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Abstract

We study risk-sensitive reinforcement learning in episodic Markov decision
processes with unknown transition kernels, where the goal is to optimize the
total reward under the risk measure of exponential utility. We propose two
provably efficient model-free algorithms, Risk-Sensitive Value Iteration (RSVI)
and Risk-Sensitive Q-learning (RSQ). These algorithms implement a form of
risk-sensitive optimism in the face of uncertainty, which adapts to both risk-
seeking and risk-averse modes of exploration. We prove that RSVI attains an

Õ
(

λ(|β|H2)·
√
H3S2AT

)

regret, while RSQ attains an Õ
(

λ(|β|H2)·
√
H4SAT

)

regret, where λ(u) = (e3u−1)/u for u > 0. In the above, β is the risk parameter of
the exponential utility function, S the number of states, A the number of actions, T
the total number of timesteps, and H the episode length. On the flip side, we estab-
lish a regret lower bound showing that the exponential dependence on |β| and H is

unavoidable for any algorithm with an Õ(
√
T ) regret (even when the risk objective

is on the same scale as the original reward), thus certifying the near-optimality of
the proposed algorithms. Our results demonstrate that incorporating risk awareness
into reinforcement learning necessitates an exponential cost in |β| and H , which
quantifies the fundamental tradeoff between risk sensitivity (related to aleatoric
uncertainty) and sample efficiency (related to epistemic uncertainty). To the best
of our knowledge, this is the first regret analysis of risk-sensitive reinforcement
learning with the exponential utility.

1 Introduction

Risk-sensitive reinforcement learning (RL) concerns learning to act in a dynamic environment while
taking into account risks that arise during the learning process. Effective management of risks in RL
is critical to many real-world applications such as autonomous driving [32], real-time strategy games
[56], financial investment [44], etc. In neuroscience, risk-sensitive RL has been applied to model
human behaviors in decision making [46, 52].

In this paper, we consider risk-sensitive RL with the exponential utility [34] under episodic Markov
decision processes (MDPs) with unknown transition kernels. Informally, the agent aims to maximize
a risk-sensitive objective function of the form

V =
1

β
log
{

EeβR
}

, (1)

where R is the total reward the agent receives, and β 6= 0 is a real-valued parameter that controls
risk preference of the agent; see Equation (2) for a formal definition of V . The objective V admits

the Taylor expansion V = E[R] + β
2 Var(R) + O(β2). It can be seen that for β > 0 the agent
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is risk-seeking (favoring high uncertainty in R), for β < 0 the agent is risk-averse (favoring low
uncertainty in R), and a larger |β| implies higher risk-sensitivity. When β → 0, the agent tends to be
risk-neutral and the objective reduces to the expected reward objective V = E[R] standard in RL.
Therefore, the risk-sensitive objective in (1) covers the entire spectrum of risk sensitivity by varying
β. In addition, the formulation (1) is closely related to RL with constraints. For example, a negative
risk parameter β controls the tail of a risk distribution so as to mitigate the chance of receiving a
total reward R that is excessively low. We refer to [42, Section 2.1] for an in-depth discussion of this
connection.

The challenge of risk-sensitive RL lies both in the non-linearity of the objective function and in
designing a risk-aware exploration mechanism. In particular, as we elaborate in Section 2.2, the
non-linear objective function (1) induces a non-linear Bellman equation. Classical RL algorithms are
inappropriate in this setting, as their design crucially relies on the linearity of Bellman equations. On
the other hand, effective exploration has been well known to be crucial to RL algorithm design, yet it
is not clear how to design an algorithm that efficiently explores uncertain environments while at the
same time adapting to the risk-sensitive objective (1) of agents with different risk parameter β.

To address these difficulties, we propose two model-free algorithms, Risk-Sensitive Value Iteration
(RSVI) and Risk-Sensitive Q-learning (RSQ). Specifically, RSVI is a batch algorithm and RSQ is
an online algorithm; both families of batch and online algorithms see broad applications in practice.
We demonstrate in Section 3 that our proposed algorithms implement a form of risk-sensitive
optimism for exploration. Importantly, the exact implementation of optimism depends on both
the magnitude and the sign of the risk parameter, and therefore applies to both risk-seeking and
risk-averse modes of learning. Letting λ(u) = (e3u − 1)/u for u > 0, we prove that RSVI attains an

