
POLY-HOOT: Monte-Carlo Planning in Continuous

Space MDPs with Non-Asymptotic Analysis

Weichao Mao
ECE and CSL

University of Illinois at Urbana-Champaign
weichao2@illinois.edu

Kaiqing Zhang
ECE and CSL

University of Illinois at Urbana-Champaign
kzhang66@illinois.edu

Qiaomin Xie
ORIE

Cornell University
qiaomin.xie@cornell.edu

Tamer Başar
ECE and CSL

University of Illinois at Urbana-Champaign
basar1@illinois.edu

Abstract

Monte-Carlo planning, as exemplified by Monte-Carlo Tree Search (MCTS), has
demonstrated remarkable performance in applications with finite spaces. In this
paper, we consider Monte-Carlo planning in an environment with continuous
state-action spaces, a much less understood problem with important applications
in control and robotics. We introduce POLY-HOOT, an algorithm that augments
MCTS with a continuous armed bandit strategy named Hierarchical Optimistic
Optimization (HOO) (Bubeck et al., 2011). Specifically, we enhance HOO by using
an appropriate polynomial, rather than logarithmic, bonus term in the upper confi-
dence bounds. Such a polynomial bonus is motivated by its empirical successes
in AlphaGo Zero (Silver et al., 2017b), as well as its significant role in achieving
theoretical guarantees of finite space MCTS (Shah et al., 2019). We investigate, for
the first time, the regret of the enhanced HOO algorithm in non-stationary bandit
problems. Using this result as a building block, we establish non-asymptotic con-
vergence guarantees for POLY-HOOT: the value estimate converges to an arbitrarily
small neighborhood of the optimal value function at a polynomial rate. We further
provide experimental results that corroborate our theoretical findings.

1 Introduction

Monte-Carlo tree search (MCTS) has recently demonstrated remarkable success in deterministic
games, especially in the game of Go (Silver et al., 2017b), Chess and Shogi (Silver et al., 2017a). It is
also among the very few viable approaches to problems with partial observability, e.g., Poker (Rubin
and Watson, 2011), and problems involving highly complicated strategies like real-time strategy
games (Uriarte and Ontanón, 2014). However, most Monte-Carlo planning solutions only work well
in finite state and action spaces, and are generally not compatible with continuous action spaces
with enormous branching factors. Many important applications such as robotics and control require
planning in a continuous state-action space, for which feasible solutions, especially those with
theoretical guarantees, are scarce. In this paper, we aim to develop an MCTS method for continuous
domains with non-asymptotic convergence guarantees.

Rigorous analysis of MCTS is highly non-trivial even in finite spaces. One crucial difficulty stems
from the fact that the state-action value estimates in MCTS are non-stationary over multiple simula-
tions, because the policies in the lower levels of the search tree are constantly changing. Due to the
strong non-stationarity and interdependency of rewards, the reward concentration hypothesis made

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

in the seminal work of Kocsis and Szepesvári (2006)—which provides one of the first theoretical
analysis of bandit-based MCTS—turns out to be unrealistic. Hence, the convergence analysis given
in Kocsis and Szepesvári (2006) is unlikely to hold in general. Recently a rigorous convergence result
is established in Shah et al. (2019), based on further investigation of non-stationary multi-armed
bandits (MABs).

Besides the non-stationarity issue inherent in MCTS analysis, an additional challenge for continuous
domains lies in balancing the trade-off between generating fine-grained samples across the entire
continuous action domain to ensure optimality, and guaranteeing sufficient exploitation of the sampled
actions for accurate estimations. To tackle this challenge, a natural idea is to manually discretize
the action space and then solve the resulting discrete problem using a discrete-space planning
algorithm. However, this approach inevitably requires a hyper-parameter pre-specifying the level of
discretization, which in turn leads to a fundamental trade-off between the computational complexity
and the optimality of the planning solution: coarse discretization often fails to identify the optimal
continuous action, yet fine-grained discretization leads to a large action space and heavy computation.

In this paper, we consider Monte-Carlo planning in continuous space Markov Decision Processes
(MDPs) without manually discretizing the action space. Our algorithm integrates MCTS with a
continuous-armed bandit strategy, namely Hierarchical Optimistic Optimization (HOO) (Bubeck
et al., 2011). Our algorithm adaptively partitions the action space and quickly identifies the region
of potentially optimal actions in the continuous space, which alleviates the inherent difficulties
encountered by pre-specified discretization. The integration of MCTS with HOO has been empirically
evaluated in Mansley et al. (2011), under the name of the Hierarchical Optimistic Optimization applied
to Trees (HOOT) algorithm. HOOT directly replaces the UCB1 bandit algorithm (Auer et al., 2002)
used in finite-space MCTS with the HOO strategy. However, this algorithm has a similar issue as that
in Kocsis and Szepesvári (2006), as they both use a logarithmic bonus term for bandit exploration
instead of a polynomial term. As pointed out in Shah et al. (2019) and mentioned above, convergence
guarantees of these algorithms are generally unclear due to the lack of concentration of non-stationary
rewards. In this work, we enhance the HOO strategy with a polynomial bonus term to account for the
non-stationarity. As we will show in our theoretical results, our algorithm, Polynomial Hierarchical
Optimistic Optimization applied to Trees (POLY-HOOT), provably converges to an arbitrarily small
neighborhood of the optimum at a polynomial rate.

