
Random Linear Streaming Codes in the Finite

Memory Length and Decoding Deadline Regime

Pin-Wen Su∗, Yu-Chih Huang†, Shih-Chun Lin‡, I-Hsiang Wang§, and Chih-Chun Wang∗

∗School of ECE, Purdue University, USA, {su173, chihw}@purdue.edu
†Institute of Communications Engineering, National Yang Ming Chiao Tung University, Taiwan, jerryhuang@nctu.edu.tw

‡Department of ECE, National Taiwan University of Science and Technology, Taiwan, sclin@ntust.edu.tw
§Department of EE, National Taiwan University, Taiwan, ihwang@ntu.edu.tw

Abstract—Streaming codes take a string of source symbols as
input and output a string of coded symbols in real time, which
effectively eliminate the queueing delay and are regarded as
a promising scheme for low latency communications. Aiming
at quantifying the fundamental latency performance of ran-
dom linear streaming codes (RLSCs) over i.i.d. symbol erasure
channels, this work derives the exact error probability under,
simultaneously, the finite memory length and finite decoding
deadline constraints. The result is then used to examine the
tradeoff among memory length (complexity), decoding deadline
(delay), and error probability (reliability) of RLSCs for the first
time in the literature. Two critical observations are made: (i) Too
much memory can adversely impact the performance under a finite
decoding deadline constraint, a surprising finding not captured by
the traditional wisdom that large memory length monotonically
improves the performance in the asymptotic regime; (ii) The end-
to-end delay of the RLSC is roughly 50% of that of the MDS
block code when under identical code rate and error probability
requirements. This implies that switching from block codes to
RLSCs not only eliminates the queueing delay (thus 50%) but
also has little negative impact on the error probability.

I. INTRODUCTION

The design goal of next-generation low-latency commu-

nication schemes [1] is to minimize the end-to-end (E2E)

delay while attaining the predefined reliability and through-

put requirements. Two major sources of the E2E delay are

the queueing delay and the transmission delay. The former

describes the time for the source to accumulate enough data

before it can start transmission, and the latter denotes the

time for the destination to receive enough symbols before

decoding becomes possible. Other sources of delay, such as

encoder/decoder processing time and propagation delay, are

mostly determined by hardware and environmental conditions

and are beyond the scope of this work.

Streaming codes are a promising scheme for low latency

communications [2]. Their encoder receives a string of source

symbols sequentially and outputs a string of coded symbols

in real time. While streaming codes eliminate the queueing

delay of traditional block-code schemes, it is not clear whether

the “encoding-on-the-fly” architecture offers the same level

This work was supported in parts by NSF under Grants CCF-1422997,
CCF-1618475, CCF-1816013 and CCF-2008527; and by MOST Taiwan under
Grants 110-2636-E-009-016 and 107-2628-E-011-003-MY3.

of error protection as that of the traditional block codes that

“accumulate1 and then encode.”

A fair comparison between these two types of codes is

highly non-trivial due to their fundamentally different con-

structions. Specifically, in block coding, a single parame-

ter “block length” simultaneously controls: (a) the encod-

ing/decoding complexity; (b) how much data the source must

accumulate before start encoding, hence the queueing delay;

and (c) how much time it takes to finish transmission of the

entire block, hence the transmission delay. In contrast, the

complexity of a streaming code is controlled by its memory

length, denoted by α. There is no queueing delay at all since

it encodes on the fly. Furthermore, there is no such concept of

“finishing transmission of a block of symbols” in streaming

codes. Instead, streaming codes have the notion of decoding

deadline ∆ such that the destination must decode the time-t
message by time t+∆. For example, with the same streaming

encoder at the source, an aggressive destination may choose a

small ∆ that minimizes the transmission delay, while a relaxed

destination may use a large ∆ that incurs longer transmission

delay but could further reduce the error probability.

