || h(Z))] + H(Y | Z)
≥ H(Y | Z).

It is also clear from the above proof that the minimum value of the cross-entropy loss is achieved when
h(Z) equals the conditional probability Pr(Y = 1 | Z), i.e., h∗(Z) = Pr(Y = 1 | Z = f (X)). �

Theorem 3.1. Let f ∗ be the optimal feature map of (3) and define H∗ := H(A | Z = f ∗(X)).
Then for any adversary Â such that I(Â; A | Z) = 0, PrD f ∗ (Â 6= A) ≥ H∗/2 lg(6/H∗).

Proof. To prove this theorem, let E be the binary random variable that takes value 1 iff A 6= Â, i.e.,
E = I(A 6= Â). Now consider the joint entropy of A, Â and E. On one hand, we have:

H(A, Â, E) = H(A, Â) + H(E | A, Â) = H(A, Â) + 0 = H(A | Â) + H(Â).

Note that the second equation holds because E is a deterministic function of A and Â, that is, once
A and Â are known, E is also known, hence H(E | A, Â) = 0. On the other hand, we can also
decompose H(A, Â, E) as follows:

H(A, Â, E) = H(Â) + H(A | Â, E) + H(E | Â).

Combining the above two equalities yields

H(A | Â, E) + H(E | Â) = H(A | Â).

Furthermore, since conditioning cannot increase entropy, we have H(E | Â) ≤ H(E), which further
implies

H(A | Â) ≤ H(E) + H(A | Â, E).

Now consider H(A | Â, E). Since A ∈ {0, 1}, by definition of the conditional entropy, we have:

H(A | Â, E) = Pr(E = 1)H(A | Â, E = 1) + Pr(E = 0)H(A | Â, E = 0) = 0 + 0 = 0.

To lower bound H(A | Â), realize that

I(A; Â) + H(A | Â) = H(A) = I(A; Z) + H(A | Z).
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Since Â is a randomized function of Z such that A ⊥ Â | Z, due to the celebrated data-processing
inequality, we have I(A; Â) ≤ I(A; Z), which implies

H(A | Â) ≥ H(A | Z).

Combine everything above, we have the following chain of inequalities hold:

H(A | Z) ≤ H(A | Â) ≤ H(E) + H(A | Â, E) = H(E),

which implies

Pr
D f ∗

(A 6= Â) = Pr
D f ∗

(E = 1) ≥ H−1
2 (H(A | Z)),

where H−1
2 (·) is the inverse function of the binary entropy H(t) := −t log t− (1− t) log(1− t)

when t ∈ [0, 1]. To conclude the proof, we apply Lemma A.1 to further lower bound the inverse
binary entropy function by

H−1
2 (H(A | Z)) ≥ H(A | Z)/2 lg(6/H(A | Z)),

completing the proof. �

Lemma 3.2. Let D0 and D1 be two distributions over X and let D f
0 and D f

1 be the induced

distributions of D0 and D1 over Z by function f , then dJS(D
f
0 ,D f

1 ) ≤ dJS(D0,D1).

Proof. Let B be a uniform random variable taking value in {0, 1} and let the random variable ZB

with distribution D f
B (resp. XB with distribution DB) be the mixture of D f

0 and D f
1 (resp. D0 and

D1) according to B. It is easy to see that DB = (D0 +D1)/2, and we have:

I(B; XB) = H(XB)− H(XB | B)

= −∑DB logDB +
1
2
(
∑D0 logD0 + ∑D1 logD1

)
= −1

2 ∑D0 logDB −
1
2 ∑D1 logDB +

1
2
(
∑D0 logD0 + ∑D1 logD1

)
=

1
2 ∑D0 log

D0

DB
+

1
2 ∑D1 log

D1

DB

=
1
2

DKL(D0 ‖ DB) +
1
2

DKL(D1 ‖ DB)

= DJS(D0,D1).

Similarly, we have:

DJS(D
f
0 ,D f

1 ) = I(B; ZB).

Since D f
0 (resp. D f

1 ) is induced by f from D0 (resp. D1), by linearity, D f
B is also induced by f from

DB. Hence ZB = f (XB) and the following Markov chain holds:

B→ XB → ZB.

Apply the data processing inequality, we have

DJS(D0,D1) = I(B; XB) ≥ I(B; ZB) = DJS(D
f
0 ,D f

1 ).