Contributions. First, we enhance the continuous-armed bandit strategy HOO, and analyze its regret
concentration rate in a non-stationary setting, which may also be of independent theoretical interest
in the context of bandit problems. Second, we build on the enhanced HOO to design a Monte-
Carlo planning algorithm POLY-HOOT for solving continuous space MDPs. Third, we generalize
the recent analytical framework developed for finite-space MCTS (Shah et al., 2019) and prove
that the value estimate of POLY-HOOT converges to an arbitrarily small neighborhood of the optimal
value function at a polynomial rate. We note that HOOT is among the very few MCTS algorithms
for continuous spaces and popular in practice. POLY-HOOT improves upon HOOT and provides
theoretical justifications thereof. Finally, we present experimental results which corroborate our
theoretical findings and demonstrate the superior performance of POLY-HOOT.

Related Work. One of the most popular MCTS methods is the Upper Confidence Bounds applied
to Trees (UCT) algorithm (Kocsis and Szepesvári, 2006), which applies the UCB1 (Auer et al.,
2002) bandit algorithm for action selection. A convergence result of UCT is provided in Kocsis and
Szepesvári (2006). However, this result relies on the assumption that bandit regrets under UCB1
concentrate exponentially, which is unlikely to hold in general. Recent work in Shah et al. (2019)
provides a complete analysis of UCT through a further study of non-stationary bandit algorithms
using polynomial bonus. Our analysis falls into the general framework proposed therein. We note
that many variations and enhancements of MCTS have been developed (Coquelin and Munos, 2007;
Schadd et al., 2008; Kaufmann and Koolen, 2017; Xiao et al., 2019; Jonsson et al., 2020); we refer
interested readers to a survey by Browne et al. (2012). We remark that most variants are restricted to
finite-action problems.

MCTS for continuous-space MDPs has been relatively less studied. In the literature a progressive
widening (PW) technique (Chaslot et al., 2007; Auger et al., 2013) is often used to discretize the
action space and ensure sufficient exploitation. However, PW mainly concerns when to sample a new
action, but not how. For example, Auger et al. (2013) draws an action uniformly at random, which
is sample-inefficient compared to our bandit-based action selection. Popular in empirical work is

2

the HOOT algorithm in (Mansley et al., 2011), which directly replaces the UCB1 bandit strategy in
UCT with HOO. This work does not provide theoretical guarantees, and given the non-stationarity
of the bandit rewards, there is a good reason to believe that a more sophisticated variant of HOO
is needed. An open-loop planning solution named Hierarchical Open-Loop Optimistic Planning
(HOLOP) is proposed and empirically evaluated in Weinstein and Littman (2012). In Yee et al.
(2016), MCTS is combined with kernel regression, and the resulting algorithm demonstrates good
empirical performance. More recently, Kim et al. (2020) proposes to partition the continuous space
based on the Voronoi graph, but they focus on deterministic rewards and do not utilize bandits to
guide the exploration and exploitation of actions, which is the main focus of our work.

Outline. The rest of the paper is organized as follows: In Section 2, we introduce the mathematical
formulation and some preliminaries. In Section 3, we present our POLY-HOOT algorithm. In Section 4,
we provide our analysis of the non-stationary bandits and our main results on the convergence of
POLY-HOOT. Simulation results are provided in Section 5. Finally, we conclude our paper in Section 6.
The detailed algorithms and proofs of the theorems can be found in the appendix.

2 Preliminaries

2.1 Markov Decision Processes

We consider an infinite-horizon discounted MDP defined by a 5-tuple (S,A, T,R, γ), where S ⊆ R
n

is the continuous state space, A ⊆ R
m the continuous action space, T : S×A→ S the deterministic

transition function, R : S × A → [−Rmax, Rmax] the (bounded) stochastic reward function, and
γ ∈ (0, 1) is the discount factor. We do not require S and A to be compact, thus our theory
covers many control applications with possibly unbounded state-action spaces. The assumption of
deterministic state transitions is common in the MCTS literature (Browne et al., 2012; Shah et al.,
2019; Kim et al., 2020), as MCTS was historically introduced and popularly utilized in problems like
Go (Gelly et al., 2006; Silver et al., 2017b) and Atari games (Guo et al., 2014). For simplicity we use

the notation s ◦ a , T (s, a) to denote the next state deterministically reached by taking action a ∈ A
at the current state s ∈ S.

A policy π : S → A specifies the action a = π(s) taken at state s. The value function V π : S → R of
a policy π is defined as the expected discounted sum of rewards following π starting from the current
state s ∈ S, i.e., V π(s) = Eπ [

∑∞
t=0 γ

tR (st, at) |s0 = s]. Similarly, define the state-action value

function Qπ(s, a) = Eπ [
∑∞

t=0 γ
tR (st, at) |s0 = s, a0 = a]. The planner aims to find an optimal

policy π∗ that achieves the maximum value V π∗

(s) = V ∗(s) , supπ V
π(s) for all s ∈ S.

