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Abstract

Despite their success, kernel methods suffer from

a massive computational cost in practice. In this

paper, in lieu of commonly used kernel expan-

sion with respect to N inputs, we develop a novel

optimal design maximizing the entropy among

kernel features. This procedure results in a kernel

expansion with respect to entropic optimal fea-

tures (EOF), improving the data representation

dramatically due to features dissimilarity. Under

mild technical assumptions, our generalization

bound shows that with only O(N
1
4 ) features (dis-

regarding logarithmic factors), we can achieve the

optimal statistical accuracy (i.e., O(1/
p
N)). The

salient feature of our design is its sparsity that sig-

nificantly reduces the time and space costs. Our

numerical experiments on benchmark datasets ver-

ify the superiority of EOF over the state-of-the-art

in kernel approximation.

1. Introduction

Kernel methods are powerful tools in describing nonlinear

data models. However, despite their success in various

machine learning tasks, kernel methods always suffer from

scalability issues, especially when the learning task involves

matrix inversion (e.g., kernel ridge regression). This is

simply due to the fact that for a dataset of size N , the

inversion step requires O(N3) time cost. To tackle this

problem, a great deal of research has been dedicated to the

approximation of kernels using low-rank surrogates (Smola

& Schökopf, 2000; Fine & Scheinberg, 2001; Rahimi &

Recht, 2008). By approximating the kernel, these methods

deal with a linear problem, potentially solvable in a linear

time with respect to N (see e.g. (Joachims, 2006) for linear
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Support Vector Machines (SVM)).

In the approximation of kernel with a finite number of fea-

tures, one fundamental question is how to select the features.

As an example, in supervised learning, we are interested

in identifying features that lead to low out-of-sample error.

This question has been studied in the context of random fea-

tures, which is an elegant method for kernel approximation

(Rahimi & Recht, 2008). Most of the works in this area

improve the out-of-sample performance by modifying the

stochastic oracle from which random features are sampled

(Sinha & Duchi, 2016; Avron et al., 2017; Shahrampour

et al., 2018). Nevertheless, these methods deal with dense

feature matrices (due to randomness) and still require a large

number of features to learn the data subspace. Decreasing

the number of features directly affects the time and space

costs, and to achieve that, we must choose features that are

as distinct as possible (to better span the space). Focusing on

explicit features, we aim to achieve this goal in the current

work.

1.1. Our Contributions

In this paper, we study low-rank kernel approximation by

finding a set of mutually orthogonal features with nested

and compact supports. We first theoretically characterize a

condition (based on the Sturm-Liouville problem), which

allows us to obtain such features. Then, we propose a novel

optimal design method that maximizes the metric entropy

among those features. The problem is formulated as a com-

binatorial optimization with a constraint on the number of

features used for approximation. The optimization is gener-

ally NP-hard but yields closed-form solutions for specific

numbers of features. The algorithm, dubbed entropic opti-

mal features (EOF), can use these features for supervised

learning. The construction properties of features (orthog-

onality, compact support, and nested support) result in a

sparse approximation saving dramatically on time and space

costs. We establish a generalization bound for EOF that

shows with only O(N
1
4 ) features (disregarding logarithmic

factors), we can achieve the optimal statistical accuracy

(i.e., O(1/
p
N)). Our numerical experiments on bench-

mark datasets verify the superiority of EOF over the state-

of-the-art in kernel approximation. While we postpone the
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exhaustive literature review to Section 6, none of the pre-

vious works has approached the problem from the entropy

maximization perspective, which is the unique distinction

of the current work.

2. Preliminaries on Kernel Methods

Kernel methods map finite-dimensional data to a potentially

infinite dimensional feature space. Any element f in the

reproducing kernel Hilbert space (RKHS) of k, denoted by

Hk, has the following representation:

f =

1
X

i=1

hf, giikgi, (1)

where h·, ·ik denotes the RKHS inner product induced by k,

and {gi} is any orthonormal feature set (i.e., orthonormal

basis functions) that spans the space Hk. In general, the

kernel trick relies on the observation that the inner product

hk(·,x), k(·,x0)ik = k(x,x0) for x,x0 2 R
D (reproducing

property), so k(x,x0) is cheap to compute without the need

to calculate the inner product.

