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ABSTRACT

Weighted sampling is a fundamental tool in data analysis and machine learning pipelines. Samples
are used for efficient estimation of statistics or as sparse representations of the data. When weight
distributions are skewed, as is often the case in practice, without-replacement (WOR) sampling is
much more effective than with-replacement (WR) sampling: it provides a broader representation and
higher accuracy for the same number of samples. We design novel composable sketches for WOR
¢, sampling, weighted sampling of keys according to a power p € [0, 2] of their frequency (or for
signed data, sum of updates). Our sketches have size that grows only linearly with the sample size.
Our design is simple and practical, despite intricate analysis, and based on off-the-shelf use of widely
implemented heavy hitters sketches such as Count Sket ch. Our method is the first to provide WOR
sampling in the important regime of p > 1 and the first to handle signed updates for p > 0.

1 Introduction

Weighted random sampling is a fundamental tool that is pervasive in machine learning and data analysis pipelines. A
sample serves as a sparse summary of the data and provides efficient estimation of statistics and aggregates.

We consider data £ presented as elements in the form of key value pairs e = (e.key, e.val). We operate with respect to
the aggregated form of keys and their frequencies v, := ), le.key=x e.val, defined as the sum of values of elements
with key x. Examples of such data sets are stochastic gradient updates (keys are parameters and element values are
signed and the aggregated form is the combined gradient), search (keys are queries, elements have unit values, and the
aggregated form are query-frequency pairs), or training examples for language models (keys are co-occurring terms).

The data is commonly distributed across servers or devices or is streamed and the number of distinct keys is very large.
In this scenario it is beneficial to perform computations without explicitly producing a table of key-frequency pairs,
as this requires storage or communication that grows linearly with the number of keys. Instead, we use composable
sketches which are data structures that support (i) processing a new element e: Computing a sketch of £ U {e} from a
sketch of £ and e (ii) merging: Computing a sketch of £ U &, from sketches of each &; and (iii) are such that the desired
output can be produced from the sketch. Composability facilitates parallel, distributed, or streaming computation. We
aim to design sketches of small size, because the sketch size determines the storage and communication requirements.
For sampling, we aim for the sketch size to be not much larger than the desired sample size.

The case for p’s: Aggregation and statistics of functions of the frequencies are essential for resource allocation,
planning, and management of large scale systems across application areas. The need for efficiency prompted rich
theoretical and applied work on streaming and sketching methods that spanned decades 160} 141} 14, 13811431136} 135,155 154].
We study ¢, sampling, weighted sampling of keys with respect to a power p of their frequency v2. These samples
support estimates of frequency statistics of the general form ) | f(v, )L, for functions of frequency f and constitute
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sparse representations of the data. Low powers (p < 1) are used to mitigate frequent keys and obtain a better resolution
of the tail whereas higher powers (p > 1) emphasize more frequent keys. Moreover, recent work suggests that on
realistic distributions, ¢, samples for p € [0, 2] provide accurate estimates for a surprisingly broad set of tasks [34].

Sampling is at the heart of stochastic optimization. When training data is distributed [57]], sampling can facilitate
efficient example selection for training and efficient communication of gradient updates of model parameters. Training
examples are commonly weighted by a function of their frequency: Language models [[59}166] use low powers p < 1 of
frequency to mitigate the impact of frequent examples. More generally, the function of frequency can be adjusted in the
course of training to shift focus to rarer and harder examples as training progresses [9]. A sample of examples can be
used to produce stochastic gradients or evaluate loss on domains of examples (expressed as frequency statistics). In
distributed learning, the communication of dense gradient updates can be a bottleneck, prompting the development of
methods that sparsify communication while retaining accuracy [57, 2} [71,147]. Weighted sampling by the p-th powers of
magnitudes complements existing methods that sparsify using heavy hitters (or other methods, e.g., sparsify randomly),
provides adjustable emphasis to larger magnitudes, and retains sparsity as updates are composed.

The case for WOR: Weighted sampling is classically considered with (WR) or without (WOR) replacement. We
study here the WOR setting. The benefits of WOR sampling were noted in very early work [44] 42| [72]] and are
becoming more apparent with modern applications and the typical skewed distributions of massive datasets. WOR
sampling provides a broader representation and more accurate estimates, with tail norms replacing full norms in error
bounds. Figure|[T]illustrates these benefits of WOR for Zipfian distributions with ¢; sampling (weighted by frequencies)
and ¢, sampling (weighted by the squares of frequencies). We can see that WR samples have a smaller effective sample
size than WOR (due to high multiplicity of heavy keys) and that while both WR and WOR well-approximate the
frequency distribution on heavy keys, WOR provides a much better approximation of the tail.

Effective sample size of with-replacement sampling Effective sample size of with-replacement sampling Estimated distribution of frequency by rank from perfect L1/L2 sample:
(support size 10000) (support size 10000) (sample size 100, support size 10000)

2504 — Distinct L1 WR samples, Zipf 1 35 — Distinct L1 WR samples, Zipf 2 —— Actual, Zipf 2.0
Distinct L2 WR samples, Zipf 1 Distinct L2 WR samples, Zipf 2 107 Perfect WOR L1 sample
~e— Perfect WOR L2 sample
—e— Perfect WR L1 sample
—e— Perfect WR L2 sample

N
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Figure 1: WOR vs WR. Left and middle: Effective vs actual sample size Zipfla = 1]
=2

and Zipf[ow = 2], with each point
reflecting a single sample. Right: Estimates of the frequency distribution Zipf[c« .