We consider the problem of computing the optimal value function for any given input state, with
access to a generative model (or simulator) of the MDP. A generative model provides a randomly
sampled next state and reward, when given any state-action pair (s, a) as input. Our algorithms and
results readily extend to learning the optimal policy or Q-function.

2.2 Monte-Carlo Tree Search

To estimate the optimal value of a given state, Monte-Carlo tree search (MCTS) builds a multi-step
look-ahead tree, with the state of interest as the root node, using Monte-Carlo simulations (Browne
et al., 2012). Each node in the tree represents a state, and each edge represents a state-action pair that
leads to a child node denoting the subsequent state. At each iteration, starting from the root node, the
algorithm selects actions according to a tree policy and obtains samples from the generative model
until reaching a leaf node. An estimate for the value of leaf node can be either obtained by simulations
of a roll-out policy or given by some function approximation. The leaf node estimate and samples
generated along the path are then backed-up to update the statistics of selected nodes. The tree policy
plays a key role of balancing exploration-exploitation. The most popular tree policy is UCT (Kocsis
and Szepesvári, 2006), which selects children (actions) according to the Upper Confidence Bound
(UCB1) (Auer et al., 2002) bandit algorithm. Note that UCT, and most variants thereof, are restricted
to the finite action setting.

A major challenge in the theoretical analysis of any MCTS algorithm is the non-stationarity of
bandit rewards. Specifically, since the policies at the lower level bandits of MCTS are constantly
changing, the reward sequences for each bandit agent drift over time, causing the reward distribution

3

to be highly non-stationary. The performance of each bandit depends on the results of a chain of
bandits at the lower levels, and this hierarchical inter-dependence of bandits makes the analysis highly
non-trivial. A complete solution to address this non-stationarity has been given recently in Shah et al.
(2019), where the authors inductively show the polynomial concentration of rewards by leveraging a
non-stationary bandit algorithm with a polynomial bonus term. Our approach in the continuous case
is based upon a similar reasoning as in Shah et al. (2019).

2.3 Hierarchical Optimistic Optimization

HOO (Bubeck et al., 2011) is an extension of finite-armed bandit algorithms to problems with arms
living in an arbitrary measurable space, e.g., the Euclidean space. HOO incrementally builds a binary
tree covering of the continuous action space X . Each node in the tree covers a subset of X . This
subset is further divided into two, corresponding to the two child nodes. HOO selects an action by
following a path from the root node to a leaf node, and at each node it picks the child node that has
the larger upper confidence bound (to be precise, larger B-value; see equation (2)) for the reward.
In this manner, HOO adaptively subdivides the action space and quickly focuses on the area where
potentially optimal actions lie in.

Following the notations in Bubeck et al. (2011), we index the nodes in the above HOO tree by
pairs of integers (h, i),1 where h ≥ 0 denotes the depth of the node, and 1 ≤ i ≤ 2h denotes its
index on depth h. In particular, the root node is (0, 1); the two children of (h, i) are (h+ 1, 2i− 1)
and (h + 1, 2i). Let Ph,i ⊆ X be the domain covered by the node (h, i). By definition, we have

P0,1 = X and Ph,i = Ph+1,2i−1 ∪ Ph+1,2i, ∀h ≥ 0 and 1 ≤ i ≤ 2h. Let C(h, i) denote the set of
all descendants of node (h, i). Let (Ht, It) denote the node played by HOO at round t, with observed
reward Yt. Then the number of times that a descendant of (h, i) has been played up to and including
round n is denoted by Th,i(n) =

∑n
t=1 1{(Ht,It)∈C(h,i)}, and the empirical average of rewards is

defined as µ̂h,i(n) =
1

Th,i(n)

∑n
t=1 Yt1{(Ht,It)∈C(h,i)}.

In the original HOO algorithm of Bubeck et al. (2011), the upper confidence bound of a node (h, i) is
constructed using a logarithmic bonus term:

Uh,i(n) =

{
µ̂h,i(n) +

√
2 lnn

Th,i(n)
+ ν1ρ

h, if Th,i(n) > 0,

∞, otherwise ,
(1)

where ν1 and ρ are two constants that characterize the reward function and the action domain. Given
Uh,i(n), one further introduces a critical quantity termed the B-values:

Bh,i(n) =

{
min {Uh,i(n),max {Bh+1,2i−1(n), Bh+1,2i(n)}} , if (h, i) ∈ Tn,
∞, otherwise,

(2)

where Tn is the set of nodes that are already included in the binary tree at round n. Starting from
the root node, HOO iteratively selects a child node with a larger B-value until it reaches a leaf node,
which corresponds to an arm of the bandit to be pulled.

3 Algorithm: POLY-HOOT

Our algorithm for continuous space MCTS, Polynomial Hierarchical Optimistic Optimization applied
to Trees (POLY-HOOT), is presented in Algorithm 1.

POLY-HOOT follows a similar framework as the classic UCT algorithm, but has the following critical
enhancements to handle continuous spaces with provable convergence guarantees.

1. HOO-Based Action Selection. We replace the discrete UCB1 bandit agent with a continuous-
armed HOO agent. In this case, each node in the Monte-Carlo tree is itself a HOO tree. In particular,
POLY-HOOT invokes the HOO algorithm through two functions: the HOO_query function selects
actions; after the action is taken and the reward is realized, the HOO_update function updates the
reward information at each HOO agent along the Monte-Carlo sampling path. Detailed descriptions
are provided in Appendix A.