This work studies random linear streaming codes (RLSCs)

over i.i.d. symbol erasure channels, and derives the exact aver-

age error probability with arbitrary finite memory length α and

finite decoding deadline ∆ constraints. The result is then used

to examine the tradeoff among memory length (complexity),

decoding deadline (delay), and error probability (reliability) of

RLSCs. When paired with the finite-length block code analysis

[3], our results show that the E2E delay of the RLSC is roughly

50% of that of the MDS block code when both are under

identical code rate and error probability requirements. This

implies that the encoding-on-the-fly architecture eliminates the

queueing delay completely (thus 50% delay reduction) without

sacrificing reliability when compared to the block codes.

Our results also establish that too much memory can ad-

versely impact the performance of RLSCs when there exists a

finite decoding deadline constraint, a phenomenon that may

1Intuitively, block codes spread all information bits to all coded symbols

within a block, which maximizes the error protection of each bit. In contrast,
streaming codes spread the current information bits only to the future coded

symbols. The “extent of spreading” is also limited by its memory length. Due
to these differences, whether streaming codes offer the same level of error
protection is unknown until our results resolve this question affirmatively.

seem counter-intuitive, given the traditional wisdom that large

memory length monotonically improves the performance of

convolutional codes in the asymptotic regime.

A. Comparison to existing results

There are numerous existing results studying the error

exponents of streaming codes [4], [5]. While the error exponent

analyses provide valuable insight to the asymptotic error decay

rate, they are ill-suited to quantify the exact error probability

with finite (α,∆), see the discussion in [6]. A middle ground

between the error exponent analysis and the arbitrary finite

length analysis in this work is the moderate deviation regime,

which is studied by [7] under an infinite memory setting.

The closest existing result is [6], which derived the exact

error probability of RLSCs under the finite memory α < ∞
but infinite deadline ∆ → ∞ setting. While the settings

look similar, the generalization from infinite to finite ∆ in

this work is highly non-trivial since one has to quantify the

joint impact of (α,∆). The finiteness of either of them alone

would have significantly affected the performance. To address

the associated challenges, this work characterizes the earliest

decoding time (EDT) of RLSCs, a new latency-centric concept

that is neither defined nor explored in [6] since [6] focuses

exclusively on the no-deadline setting ∆ → ∞. By explicitly

considering finite ∆, our result is later used to quantify the

tradeoff among the tuple (complexity, delay, reliability), a

fundamental contribution that is not viable in [6].

Streaming codes have also been widely studied under the

adversarial channel models [8]–[18], a sharp departure from

the i.i.d. channel model in this work. The goal therein is

to design a streaming code with maximal code rate while

guaranteeing error-free decoding under any erasure pattern

selected from a predefined subset. See [6], [17], [18] for

further discussion. The works in [19]–[21] also consider the

error-free setting, but focus on a new metric of in-order delay

under i.i.d. channels. In contrast, this paper studies squarely

the classical error probability metric/model [22].

II. SYSTEM MODEL

Notations: The boldface lower/upper letters denote column

vectors/matrices, respectively, e.g., s(t) denotes a column

vector indexed by t. We use sba to represent the cumulative

column vector sba ,
[

s⊤(a), s⊤(a+ 1), . . . , s⊤(b)
]⊤

. (·)+ ,

max (0, ·) is the projection operator; In is the n× n identity

matrix; ~δk is a column vector for which the k-th entry is one

and all other entries are zero; ~1 is the column vector of all 1s.

Encoder: In every time slot t ≥ 1, the encoder receives

K source symbols s(t) = [s1(t), s2(t), . . . , sK(t)]
⊤

where

each symbol sk(t) is drawn independently and uniformly

randomly from GF(2q). The encoder also stores the α · K
symbols in the previous α slots {s(τ) : τ ∈ [t − α, t)},

where α < ∞ is the memory length. Jointly, it uses the

(α + 1)K symbols as input and outputs N coded GF(2q)
symbols x(t) = [x1(t), . . . , xN (t)]