When we are concerned with supervised learning, under

mild conditions, by the Representer Theorem, it is guaran-

teed that any solution of the risk minimization problem

assumes the form f(·) =
PN

i=1 cik(·,xi), where N is

the number of training data points. However, this repre-

sentation introduces a massive time cost of O(N3) and a

memory cost of O(N2) in the training. Furthermore, the

feature space {k(·,x) : x 2 R
D} may not cover Hk in

an optimal sense. To be more specific, there might be

another set of features {gi}
M
i=1 with M ⌧ N such that

{k(·,x) : x 2 X} ⇢ {gi}
M
i=1 where X 2 R

N⇥D is the

input data.

To address the aforementioned problem, (Rahimi & Recht,

2008) propose a random approximation of k(x,x0)

k(x,x0) ⇡ zT(x)z(x0), (2)

where zT(x) = [⇣1(x), . . . , ⇣M (x)] is a random vector.

This decomposes the feature k(·,x) into a linear combi-

nation of random low-rank features {⇣i} to approximate

the original target function
PN

i=1 cik(·,xi) by
PM

i=1 ↵i⇣i,

where {↵i}
M
i=1 must be learned (calculated) by data. This

idea resolves the computational issue, but due to random

selection of the features, the method does not offer the best

candidate features for reconstructing the target function.

Furthermore, in supervised learning the goal is to find a

mapping from inputs to outputs, and thus, an optimal kernel

approximation does not necessarily result in an optimal

target function representation. The reason is simply that we

require the features that best represent the underlying data

model (or target function) rather than the kernel function.

3. Kernel Feature Selection

In this paper, we propose an algorithm that uses a sparse

representation to attain a high prediction accuracy with a

low computational cost. The key is to find an expansion

f =
1
X

i=1

hf, giikgi, (3)

such that features {gi} satisfy the following properties:

1. Compact support: supt[gi] is compact.

2. Nested support: supt[gi] =
S

j2I supt[gj ] for some

finite set I.

3. Orthonormality: hgi, gjik = �ij , where �ij denotes the

Kronecker delta.

Properties 1-2 ensure low time cost for the algorithm by

promoting sparsity. To be more specific, given any finite set

{gi}
M
i=1 and any data point x, gi(x) = 0 for a large number

of basis functions in {gi}
M
i=1. Property 3 provides a better

expansion of Hk.

In general, this problem may be intractable; however, we

will prove later in Theorem 2 that when k satisfies the follow-

ing condition, then a feature set {�i} that satisfies properties

1-3 does exist.

Condition 1. Let kernel k be of the following product form:

k(x,x0) =
D
Y

d=1

p(min{xd, x
0
d})q(max{xd, x

0
d})

where p and q are the independent solutions of the Sturm-

Liouville problem on the interval [a, b] for any a, b 2
[�1,1]:

d

dx
↵(x)

dy

dx
+ �(x)y = 0,

and they satisfy the following boundary conditions:

c11p
0(a) + c12p(a) = 0

c21q
0(b) + c22q(b) = 0

with cij � 0 for i, j = 1, 2 and the operator d
dx↵(x)

d
dx +

�(x) is an elliptic operator that satisfies Lax-Milgram The-

orem (see Section 6 of (Evans, 2010)).

We provide two commonly used kernels that satisfy condi-

tion 1:

k(x,x0) = e�ωkx�x0k1

k(x,x0) =
D
Y

d=1

[!min{xd, x
0
d}+ 1].
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The first one is the Laplace kernel and the second one is the

kernel associated to weighted Sobolev space (Dick et al.,

2013). Let zl,i = i2�l for any l, i 2 N. Then, when the

dimension D = 1, features associated to Laplace kernel

satisfying properties 1-3 are as follows:

�l,i(x) =

8

>

<

>

:

sinhω|x�zl,i+1|
sinhω2�l if x 2 (zl,i, zl,i+1]

sinhω|x�zl,i�1|
sinhω2�l if x 2 [zl,i�1, zl,i]

0 otherwise

(4)

and features associated to the weighted Sobolev space kernel

are as follows:

�l,i(x) = max

⇢

0, 1� |x� zl,i|

2�l

�

where (l, i) is the index of features. We now start from 1-D

kernel to construct a feature space that satisfies properties

1-3:

Theorem 1. Suppose that k is a kernel that satisfies Con-

dition 1. Let Zl = {zl,i = i2�l : i = 1, . . . , 2l � 1}
and let Bl = {i = 1, . . . , 2l � 1 : i is odd}. We then de-

fine the following function on the interval [zl,i�1, zl,i+1] =
[(i� 1)2�l, (i+ 1)2�l]:

�l,i(x) =

8

>

<

>

:

q(x)pl,i+1�p(x)ql,i+1

ql,ipl,i+1�pl,iql,i+1
if x 2 (zl,i, zl,i+1]

p(x)ql,i�1�q(x)pl,i�1

pl,iql,i�1�ql,ipl,i�1
if x 2 [zl,i�1, zl,i]

0 otherwise

.