Taking square root on both sides of the above inequality completes the proof. �

Lemma 3.3. Let Ŷ = h( f (X)) ∈ {0, 1} be the predictor, then for a ∈ {0, 1}, dJS(DY
a ,Dh◦ f

a ) ≤√
Erra(h ◦ f ).
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Proof. For a ∈ {0, 1}, by definition of the JS distance:

d2
JS(DY

a ,Dh◦ f
a ) = DJS(DY

a ,Dh◦ f
a )

≤ ‖DY
a −D

h◦ f
a ‖1/2 (Lemma A.2)

= (|Pr(Y = 0 | A = a)− Pr(h( f (X)) = 0 | A = a)|
+ |Pr(Y = 1 | A = a)− Pr(h( f (X)) = 1 | A = a)|) /2

= |Pr(Y = 1 | A = a)− Pr(h( f (X)) = 1 | A = a)|
= |E[Y | A = a]−E[h( f (X)) | A = a]|
≤ E[|Y− h( f (X))| | A = a]
= Erra(h ◦ f ),

where the expectation is taken over the joint distribution of X, Y. Taking square root at both sides
then completes the proof. �

Theorem 3.2. Let HA ⊆ 2Z be the hypothesis space of all the classifiers from Z to {0, 1}.
Assume the conditions in Lemma 3.4 hold, then ∀h ∈ H, ACC0(h ◦ f ) + ACC1(h ◦ f ) ≤ 2−
1
3 DJS(DY

0 ,DY
1 ) + ADV(HA ◦ f ).

Proof. Before we delve into the details, we first give a high-level sketch of the main idea. The proof
could be basically partitioned into two parts. In the first part, we will show that whenHA contains
all the measurable prediction functions, ADV(HA ◦ f ) could be used to upper bound DJS(D

f
0 ,D f

1 ).
The second part combines Lemma 3.3 and Lemma 3.2 to complete the proof.

In this part we first show that DJS(D
f
0 ,D f

1 ) ≤ ADV(H ◦ f ):

DJS(D
f
0 ,D f

1 ) ≤
1
2
‖D f

0 −D
f
1‖1

= dTV(D f
0 ,D f

1 )

= sup
A∈B
|D f

0 (A)−D f
1 (A)|,

where dTV(·, ·) denotes the total variation distance and B is the sigma algebra that contains all the
measurable subsets of Z . On the other hand, whenHA contains all the measurable functions in 2Z ,
we have:

ADV(HA ◦ f ) = max
hA∈HA

|Pr(hA(Z) = 1 | A = 0)− Pr(hA(Z) = 1 | A = 1)|

= max
hA∈HA

|D0(h−1
A (1))−D1(h−1

A (1))|

= sup
A∈B
|D f

0 (A)−D f
1 (A)|,

where the last equality follows from the fact that HA is complete and contains all the measurable
functions. Combine the above two parts we immediately have DJS(D

f
0 ,D f

1 ) ≤ ADV(HA ◦ f ).

Now using the key lemma, we have:

dJS(DY
0 ,DY

1 ) ≤ dJS(DY
0 ,Dh◦ f

0 ) + dJS(D
f
0 ,D f

1 ) + dJS(D
h◦ f
1 ,DY

1 )

≤
√

Err0(h ◦ f ) +
√

ADV(HA ◦ f ) +
√

Err1(h ◦ f )

=
√

1− ACC0(h ◦ f ) +
√

ADV(HA ◦ f ) +
√

1− ACC1(h ◦ f )

≤
√

3(1− ACC0(h ◦ f ) + 1− ACC1(h ◦ f ) + ADV(HA ◦ f ))

=
√

3
(
2− (ACC0(h ◦ f ) + ACC1(h ◦ f )− ADV(HA ◦ f ))

)
.

Taking square at both sides and then rearrange the terms then completes the proof. �
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Theorem 3.3. Assume the conditions in Theorem 3.2 hold. If ADV(HA ◦ f ) ≤ DJS(DY
0 ,DY

1 ), then

∀h ∈ H, Err0(h ◦ f ) + Err1(h ◦ f ) ≥ 1
2
(
dJS(DY

0 ,DY
1 )−

√
ADV(HA ◦ f )

)2.

Proof. Similarly, using the key lemma, we have:

dJS(DY
0 ,DY

1 ) ≤ dJS(DY
0 ,Dh◦ f

0 ) + dJS(D0,D1) + dJS(D
h◦ f
1 ,DY

1 )

≤
√

Err0(h ◦ f ) +
√

ADV(HA ◦ f ) +
√

Err1(h ◦ f )

Under the assumption that ADV(HA ◦ f ) ≤ DJS(DY
0 ,DY

1 ), we have dJS(DY
0 ,DY

1 ) ≥√
ADV(HA ◦ f ), hence by AM-GM inequality:√
2
(
Err0(h ◦ f ) + Err1(h ◦ f )

)
≥
√

Err0(h ◦ f ) + Err1(h ◦ f ) ≥ dJS(DY
0 ,DY

1 )−
√

ADV(HA ◦ f ).