⊤
, see Fig. 1. Define Gt

as the N -by-(min (α+ 1, t) ·K) generator matrix for slot t,

i.e., x(t) = Gts
t
max(t−α,1). (1)

Random Linear
Encoder G

t

Packet Erasure
Channel

Optimal
Decoder

DelayDelay
s(t)

y(t)
x(t)

Fig. 1: The block diagram of the RLSCs with α = 2.

y(1)

=

s(1)
y(2) s(2)
y(3) s(3)
y(4) s(4)
y(5) s(5)⋮ ⋮
y(t-2) s(t-2)

y(t-1) s(t-1)

y(t) s(t)

K

K

K

K

C
1

C
2

C
3

C
4

C
5

C
t

C
t-1

C
t-2

𝛼 1 K

y sH

Fig. 2: The illustration of H(t) in (3) with α = 2.

Symbol Erasure Channel: In each time slot t, the source

transmits all N symbols in x(t). A random subset of them,

denoted by Ct ⊆ {1, 2, · · · , N}, will arrive at the destination

perfectly and the complement of which is “erased” completely.

Ct is i.i.d. across t. We define Ct , |Ct| as the number of

successfully received symbols and define Pi , Pr(Ct = i).
Received Symbols: The Ct received symbols at time t are

denoted by y(t) = [y1(t), . . . , yCt
(t)]

⊤
. We write

y(t) = Hts
t
max(t−α,1) (2)

where Ht is the projection of Gt onto the random (row index)

set Ct. The following notations of the cumulative generator

and receiver matrices turn out to be very useful:

xt1 = G(t)st1 and yt1 = H(t)st1 (3)

where we properly shift and stack the instantaneous matrices

Gt and Ht to create their cumulative representation G(t) and

H(t), respectively. See Fig. 2 for illustration.

Decodability: Since the destination can use the observation

yt+∆
1 and the knowledge of H(t+∆) to decode s(t), we have

Definition 1. A symbol sk(t) is decodable by time t+∆ if the

transposed vector ~δ⊤(t−1)K+k is in the row space of H(t+∆),

where ~δ(t−1)K+k is the location vector of sk(t) at time t+∆
such that its ((t − 1)K + k)-th entry is one and all other

(t+∆)K − 1 entries are zero.

Definition 2. A vector s(t) is decodable by time t+∆ if all

{sk(t) : k ∈ [1,K]} are decodable by time t+∆.

Definition 3. The earliest decoding time (EDT) of s(t) is

EDT(s(t)) , inf {τ ≥ t : s(t) is decodable by time τ} . (4)

Using the convention inf ∅ = ∞, “EDT(s(t)) = ∞” implies

s(t) is not decodable by time τ regardless how large τ is.

Our goal is to compute the slot error probability pe:

pe , lim
T→∞

1

T

T
∑

t=1

Pr (s(t) is not decodable by time t+∆) .

(5)

To avoid some corner cases, our analysis assumes:

The Less-than-Capacity (LC) condition: The code rate is

strictly less than the capacity, i.e., 0 < K
N
< E{Ct}

N
.

Random linear streaming codes (RLSCs): Each entry of Gt

is chosen uniformly and randomly from GF(2q), excluding 0.

In this work, instead of quantifying the probabilistic behavior

of RLSCs, we simply assume that the resulting encoder

satisfies the following condition.

The Generalized MDS Condition (GMDS): For any t and

any finite sequence of pairs {(il, jl) : l ∈ [1, L]} satisfying (a)

il1 6= il2 and jl1 6= jl2 for any l1 6= l2 and (b) the (il, jl)-th
entry of G(t) is non-zero for all l ∈ [1, L], define the corre-

sponding row and column index sets SR , {il : l ∈ [1, L]}
and SC , {jl : l ∈ [1, L]}. The GMDS condition requires that

the submatrix of the cumulative generator matrix G(t) induced

by SR and SC is always invertible.