(5)

where

pl,i = p(zl,i) = p(i2�l)

ql,i = q(zl,i) = q(i2�l).

Then, the following feature set is an orthogonal basis of

the RKHS of k, Hk, that satisfies property 1-3 on the unit

interval [0, 1]:

{�l,i : l 2 N, i 2 Bl}.

The theorem above characterizes the set of features that

satisfy Condition 1 when the input is scalar. To extend the

idea to D-dimensional space, we only need to take the tensor

product form of the 1-dimensional kernel, as described by

the consequent theorem:

Theorem 2. Suppose that k is a kernel that satisfies Condi-

tion 1. For any l 2 N
D, we define the Cartesian product of

sets as follows:

Zl = ⌦D
d=1Zld = {zl,i = (zl1,i1 , · · · , zlD,iD ) : zld,id 2 Zld}

Bl = ⌦D
d=1Bld = {i 2 N

D : id 2 Bld}.

We then define the following function on the hyper-

cube ⌦D
d=1[zld,id�1, zld,id+1] = ⌦D

d=1[(id � 1)2�ld , (id +

1)2�ld ]:

�l,i(x) =

D
Y

d=1

�ld,id(xd), (6)

where the function �ld,id is defined in Theorem 1. Then the

following feature set is an orthogonal basis of the RKHS of

k, Hk, that satisfies property 1-3 on the unit cube [0, 1]D:

{�l,i : l 2 N
D, i 2 Bl}.

The proof of Theorem 1 is given in the supplementary ma-

terial. Theorem 2 can be derived from Theorem 1, because

the kernel is simply the tensor product of the 1-dimensional

kernel in Theorem 1.

Corollary 1. For any kernel k that satisfies Condition 1, let

�l,i be the feature defined in Theorem 2. Then, we have the

following expansion for k:

k(x,x0) =
X

l2ND

X

i2Bl

�l,i(x)�l,i(x
0)

h�l,i,�l,iik
(7)

where h·, ·ik is the inner product induced by k.

Proof. We only need to substitute f(·) in equation (3) by

k(x, ·), then according to the reproducing property of k we

can have the result.

Corollary 1 is the direct result of Theorem 2. So we can have

the following sparse approximation for the kernel function

k(x,x0):
k(x,x0) ⇡ zT(x)z(x0),

where

z(x) =



�l,i(x)

||�l,i||k

�

(l,i)2S

,

for some set S. Thanks to properties 1-3 (including com-

pact and nested supports for features), the computational

advantage of the above approximation is that most entries

of z(x) are zero. Therefore, the vector is z(x) is sparse,

leading to sparse feature matrices.

Remark 1. Kernel approximation schemes such as ran-

dom features (Rahimi & Recht, 2008) or Nyström method

(Williams & Seeger, 2001; Drineas & Mahoney, 2005) work

for a broader class of kernels, but they do not result in sparse

approximation. The sparse feature matrices obtained under

Condition 1 can speed up the training in supervised learn-

ing, as we will see in the numerical experiments (Section

7).

We now use the RKHS of the following kernel on [0, 1] as

an example:

k(x, x0) = min{x, x0}[1�max{x, x0}].
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Figure 1. Top two panels: W2 = {φl,i : l = 2} and W3 =

{φl,i : l = 3}; lower two panels: nested structure for the represen-

tation of a function f ∈ Hk.
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The RKHS associated to k is the first order Sobolev space

with zero boundary conditions:

Hk =

⇢

f :

Z 1

0

[f 0(s)]2ds < 1, f(0) = f(1) = 0

�

.

In this example, the feature functions given by Theorem 1

coincide with a wavelet basis in Hk. Consider the mother

wavelet given by the triangular function:

�(d) = max{0, 1� |d|}.

Then for any l 2 N, i = 1, · · · , 2l � 1, direct calculations

show that

�l,i(x) = �

✓

x� i2�l

2�l

◆

. (8)

Now it is easy to verify that the features {�l,i : l 2
N, i is odd} satisfy the desired properties 1-3. Specifically,

1. supt[�l,i] = [(i� 1)2�l, (i+ 1)2�l].

2. supt[�l,i] = supt[�l+1,2i�1] [ supt[�l+1,2i+1].