1We use h and H to index the depth in the HOO tree, and use d and D to index the depth in the MCTS tree.

4

Algorithm 1: POLY-HOOT

1 Input: value oracle at leaf nodes V̂ , root node s(0), maximum search depth D, number of MCTS

simulations n, and parameters {α(i)}D−1
i=0 , {ξ(i)}D−1

i=0 , {η(i)}D−1
i=0 .

2 Output: value estimate of the root node s(0).
3 for simulation round t← 1 to n do
4 for depth d← 0 to D − 1 do

5 a(d) ← HOO_query(d, s(d), t) with depth limitation H̄;

6 r(d) ∼ R(s(d), a(d));

7 s(d+1) ← s(d) ◦ a(d);

8 r(D)(s(D))← V̂ (s(D));
9 for depth d← 0 to D − 1 do

10 Y (d) ← r(d) + γr(d+1) + · · ·+ γD−d−1r(D−1) + γD−dr(D)(s(D));

11 ṽ(d)(s(d))← ṽ(d)(s(d)) + Y (d);

12 HOO_update(d, s(d), t, Y (d)) using parameters α(d), ξ(d) and η(d);

13 return ṽ(0)(s(0))/n.

2. Polynomial Bonus. We replace the logarithmic bonus term used in the original HOO algorithm
(Equation (1)) with a polynomial term. In particular, our algorithm constructs the upper confidence
bound of a node (h, i) as follows:

Uh,i(n) =

{
µ̂h,i(n) + nα(d)/ξ(d)Th,i(n)

η(d)−1 + ν1ρ
h, if Th,i(n) > 0,

∞, otherwise ,

where α(d), ξ(d) and η(d) are constants to be specified later for each depth d in MCTS. As shall
become clear in the analysis, this polynomial bonus is critical in establishing convergence of MCTS. In
particular, MCTS involves a hierarchy of bandits with non-stationary rewards, for which logarithmic
bonus is no longer appropriate and does not guarantee (even asymptotic) convergence. Interestingly,
the empirically successful AlphaGo Zero also uses polynomial bonus (Silver et al., 2017b). As in the
original HOO, our algorithm navigates down the HOO tree using the B-value defined in (2), except
that we plug in the above polynomial upper confidence bound Uh,i(n).

3. Bounded-Depth HOO Tree. We place an upper bound H̄ on the maximum depth of the HOO tree.
Every time we reach a node at the maximum depth, the algorithm repeats the action taken previously
at that node. As such, our enhanced HOO stops exploring new actions after trying sufficiently many
actions. In the original HOO strategy, the tree is allowed to extend infinitely deep, so that the action
space can be discretized into arbitrarily fine granularity. When the bandit rewards are non-stationary,
as in MCTS, this strategy might overlook the long-term optimal action and get stuck in a suboptimal
area in the early stage of the tree search. On the contrary, our bounded depth HOO tree ensures
that the actions already explored will be fully exploited against the non-stationarity of rewards. Our
analysis shows that as long as the total number of actions tried is sufficiently large (i.e., H̄ is chosen
large enough), our algorithm still converges to an arbitrarily small neighborhood of the optimal value.

3.1 Analysis Setup

Setting the stage for our theoretical analysis, we introduce several useful notations. For each HOO
agent, let X ⊆ A ⊆ [0, 1]m denote the continuous set of actions (i.e., arms) available at the current
state. Each arm x ∈ X is associated with a stochastic payoff distribution, which corresponds to the
“cost-to-go” or Q-value of taking action x at the current state of the MDP. The expectation of this
reward function at time t is denoted by ft(x) : X → R, which is also termed the temporary mean-
payoff function at time t. Note that in MCTS the temporary mean-payoff functions are non-stationary
over time because the cost-to-go of an action depends on the actions to be chosen later in the lower
levels of MCTS. Let f be the limit of ft in the sense that ft converges to f in L∞ at a polynomial
rate: ‖ft − f‖∞ ≤

C
tζ
, ∀t ≥ 1 for some constant C > 0 and ζ ∈ (0, 1

2). The precise definition of ft
and f , as well as the convergence of ft, is formally established in Theorem 2. We call f the limiting
mean-payoff function (or simply the mean-payoff function).

5

Since the rewards of the MDP are bounded by Rmax, the bandit payoff for each node at depth d is

bounded by Rmax

1−γ , and so is the limiting mean-payoff f function. Let f∗ = supx∈X f(x) denote the

optimal payoff at an HOO agent, and the random variable Xt denote the arm selected by the agent at

round t. The agent aims to minimize the regret in the first n rounds: Rn , nf∗ −
∑n

t=1 Yt, where
Yt is the observed payoff of pulling arm Xt at round t, with E [Yt] = ft(Xt).

We state two assumptions that will be utilized throughout our analysis. These two assumptions are
similar to Assumptions A1 and A2 in Bubeck et al. (2011). For each HOO agent in MCTS, given
the parameters ν1 and ρ ∈ (0, 1), and the tree of coverings (Ph,i), we assume that there exists a
dissimilarity function ` : X ×X → [0,∞] such that the following holds.