Remark 1: If the transmission only lasts for a bounded du-

ration, the probability of RLSCs satisfying GMDS approaches

one when q → ∞, i.e., our result focuses on the typical

behavior of RLSCs when q → ∞. Also see the Schwartz-

Zippel theorem in [23, Theorems 3 and 4]. Further research

is needed to explicitly quantify the performance gap between

finite GF(2q) and q → ∞, though most existing results [23]

show that the gap decreases at rate O(2−q).

III. MAIN RESULTS

A. Characterizing the EDT for Finite (α,∆)

We reuse the following definitions, first introduced in [6],

to describe our new EDT characterization results.

Definition 4. Define a constant ζ , αK + 1 and initialize

Id(0) , 0. For any t ≥ 1, we iteratively compute the

information debt Id(t) at time t by

Îd(t) , (K − Ct +min (Id(t− 1), αK))
+

(6)

Id(t) , min
(

ζ, Îd(t)
)

. (7)

Definition 5. Define t0 , 0 and τ0 , 0, and define iteratively

ti , inf{t′ : t′ > ti−1, Id(t
′) = 0} (8)

τi , inf{t′ : t′ > τi−1, Id(t
′) = ζ} (9)

as the i-th time that Id(t) hits 0 and ζ, respectively.

Proposition 1. Assume GMDS. For any i0 ≥ 0, consider two

cases. Case 1: there exists no τj ∈ (ti0 , ti0+1). In this case,

EDT(s(t)) = ti0+1, ∀t ∈ (ti0 , ti0+1]. (10)

Decodable
o

𝛼 1

o oo

𝐾 1, 𝛼 3, ∆ 4

oo o o o o

Decodable

xx x x x x x x

Error

Error Events

NDIT NDIT

xxx

𝛼𝐾ζ
𝐼 𝑡

00 𝑡 𝑡

NDIT: Not Decodable In Time

𝑡𝜏 ∗ 𝛼 𝑡
Fig. 3: Error-event characterization for ∆ <∞.

Case 2: there exists a τj ∈ (ti0 , ti0+1). In this case, define τj∗
as the one with the largest j. We have

EDT(s(t)) =

{

ti0+1, ∀t ∈ (τj∗ − α, ti0+1] (11)

∞, ∀t ∈ (ti0 , τj∗ − α]. (12)

It is worth noting that characterizing the EDT of s(t)
requires not only proving that s(t) can be decoded by a certain

time τ but also proving that s(t) cannot be decoded by time

τ − 1. Take the instance of i0 = 0 for example. In Case 1,

it is not hard to prove that when Id(t) hits 0 again at time

t1, we have observed enough linear equations, i.e., receiving

many large Ct in (6), and can thus start decoding from

s(t1), s(t1−1), · · · , s(1) in a backward fashion. Algebraically,

the cumulative receiver matrix H(t1) is of full row rank and

thus all s(t) are decodable according to Definitions 1 and 2.

However, for the converse, simply proving “H(t′) is not of

full row rank when t′ < t1” is not enough since it only

shows that for some sk(t), its location vector is not in the

row space of H(t′). Instead, one must prove that every one of

the s(t) considered in (10) is not decodable when examining

the location vectors using Definitions 1 and 2. Each of the

EDT statements (10) and (11), is essentially a combination of

matched achievability and converse results in the time domain,

with the converse proofs being much more involved than a

full-rank argument. We omit the proofs due to the space limit.

B. Exact Error Probability Analysis

For any i0 ≥ 0, if there exists no τj ∈ (ti0 , ti0+1), we

name the interval (ti0 , ti0+1] a good round; and if there exists

a τj ∈ (ti0 , ti0+1), we name (ti0 , ti0+1] a bad round. By

Proposition 1, the slots in a good round can be labeled as:

s(t) is decodable by t+∆

if t ∈ [max(ti0 + 1, ti0+1 −∆), ti0+1]

s(t) is Not Decodable In Time (NDIT)

if t ∈ (ti0 , ti0+1 −∆).