3.
R 1

0
�0
l,i�

0
n,jds = 2l+1�(l,i),(n,j), where �(l,i),(n,j) = 1

when (l, i) = (n, j) and zero otherwise.

Figure 1 illustrates the compact and nested supports of these

wavelet features. The compact support properties can lead

to a significant improvement in the time cost. Consider

the evaluation of f(x) =
P

|l|n ↵l,i�l,i(x). The compact

support property implies that �l,i(x) = 0 for most (l, i)’s,

so the computational cost of evaluating f(x) can be much

lower than the total number of features. In Section 4.1, we

will leverage this property of the basis functions to propose

an efficient algorithm for learning. This goal cannot be

Figure 2. 2-D tensor product of wavelet features with compact

support φ[1,2],[11] and φ[1,2],[13]

achieve when the basis functions are not compactly sup-

ported.

Figure 2 shows the example of the tensor product of the

wavelet feature defined in (8). It is a 2-dimensional exten-

sion of the wavelet feature. For the general D-dimensional

case, according to Theorem 2, the features satisfy properties

1-3 in the RKHS induced by the following kernel:

k(x,x0) =
D
Y

d=1

min{xd, x
0
d}[1�max{xd, x

0
d}],

which is the mixed Sobolev space of first order with zero

boundary condition on [0, 1]D.We refer the reader to (Bun-

gartz & Griebel, 2004) for more details on mixed order

Sobolev space.

In view of Theorem 2, we can lift a data point from x 2
R

D to a finite dimensional space spanned by features with

compact and nested supports. As a result, the evaluation of

x on a large number of features is zero, yielding a sparse

and efficient representation.

4. Entropic Optimal Design

In the previous section, we provided conditions under which

we can find features with compact and nested supports. We

now present an optimization criterion to select the best fi-

nite set of features with the maximum metric entropy. The

intuition behind this choice is that we favor a set of features

that are different from each other as much as possible, so

that we can reconstruct the underlying model by a moderate

amount of features.

To formulate the optimization problem, we need to introduce

some notation. First, we introduce the covering number of

an operator between two Banach spaces. Let " > 0 and A,B
be Banach spaces with unit balls BA and BB, respectively.

The covering number of a bounded linear operator T : A !
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B is defined as

N (T, ") :=

inf
n2N

(

n : 9{bi 2 B}ni=1 s.t. T (BA) ✓
n
[

i=1

(bi + "BB)

)

,

where bi+ "BB is a ball of radius ", centered at bi. The met-

ric entropy of T is then defined as Ent[T, "] := logN (T, ").
Now, let Hk be the RKHS associated to kernel k with the

inner product h·, ·ik, and let PS be the projection operator

from Hk to the following finite dimensional subspace

FS = {�l,i : (l, i) 2 S},

where �l,i is defined in Theorem 2 and dim(PS) = card(S).
Our goal is to find the optimal set S⇤ (with cardinality

at most M ), whose corresponding feature set maximizes

the entropy. This is equivalent to solving the following

optimization problem:

sup
S

Ent[PS , "]

s.t. card(S)  M. (9)

One can show that the features in FS are mutually orthogo-

nal with Hilbert norm:

||�l,i||k =: C�1
l,i , (10)

where Cl,i ! 0 as |l| ! 1 (see Lemma 1 in the Supplemen-

tary Material). We first multiply �l,i by Cl,i to normalize

the feature. Then, for any function f 2 Hk, we have that

PSf =
X

(l,i)2S

C2
l,ihf,�l,iik�l,i.

As a result, the entropic optimization problem (9) is equiva-

lent to searching an M -dimensional Euclidean space with

the largest unit ball, which can be characterized as follows

max
S

X

(l,i)2S

Cl,i

s.t. card(S)  M.

This optimization problem is called the Knapsack problem

and, in general, is NP-hard (Kellerer et al., 2004). However,

for some specific values of M , closed form solutions ex-

ist. Consider the Laplace kernel here as an example. For

Laplace kernel k(x,x0) = e�ωkx�yk1 , from direct calcula-

tion, the constant is:

Cl,i =

D
Y

d=1

q

sinh(!2�ld).

In this case, Cl = Cl,i is independent of i and for any

|l| < |l0|, the value Cl > Cl0 . Therefore, we can derive that

when M = card ({l : |l|  n}) for some n, the optimal set

S⇤
n is

S⇤
n = {(l, i) : |l|  n, i 2 Bl} (11)

because for any Cl 2 S⇤
n and any Cl0 62 S⇤

n, Cl > Cl0 . It

turns out the set S⇤
n is equivalent to the Sparse Grid design

(Bungartz & Griebel, 2004).