]

Related work. The sampling literature offers many WOR sampling schemes for aggregated data: [68, (72, 14, |69 64,
37,125,261 23]]. A particularly appealing technique is bottom-% (order) sampling, where weights are scaled by random
variables and the sample is the set of keys with top-k transformed values [69, 164,137, 25| 26]]. There is also a large body
of work on sketches for sampling unaggregated data by functions of frequency. There are two primary approaches. The
first approach involves transforming data elements so that a bottom-k sample by function of frequency is converted to
an easier problem of finding the top-£ keys sorted according to the maximum value of an element with the key. This
approach yields WOR distinct (¢y) sampling [53]], ¢; sampling [41} 22], and sampling with respect to any concave
sublinear functions of frequency (including ¢, sampling for p < 1) [20} 24]). These sketches work with non-negative
element values but only provide limited support for negative updates [40, [22]]. The second approach performs WR ¢,
sampling for p € [0, 2] using sketches that are random projections [43] [39] [5, [511 [611 [6] 52} [50]. The methods support
signed updates but were not adapted to WOR sampling. For p > 2, a classic lower bound [4, 7] establishes that sketches
of size polynomial in the number of distinct keys are required for worst case frequency distributions. This task has also
been studied in distributed settings [[16} 49]; [49] observes the importance of WOR in that setting though does not allow
for updates to element values.

Contributions: We present WORp: A method for WOR ¢, sampling for p € [0, 2] via composable sketches of size
that grows linearly with the sample size. WORp is simple and practical and uses a bottom-k transform to reduce
sampling to (residual) heavy hitters (rtHH) computation on the transformed data. The technical heart of the paper
is establishing that for any set of input frequencies, the keys with top-k transformed frequencies are indeed rHH.
In terms of implementation, WORp only requires an off-the-shelf use of popular (and widely-implemented) HH
sketches [60, 56| 151,135, [58], [10]. WORp is the first WOR /,, sampling method (that uses sample-sized sketches) for
the regime p € (1, 2] and the first to fully support negative updates for p € (0, 2]. As a bonus, we include practical
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optimizations (that preserve the theoretical guarantees) and perform experiments that demonstrate both the practicality
and accuracy of WORpE]

In addition to the above, we show that perhaps surprisingly, it is possible to obtain a WOR £,,-sample of a set of & indices,
for any p € [0, 2], with variation distance at most ﬁ(n) to a true WOR ¢,,-sample, and using only % - poly(log n)
bits of memory. Our variation distance is extremely small, and cannot be detected by any polynomial time algorithm.
This makes it applicable in settings for which privacy may be a concern; indeed, this shows that no polynomial time
algorithm can learn anything from the sampled output other than what follows from a simulator who outputs a WOR
¢,-sample from the actual (variation distance 0) distribution. Finally, for p € (0, 2), we show that the memory of our

algorithm is optimal up to an O(log® log n) factor.

2 Preliminaries

A dataset £ consists of data elements that are key value pairs e = (e.key, e.val). The frequency of a key z, denoted
Uy 1= Zele.key:m e.val, is the sum of values of elements with key x. We use the notation v for a vector of frequencies

of keys.

For a function f and vector w, we denote the vector with entries f(w,) by f(w). In particular, w? is the vector
with entries w? that are the p-th powers of the entries of w. For vector w € R™ and index i, we denote by w;
the value of the entry with the i-th largest magnitude in w. We denote by order(w) the permutation of the indices
[n] = {1,2,...,n} that corresponds to decreasing order of entries by magnitude. For k& > 1, we denote by tail; (w)
the vector with the k entries with largest magnitudes removed (or replaced with 0).

In the remainder of the section we review ingredients that we build on: bottom-% sampling, implementing a bottom-k
transform on unaggregated data, and composable sketch structures for residual heavy hitters (rHH).

2.1 Bottom-k sampling (ppswor and priority)

Bottom-k sampling (also called order sampling [69]) is a family of without-replacement weighted sampling schemes of a
set {(z,w,)} of key and weight pairs. The weights (2, w,,) are transformed via independent random maps wl < i
where r,, ~ D are i.i.d. from some distribution D. The sample includes the pairs (x, w, ) for keys x that are top-k
by transformed magnitudes |wT| 63, 169l 137, 117, 13, 25} 127] ﬂ For estimation tasks, we also include a threshold
T = |w(7;c +1) |, the (k + 1)-st largest magnitude of transformed weights. Bottom-% schemes differ by the choice of
distribution D. Two popular choices are Probability Proportional to Size WithOut Replacement (ppswor) [69, 17, 127]]
via the exponential distribution D + Exp[1] and Priority (Sequential Poisson) sampling [63} 37] via the uniform
distribution D <— U|0, 1]. Ppswor is equivalent to a weighted sampling process [68]] where keys are drawn successively
(without replacement) with probability proportional to their weight. Priority sampling mimics a pure Probability
Proportional to Size (pps) sampling, where sampling probabilities are proportional to weights (but truncated to be at
most 1).

Estimating statistics from a Bottom-k sample Bottom-k samples provide us with unbiased inverse-probability [44]
per-key estimates on f(w,), where f is a function applied to the weight [3] 26| 211, [19]):

o _ Jwe) g S
N e T e B 1
f(wa) {0 ifod S .