(13)

By (11) and (12), the slots in a bad round can be labeled as:

s(t) is decodable by t+∆

if t ∈ [max(τj∗ − α+ 1, ti0+1 −∆), ti0+1]

s(t) is NDIT if t ∈ (τj∗ − α, ti0+1 −∆)

s(t) is in error if t ∈ (ti0 , τj∗ − α].

(14)

Fig. 3 illustrates the above error-event characterization.

Since pe in (5) involves a deadline constraint ∆, it is

contributed by both the NDIT and the in-error slots in (13)

and (14). Noting that Id(t) is a Markov chain, we have:

Lemma 1. Assuming the LC and GMDS conditions,

pe =
E {LG + LB}

E {ti0+1 − ti0}
(15)

where i0 ≥ 0 is any arbitrary but fixed index,

LG ,1{no τj∈(ti0 ,ti0+1)} · (ti0+1 −∆− 1− ti0)
+

(16)

LB ,1{∃τj∈(ti0 ,ti0+1)} · (max(τj∗ − α, ti0+1 −∆− 1)− ti0)

and 1{·} is the indicator function. The subscripts G and B

denote a good and a bad round, respectively.

To continue, we further rewrite E {LB} as:

E {LB} = E {LB1
}+ E {LB2

} (17)

where LB1
, 1{∃τj∈(ti0 ,ti0+1)} · (τj∗ − ti0) (18)

LB2
,

1{∃τj∈(ti0 ,ti0+1)} · (max (−α, ti0+1 −∆− 1− τj∗)) . (19)

We now describe the ingredients needed when evaluat-

ing (15). We first note that Id(t) is a Markov chain with

the state space {0, 1, · · · , ζ}. We denote its (ζ + 1)-by-

(ζ + 1) transition matrix as Γ = [γi,j] where γi,j ,

Pr (Id(t) = j | Id(t− 1) = i). Γ can be explicitly written from

the distribution of the channel Ct and the iterative formulas (6)

and (7). We then define φ , {1, 2, . . . , ζ − 1} as the collection

of non-boundary states and partition Γ into 9 sub-matrices:

Γ =

Γ0,0 Γ0,φ Γ0,ζ

Γφ,0 Γφ,φ Γφ,ζ

Γζ,0 Γζ,φ Γζ,ζ

 (20)

where Γx,y , [γi,j] , ∀i ∈ x and j ∈ y. Additionally, we

denote A , (Iζ−1−Γφ,φ)
−1 and define two (ζ+1)-by-(ζ+1)

matrices M1 and M2 that hardwire parts of Γ to zeros:

M1 ,

0 Γ0,φ Γ0,ζ

0 Γφ,φ Γφ,ζ

0 Γζ,φ Γζ,ζ

 ,M2 ,

0 Γ0,φ Γ0,ζ

0 Γφ,φ Γφ,ζ

0 0 0

 .

Since E {ti0+1 − ti0}, see (8), and E {LB1
} in (18) do not

involve ∆, we can reuse the results in [6]. Hence, we have

Lemma 2.

E {ti0+1 − ti0} = ~δ⊤1 (Iζ+1 −M1)
−1~1 (21)

E {LB1
} = (Γ0,ζ + Γ0,φAΓφ,ζ)

(

1 + Γζ,φ (A)
2
Γφ,ζ

1− Γζ,ζ − Γζ,φAΓφ,ζ

)

+ Γ0,φ (A)
2
Γφ,ζ . (22)

In addition to the new EDT characterization theorem in

Proposition 1, another critical innovation versus [6] is the

following formulas that compute E {LG} and E {LB2
}.

Lemma 3. Define ψ , (∆− α− 1)
+

.