4.1. Algorithm: Entropic Optimal Features

Suppose that the set S⇤
n given by equation (11) is the index

set associated to the feature set that maximizes the metric

entropy optimization problem (9). Then, given a specific

input x, we can compute the new feature vector

z(x) = [Cl,i�l,i(x)](l,i)2S⇤

n
=: [zl,i(x)](l,i)2S⇤

n

where Cl,i is the coefficient defined in (10), and z(x) satis-

fies

k(x,x0) ⇡ z(x)Tz(x0),

in Corollary 1 with �l,i the feature function defined in equa-

tion (6). We call z(x) the entropic optimal feature (EOF).

According to properties 1-3, the supports of {�l,i : (l, i) 2
S⇤
n} are either disjoint or nested. Therefore, only a small

amount of entries on z(x) are non-zero. To be more spe-

cific, given any l 2 N
D and input x, the supports of

{�l,i : i 2 Bl} are disjoint so we can immediately com-

pute the unique non-zero entries of zl,i(x) (recall the 1-

dimensional illustration of disjoint supports in Fig. 1).

Algorithm 1 shows how to explicitly compute the EOF z(x)
at a data point x. Note that d·e,b·c denote the ceiling and

floor operations, respectively.

Algorithm 1 Entropic Optimal Features (EOF)

Input: point x, S⇤
n

Initialize z(x) = [zl,i(x)](l,i)2S⇤

n
= 0

while |l|  n+D � 1 do

for d = 1 to D do

id =

(

d xd

2�ld
e if d xd

2�ld
e is odd

b xd

2�ld
c if b xd

2�ld
c is odd

end for

zl,i(x) = Cl,i�l,i(x)
end while

The dimension of the vector z(x) given n levels is

O(2nnD�1) (Bungartz & Griebel, 2004). The number of
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non-zero elements for z(x) after running Algorithm 1 is:

X

|l|n+D�1

1 =

n+D�1
X

i=D

X

|l|=i

1

=

n+D�1
X

i=D

✓

i� 1

D � 1

◆

=

✓

n+D � 1

D

◆

= O(nD),

which means fraction of non-zeros to the whole vector in

z(x) grows with O( n
2n ) as a function of level n.

4.2. Time Complexity of EOF in Regression

Based on above, if we fix M as the size of z(x), the num-

ber of non-zero entries on z(x) is O(logD M). Since we

evaluate z(x) for each training data, the feature matrix has

O(N logD M) non-zero elements, resulting in a training

cost of O(N log2D M), which is smaller than O(NM2) of

random features (Rahimi & Recht, 2009), especially when

D is moderate. Notice that in the aforementioned time costs,

we implicitly assumed M < N , where N is the number

of training samples. If M > N , then approximation of

kernel – no matter with what technique – does not lead to

any computational advantage.

5. Generalization Bound

In this section, we present the generalization bound for EOF

when it is used in supervised learning. Let us define the

approximated target function as

f̂ := argmin
f2FM

1

N

N
X

j=1

L(yi, f(xi)) + �kfk2k,

given independent and identically distributed samples

{(xi, yi)}
N
i=1, where FM denotes the space spanned by

the first M EOFs, L is a loss function, and � is a tun-

ing parameter that may depend on n. We denote by

R(f) := Ex,y[L(y, f(x))] the true risk. The goal is to

bound the generalization error R(f̂)� inff2Hk
R(f).

We use the following assumptions to establish the bound:

Assumption 1. There exists f0 2 Hk so that

inff2Hk
R(f) = R(f0).

Assumption 2. The function my(·) := L(y, ·) is twice dif-

ferentiable for all y. Furthermore, my(·) is strongly convex.

Assumption 3. The density function of input x is uniformly

bounded away from infinity. The outputs are uniformly

bounded.

Assumption 1 allows infimum to be achieved in the RKHS.

This is not ensured automatically since we deal with a po-

tentially infinite-dimensional RKHS Hk, that is possibly

universal (see Remark 2 of (Rudi & Rosasco, 2017)). As-

sumption 2 is true for common loss functions including least

squares for regression (my(y
0) = (y � y0)2) and logistic re-

gression for classification (my(y
0) = log[1 + exp(�yy0)]).

The bounded output constraint of Assumption 3 is also com-

mon in supervised learning.