Assumption 1. There exists a constant ν2 > 0, such that for all integers h ≥ 0,

(a) diam(Ph,i) ≤ ν1ρ
h, ∀1 ≤ i ≤ 2h, where diam(A) , supx,y∈A `(x, y);

(b) there exists an x◦
h,i ∈ Ph,i, such that Bh,i , B

(
x◦
h,i, ν2ρ

h
)
⊂ Ph,i, ∀1 ≤ i ≤ 2h, where

B(x, ε) , {y ∈ X : `(x, y) < ε} denotes an open ball centered at x with radius ε;

(c) Bh,i ∩ Bh,j = ∅ for all 1 ≤ i < j ≤ 2h.

Remark 1. Assumption 1 ensures that the diameter of Ph,i shrinks at a geometric rate as h grows.
This is a mild assumption, which holds automatically in, e.g., compact Euclidean spaces. In particular,
if the action space is a hyperrectangle, then Assumption 1 is satisfied by setting the dissimilarity
function ` to be some positive power of the Euclidean norm. For example, suppose that the action
space is [0, 1]2. The tree covering can be generated by cutting the hyperrectangle of Ph,i at the
midpoint of its longest side (ties broken arbitrarily) to obtain Ph+1,2i−1 and Ph+1,2i. Assumption 1

is satisfied with ` being the Euclidean norm and the parameters ρ = 1
2 , ν1 = 8, and ν2 = 1

4 . The
general form of Assumption 1 allows more flexibility in the choice of `.

Assumption 2 (Smoothness). The limiting mean-payoff function satisfies:

f∗ − f(y) ≤ f∗ − f(x) + max {f∗ − f(x), `(x, y)} , ∀x, y ∈ X.

Remark 2. Assumption 2 requires some smoothness of the mean-payoff function, and is milder than
the common Lipschitz continuity assumption |f(x)− f(y)| ≤ `(x, y), ∀x, y ∈ X . In particular, it
requires Lipschitz continuity only in the neighborhood of any global optimal arm x∗, and imposes
a weaker constraint for other x ∈ X . In the context of MDPs, this assumption stipulates that the

Q(s, a) function, after d ∈ [1, D) steps of value iterations starting from V̂ , is a Lipschitz continuous
function of the action a. Assumption 2 is satisfied by, e.g., Lipschitz MDPs (Asadi et al., 2018),2

although this assumption holds much more generally.

4 Main Results

In this section, we present our main results. Theorem 1 establishes the non-asymptotic convergence
rate of POLY-HOOT. Theorem 2 characterizes the concentration rates of regret of enhanced HOO in a
non-stationary bandit setting; this result serves as an important intermediate step in the analysis of
POLY-HOOT. The proofs for Theorems 1 and 2 are given in Appendices C and B, respectively.

4.1 Convergence of POLY-HOOT

Theorem 1. Consider an MDP that satisfies Assumptions 1 and 2. For any D ≥ 1, run n rounds of
MCTS simulations with parameters specified as follows:

α(d) =
(
1− η(d)

)
η(d)ξ(d), 0 ≤ d ≤ D − 1,

ξ(d−1) =
(
α(d) − 3

)
/2, 1 ≤ d ≤ D − 1,

η(d−1) =

α(d)

ξ(d)(1−η(d))
+ d′ + 1

1−η(d)

1 + d′ + 1
1−η(d)

, 1 ≤ d ≤ D − 1,

(3)

2This is the class of MDPs whose reward functions and (possibly deterministic) state transitions satisfy
certain smoothness criteria with respect to, say, the Wasserstein metric. As observed in Asadi et al. (2018), the
Wasserstein metric is often more appropriate than the Kullback-Leibler divergence metric in Lipschitz MDPs.

6

where d′ > 0 is a constant to be specified in Definition 3 (Appendix B). Suppose that ξ(D−1) > 0 and
1
2 ≤ η(D−1) < 1 are chosen large enough such that α(0) > 3, and H̄ satisfies ρH̄ < nη(0)−1. Then

for each query state s ∈ S, the following result holds for the output V̂n(s) of Algorithm 1:

∣∣∣E
[
V̂n(s)

]
− V ∗(s)

∣∣∣ ≤ O

(
1

nζ

)
+ γDε0,

where ζ ∈ (0, 1
2) satisfies ζ ≤ 1− η(d), ∀ 0 ≤ d ≤ D − 1, and ε0 =

∥∥V̂ − V ∗
∥∥
∞

is the error in the
value function oracle at the leaf nodes.

Proof Sketch. MCTS can be viewed as a hierarchy of multi-armed bandits (in our case, continuous-
armed bandits), one per each node in the tree. In particular, the rewards of the bandit associated with
each intermediate node are the rewards generated by the bandit algorithms for nodes downstream.
Since the HOO policy is changing to balance exploitation-exploration, the resulting rewards are
non-stationary. With this observation, the proof for Theorem 1 can be broken down to the following
three steps:

1. Non-stationary bandits. The first step concerns the analysis of a non-stationary bandit, which
models the MAB at each node on the MCTS search tree. In particular, we show that if the rewards of
a continuous-armed bandit problem satisfy certain convergence and concentration properties, then
the regret induced by the enhanced HOO algorithm satisfies similar convergence and concentration
guarantees. The result is formally established in Theorem 2.