Taking square at both sides then completes the proof. �

C Detailed Experiments

In this section, we provide more details of the experiments. First we provide the details of different
existing methods we evaluate. Then we elaborate more dataset description, model architecture and
training parameters in different experiments.

C.1 Details on Methods

We provide a detailed description of each method here:

1). Privacy Partial Least Squares (PPLS): It learns n× Xd matrix for the feature transformation. The
matrix is learned by maximizing the covariance of the learned representation and target attribute
while minimizing the covariance of the learned representation and sensitive attribute.

2). Privacy Linear Discriminant Analysis (PLDA): It learns n× Xd matrix for the feature trans-
formation. The matrix is learned by maximizing the Fisher’s linear discriminability of the learned
representation and target attribute while minimizing the Fisher’s linear discriminability of the learned
representation and sensitive attribute.

3). Minimax filter with alternative update (ALT-UP): The representation is learned via optimizing
Equation 2 in an alternative way, first we update the parameters of the feature transformation module
and the target attribute classifier, and then accordingly update the sensitive attribute classifier.

4). Maximum Entropy Adversarial Representation Learning (MAX-ENT): The objective equation is
the slightly different from ALT-UP. The latter term contains additional entropy term to maximize
unpredictability of the sensitive attribute.

5). Gradient Reversal Layer (GRL): The objective equation is the same as ALT-UP, and we train the
feature transformation module by adding a gradient reversal layer between the feature transformation
module and the sensitive attribute classifier.

6). Principal Component Analysis (PCA): It generates a n× Xd matrix for the feature transformation
where the rows of the matrix are the n largest eigenvectors of the input dataset X.

7). Normal Training (NORM-TRAIN): It is equivalent to normal training by setting λ = 0 in
Equation 2.

8). Local Differential Privacy (LDP): Standard Laplace mechanism of local differential privacy,
where the noise is added to the raw representation for erasing the information of the sensitive attribute.

9). Differentially private SGD (DPSGD): It is one of the state-of-the-art differential privacy methods
on deep learning. It adds Gaussian noise to the gradients when training the model.

C.2 Details on UCI Adult Dataset Evaluation

UCI Adult dataset is a benchmark machine learning dataset for income prediction. Each data record
contains 14 categorical or numerical attributes, such as occupation, education and gender, to predict
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whether individual annual income exceeds $50K/year. The dataset is divided into training set (24130
examples), validation (6032 examples), and test set (15060 examples). We choose gender, age, and
education as the sensitive attributes, respectively.

Table 1: Data distribution of income (Y)
and gender (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 20988 9539
A = 1 13026 1669

Table 2: Data distribution of income (Y)
and age (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 18042 2473
A = 1 15972 8735

Table 3: Data distribution of income (Y)
and education (A) in UCI Adult dataset.

Y = 0 Y = 1

A = 0 20447 4248
A = 1 13567 6960

We process each sensitive attribute as binary label for each experiment: for age label, 0 if the person
is no greater than 35 years old and 1 otherwise; for education label, 0 if the person has not entered
college or receive higher education than college, and 1 otherwise. In the mean time, we also remove
corresponding sensitive attribute from the input, so the dimension of input data for each experiment is
different. The input dimensions for income-gender experiment, income-age experiment, and income-
education experiment are 113, 104 and 99, respectively. Table 1, Table 2 and Table 3 summarize the
data distribution of UCI Adult dataset for protecting different sensitive attributes.

We use the two-layer ReLU-based neural net for f and one-layer neural net for h. The output
dimensions of f are 64. We train all methods using SGD with the initial learning late 0.001 and
momentum 0.9 for 40 epochs. In the DP-SGD experiment, we set the noise multiplier as 0.45 and
4.0 for small noise and large noise, respectively, and set the clipping norm as 1.0. (ε, δ) for DPSGD
small noise and DPSGD large noise are (33.7, 10−5) and (0.572, 10−5), respectively. Among all
methods, we report the one achieving the best performance on the target task in the validation set.
We run the experiments for ten random seeds and compute the average.

C.3 Details on UTKFace Dataset Evaluation

UTKFace dataset is a large scale face dataset with annotations of age (range from 0 to 116 years
old), gender (male and female), and ethnicity (White, Black, Asian, Indian, and Others). It contains
23,705 64× 64 aligned and cropped RGB face images and we split the dataset into training set
(15171 examples), validation set (3793 examples) and test set (4741 examples), respectively. We
further process age label and ethnicity label as binary labels: 0 if the person is not greater than 35
years old for age label (is white for ethnicity label), and 1 if the the person is greater than 35 years old
for age label (is non-white for ethnicity label). Table 4 and Table 5 summarize the data distribution of
UTKFace dataset for protecting different sensitive attributes.