Õ
(

λ(|β|H2) ·
√
H3S2AT

)

regret, and RSQ achieves an Õ
(

λ(|β|H2) ·
√
H4SAT

)

regret. Here, S
and A are the numbers of states and actions, respectively, T is the total number of timesteps, and
H is the length of each episode. These regret bounds interpolate across different regimes of risk
sensitivity and subsume existing results under the risk-neutral setting. Compared with risk-neutral
RL (corresponding to β → 0), our general regret bounds feature an exponential dependency on |β|
and H , even though the risk-sensitive objective (1) is on the same scale as the total reward; see
Figure 1 for a plot of the exponential factor λ(|β|H2). Complementarily, we prove a lower bound
showing that such an exponential dependency is inevitable for any algorithm and thus certifies the
near-optimality of the proposed algorithms. To the best of our knowledge, our work provides the first
regret analysis of risk-sensitive RL with the exponential utility.

Our upper and lower bounds demonstrate the fundamental tradeoff between risk sensitivity and
sample efficiency in RL.1 Broadly speaking, risk sensitivity is associated with aleatoric uncertainty,
which originates from the inherent randomness of state transition, actions and rewards, whereas
sample efficiency is associated with epistemic uncertainty, which arises from imperfect knowledge
of the environment/system and can be reduced by more exploration [20, 24]. These two notions of
uncertainty are usually decoupled in the regret analysis of risk-neutral RL—in particular, using the
expected reward as the objective effectively suppresses the aleatoric uncertainty. In risk-sensitive
RL, we establish that there is a fundamental connection and tradeoff between these two forms of
uncertainty: the risk-seeking and risk-averse regimes both incur an exponential cost in |β| and H on
the regret, whereas the regret is polynomial in H in the risk-neutral regime.

Our contributions. The contributions of our work can be summarized as follows:

• We consider the problem of risk-sensitive RL with the exponential utility. We propose
two provably efficient model-free algorithms, namely RSVI and RSQ, that implement
risk-sensitive optimism in the face of uncertainty;

• We provide regret analysis for both algorithms over the entire spectrum of risk parameter β.
As β → 0, we show that our results recover the existing regret bounds in the risk-neutral
setting;

• We provide a lower bound result that certifies the near-optimality of our upper bounds and
reveals a fundamental tradeoff between risk sensitivity and sample complexity.

1By standard arguments, regret can be translated into sample complexity bounds and vice versa; see [38].
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state sh+1 ∼ Ph(· | sh, ah). We use the convention that the episode terminates when a state sH+1 at
step H + 1 is reached, at which the agent does not take an action and receives no reward.

A policy π = {πh}h∈[H] of an agent is a sequence of functions πh : S → A, where πh(s) is the

action that the agent takes in state s at step h of an episode. For each h ∈ [H], we define the value
function V π

h : S → R of a policy π as the expected value of cumulative rewards the agent receives
under a risk measure of exponential utility by executing policy π starting from an arbitrary state at
step h. Specifically, we have

V π
h (s) :=

1

β
log

{

E

[

exp

(

β

H
∑

h′=h

rh′(sh′ , πh′(sh′))

)
∣

∣

∣

∣

∣

sh = s

]}

, (2)

for each (h, s) ∈ [H] × S. Here β 6= 0 is the risk parameter of the exponential utility: β > 0
corresponds to a risk-seeking value function, β < 0 corresponds to a risk-averse value function, and
as β → 0 the agent tends to be risk-neutral and we recover the classical value function V π

h (s) =

E[
∑H

h=1 rh(sh, πh(sh)) | sh = s] in RL. The goal of the agent is to find a policy π such that V π
1 (s)

is maximized for all state s ∈ S. Note the logarithm and rescaling by 1/β in the above definition,
which puts the objective V π

1 (s) on the same scale as the total reward; this scaling property is made
formal in Lemma 1 below.

2.2 Bellman equations and regret

We further define the action-value function Qπ
h : S ×A → R, which gives the expected value of the

risk measured by the exponential utility when the agent starts from an arbitrary state-action pair at
step h and follows policy π afterwards; that is,

Qπ
h(s, a) :=

1

β
log

{

exp(β · rh(s, a))E
[

exp

(

β
H
∑

h′=h+1

rh′(sh′ , ah′)

)
∣

∣

∣

∣

∣

sh = s, ah = a

]}

,

for all (h, s, a) ∈ [H]× S ×A. The Bellman equation associated with policy π is given by

Qπ
h(s, a) = rh(s, a) +

1

β
log
{

Es′∼Ph(· | s,a)

[

exp
(

β · V π
h+1(s

′)
)]}

,

V π
h (s) = Qπ

h(s, πh(s)), V π
H+1(s) = 0,

(3)

which holds for all (s, a) ∈ S ×A.