E {LG} =

∞
∑

k=2

(k −∆− 1)+Γ0,φ (Γφ,φ)
k−2

Γφ,0 (23)

= Γ0,φ (A)
2
(Γφ,φ)

∆
Γφ,0 (24)

E {LB2
} = ~δ⊤1 (Iζ+1 −M2)

−1~δ(ζ+1) · (Γζ,0 + Γζ,φAΓφ,0)
−1

·

(

−min (∆, α) Γζ,0 − αΓζ,φAΓφ,0

+ Γζ,φ

(

(A)
2
+ (α+ ψ −∆)A

)

(Γφ,φ)
ψ
Γφ,0

)

. (25)

Eq. (23) follows by directly rewriting the expectation of (16) as

a summation where the index k = ti0+1 − ti0 and by noticing

that (k − ∆ − 1)+ = 0 when k = 1. Eq. (24) follows from

(23) by simple algebra. Eq. (25) is the most involved since

τj∗ , the last hitting time within the interval (ti0 , ti0+1), is not

a stopping time and (19) admits a complicated expression. To

derive (25), we first define the hitting time Λt(x) of x and

five associated terms as follows.

Λt(x) , inf{τ > 0 : Id(t+ τ) = x} (26)

term1 , Pr(Λt(0) > Λt(ζ) | Id(t) = 0) (27)

term2 , E{1{Λt(0)<Λt(ζ)} ·max(−α,Λt(0)−∆− 1)

| Id(t) = ζ} (28)

term3 , Pr(Λt(0) < Λt(ζ) | Id(t) = ζ) (29)

term4 , E{max(−α,Λt(0)−∆− 1)

| Id(t) = ζ,1{Λt(0)<Λt(ζ)} = 1} (30)

term5 , E{max(−α, ti0+1 − τj∗ −∆− 1)

| ∃τj ∈ (ti0 , ti0+1)} (31)

We note that the conditional event in (30) means that t is

the last time Id(·) hits ζ before hitting 0, which is equivalent

to t being the last ζ-hitting time τj∗ ∈ (ti0 , ti0+1) for some

i0. Furthermore, it also implies t = τj∗ and ti0+1 = τj∗ +
Λt(0). Jointly, we thus have term4 = term5. More rigorous

arguments are omitted due to the space limit.

By basic probability computation, we have term4 =
term2/term3. Because Id(t) is strong Markov, we also have

term1 = Pr(Λti0 (0) > Λti0 (ζ) | Id(ti0) = 0)

= Pr(∃τj ∈ (ti0 , ti0+1)). (32)

By (19) we have term5 = E {LB2
}/term1. Jointly we have

E {LB2
} = term1 · term5 = term1 · term4

= term1 · term2/term3. (33)

All the values of term1 to term3 can be easily computed via

standard Markov chain analysis [24]. Putting them together in

(33) gives us (25).

Proposition 2. For any finite (α,∆), the slot error probability

pe can be computed by assembling Lemmas 1 to 3.

IV. NUMERICAL EVALUATION

A. Error Probability versus Memory Length Tradeoff

We choose N = 8, K = 5 and Ct being a binomial distri-

bution with p = K
N
+0.01 = 0.635, i.e., Pi =

(

8
i

)

pi(1−p)8−i.
Fig. 4 compares the error probability for different α and ∆
values. The “Simulation” is plotted by running the random

process Id(t) from t = 1 to 108, counting the number of

NDIT and in-error slots using (13) and (14), and dividing by

108 to calculate the empirical probability. The other curves

are obtained by Proposition 2. As expected, our exact error

probability computation matches the simulation curve. We

deliberately choose the (N,K, p) values inducing pe ≈ 10−1

so that the simulation can provide extremely accurate ground

truth. This exact match between simulation and our analytical

results also holds for other experiments with much smaller pe.
We observe that if we impose a finite ∆, pe no longer

improves monotonically with α. When ∆ = 10 and 150,

the best α are 1 and 5, respectively. When ∆ = 500, we

wrote the exact pe values in Fig. 4 for α = 10, 15, 20 and

25, respectively. The best pe is 0.0688 when α = 15. In all

our evaluations, including others that are not shown, too large

memory length always makes the pe strictly worse, sometimes

by a large degree (see ∆ = 10 and 150) and sometimes

just slightly (see ∆ = 500). The intuition is that larger α
means that information is spread over a longer horizon, which

makes it harder to decode a single s(t) before the deadline

t+∆ since we now have too many other source symbols s(t′),
t′ 6= t, that are fully mixed within the interval [t, t + ∆]. A

practical implication is thus to avoid choosing unnecessarily

large memory length α, which is both of higher complexity

and also of poorer performance.