The generalization bound is given by the following theorem.

Theorem 3. Suppose Assumptions 1-3 are fulfilled. If the

tuning parameter is chosen as � ⇠ N�1/2, then

R(f̂)� inf
f

R(f)  Op(N
�1/2) + CM�2 log4D�4 M,

for some C > 0. The constants may depend on kf0kk.

The theorem above shows that with O(N
1
4 ) EOFs, the opti-

mal statistical accuracy O(1/
p
N) is achieved up to loga-

rithmic factors. Note that for random features, the number

of required features to achieve the optimal rate is O(
p
N)

in the case of ridge regression (Rudi & Rosasco, 2017).

So EOF improves the generalization bound in the sense of

reducing the number of required features to achieve the op-

timal accuracy. The bound also holds for strongly convex

losses, which can potentially include classification using

logistic regression.

6. Related Literature

We provide related works for kernel approximation from

different perspectives:

Random Features (Randomized Kernel Approxima-

tion): Randomized features was introduced as an elegant

approach for Monte Carlo approximation of shift-invariant

kernels (Rahimi & Recht, 2008), and it was later extended

for Quasi Monte Carlo approximation (Yang et al., 2014).

Several methods consider improving the time cost of ran-

dom features, decreasing it by a linear factor of the input

dimension (see e.g., Fast-food (Le et al., 2013; Yang et al.,

2015)). Quadrature-based random features are also shown to

boost kernel approximation (Munkhoeva et al., 2018). The

generalization properties of random features have been stud-

ied for `1-regularized risk minimization (Yen et al., 2014)

and ridge regression (Rudi & Rosasco, 2017), improving

the initial generalization bound of (Rahimi & Recht, 2009).

(Felix et al., 2016) develop orthogonal random features

(ORF) to boost the variance of kernel approximation. ORF

is shown to provide optimal kernel estimator in terms of

mean-squared error (Choromanski et al., 2018). A number

of recent works have considered data-dependent sampling

of random features to improve kernel approximation. Exam-

ples consist of (Yu et al., 2015) on compact nonlinear feature

maps, (Yang et al., 2015; Oliva et al., 2016) on approxi-

mation of shift-invariant/translation-invariant kernels, and

(Agrawal et al., 2019) on data-dependent approximation us-

ing greedy approaches (e.g., Frank-Wolfe). Data-dependent
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sampling has also been used to improve generalization in su-

pervised learning (Sinha & Duchi, 2016; Shahrampour et al.,

2018) through target kernel alignment. Furthermore, (Wang

& Shahrampour, 2019) propose task-dependent sampling

for trace optimization problems, dimensionality reduction,

and correlation analysis.

Deterministic Kernel Approximation: The studies on

finding low-rank surrogates for kernels date back two

decades (Smola & Schökopf, 2000; Fine & Scheinberg,

2001). As an example, the celebrated Nyström method

(Williams & Seeger, 2001; Drineas & Mahoney, 2005) sam-

ples a subset of training data for approximating a low-rank

kernel matrix. The Nyström method has been further im-

proved in (Zhang et al., 2008) and more recently used for

approximation of indefinite kernels (Oglic & Gärtner, 2019).

Explicit feature maps have also proved to provide efficient

kernel approximation. The works of (Yang et al., 2004;

Xu et al., 2006; Cotter et al., 2011) have proposed low-

dimensional Taylor expansions of Gaussian kernel for im-

proving the time cost of learning. (Vedaldi & Zisserman,

2012) further study explicit feature maps for additive homo-

geneous kernels.

Sparse Approximation Using Greedy Methods: Sparse

approximation literature has mostly focused on greedy meth-

ods. (Vincent & Bengio, 2002) have developed a matching

pursuit algorithm where kernels are the dictionary elements.

The work of (Nair et al., 2002) focuses on sparse regression

and classification models using Mercer kernels, and (Sind-

hwani & Lozano, 2011) considers sparse regression with

multiple kernels. Classical matching pursuit was developed

for regression, but further extensions to logistic regression

(Lozano et al., 2011) and smooth loss functions (Locatello

et al., 2017) have also been studied. (Oglic & Gärtner, 2016)

propose a greedy reconstruction technique for regression

by empirically fitting squared error residuals. (Shahram-

pour & Tarokh, 2018) also use greedy methods for sparse

approximation using multiple kernels.

Remark 2. Our approach is radically different from the

prior work as we characterize a set of features that maxi-

mize the metric entropy. Our feature construction and en-

tropy optimization techniques are novel and have not been

explored in the kernel approximation literature.