2. Induction step. Since the rewards collected at one level of bandits constitute the bandit rewards
of the level above it, we can apply the results of Step 1 recursively, from level D − 1 upwards to the
root node. We inductively show that the bandit rewards at each level d of MCTS satisfy the properties
required by Theorem 2, and hence we can propagate the convergence and concentration properties to
the bandit at level d− 1, using the results of Theorem 2. The convergence result for the root node is
established by induction.

3. Error from the oracle. Finally, we consider the error induced by the leaf node estimator, i.e., the

value function oracle V̂ . Given a value function oracle V̂ for the leaf nodes, a depth-D MCTS can

be effectively viewed as D steps of value iteration starting from V̂ (Shah et al., 2019). Therefore,

the error in the value function oracle V̂ shrinks at a geometric rate of γ due to the contraction
mapping.

Theorem 1 implies that the value function estimate obtained by Algorithm 1 converges to the γDε0-
neighborhood of the optimal value function at a rate of O(n−ζ), where ζ ∈ (0, 1

2) depends on the

parameters α(D−1), ξ(D−1), and η(D−1) we choose. Therefore, by setting the depth D of MCTS
appropriately, Algorithm 1 can output an estimate that is within an arbitrarily small neighborhood
around the optimal values.

Remark 3. We remark on several technical challenges in the proof of Theorem 1. The first challenge
is to transform a hierarchy of inter-dependent bandits into a recursive sequence of non-stationary
bandit problems with unified form, which is highly non-trivial even in the finite case (Shah et al.,
2019). As far as we know, a general solution to non-stationary bandit problems with continuous
domains is not available in the literature. Our enhanced HOO algorithm might be of independent
research interest. Another challenge is to ensure sufficient exploitation in face of infinitely many
candidate arms and strong non-stationarity of rewards. Existing solutions include uniformly sampling
actions through progressive widening (Auger et al., 2013) and playing each action for a fixed amount
of times (Kim et al., 2020). Instead, our solution balances the trade-off between exploration and
exploitation by using a limited depth HOO bandit, which makes our theoretical analysis highly
non-trivial.

4.2 Enhanced HOO in the Non-Stationary Setting

The key step in the proof of Theorem 1 is to establish the following result for the enhanced HOO bandit
algorithm. Consider a continuous-armed bandit on the domain X ⊆ [0, 1]m, with non-stationary
rewards bounded in [−R,R] satisfying the following properties:

7

A. Fixed-arm convergence: The mean-payoff function fn : X → R converges to a function
f : X → R in L∞ at a polynomial rate:

‖fn − f‖∞ ≤
C

nζ
, ∀n ≥ 1, (4)

for some constant C > 0 and 0 < ζ < 1
2 .

B. Fixed-arm concentration: There exist constants β > 1, ξ > 0, and 1/2 ≤ η < 1, such that for
every z ≥ 1 and every integer n ≥ 1:

P

(
n∑

t=1

Xt − nf(x) ≥ nηz

)
≤

β

zξ
and P

(
n∑

t=1

Xt − nf(x) ≤ −nηz

)
≤

β

zξ
, ∀x ∈ X, (5)

where Xt denotes the random reward obtained by pulling arm x ∈ X for the t-th time.

Theorem 2. Consider a non-stationary continuous-armed bandit problem satisfying properties (4)
and (5). Suppose we apply the enhanced HOO agent defined in Algorithms 2 and 3 with parameters

satisfying ξη(1− η) ≤ α < ξ(1− η), α > 3, and ρH̄ < nη−1. Let the random variable Yt denote
the reward obtained at time t. Then the following holds:

A. Optimal-arm convergence: There exists some constant C0 > 0, such that
∣∣∣∣∣
1

n
E

[
n∑

t=1

Yt

]
− f∗

∣∣∣∣∣ ≤
C0

nζ
, (6)

where 0 < ζ ≤
1− α

ξ(1−η)

1+d′+ 1
1−η

.

B. Optimal-arm concentration: There exist constants β′ > 1, ξ′ > 0, and 1/2 ≤ η′ < 1, such that
for every z ≥ 1 and every integer n ≥ 1:

P

(
n∑

t=1

Yt − nf∗ ≥ nη′

z

)
≤

β′

zξ′
and P

(
n∑

t=1

Yt − nf∗ ≤ −nη′

z

)
≤

β′

zξ′
, (7)

where η′ =
α

ξ(1−η)
+d′+ 1

1−η

1+d′+ 1
1−η

, ξ′ = (α− 3)/2, and β′ > 1 depends on α, β, η, ξ and H̄ .

Theorem 2 states the properties of the regret induced by the enhanced HOO algorithm (Algorithms 2
and 3) for a non-stationary continuous-armed bandit problem, which may be of independent interest. If
the rewards of the non-stationary bandit satisfy certain convergence rate and concentration conditions,
then the regret of our algorithm also enjoys the same convergence rate and similar concentration

guarantees. We can verify that our configuration of the parameters α(d), ξ(d), η(d), 0 ≤ d ≤ D − 1
in Theorem 1 satisfy the requirements of Theorem 2. Therefore, using this theorem we can propagate
the convergence result on one level of MCTS to the level above it. By applying Theorem 2 recursively,
we can establish the convergence result of the value function estimate for the root node of MCTS.