Under some mild regularity conditions, there always exists an optimal policy π∗ which gives the
optimal value V ∗

h (s) = supπ V
π
h (s) for all (h, s) ∈ [H]×S [7]. The Bellman optimality equation is

given by

Q∗
h(s, a) = rh(s, a) +

1

β
log
{

Es′∼Ph(· | s,a)

[

exp
(

β · V ∗
h+1(s

′)
)]}

,

V ∗
h (s) = max

a∈A
Q∗

h(s, a), V ∗
H+1(s) = 0.

(4)

This equation implies that the optimal policy π∗ is the greedy policy with respect to the optimal
action-value function {Q∗

h}h∈[H]. Hence, to find the optimal policy π∗, it suffices to estimate the
optimal action-value function. We note that both Bellman equations (3) and (4) are non-linear in the
value and action-value functions due to non-linearity of the exponential utility. This is in contrast
with their linear risk-neutral counterparts.

Under the episodic MDP setting, the agent aims to learn the optimal policy by interacting with
the environment throughout a set of episodes. For each k ≥ 1, let us denote by sk1 the initial state

chosen by the environment and πk the policy chosen simultaneously by the agent at the beginning of

episode k. The difference in values between V πk

1 (sk1) and V ∗
1 (s

k
1) measures the expected regret or

the sub-optimality of the agent in episode k. After K episodes, the total regret for the agent is

Regret(K) :=
∑

k∈[K]

[

V ∗
1 (s

k
1)− V πk

1 (sk1)
]

. (5)

We record the following simple worst-case upper bounds on the value functions and regret.
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Lemma 1. For any (h, s, a) ∈ S ×A× [H], policy π and risk parameter β 6= 0, we have

0 ≤ V π
h (s) ≤ H and 0 ≤ Qπ

h(s, a) ≤ H. (6)

Consequently, for each K ≥ 1, all policy sequences π1, . . . , πK and any β 6= 0, we have

0 ≤ Regret(K) ≤ KH. (7)

Proof. Recall the assumption that the reward functions {rh} are bounded in [0, 1]. The lower bounds
are immediate by definition. For the upper bound, we have V π

h (s) ≤ 1
β log {E [exp (βH)]} = H.

Upper bounds for Qπ
h and the regret follow similarly.

While straightforward, the above lemma highlights an important point: the risk and regret are on the
same scale as the reward. In particular, the upper bounds above are independent of β and linear in
the horizon length H—the same as in the standard MDP setting—because the log and exp functions
in the definition of the objective function (2) cancel with each other in the worst case. Therefore, the
exponential dependence of the regret on |β| and H , which we establish below in Section 4, is not
merely a consequence of scaling but rather is inherent in the risk-sensitive setting.

3 Algorithms

The non-linearity of the Bellman equations, discussed in Section 2.2, creates challenges in algorithmic
design. In particular, standard model-free algorithms such as least-squares value iteration (LSVI)
and Q-learning are no longer appropriate since they specialize to the risk-neutral setting with linear
Bellman equations. In this section, we present risk-sensitive LSVI and Q-learning algorithms that
adapt to both the non-linear Bellman equations and any valid risk parameter β.

3.1 Risk-Sensitive Value Iteration

We first present Risk-Sensitive Value Iteration (RSVI) in Algorithm 1. Algorithm 1 is inspired
by LSVI-UCB of [39], which is in turn motivated by the idea of LSVI [12, 47] and the classical
value-iteration algorithm. Like LSVI-UCB, Algorithm 1 applies the Upper Confidence Bound (UCB)
by incorporating a bonus term to value estimates of state-action pairs, which therefore implements
the principle of Optimism in the Face of Uncertainty (OFU) [36].