7. Numerical Experiments

Benchmark Algorithm: We now compare EOF with the

following benchmark algorithms on several datasets from

the UCI Machine Learning Repository:

1) RKS (Rahimi & Recht, 2009) with approximated Laplace

kernel feature z(x) = 1p
M
[cos(xT

γm + bm)]Mm=1, where

{γm}Mm=1 are sampled from a Cauchy distribution multi-

plied by �, and {bm}Mm=1 are sampled from the uniform

distribution on [0, 2⇡].
2) ORF (Felix et al., 2016) with approximated Gaussian

kernel feature z(x) = 1p
M
[cos(xT

γm + bm)]Mm=1, with

[γ1 γ2 · · ·γm] = �SQ where S is a diagonal matrix, with

diagonal entries sampled i.i.d. from the �-distribution with

d degrees and Q is the orthogonal matrix obtained from the

QR decomposition of a matrix G with normally distributed

entries. Note that ORF approximates a Gaussian kernel.

3) LKRF (Sinha & Duchi, 2016) with approximated

Laplace kernel feature z(x) = 1p
M
[cos(xT

γm + bm)]Mm=1,

where first M0 > M random features are sampled and then

re-weighted by solving a kernel alignment optimization.

The top M random features would be used in the training.

4) EERF (Shahrampour et al., 2018), with approximated

Laplace kernel feature z(x) = 1p
M
[cos(xT

γm+ bm)]Mm=1,

where first M0 > M random features are sampled and

then re-weighted according to a score function. The top M
random features would appear in the training.

Experiment Setup: We also use approximated Laplace

kernel feature z(x) = [Cl,i�l,i(x)](l,i)2S⇤

n
where �l,i =

QD
d=1 �ld,id with �ld,id defined in (4). To determine the

value of � used in RKS, EERF, LKRF and ORF we

choose the value of ��1 for each dataset to be the mean

distance of the 50th `2 nearest neighbor (Felix et al., 2016).

We then calculate the corresponding ! for EOF associated

to �. The number of features in EOF is a function of dimen-

sion D and level n, so it is not possible to calculate them for

any M . To resolve this issue, for any given M , we select

the set S⇤
n defined in (11) that satisfies

card
�

S⇤
n�1

�

< M  card
�

S⇤
n

�

and randomly select M pairs of (l, i) 2 S⇤
n to have a random

set SM . We then use the following feature vector:

zM (x) := [Cl,i�l,i(x)](l,i)2SM
.

This is equivalent to randomly select M rows from the

feature z(x) = [Cl,i�l,i(x)](l,i)2S⇤

n
.

We let M0 = 10M for LKRF and EERF, then for any M ,

we compare the performance of different algorithms.

Datasets: In Table 1, we report the number of training sam-

ples Ntrain and test samples Ntest used for each dataset. For

the MNIST data set, we map the original 784�dimensional

data to a 32�dimensional space using an auto-encoder. If

the training and test samples are not provided separately for

a dataset, we split it randomly. We standardize the data as

follows: we scale each input to the unit interval [0, 1] and

the responses in regression to be inside [�1, 1].

Comparison: For a fixed number of features, we perform

50 simulation runs for each algorithm on each data set. We

then report the average test error (with standard errors) in

Fig. 3, where the plot line is the mean error of an algorithm
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Figure 3. Comparison of the test error of EOF (this work) versus benchmark algorithms including RKS, EERF, LKRF and ORF.

20 30 40 50 60 70 80
Number of Features (M)

0.02

0.04

0.06

0.08

0.1
T

e
st

 E
rr

o
r

MNIST

RKS

EERF

LKRF

ORF

EOF(this work)

20 25 30 35 40 45 50 55 60
Number of Features (M)

0

0.02

0.04

0.06

0.08

0.1

T
e
st

 E
rr

o
r

Electrical Grid Stability

RKS

EERF

LKRF

ORF

EOF(this work)

80 90 100 110 120 130 140 150 160

Number of Features (M)

0.075

0.08

0.085

0.09

T
e
st

 E
rr

o
r

Superconductivity

RKS

EERF

LKRF

ORF

EOF(this work)

10 20 30 40 50 60

Number of Features (M)

0

0.02

0.04

0.06

0.08

0.1

T
e
st

 E
rr

o
r

Energy Efficiency

RKS

EERF

LKRF

ORF

EOF(this work)

Table 1. Input dimension, number of training samples, and number

of test samples are denoted by D, Ntrain, and Ntest, respectively

DATA SET TASK D NTRAIN NTEST

MNIST CLASSIFICATION 32 20000 10000

ELECTRICAL GRIDS STABILITY CLASSIFICATION 13 7000 3000

SUPERCONDUCTIVITY REGRESSION 81 15000 6263

ENERGY EFFICIENCY REGRESSION 8 512 256

and the error bar reflects the standard deviation of the error.