In addition to the technical difficulty of analyzing the regret of HOO (Bubeck et al., 2011), we have
to address the challenges raised by the non-stationary rewards and bounded depth of HOO tree. The
results are formally established as a sequence of lemmas in Appendix D.

5 Simulations

In this section, we empirically evaluate the performance of POLY-HOOT on several classic control
tasks. We have chosen three benchmark tasks from OpenAI Gym (OpenAI, 2016), and extended
them to the continuous-action settings as necessary. These tasks include CartPole, Inverted Pendulum
Swing-up, and LunarLander. CartPole is relatively easy, so we have also modified it to a more
challenging one, CartPole-IG, with an increased gravity value. This new setting requires smoother
actions, and bang-bang control strategies easily cause the pole to fall due to the increased inertia.

We compare the empirical performance of POLY-HOOT with three other continuous MCTS algorithms,
including UCT (Kocsis and Szepesvári, 2006) with manually discretized actions, Polynomial Upper

8

CartPole CartPole-IG Pendulum LunarLander

discretized-UCT 77.85 ± 0.0 69.39 ± 6.63 -109.68 ± 0.29 -57.95 ± 77.36
PUCT 77.85 ± 0.0 71.48 ± 8.27 -109.64 ± 0.25 -43.05 ± 80.25
HOOT 77.85 ± 0.0 77.85 ± 0.0 -109.50 ± 0.35 -23.37 ± 76.46

POLY-HOOT 77.85 ± 0.0 77.85 ± 0.0 -109.43 ± 0.25 -3.02 ± 44.41

Table 1: Empirical performances on classic control tasks

Algorithm discretized-UCT PUCT HOOT H̄ = 2 H̄ = 4 H̄ = 6 H̄ = 8 H̄ = 10

Reward 69.03 70.79 77.85 42.45 48.54 63.27 77.85 77.85
Time per decision (s) 0.950 0.305 1.173 0.054 0.149 0.610 1.030 1.057

Table 2: Time per decision on CartPole-IG

Confidence Trees (PUCT) with progressive widening (Auger et al., 2013), and the original implemen-
tation of HOOT (Mansley et al., 2011) with a logarithmic bonus term. Their average rewards and
standard deviations on the above tasks are shown in Table 1. The results are averaged over 40 runs.
The detailed experiment settings as well as additional experiment results can be found in Appendix E.

As we can see from Table 1, all four algorithms achieve optimal rewards on the easier CartPole task.
However, for the CartPole-IG task with increased gravity, discretized-UCT and PUCT do not achieve
the optimal performance, because their actions, either sampled from a uniform grid or sampled
completely randomly, are not smooth enough to handle the larger momentum. In the Pendulum task,
the four algorithms have similar performance, although HOOT and POLY-HOOT perform slightly
better. Finally, on LunarLander, HOOT and POLY-HOOT achieve much better performances. This task
has a high-dimensional action space, making it difficult for discretized-UCT and PUCT to sample
actions at fine granularity. Also note that POLY-HOOT significantly outperforms HOOT. We believe
the reason is that this task, as detailed in Appendix E, features a deeper search depth and sparse
but large positive rewards. This causes a more severe non-stationarity issue of rewards within the
search tree, which is better handled by POLY-HOOT with a polynomial bonus term than by HOOT, as
our theory suggests. This demonstrates the superiority of POLY-HOOT in dealing with complicated
continuous-space tasks with higher dimensions and deeper planning depth. We would also like to
remark that the high standard deviations in this task are mostly due to the reward structure of the
task itself—the agent either gets a large negative reward (when the lander crashes) or a large positive
reward (when it lands on the landing pad) in the end.

We also empirically evaluate the time complexity of the algorithms. Table 2 shows the time needed
by each algorithm to make a single decision on CartPole-IG. For POLY-HOOT, we further test its
computation time with different values of H̄ (the maximum depth of the HOO tree), which is an
important hyper-parameter to balance the trade-off between optimality and time complexity. All
tests are averaged over 10 (new) runs on a laptop with an Intel Core i5-9300H CPU. We can see that
POLY-HOOT requires slightly more computation than discretized-UCT and PUCT as the cost of higher
rewards, but it is still more time-efficient than HOOT because of the additional depth limitation.

6 Conclusions

In this paper, we have considered Monte-Carlo planning in an environment with continuous state-
action spaces. We have introduced POLY-HOOT, an algorithm that augments MCTS with a continuous
armed bandit strategy HOO. We have enhanced HOO with an appropriate polynomial bonus term
in the upper confidence bounds, and investigated the regret of the enhanced HOO algorithm in non-
stationary bandit problems. Based on this result, we have established non-asymptotic convergence
guarantees for POLY-HOOT. Experimental results have further corroborated our theoretical findings.
Our theoretical results have advocated the use of non-stationary bandits with polynomial bonus terms
in MCTS, which might guide the design of new planning algorithms in continuous spaces, with
potential applications in robotics and control, that enjoy better empirical performance as well.