These estimates can be used to sparsify a vector f(w) to k entries or to estimate sum statistics of the general form:

> flwe)La ©))

using the unbiased estimate

S fwn)le = 3 Fwn)Le = 3 Flwn) L

zeS

!Code for the experiments is provided in the following Colab notebook https://colab.research.google.com/
drive/lJcNokk_KdQzlgfUarKUcxhnoo9CUL-fZ?usp=sharing
“Historically, the term bottom-% is due to analogous use of 1/w,. , but here we find it more convenient to work with "top-k"


https://colab.research.google.com/drive/1JcNokk_KdQz1gfUarKUcxhnoo9CUL-fZ?usp=sharing
https://colab.research.google.com/drive/1JcNokk_KdQz1gfUarKUcxhnoo9CUL-fZ?usp=sharing
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The quality of estimates depends on f and L. We measure the quality of these unbiased estimates by the sum over keys
of the per-key variance. With both ppswor and priority sampling and f(w) := w, the sum is bounded by a respective
one for pps with replacement. The per-key variance bound is

_ 1
<
Var[w,] < P 1ww||w|\1 ©)

and the respective sum by Y Var[w,] < |lw|?.  This can be tightened to Varfw,] <
min{O(7)w, |tail,(w)]|1, exp (—O(k)m) w2} and respective bound on the sum of O(||tailx(w)|3/k). For

skewed distributions, |tail, (w)||? < ||w]||? and hence WOR sampling is beneficial. Conveniently, bottom-k estimates
for different keys x; # x5 have non-positive correlations Cov|w,,, w,,] < 0, so the variance of sum estimates is
at most the respective weighted sum of per-key variance. Note that the per-key variance for a function of weight is
vy 2 — . . . .
Var[f(w,)] = L% Var[w,]. WOR (and WR) estimates are more accurate (in terms of normalized variance sum)

w

when the samplingzis weighted by f(w).

2.2 Bottom-k sampling by power of frequency

To perform bottom-k sampling of w? with distribution D, we draw r,, ~ D, transform the weights w’ < w?® /r,, and
return the top-k keys in w?. This is equivalent to bottom-k sampling the vector w using the distribution D'/, that is,
draw r, ~ D, transform the weights

o s )

w Yz
1
Tx/p

. . p P .
and return the top-k keys according to w*. Equivalence is because (w})?P = ( Ly ) =% =yl and f(z) =a2Pisa

T
Tx/p T

monotone increasing and hence order(w*) = order(w’). We denote the distribution of w* obtained from the bottom-
k transform (@) as p-D[w] and specifically, p-ppswor[w] when D = Exp[1] and p-priority[w] when D = U|0, 1]. We
use the term p-ppswor for bottom-k sampling by Expl/ P,

The linear transform (@) can be efficiently performed over unaggregated data by using a random hash to represent r,, for
keys z and then locally generating an output element for each input element

(e.key, e.val) — (e.key, e.val/ri/k’;y) )

The task of sampling by p-th power of frequency v” is replaced by the task of top-k by frequency v} :=
D ccex|ekey—s €-Val on the respective output dataset £*, noting that v = v, /ri/ P. Therefore, the top-k keys in
v* are a bottom-k sample according to D of vP. Note that we can approximate the input frequency v/, of a key = from
an approximate output frequency l//E using the hash r,.. Note that relative error is preserved:

v, vyt (©)
This per-element scaling was proposed in the precision sampling framework of Andoni et al. [6] and inspired by a

technique for frequency moment estimation using stable distributions [435]].

Generally, finding the top-k frequencies is a task that requires large sketch structures of size linear in the number of
keys. However, [6] showed that when the frequencies are drawn from p-priority[w] (applied to arbitrary w) and p < 2
then the top-1 value is likely to be an ¢5 heavy hitter. Here we refine the analysis and use the more subtle notion of
residual heavy hitters [10]. We show that the top-k output frequencies in w* ~ p-ppswor[w] are very likely to be ¢,

residual heavy hitters (when ¢ > p) and can be found with a sketch of size O (k).

2.3 Residual heavy hitters (rHH)

is defined as a key with f(ws) > e3>_, f(wy). When f(w) = w9, we refer to a key as an (, heavy hitter. For & > 1
and ¢ > 0, a vector w has (k, ) residual heavy hitters [10] when the top-k keys are “heavy" with respect to the tail of
the frequencies starting at the (k + 1)-st most frequent key, that is, Vi < k, w;) > %||tai|k(w)||1. This is equivalent to

An entry in a weight vector w is called an e- heavy hitter if w, > € Ey wy. A heavy hitter with respect to a function f

W < % We say that w has rHH with respect to a function f if f(w) has tHH. In particular, w has ¢, (k, )
rHH if
tailg (w)]|2 &
e )l _ o
Wik ¥
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Popular composable HH sketches were adopted to rtHH and include (see Table[I): (i) ¢1 sketches designed for positive
data elements. A deterministic counter-based variety [60} 156, 58] with rHH adaptation [[10] and the randomized
CountMin sketch [35]. (ii) 42 sketches designed for signed data elements, notably Count Sketch [15] with rHH
analysis in [52]]. With these designs, a sketch for ¢, (k, 1)-rHH provides estimates ©7,, for all keys « with error bound:

7~ vl < ¥ ltaiby()]g ®

With randomized sketches, the error bound (8) is guaranteed with some probability 1 — §. CountSketch has the
advantages of capturing top keys that are /5 but not ¢; heavy hitters and supports signed data, but otherwise provides
lower accuracy than ¢; sketches for the same sketch size. Methods also vary in supported key domains: counters
natively work with key strings whereas randomized sketches work for keys from [n] (see Appendix B] for a further
discussion). We use these sketches off-the-shelf through the following operations:

e RInitialize(k,,d): Initialize a sketch structure

Merge(R;, Ry): Merge two sketches with the same parameters and internal randomization

R.Process(e): process a data element e

R.Est(x): Return an estimate of the frequency of a key z .

Sketch (¢4, sign) | Size T —v|%, <
Counters (f1, +) [10] o(%) 2 ltaily (v) 1

Countsketch (f5,4) [15] | O(£log%) % |ltaili(v)]3
Table 1: Sketches for ¢, (k,) rtHH.