Throughout our experiments, we can see that EOF con-

sistently improves the test error compared to randomized-

feature algorithms. This is specifically visible when the

gap between SM and S⇤
n becomes very small and, due to

the optimality of S⇤
n, EOF outperforms any random feature

algorithm.

In Table 2, we also compare the time complexity and space

complexity. We define the feature matrix

F := [z(xi)]
N
i=1,

which is an M ⇥N matrix with M the number of features

and N the number of data. Due to the sparse structure of

EOF, we can also see that the number of non-zero entries

of the F associated to EOF is smaller than other methods.

When both the dimension D and the size of data N are

large, the sparsity of EOF becomes more obvious as shown

in the case of MNIST. The time cost of running EOF is

also quite impressive. It is consistently better than EERF

and LKRF and slightly slower than RKS. In fact, the major

time for EOF is spent on feature matrix construction. For

random features, due to high efficiency of matrix operations

in Matlab, feature construction is fast. However, for EOF

the feature construction via matrix operations is not possible

in an efficient way. We observed that after the feature matrix

construction, EOF is the fastest method in training. For

example, if we only consider the training time (excluding

feature construction) as the time cost, in kernel ridge re-

gression on the dataset Superconductivity, the comparison

between RKS and EOF is reported in Table 3, where EOF

incurs a smaller time cost.

The run time is obtained on a Macbook Pro with a 4-core,

3.3 GHz Intel Core i5 CPU and 8 GB of RAM (2133Mhz).

8. Conclusion

We consider the approximation of kernels that satisfy Con-

dition 1. We construct a set of mutually orthogonal features

(with nested and compact supports) for these kernels and

select the best M of them that maximize the entropy of the

associated projector. The nested and compact support of

features greatly reduces the time and space costs for feature

matrix operations. The orthogonality and entropic optimal-

ity reduce dramatically the error of approximation (as well

as generalization). Using our approximation method for

supervised learning, we can establish a generalization error

bound which indicates that only O(N
1
4 ) features (disre-

garding the log factors) are needed to achieve the O(N� 1
2 )

optimal accuracy. In terms of generalization, the main ad-

vantage of this work is reducing the number of features
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Table 2. Time and space complexity comparison. We denote by nnz the number of non-zero elements.

MNIST

Method M M0 Ttrain nnz(F )

RKS 80 1.64 1.6⇥106

EERF 80 800 4.43 1.6⇥106

LKRF 80 800 3.07 1.6⇥106

ORF 80 1.21 1.6⇥106

EOF 80 2048 2.45 2.5⇥105

Superconductivity

Method M M0 Ttrain nnz(F )

RKS 160 0.10 2.4⇥106

EERF 160 1600 0.45 2.4⇥106

LKRF 160 1600 0.37 2.4⇥106

ORF 160 0.13 2.4⇥106

EOF 160 161 0.14 1.2⇥106

Electrical Grids Stability

Method M M0 Ttrain nnz(F )

RKS 60 0.04 4.2⇥105

EERF 60 600 0.14 4.2⇥105

LKRF 60 600 0.13 4.2⇥105

ORF 60 0.06 4.2⇥105

EOF 60 338 0.08 1.3⇥105

Energy Efficiency

Method M M0 Ttrain nnz(F )

RKS 60 0.01 6.1⇥103

EERF 60 600 0.05 6.1⇥103

LKRF 60 600 0.06 6.1⇥103

ORF 60 0.02 6.1⇥103

EOF 60 128 0.03 1.0⇥103

Table 3. Comparison on RKS and EOF in pure training excluding

feature construction.
M = 80 M = 100 M = 120 M = 140 M = 160

RKS 2⇥ 10�3 3⇥ 10�3 4⇥ 10�3 5⇥ 10�3 6⇥ 10�3

EOF 2⇥ 10�3 2⇥ 10�3 2⇥ 10�3 2⇥ 10�3 2⇥ 10�3

required to achieve the optimal accuracy (compared to state-

of-the-art). Future directions include extending this method

to a broader class of kernels.
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