B. Code Rate versus Delay Tradeoff

In this subsection, we fix pe = 0.001 and plot the code rate

versus delay tradeoff, an important setup considered in [3].

We consider a packet erasure channel with erasure probability

δ = 0.5 and assume that each packet has 100 coded symbols.

When cast under the framework in Section II (i.e., define

the duration of a slot to be the time it takes to transmit a packet

of 100 symbols), we choose N = 100 and Ct = 0 and 100

with probability 0.5 and 0.5, respectively. We assume a new

message of K symbols arrives for each slot and the RLSC

encoder immediately turns them into a packet of N = 100
coded symbols that will be transmitted in the current time

slot. For each ∆ ∈ [1, 500], we find the largest K∗(∆) such

that the pe computed by Proposition 2 is still ≤ 0.001. The

code rate is then defined as R(∆) = K∗(∆)
N

, shown in Fig. 5.

We now describe how traditional MDS block codes handle

this sequential arrival setting. The MDS encoder first queues

nB messages to collect a total of nB · K message symbols,

which leads to a queueing delay of nB − 1 slots since we

assume that each new message s(t) arrives in the beginning

of the slot. Those message symbols are then encoded into

100 · nB coded symbols and are sent in the next nB slots.

The transmission delay is thus nB slots. The code rate of

MDS codes is RMDS(nB) =
nB ·K
nB ·N = K

100 , and the E2E delay

is ∆MDS(nB) = 2nB − 1. For every nB value, we find the

largest K that satisfies the error probability

pe,MDS = Pr (nB ·K >
∑nB

t=1Ct) ≤ 0.001 (34)

and plot the curve (∆MDS(nB), RMDS(nB)) in Fig. 5 by

varying nB ∈ [1, 250]. (The zigzagging behavior is quite

common in finite-length analysis [3, Fig. 5].)

α

0 5 10 15 20 25 30

p
e

10-2

10-1

100

0.06970.06960.06880.0710

Simulation
∆ = 10
∆ = 150
∆ = 500
∆ → ∞

Fig. 4: pe vs α when N = 8, K = 5 and Ct ∼ B(8, 0.635).

End-to-End Delay (unit: slot)
0 100 200 300 400 500

C
od

e
R

at
e

0

0.1

0.2

0.3

0.4

0.5

Capacity
α = 15 RLSC
α = 25 RLSC
α = 40 RLSC
Optimal BC

Fig. 5: Rate-delay tradeoff with packet erasure probability δ =
0.5 and maximal error probability pe = 10−3.

Fig. 5 compares the rate-delay tradeoff between RLSCs

and MDS codes. The results show that under the same code

rate and the same pe requirements, the E2E delay of RLSCs,

assuming the best α is used, is ≈ 50% of that of the MDS

block codes. The gain mainly follows from eliminating the

queueing delay completely (thus 50%). Since this comparison

imposes the same pe value, it establishes that the encoding-

on-the-fly structure of RLSCs has little negative impact on pe
when compared to the accumulate-&-then-encode structure of

MDS codes.

V. CONCLUSION

We have derived the closed-form slot error probability of

random linear streaming codes (RLSCs) over i.i.d. symbol era-

sure channels in the finite memory length and finite decoding

deadline regime, and demonstrated the superior performance

of RLSCs over block codes under a fair comparison of the

tuple of (code rate, delay, error probability), the first of such

results in the literature.

REFERENCES

[1] M. Series, “IMT Vision–Framework and overall objectives of the future
development of IMT for 2020 and beyond,” Recommendation ITU, vol.
2083, Sep. 2015.