3 WORp Overview

Our WORp methods apply a p-ppswor transform to data elements (3) and (for ¢ > p) compute an ¢, (k, ¢))-tHH sketch
of the output elements. The rHH sketch is used to produce a sample of k keys.

We would like to set ¢ to be low enough so that for any input frequencies v, the top-k keys by transformed frequencies
v* ~ p-ppswor|v] are rHH (satisfy condition (7)) with probability at least 1 — §. We refine this desiderata to be
conditioned on the permutation of keys in order(v*). This conditioning turns out not to further constrain + and allows
us to provide the success probability uniformly for any potential k-sample. Since our sketch size grows inversely with
1 (see Table[I)), we want to use the maximum value that works. We will be guided by the following:

|wii | ] }
U, ko p=q/p(0) :=sU Yw e R, e S” Pr kg <Y <éd,p, 9
kop q/p( ) p {1/] | w* ~p-ppswor[w]|order(w*)=m Htallk(w*)Hq 1/J ( )
where S™ denotes the set of permutations of [n]. If we set the rHH sketch parameter to ¢ <— ¢V, ;. , then using (8),
with probability at least 1 — 4,

. e W)
17— vl < Ytai ()3 = = 220 il () g < el (10)

We establish the following lower bounds on W,, . ,(6):
Theorem 3.1. There is a universal constant C > 0 such that for alln, k > 1, and p = q/p

1
—k
=1:v, >
Forp=1:T,; ,(3¢™") > Cln? (1)
. —k 1 1
Forp > 1. \I/7L7k;7p(3€ ) 2 Emax{p — 1, @} . (12)

To set sketch parameters in implementations, we approximate ¥ using simulations of what we establish to be a “worst
case" frequency distribution. For this we use a specification of a “worst-case" set of frequencies as part of the proof of
Theorem [3.1] (See Appendix B.I). From simulations we obtain that very small values of C' < 2 suffice for § = 0.01,
p € {1,2},and k > 10.

We analyse a few WORp variants. The first we consider returns an exact p-ppswor sample, including exact frequencies
of keys, using two passes. We then consider a variant that returns an approximate p-ppswor sample in a single pass.
The two-pass method uses smaller rHH sketches and efficiently works with keys that are arbitrary strings.

We also provide another rHH-based technique that provides a guaranteed very small variation distance on k-tuples in a
single pass.
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Sketch size

sign, p words key strings | Pr[success]

+,p<2 | O(klogn) O(k) (1- m)(l —3e %)
+,p=2| O(klog’n) O(k) (1- m)(lf&e_k)
+,p<1 | Ok) O(k) 1—3e"

+,p=1| O(klogn) O(k) 1—3e "

Table 2: Two-pass ppswor sampling of k keys according to v/P. Sketch size (memory words and number of stored key
strings). For p € (0, 2] and signed (=) or positive (4) value elements.

4 Two-pass WORp

We design a two-pass method for ppswor sampling according to v? for p € (0, 2] (Equivalently, a p-ppswor sample
according to v):

e Pass I: We compute an ¢, (k + 1, )-rHH sketch R of the transformed data elements

(KeyHash(ekey), e.val/rl}2 ) . (13)

A hash KeyHash — [n] is applied when keys have a large or non-integer domain to facilitate use of CountSketch
or reduce storage with Counters. We set ¢ — 37U, 1 ,(9).

e Pass II: We collect key strings z (if needed) and corresponding exact frequencies v, for keys with the Bk largest \1//5|,

where B is a constant (see below) and ¥ := R.Est[KeyHash(z)] are the estimates of /% provided by R. For this
purpose we use a composable top-(Bk) sketch structure 7". The size of T' is dominated by storing Bk key strings.

e Producing a p-ppswor sample from 7": Compute exact transformed frequencies v < v, r;/ P for stored keys = € T..
Our sample is the set of key frequency pairs (x, v,.) for the top-k stored keys by v. The threshold 7 is the (k + 1)
largest v over stored keys.

—

e Estimation: We compute per-key estimates as in (T): Plugging in D = Exp[1]'/? for p-ppswor, we have f(v,) := 0

forx&SandformeSism:: %

We establish that the method returns the p-ppswor sample with probability at least 1 — §, propose practical optimizations,
and analyze the sketch size:

Theorem 4.1. The 2-pass method returns a p-ppswor sample of size k according to v with success probability and
composable sketch sizes as detailed in Table 2] The success probability is defined to be that of returning the exact top-k
keys by transformed frequencies. The bound applies even when conditioned on the top-k being a particular k-tuple.

Proof. From (T0), the estimates v = R.Est[KeyHash(z)] of v/ are such that:

—~ 1
Pr|Vz e {ekey|ec &}, |vz—v)| < §|V(*k+1)| >1-94 . (14)

We set B in the second pass so that the following holds:
The top-(k + 1) keys by v/* are a subset of the top-(B(k + 1)) keys by v/*. (15)

Note that for any frequency distribution with rHH, it suffices to store O(k /1)) keys to have (I3]). We establish that for
our particular distributions, a constant B suffices. For that we used the following:

Lemma 4.1. A sufficient condition for property is that \V{B(kﬂ))\ < %|V&k+1)) |-

Proof. Note that |1/7| > §|V(*k+1)‘ for keys that are top-(k + 1) by v* and |;I(B(k+1))| < V{Bxiiyl + v (k+ 1))

Hence |}| > |;;(B(k+1)\ for all keys that are top-(k + 1) by v*. O
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We then use LemmalE. 1| to express a “worst-case" distribution for the ratio v, /¥(k + 1) and use the latter (using

Corollary [D.2) to show that the setting of ¥(§) according to our proof of Theorem 3.1] (Appendix [BD) implies that the
conditions that guarantee the rHH property will also imply a ratio of at most 1/3 with a constant 5.