Mechanism of Algorithm 1. The algorithm mainly consists of the value estimation step (Line
6–13) and the policy execution step (Line 14–18). In Line 7, the algorithm computes the intermediate
value wh by a least-squares update

wh ← argmin
w∈RSA

∑

τ∈[k−1]

[

eβ[rh(s
τ
h,a

τ
h)+Vh+1(s

τ
h+1)] − w>φ(sτh, a

τ
h)
]2

. (8)

Here, {(sτh, aτh, sτh+1)}τ∈[k−1] are accessed from the datasetDh for each h ∈ [H], and φ(·, ·) denotes

the canonical basis in R
SA. Line 7 can be efficiently implemented by computing sample means of

eβ[rh(s,a)+Vh+1(s
′)] over those state-action pairs that the algorithm has visited. Therefore, it can also

be interpreted as estimating the sample means of exponentiated Q-values under visitation measures
induced by the transition kernels {Ph}. This is a typical feature of the family of batch algorithms,
to which Algorithm 1 belongs. Then, in Line 10, the algorithm uses the intermediate value wh

to compute the estimate Qh, by adding/subtracting bonus bh and thresholding the sum/difference

at eβ(H−h+1), depending on the sign of β. It is not hard to see that the logarithmic-exponential
transformation in Line 10 conforms and adapts to the non-linearity in Bellman equations (3) and (4).
In addition, the thresholding operator ensures that the estimated action-value function Qh of step h
stays in the range [0, H − h+ 1] and so does the estimated value function Vh in Line 11. This is to
enforce the estimates Qh and Vh to be on the same scale as the optimal Q∗

h and V ∗
h .

Besides the logarithmic-exponential transformation, another distinctive feature of Algorithm 1 is the
way the bonus term bh > 0 is incorporated in Line 10. At first sight, it might appear counter-intuitive
to subtract bh from wh when β < 0. We demonstrate next that subtracting bonus when β < 0 in fact
implements the idea of OFU in a risk-sensitive fashion.
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Algorithm 1 RSVI

Input: number of episodes K ∈ Z>0, confidence level δ ∈ (0, 1], and risk parameter β 6= 0
1: Qh(s, a)← H − h+ 1 and Nh(s, a)← 0 for all (h, s, a) ∈ [H]× S ×A
2: QH+1(s, a)← 0 for all (s, a) ∈ S ×A
3: Initialize datasets {Dh} as empty
4: for episode k = 1, . . . ,K do
5: VH+1(s)← 0 for each s ∈ S
6: for step h = H, . . . , 1 do . value estimation
7: Update wh via Equation (8)
8: for (s, a) ∈ S ×A such that Nh(s, a) ≥ 1 do

9: bh(s, a)← cγ
∣

∣eβH − 1
∣

∣

√

S log(2SAT/δ)
Nh(s,a)

for some universal constant cγ > 0

10: Qh(s, a)←
{

1
β log

[

min{eβ(H−h+1), wh(s, a) + bh(s, a)}
]

, if β > 0;
1
β log

[

max{eβ(H−h+1), wh(s, a)− bh(s, a)}
]

, if β < 0

11: Vh(s)← maxa′∈A Qh(s, a
′)

12: end for
13: end for
14: for step h = 1, . . . , H do . policy execution
15: Take action ah ← argmaxa∈A Qh(sh, a) and observe rh(sh, ah) and sh+1

16: Nh(sh, ah)← Nh(sh, ah) + 1
17: Insert (sh, ah, sh+1) into Dh

18: end for
19: end for

Risk-Sensitive Upper Confidence Bound. For the purpose of illustration, let us consider a
“promising” state s+ ∈ S at step h that allows us to transition to states {s′} in the next step
with high values {Vh+1(s

′)} regardless of actions taken. This means that the intermediate value

wh(s
+, ·) ∝ ∑s′ e

β·Vh+1(s
′) tends to be small, given that β < 0 and {Vh+1(s

′)} are large. By

subtracting a positive bh from wh, we obtain an even smaller quantity wh(s
+, ·)− bh(s

+, ·). We can
then deduce that Qh(s

+, ·) ≈ 1
β log[wh(s

+, ·) − bh(s
+, ·)] is larger compared to 1

β log[wh(s
+, ·)]

which does not incorporate bonus, since the logarithmic function is monotonic and again β < 0 (we
ignore thresholding for the moment). Therefore, subtracting bonus serves as a UCB for β < 0 . Since
the exact form of the UCB depends on both the magnitude and sign of β (as shown in Lines 9 and
10), we name it Risk-Sensitive Upper Confidence Bound (RS-UCB) and this results in what we call
Risk-Sensitive Optimism in the Face of Uncertainty (RS-OFU).