Table 4: Data distribution of gender (Y)
and race (A) in UTKFace dataset.

Y = 0 Y = 1

A = 0 5477 4601
A = 1 6914 6713

Table 5: Data distribution of gender (Y)
and age (A) in UTKFace dataset.

Y = 0 Y = 1

A = 0 6889 8218
A = 1 5502 3096

Since NORM-TRAIN, ALT-UP, GRL and DP can directly enjoy the benefits of using the state-of-
the-art neural network architecture as feature extraction module, so we use the feature extraction
module of Wide Residual Network [37] for the (non-linear) feature transformation module, while
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PPLS, PLDA, and PCA learn 12288× 2048 matrix filter for f . We train all methods using SGD
with the initial learning late 0.01 and momentum 0.9 for 30 epochs. The learning rate is decayed
by a factor of 0.1 for every 10 epochs. In the DP-SGD experiment, we set the noise multiplier as
0.45 and 1.0 for small noise and large noise, respectively, and set the clipping norm as 1.0. (ε, δ) for
DPSGD small noise and DPSGD large noise are (25.7, 10−5) and (2.7, 10−5), respectively. Among
all methods, we report the one achieving the best performance on the target task in the validation set.
We run the experiments for ten times and compute the average.

D Additional Experimental Results

In this section, we present additional experimental results to gain more insights into how the trade-off
parameter λ affects the performances of different adversarial presentation learning methods. We
varies the values of λ and report the accuracies of both tasks using the Adult dataset when the
sensitive attribute is gender. Note that all hyperparameter settings follow the previous experiments.
The results are shown in Table 6. We can see that the overall trend is that when λ increases, the
accuracies for both tasks decrease. Compared to ALT-UP and GRL, the training of MAX-ENT is
unstable when λ is large.

Table 6: Performances of different adversarial representation learning methods when λ changes.

Gender

ALT-UP
λ 0 0.1 1 5
TAR. ACC. 0.8501±0.0010 0.8496±0.0013 0.8483±0.0010 0.8456±0.0014
SEN. ACC. 0.7408±0.0096 0.6682±0.0026 0.6627±0.0021 0.6737±0.0005

GRL
λ 0 0.1 1 5
TAR. ACC. 0.8501±0.0010 0.8465±0.0017 0.8449±0.0010 0.8387±0.0019
SEN. ACC. 0.7408±0.0096 0.6677±0.0060 0.6677±0.0039 0.6764±0.0054

MAX-ENT
λ 0 0.1 1 5
TAR. ACC. 0.8501±0.0010 0.8450±0.0038 0.8411±0.0055 0.7891±0.0449
SEN. ACC. 0.7408±0.0096 0.6928±0.0084 0.6897±0.0038 0.5695±0.1679

Age

ALT-UP
λ 0 0.1 1 5
TAR. ACC. 0.8467±0.0011 0.8468±0.0009 0.8472±0.0011 0.8451±0.0008
SEN. ACC. 0.7190±0.010 0.6516±0.0038 0.5422±0.0133 0.5573±0.0438

GRL
λ 0 0.1 1 5
TAR. ACC. 0.8467±0.0011 0.8444±0.0009 0.8445±0.0012 0.8422±0.0013
SEN. ACC. 0.7190±0.010 0.6486±0.0067 0.5361±0.0134 0.5381±0.0133

MAX-ENT
λ 0 0.1 1 5
TAR. ACC. 0.8467±0.0011 0.8379±0.0056 0.8194±0.0345 0.7795±0.0406
SEN. ACC. 0.7190±0.0100 0.6633±0.0669 0.6201±0.0820 0.5400±0.0316

Education

ALT-UP
λ 0 0.1 1 5
TAR. ACC. 0.8494±0.0008 0.8498±0.0004 0.8497±0.0012 0.8494±0.0015
SEN. ACC. 0.7088±0.0080 0.6062±0.0108 0.6044±0.0145 0.5462±0.0358

GRL
λ 0 0.1 1 5
TAR. ACC. 0.8494±0.0008 0.8525±0.0010 0.8518±0.0007 0.8500±0.0013
SEN. ACC. 0.7088±0.0080 0.6082±0.0119 0.6015±0.0154 0.5528±0.0260

MAX-ENT
λ 0 0.1 1 5
TAR. ACC. 0.8494±0.0008 0.8365±0.0033 0.8253±0.0376 0.8087±0.0468
SEN. ACC. 0.7088±0.0080 0.5790±0.0383 0.5484±0.0001 0.5386±0.0305
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