Correctness for the final sample follows from property : T storing the top-(k + 1) keys in the data according to
v*. To conclude the proof of Theorem 4.1 we need to specify the rHH sketch structure we use. From Theorem [3.1]
we obtain a lower bound on ¥,, ;. , for 0 = 3e~* and we use it to set ¢». For our rHH sketch we use Count Sketch
(¢ = 2 and supports signed values) or Counters (¢ = 1 and positive values). The top two lines in Table 2] are for
Count Sketch and the next two lines are for Counters. The rHH sketch sizes follow from v and Table O

4.1 Practical optimizations

We propose practical optimizations that improve efficiency without compromising quality guarantees.

The first optimization allows us to store k&’ < B(k + 1) keys in the second pass: We always store the top-(k + 1) keys
by v* but beyond that only store keys if they satisfy

—

1~
Ve 2 5V (kt1) (16)

where v* is with respect to data elements processed by the current sketch. We establish correctness:

Lemma 4.2. 1. There is a composable structure that only stores keys that satisfy (16) and collects exact frequen-
cies for these keys.

2. If (T4) holds, the top-(k + 1) keys by v* satisfy (16) (and hence will be stored in the sketch,).

Proof. (i) The structure is a slight modification of a top-k’ structure. Since ;;( k+1) can only increase as more distinct
keys are processed, the condition (I6) only becomes more stringent as we merge sketches and process elements.
Therefore if a key satisfies the condition at some point it would have satisfied the condition when elements with the key
were previously processed and therefore we can collect exact frequencies.

(ii) From the uniform approximation (14), we have ;;(;Hl) < %V{k +1)- Let x be the (k + 1)-th key by |[v*|. Tts

estimated transformed frequency is at at least ;:f > %z/(*k +1) > % . %I/*UH_H = %ﬁ(k+1). Therefore, if we store all

keys z with v} > %ﬁ(kﬂ) we store the top-(k + 1) keys by v/7. O

x

A second optimization allows us to extract a larger effective sample from the sketch with k' > k keys. This can be done
when we can certify that the top-k’ keys by v* in the transformed data are stored in the sketch T'. Using a larger sample
is helpful as it can only improve (in expectation) estimation quality (see e.g., [28131]]). To extend this, we compute the
uniform error bound v/(; ;) /3 (available because the top-(k + 1) keys by v* are stored). Let L < mingcp v*,. We

obtain that any key z in the dataset with v} > L 4 V(1) /3 must be stored in T'. Our final sample contains these keys
with the minimum v/} in the set used as the threshold 7.

5 One-pass WORp

Our 1-pass WORp yields a sample of size k that approximates a p-ppswor sample of the same size and provides similar
guarantees on estimation quality.

e Sketch: For ¢ > pand e € (0, 3] Compute an ¢, (k + 1,1)-rHH sketch R of the transformed data elements (5) where
) = €Wy, i1 ).

o Produce a sample: Our sample S includes the keys with top-k estimated transformed frequencies ;5 := R.Est[z].
For each key « € S we include (x, v/,), where the approximate frequency v/, < z//fri/ P is according to (6). We include

with the sample the threshold 7 < ;I(kﬂ).

e Estimation: We treat the sample as a p-ppswor sample and compute per-key estimates as in (I, substituting
approximate frequencies v/, for actual frequencies v,, of sampled keys and the 1-pass threshold v* ;1) for the exact
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Ly o p’ perfect WR || perfect WOR | 1-pass WORp  2-pass WORp
U, Zipf2] ©°  1.16e04 | 20911 1.06-03 2.08¢-11
0y Zipf[2] v? 7.96e-05 1.26e-07 1.14e-02 1.25e-07
0 Zipf[2] v 9.51e-03 1.60e-03 2.79e-02 1.60e-03
0 Zipfl] »® 359%01 | 5.73e-03 5.14e-03 5.72¢-03
6 Zipf[2] V3 3.45e-04 7.34e-10 5.11e-05 7.38e-10

Table 3: NRMSE on estimates of frequency moments on statistics of the form HV||§: from ¢, samples (p = 1, 2). Zipf[a]
distributions with support size n = 10%, k = 100 samples, averaged over 100 runs. Count Sketch of size k x 31

1/(* . The estimate is ﬂ%\) :=0forz ¢ Sandforz € Sis:

k+1)
o /() _ ") an
e () e ()

We relate the quality of the estimates to those of a perfect p-ppswor. Since our 1-pass estimates are biased (unlike the
unbiased perfect p-ppswor), we consider both bias and variance. The proof is provided in Appendix [G]

—

Theorem 5.1. Let f(w) be such that | f((1 + e)w) — f(w)| < cef(w) for some ¢ > 0and e € [0,1/2]. Let f(v,) be

per-key estimates obtained with a one-pass WORp sample and let f(v,) be the respective estimates obtained with a

— o —

(perfect) p-ppswor sample. Then Bias[f/(l—/x\)] < O(e) f(vz) and MSE[f (v;)] < (14 O(e)) Var{f(v.) |+ O(e) f (va)*

Note that the assumption on f holds for f(w) = w? with ¢ = (1.5)P. Also note that the bias bound implies a respective
contribution to the relative error of O(e) on all sum estimates.