3.2 Risk-Sensitive Q-learning

Although Algorithm 1 is model-free, it requires storage of historical data {Dh} and computation over
them (Line 7). A more efficient class of algorithms is Q-learning algorithms, which update Q values
in an online fashion as each state-action pair is encountered. We therefore propose Risk-Sensitive
Q-learning (RSQ) and formally describe it in Algorithm 2.

Mechanism of Algorithm 2. Algorithm 2 is based on Q-learning with UCB studied in the work of
[38] and we use the same learning rates therein

αt :=
H + 1

H + t
(9)

for every integer t ≥ 1. Similar to Algorithm 1, Algorithm 2 consists of the policy execution step
(Line 6) and value estimation step (Lines 9–11). Line 9 updates the intermediate value wh in an
online fashion, in constrast with the batch update in Line 7 of Algorithm 1, and Algorithm 2 can thus
be seen as an online algorithm. Line 10 then applies the same logarithmic-exponential transform to
the intermediate value and bonus as in Algorithm 1. Note the similar way we use the bonus term bt in
estimating Q-values in Line 10 of Algorithm 2 as in Line 10 of Algorithm 1. Algorithm 2 therefore
also implements RS-UCB and follows the principle of RS-OFU.
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Algorithm 2 RSQ

Input: number of episodes K ∈ Z>0, confidence level δ ∈ (0, 1], learning rates {αt} and risk
parameter β 6= 0

1: Qh(s, a), Vh(s, a)← H − h+ 1 and Nh(s, a)← 0 for all (h, s, a) ∈ [H]× S ×A
2: QH+1(s, a), VH+1(s, a)← 0 for all (s, a) ∈ S ×A
3: for episode k = 1, . . . ,K do
4: Receive the initial state s1
5: for step h = 1, . . . , H do
6: Take action ah ← argmaxa′∈A Qh(sh, a

′), and observe rh(sh, ah) and sh+1

7: t = Nh(sh, ah)← Nh(sh, ah) + 1

8: bt ← c
∣

∣eβH − 1
∣

∣

√

H log(SAT/δ)
t for some sufficiently large universal constant c > 0

9: wh(sh, ah)← (1− αt)e
β·Qh(sh,ah) + αte

β[rh(sh,ah)+Vh+1(sh+1)]

10: Qh(sh, ah)←
{

1
β log

[

min{eβ(H−h+1), wh(sh, ah) + αtbt}
]

, if β > 0;
1
β log

[

max{eβ(H−h+1), wh(sh, ah)− αtbt}
]

, if β < 0

11: Vh(sh)← maxa′∈A Qh(sh, a
′)

12: end for
13: end for

Comparisons of Algorithms 1 and 2. It is interesting to compare the bonuses used in Algorithms
1 and 2. The bonuses in both algorithms depend on the risk parameter β through a common factor
∣

∣eβH − 1
∣

∣. A careful analysis (see our proofs in appendices) on the bonuses and the value estimation
steps reveals that the effective bonuses added to the estimated value function is proportional to
e|β|H−1

|β| . This means that the more risk-seeking/averse an agent is (or the larger |β| is), the larger

bonus it needs to compensate for its uncertainty over the environment. Such risk sensitivity of the
bonus is also reflected in the regret bounds; see Theorems 1 and 2 below. Also, it is not hard to see that
both algorithms have polynomial time and space complexities in S, A, K and H . Moreover, thanks
to its online update procedure, Algorithm 2 is more efficient than Algorithms 1 in both time and space
complexities, since it does not require storing historical data (in particular, {Dh} of Algorithm 1) nor
computing statistics based on them for value estimation.

4 Main results

In this section, we first present regret bounds for Algorithms 1 and 2, and then we complement the
results with a lower bound on regret that any algorithm has to incur.

4.1 Regret upper bounds

The following theorem gives an upper bound for regret incurred by Algorithm 1. Let T := KH be the
total number of timesteps for which an algorithm is run, and recall the function λ(u) := (e3u − 1)/u.

Theorem 1. For any δ ∈ (0, 1], with probability at least 1− δ, the regret of Algorithm 1 is bounded
by

Regret(K) . λ(|β|H2) ·
√

H3S2AT log2(2SAT/δ).

The proof is given in Appendix C. We see that the result of Theorem 1 adapts to both risk-seeking
(β > 0) and risk-averse (β < 0) settings through a common factor of λ(|β|H2).

As β → 0, the setting of risk-sensitive RL tends to that of standard and risk-neutral RL, and we have
an immediate corollary to Theorem 1 as a precise characterization.