[2] M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar, “Simple
streaming codes for reliable, low-latency communication,” IEEE Com-

munications Letters, vol. 24, no. 2, pp. 249–253, 2020.
[3] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the

finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, May 2010.

[4] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information

Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.
[5] S. C. Draper and A. Khisti, “Truncated tree codes for streaming data:

Infinite-memory reliability using finite memory,” in 2011 8th Interna-

tional Symposium on Wireless Communication Systems, Nov. 2011, pp.
136–140.

[6] P. W. Su, Y. C. Huang, S. C. Lin, I. H. Wang, and C. C. Wang, “Error
rate analysis for random linear streaming codes in the finite memory
length regime,” in 2020 IEEE International Symposium on Information

Theory (ISIT), 2020, pp. 491–496.
[7] S.-H. Lee, V. Y. F. Tan, and A. Khisti, “Exact moderate deviation

asymptotics in streaming data transmission,” IEEE Transactions on

Information Theory, vol. 63, no. 5, pp. 2726–2736, 2017.
[8] E. Martinian and C.-E. W. Sundberg, “Burst erasure correction codes

with low decoding delay,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2494–2502, Oct. 2004.

[9] E. Martinian and M. Trott, “Delay-optimal burst erasure code construc-
tion,” in 2007 IEEE International Symposium on Information Theory,
2007, pp. 1006–1010.

[10] A. Khisti and J. P. Singh, “On multicasting with streaming burst-erasure
codes,” in 2009 IEEE International Symposium on Information Theory,
Jun. 2009, pp. 2887–2891.

[11] A. Badr, A. Khisti, and E. Martinian, “Diversity embedded streaming
erasure codes (DE-SCo): Constructions and optimality,” IEEE Journal

on Selected Areas in Communications, vol. 29, no. 5, pp. 1042–1054,
May 2011.

[12] A. Badr, A. Khisti, W. Tan, and J. Apostolopoulos, “Streaming codes
with partial recovery over channels with burst and isolated erasures,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 3, pp.
501–516, Apr. 2015.

[13] A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopoulos, “Layered
constructions for low-delay streaming codes,” IEEE Transactions on

Information Theory, vol. 63, no. 1, pp. 111–141, Jan. 2017.
[14] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos,

“Optimal streaming codes for channels with burst and arbitrary era-
sures,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4274–4292, Jul. 2019.

[15] M. Rudow and K. V. Rashmi, “Streaming codes for variable-size
arrivals,” in 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), Oct. 2018, pp. 733–740.
[16] ——, “Online versus offline rate in streaming codes for variable-size

messages,” in 2020 IEEE International Symposium on Information

Theory (ISIT), 2020, pp. 509–514.
[17] D. Dudzicz, S. L. Fong, and A. Khisti, “An explicit construction of

optimal streaming codes for channels with burst and arbitrary erasures,”
IEEE Transactions on Communications, vol. 68, no. 1, pp. 12–25, 2020.

[18] M. N. Krishnan, D. Shukla, and P. V. Kumar, “Rate-optimal streaming
codes for channels with burst and random erasures,” IEEE Transactions

on Information Theory, vol. 66, no. 8, pp. 4869–4891, 2020.
[19] M. Karzand and D. J. Leith, “Low delay random linear coding over a

stream,” in 2014 52nd Annual Allerton Conference on Communication,

Control, and Computing (Allerton), 2014, pp. 521–528.
[20] G. Joshi, Y. Kochman, and G. W. Wornell, “The effect of block-

wise feedback on the throughput-delay trade-off in streaming,” in 2014

IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2014, pp. 227–232.
[21] A. Cohen, D. Malak, V. B. Bracha, and M. Mdard, “Adaptive causal

network coding with feedback,” IEEE Transactions on Communications,
vol. 68, no. 7, pp. 4325–4341, 2020.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley-Interscience, 2006.

[23] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct. 2006.

[24] R. Durrett, Essentials of Stochastic Processes, 3rd ed. Springer, 2016.