6 One-pass Total Variation Distance Guarantee

We provide another 1-pass method, based on the combined use of rHH and known WR perfect £,, sampling sketches [50]
to select a k-tuple with a polynomially small total variation (TV) distance from the k-tuple distribution of a perfect
p-ppswor. The method uses O (k) (for variation distance 2~°(*), and O(k log n) for variation distance 1/n< for an
arbitrarily large constant C' > 0) perfect samplers (each providing a single WR sample) and an rHH sketch. The
perfect samplers are processed in sequence with prior selections “subtracted" from the linear sketch (using approximate
frequencies provided by the rHH sketch) to uncover fresh samples. As with WORp, exact frequencies of sampled
keys can be obtained in a second pass or approximated using larger sketches in a single pass. Details are provided in

Appendix [

Theorem 6.1. There is a 1-pass method via composable sketches of size O(k polylog(n)) that returns a k-tuple of keys
such that the total variation distance from the k-tuples produced by a perfect p-ppswor sample is at most 1/nC for an
arbitrarily large constant C > 0. The method applies to keys from a domain [n), and signed values with magnitudes
and intermediate frequencies that are polynomial in n.

We also show in Appendix [F| that our sketches in Theorem use O(k - log® n(loglogn)?) bits of memory for
0 < p < 2, and we prove a matching lower bound on the memory required of any algorithm achieving this guarantee,
up to a (log log n)? factor. For p = 2 we also show they are of optimal size, up to an O(logn) factor.

7 Experiments

We implemented 2-pass and 1-pass WORp in Python using CountSketch as our rHH sketch. Figure 2] reports
estimates of the rank-frequency distribution obtained with 1-pass and 2-pass WORp and perfect WOR (p-ppswor) and
perfect WR samples (shown for reference). For best comparison, all WOR methods use the same randomization of
the p-ppswor transform. Table [3]reports normalized root averaged squared errors (NRMSE) on example statistics. As
expected, 2-pass WORp and perfect 2-ppswor are similar and WR ¢5 samples are less accurate with larger skew or on
the tail. Note that current state of the art sketching methods are not more efficient for WR sampling than for WOR
sampling, and estimation quality with perfect methods is only shown for reference. We can also see that 1-pass WORp
performs well, although it requires more accuracy (lager sketch size) since it works with estimated weights (reported
results are with fixed Count Sketch size of k x 31 for all methods).
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Estimated distribution of frequency by rank from L2 samples Estimated distribution of frequency by rank from L2 samples Estimated distribution of frequency by rank from L1 samples
(sample size 100, support size 10000) (sample size 100, support size 10000) (sample size 100, support size 10000)

—— Actual, Zipf 1.0
Perfect WOR L2 sample 107!
~o— WR L2 sample
—e— 1-pass WORp, p=2
~o— 2-pass WORp, p=2

—— Actual, Zipf 2.0
Perfect WOR L2 sample 107!
—e— WR L2 sample
—e— 1-pass WORp, p=2
—o— 2-pass WORp, p=2

—— Actual, Zipf 2.0
Perfect WOR L1 sample
—4— Perfect WR L1 sample
—— 1-pass WORp, p=1
—— 2-pass WORp, p=1

Figure 2: Estimates of the rank-frequency distribution of Zipf[1] and Zipf[2]. Using WORp 1-pass, WORp 2-pass with
CountSketch (matrix k x 31), perfect WOR, and perfect WR. Estimates from a (representative) single sample of
size k = 100. Left and Center: ¢ sampling. Right: ¢; sampling.

Conclusion

We present novel composable sketches for without-replacement (WOR) £, sampling, based on “reducing” the sampling
problem to a heavy hitters (HH) problem. The reduction, which is simple and practical, allows us to use existing
implementations of HH sketches to perform WOR sampling. Moreover, streaming HH sketches that support time decay
(for example, sliding windows [8]]) provide a respective time-decay variant of sampling. We present two approaches,
WORp, based on a bottom-£ transform, and another technique based on “perfect” with-replacement sampling sketches,
which provide 1-pass WOR samples with negligible variation distance to a true sample. Our methods open the door
for a wide range of future applications. Our WORp schemes produce bottom-k samples (aka bottom-k sketches) with
respect to a specified randomization 7, over the support (with 1-pass WORp we obtain approximate bottom-k samples).
Samples of different datasets or different p values or different time-decay functions that are generated with the same
Ty are coordinated [12, 70, 165} [17, 32, [13]]. Coordination is a desirable and powerful property: Samples are locally
sensitivity (LSH) and change little with small changes in the dataset [[12} 70} 46| 33| [19]]. This LSH property allows
for a compact representation of multiple samples, efficient updating, and sketch-based similarity searches. Moreover,
coordinated samples (sketches) facilitate powerful estimators for multi-set statistics and similarity measures such as
weighted Jaccard similarity, min or max sums, and one-sided distance norms [17} 113} 28} |31} 29} 30} [18]].
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A Properties of rHH sketches

Sketches for /; heavy hitters on datasets with positive values: These include the deterministic counter-based Misra
Gries [60, 1], Lossy Counting [56], and Space Saving [38]] and the randomized Count-Min Sketch [35]]. A sketch of size
O(e~1) provides frequency estimates with absolute error at most ¢||v/||;. Berinde et al. [10] provide a counter-based

sketch of size O(k /) that provides absolute error at most %Htailk(u) II1.

Sketches for /> heavy hitters on datasets with signed values: Pioneered by CountSketch [15]: A sketch of
size O(e~!log %) provides with confidence 1 — § estimates with error bound ¢||v/||3 for squared frequencies. For

rHH, a Count Sketch of size O(% log %) provides estimates for all squared frequencies with absolute error at most

2| |taily,(v)||3. These bounds were further refined in [52] for ¢, rHH. The dependence on log n was replaced by 1/%) in
[L1] for insertion only streams. Unlike the case for counter-based sketches, the estimates produced by Count Sketch
are unbiased, a helpful property for estimation tasks.