Corollary 1. Under the setting of Theorem 1 and when β → 0, with probability at least 1− δ, the
regret of Algorithm 1 is bounded by

Regret(K) .

√

H3S2AT log2(2SAT/δ).

Proof. The result follows from Theorem 1 and the fact that limβ→0 λ(|β|H2) = 3.
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The result in Corollary 1 recovers the regret bound of [4, Theorem 2] under the standard RL setting
and is nearly optimal compared to the minimax rates presented in [3, Theorems 1 and 2]. Corollary 1
also reveals that Theorem 1 interpolates between the risk-sensitive and risk-neutral settings.

Next, we give a regret upper bound for Algorithm 2 in the following theorem.

Theorem 2. For any δ ∈ (0, 1], with probability at least 1− δ and when T is sufficiently large, the
regret of Algorithm 2 is bounded by

Regret(K) . λ(|β|H2) ·
√

H4SAT log(SAT/δ).

The proof is given in Appendix E. Similarly to Theorem 1, Theorem 2 also covers both risk-seeking
and risk-averse settings via the same factor λ(|β|H2), which gives the risk-neutral bound when
β → 0 as shown in the following.

Corollary 2. Under the setting of Theorem 2 and when β → 0, with probability at least 1− δ, the
regret of Algorithm 2 is bounded by

Regret(K) .
√

H4SAT log(SAT/δ).

The proof follows the same reasoning as in that of Corollary 1. According to Corollary 2, the
regret upper bound for Algorithm 2 matches the nearly optimal result in [38, Theorem 2] under the
risk-neutral setting. As such, Theorems 1 and 2 strictly generalizes the existing nearly optimal regret
bounds (up to polynomial factors).

The crux of the proofs of both Theorems 1 and 2 lies in a local linearization argument for the
non-linear Bellman equations and non-linear updates of the algorithms, in which action-value and
value functions are related by a logarithmic-exponential transformation. Although logarithmic and
exponential functions are not Lipschitz globally, we show that they are locally Lipschitz in the domain
of our interest, and their combined local Lipschitz factors turn out to be the exponential factors in the
theorems. Once the Bellman equations and algorithm estimates are linearized, we can apply standard
techniques in RL to obtain the final regret. It is noteworthy that, as suggested by [38], the regret
bounds in Theorems 1 and 2 can automatically be translated into sample complexity bounds in the
probably approximately correct (PAC) setting, which did not previously exist even given access to a
simulator.

In the risk-sensitive setting where β is bounded away from 0, our regret bounds of Theorems 1 and 2
depend exponentially in the horizon length H and the risk sensitivity |β|. In what follows, we argue
that such exponential dependence is unavoidable.

4.2 Regret lower bound

We now present a fundamental lower bound on the regret, which complements the upper bounds in
Theorems 1 and 2.

Theorem 3. If |β| (H − 1) and K are sufficiently large, the regret of any policy obeys

Regret(K) & λ(|β|(H − 1)/6) ·
√
HT.

The proof is given in Appendix F. In the proof, we construct an MDP that can be reduced to a bandit
problem. We then show that any bandit algorithm has to incur an expected regret, in terms of the
logarithmic-exponential objective, that grows as predicted in Theorem 3.

Theorem 3 shows that the exponential dependence on the |β| and H in Theorems 1 and 2 is essentially

indispensable. In addition, it features a sub-linear dependence on T through the Õ(
√
T ) factor. In

view of Theorem 3, therefore, both Theorems 1 and 2 are nearly optimal in their dependence on β,
H and T . One should contrast Theorem 3 with Lemma 1, which shows that the worst-case regret is
linear in H and T . Such a linear regret can be attained by any trivial algorithm that does not learn

at all. In sharp contrast, in order to achieve the optimal
√
T scaling (which by standard arguments

implies a finite sample-complexity bound), an algorithm must incur a regret that is exponential in
H . Therefore, our results show a (perhaps surprising) tradeoff between risk sensitivity and sample
efficiency.
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Broader Impact

This work contributes to the risk-awareness of machine learning and improves the way RL algorithms
handle risks arising from uncertain environments. We have proposed two efficient and model-free
algorithms for risk-sensitive RL with the exponential utility. We show that both algorithms follow
the principle of Risk-Sensitive Optimism in the Face of Uncertainty (RS-OFU), and they achieve
nearly optimal regret bounds with respect to the risk parameter, horizon length and total number of
timesteps.
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