Broader Impact

We believe that researchers of planning, reinforcement learning, and multi-armed bandits, especially
those who are interested in the theoretical foundations, would benefit from this work. In particular,
prior to this work, though intuitive, easy-to-implement, and empirically widely-used, a theoretical

9

analysis of Monte-Carlo tree search (MCTS) in continuous domains had not been established through
the lens of non-stationary bandits. In this work, inspired by the recent advances in finite-space
Monte-Carlo tree search, we have provided such a result, and thus theoretically justified the efficiency
of MCTS in continuous domains.

Although Monte-Carlo tree search has demonstrated great performance in a wide range of applications,
theoretical explanation of its empirical successes is relatively lacking. Our theoretical results have
advocated the use of non-stationary bandit algorithms, which might guide the design of new planning
algorithms that enjoy better empirical performance in practice. Our results might also be helpful for
researchers interested in robotics and control applications, as our algorithm can be readily applied to
such planning problems with continuous domains.

As a theory-oriented work, we do not believe that our research will cause any ethical issue, or put
anyone at any disadvantage.

Acknowledgments and Disclosure of Funding

We thank Bin Hu for helpful comments on an earlier version of the paper. Research of the three
authors from Illinois was supported in part by Office of Naval Research (ONR) MURI Grant
N00014-16-1-2710, and in part by the US Army Research Laboratory (ARL) Cooperative Agreement
W911NF-17-2-0196. Q. Xie is partially supported by NSF grant 1955997.

References

K. Asadi, D. Misra, and M. Littman. Lipschitz continuity in model-based reinforcement learning. In
International Conference on Machine Learning, 2018.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic continuum-armed bandit
problem. In International Conference on Computational Learning Theory, 2007.

D. Auger, A. Couetoux, and O. Teytaud. Continuous upper confidence trees with polynomial
exploration–consistency. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2013.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in games, 4(1):1–43, 2012.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits. Journal of Machine Learning
Research, 12(May):1655–1695, 2011.

G. Chaslot, M. Winands, J. Uiterwijk, H. Van Den Herik, B. Bouzy, and P. Wang. Progressive
strategies for Monte-Carlo tree search. In Joint Conference on Information Sciences, 2007.

P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. arXiv preprint cs/0703062, 2007.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with Patterns in Monte-Carlo
Go. PhD thesis, INRIA, 2006.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time Atari game play
using offline Monte-Carlo tree search planning. In Advances in neural information processing
systems, 2014.

A. Jonsson, E. Kaufmann, P. Ménard, O. D. Domingues, E. Leurent, and M. Valko. Plan-
ning in Markov decision processes with gap-dependent sample complexity. arXiv preprint
arXiv:2006.05879, 2020.

E. Kaufmann and W. M. Koolen. Monte-Carlo tree search by best arm identification. In Advances in
Neural Information Processing Systems, 2017.

B. Kim, K. Lee, S. Lim, L. P. Kaelbling, and T. Lozano-Pérez. Monte Carlo tree search in continuous
spaces using Voronoi optimistic optimization with regret bounds. In AAAI Conference on Artificial
Intelligence, 2020.

10

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In European Conference on
Machine Learning, 2006.

C. Mansley, A. Weinstein, and M. Littman. Sample-based planning for continuous action Markov
decision processes. In International Conference on Automated Planning and Scheduling, 2011.

OpenAI. OpenAI Gym, 2016. https://gym.openai.com/.

J. Rubin and I. Watson. Computer poker: A review. Artificial intelligence, 175(5-6):958–987, 2011.

M. P. Schadd, M. H. Winands, H. J. Van Den Herik, G. M.-B. Chaslot, and J. W. Uiterwijk. Single-
player Monte-Carlo tree search. In International Conference on Computers and Games, 2008.

D. Shah, Q. Xie, and Z. Xu. On reinforcement learning using Monte Carlo tree search with supervised
learning: Non-asymptotic analysis. arXiv preprint arXiv:1902.05213, 2019.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017a.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of Go without human knowledge. Nature, 550(7676):
354–359, 2017b.

A. Uriarte and S. Ontanón. Game-tree search over high-level game states in RTS games. In Artificial
Intelligence and Interactive Digital Entertainment Conference, 2014.

A. Weinstein and M. L. Littman. Bandit-based planning and learning in continuous-action Markov
decision processes. In International Conference on Automated Planning and Scheduling, 2012.

C. Xiao, R. Huang, J. Mei, D. Schuurmans, and M. Müller. Maximum entropy monte-carlo planning.
In Advances in Neural Information Processing Systems, 2019.

T. Yee, V. Lisy, M. H. Bowling, and S. Kambhampati. Monte Carlo tree search in continuous action
spaces with execution uncertainty. In International Joint Conference on Artificial Intelligence,
2016.

11

	Introduction
	Preliminaries
	Markov Decision Processes
	Monte-Carlo Tree Search
	Hierarchical Optimistic Optimization

	Algorithm: POLY-HOOT
	Analysis Setup

	Main Results
	Convergence of POLY-HOOT
	Enhanced HOO in the Non-Stationary Setting

	Simulations
	Conclusions