Obtaining the rHH keys Keys can be arbitrary strings (search queries, URLs, terms) or integers from a domain
[n] (parameters in an ML model). Keys in the form of strings can be handled by hashing them to a domain [r] but
we discuss applications that require the sketch to return rHH keys in their string form. Counter-based sketches store
explicitly O(k/v) keys. The stored keys can be arbitrary strings. The estimates are positive for stored keys and 0
for other keys. The rHH keys are contained in the stored keys. The randomized rHH sketches (Count Sketch and
CountMin) are designed for keys that are integers in [n]. The bare sketch does not explicitly store keys. The rHH keys
can be recovered by enumerating over [n] and retaining the keys with largest estimates. Alternatively, when streaming
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(performing one sequential pass over elements) we can maintain an auxiliary structure that holds key strings with
current top-k estimates [[15].

With general composable sketches, key strings can be handled using an auxiliary structure that increases the sketch size
by a factor linear in string length. This is inefficient compared with sketches that natively store the string. Alternatively,
a two-pass method can be used with the first pass computing an rHH sketch for a hashed numeric representation and a
second pass is used to obtain the key strings of hashed representations with high estimates.

Recovering (approximate) frequencies of rHH keys For our application, we would need to have approximate or
exact frequencies of rHH keys. The estimates provided by a (k, 1)) rHH sketch provide absolute error (statistical)
guarantees (see Table[T). One approach is to recover exact frequencies in a second pass. We can also obtain more
accurate estimates (of relative error at most €) by using a (k, et)) tHH sketch.

Testing for failure Recall that the dataset may not have (k, ) rHH. We can test if one of the & largest estimated
frequencies to the pth power is below the specified error bound of > %Htailk(u) |[D. If so, we declare “failure.”

B Overview of the proof of Theorem 3.1]

For a vector w € R"™, permutation 7 € S™, and p > 0, let the random variable w* ~ p-ppswor|w] | 7 be a p-ppswor
transform (@) of w conditioned on the event order(w*) = m. For ¢ > p and k > 1, we define the following distribution:

[tail (w™*) |
Fuwpak | Ti= ———2 (18)
P,q (w(k))q
Note that for any w € R" and 7w € S™,
|wzkk)|q
Pr < | = Pr z2< — (19)
w* ~p-ppswor|[w] |order(w*)=m [ ||ta||k(w*)|\q v 2Foy pog k| |: 1/}:|

Therefore tail bounds on F' that hold for any w € ™ and © € S™ can be used to establish the claim.
We now define another distribution that does not depend on w and 7:
Definition B.1. For 1 < k < n and p > 1 we define a distribution R, \ , as follows.

e (g

i=k-+1 j=1

where Z; ~ Exp[1] i € [n] are i.i.d.
The proof of Theorem [3.1] will follow using the following two components:
(i) We show (Section|C) that for any w € R"™ and permutation T € S™,

P p.g k™ = Binp=(a/p) -
where the relation < corresponds here to statistical domination of distributions.
(ii)) We establish (Section@) tail bounds on Ry, 1, = (q/p)-
Because of domination, the tails bounds on Ry, ,, ,—(q/p) Provide corresponding tail bound for Fy p 4|7 for any
w € R and 7 € S™. Together with (I9), we use the tail bounds to conclude the proof of Theorem

Moreover, the domination relation is tight in the sense that for some w and 7, Fy, , ¢, 1|7 is very close to Ry, ;, q/,: For
distributions with k keys with relative frequency e and 7 that has these keys in the first k (as € — 0), or for uniform
distributions with n > k, Fy, p o, k| (as n grows).

The tail bounds (and hence the claim of Theorem [3.1)) also hold without the condition on 7.
Lemma B.2. The tail bounds also hold for the unconditional distribution Fy, ; 4 1.
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Proof. The distribution F, , 4 is a convex combination of distributions F, ;, 4 x|7. Specifically, for each permutation
7 let p, be the probability that we obtain this permutation with successive weighted sampling with replacement. Then

Fuspak = ZpﬁFka 7. (20)
Since tail bounds hold for each term, they hold for the combination. O
B.1 Approximating 1) by simulations
Uy 1 »(6) is the solution of the following for 1:
Pr [z>k/Y]=06. (21)

2~ BRin,p

We can approximate ¥, ,, ,(8) by computing i.i.d. z; ~ Ry, ,, taking the (1—¢) quantile 2’ in the empirical distribution
and returning k/z’.

From simulations we obtain that for § = 0.01 and p € {1, 2}, C = 2 suffices for sample size k > 10, C' = 1.4 suffices
for £ > 100, and C = 1.1 suffices for k¥ > 1000.

C Domination of the ratio distribution

Lemma C.1 (Domination). For any permutation 7w, w, p, ¢ > p, and k > 1, the distribution me,q,k|,r @ is
dominated by Rn,k’q/p. That is, for all z > 0,

Pr {z < Z} > Pr {z < ZZ] (22)

z2~Fu,pq,k|m 2R k,q/p

Proof. Assume without loss of generality that order(w) = 7. Let w* ~ p-ppswor|[w] | order(w*) = w. Note by
definition w* is in decreasing order of magnitude. Define the random variable y := w*?. y are transformed weights of
a ppswor sample of w conditioned on the order 7. We use use properties of the exponential distribution (see a similar
use in [26])) to express the joint distribution of {y; }. We use the following set of independent random variables:

n

Xi ~ Exp[)_w?] .

Jj=t
We have: 1
Yi = ﬁ . (23)
(Z j=1 Xi)
To see this, recall that y; is the (inverse) of the minimum of exponential random variables with parameters wy, . . ., w,

and thus is (the inverse of) exponential random variable with parameter equal to their sum. Therefore, y; = 1/X].
From memorylessness, the difference between the (z + 1)-st smallest inverse and the i-th smallest is an exponential
random variable with distribution X;. Therefore, the i-th smallest inverse has the claimed distribution (23).

We are now ready to express the random variable that is the ratio (I8) in terms of the independent random variables X;:

n 1 . k a/p
Z;’l:kJrl Yj _ Ez:kJrl (22:1 Xi)q/p - (Zj:l X])
Sl SREDUIRD W ==l o

N S ; q/p
yk ( le Xj)Q/P i=k+1 (Z;:l Xj)

We rewrite this using i.i.d. random variables Z; ~ Exp[1], recalling that for any w, Exp[w] is the same as Exp[1]/w.
Then we have X; = Z;/ >, w¥.

We next provide a simpler distribution that dominates the distribution of the ratio. Let W' := Z?: & w;’ and consider

the i.i.d. random variables X/ = Z;/W’. Note that X; < XJ’» forj < kand X; > XJ’» for j > k. Thus, fori > k + 1,

k k k
D=1 X _ 1 S 1 _ > i1 X _ >j=1Zj
Yim X a4 Epemd g zpend X5 YL 7

’
j=1 X j=1 Xj

(25)
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This holds in particular for each term in the RHS of (24). Therefore we obtain

q/p
Z;’L:k:+lyj > zn: (Z?lej)

Yk o i ap
i=k+1 (Ej:l Zj>
O
D Tail bounds on R, , ,
We establish the following upper tail bounds on the distribution 12, 1. ,:
Theorem D.1 (Concentration of R, 1. ,). There is a constant C, such that for any n, k, p
p=1: Pr {r > Ck ln(ﬁ)] <3e* (26)
r~Ry k. p k
1
p>1: Pr {r > Ck} < 3e " 7)
r~Rp k,p p—1

We start with a “back of the envelope” calculation to provide intuition: replace the random variables Z; in R,, . , (see
Definition B.1)) by their expectation E[Z;] = 1 to obtain

n
kP
S’I’L,k:,p = 27 .

i=k+1

Forp=1, 5,1, < k(H, — Hi) = kIn(n/k). For p > 1 we have S, j , ~ % We will see that we can expect the
sums not to deviate too far from this value.

The sum of ¢ i.i.d. Exp[1] random variables generates an Erlang distribution Erlangl[¢, 1] (rate parameter 1). The

expectation is E,grangje,)) = ¢ and variance is Var, grang[¢,1) [r] = ¢. We will use the following Erlang tail
bounds [48]]:

Lemma D.1. For X ~ Erlang[¢, 1]

e>1: Prlz>el < éeff(ifflflne) < el
e < 1: PI‘[Q? < Eg] < e—f(a—l—lna)

When ¢ < 0.159 or £ > 3.2 we have the bound e~*. For ¢ > 3.2 we also have le=#(=22)

Proof of Theorem[D.1] We bound the probability of a “bad event" which we define as the numerator being “too large”

and denominators being too “small.”” More formally, the numerator is the sum N = 221 Z; and we define a bad event
as N > 3.2k. Substituting € = 3.2 and ¢ = k in the upper tail bounds from Lemma@ we have that the probability of
this bad event is bounded by

Pr  [r>kel<e ™. (28)
r~Erlang[k,1]

The denominators are prefix sums of of the sequence of random variables. We consider a partition the sequence
Zg+1, ..., 4y to consecutive stretches of size

O, =2"k, (h>1).

We denote by Sj, the sum of stretch h. Note that S, ~ Erlang[¢y, 1] are independent random variables. We define a

bad event as the probability that for some h > 1, S}, < 0.15¢;, = 0.14 2" k. From the lower tail bound of Lemma
we have

PrlSh <0156 = Pr - [r<0.156] < et < 72"k (29)

The combined probability of the union of these bad events (for the numerator and all stretches) is at most e™* +
D on>1 e=2"k < 3k,
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We are now ready to compute probabilistic upper bound on the ratios when there is no bad event

R, < by
ko = ZhN"’ZKh )

h>1

2k)”?
< Z Eh (3 k)
= (32610153, 4)"

(3.2k)" A (3.2k)"
= 2k 2"k

B2k)y ];2 32k + (2" — 2)k)

[logy(n/k)] 3.9 p [logy(n/k)]
< h : < o0 —h(p—1)
< k24 D 2 (2h+1_2> <k|2432 Y 2
h=2 h=2
For p = 1 we have O(klogn). For p > 1, we have O(k/(p — 1)). O

From the proof of Theorem D.I] we obtain:
Corollary D.2. There is a constant B such that when there are no “bad events" in the sense of the proof of Theorem[D.1]

k
Tl

Proof With no bad events, N = °*_| 7, < 3.2k and -2, | Z; > 0.15k(2" — 1). Solving for 0.15kB > 6.4k (for
B = 2" — 1 for some h) we obtain B = 63. O

E Ratio of magnitudes of transformed weights

For ky > k1 we consider the distribution of the ratio between the kth and k{h transformed weights:
*P
(k2)
w'P
Wiky)

Lemma E.1. Forany w € R", m € S™, and ki < ko < n, the distribution G p g,k .k, | T is dominated by

k1 P
Loz
G — <§:z—1Z> (30)
=q/p,k1,k K )
pP=q/P,r1,Kk2 2721 Zz

Gw7p7q,k17k2 | ™=

where Z; ~ Exp[l] are i.i.d.

Proof. Following the notation in the proof of Lemma|C.I} the distribution Gy ¢k, &, can be expressed as

k P
SiZi X
where X;; : Z’; e
For ¢ & [n] we define X; := nziwp Now note that X > X; fori < ky and X > X for i > k;. Therefore,
=k
Z¢;1 Xi 1
SEX g Tlun
Yity X
< ! = 1 — Zfil Z;
- =it X, 2 1 i Sk Z; '
T YR izt
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F 1-pass with total variation distance on sample %-tuple: upper and lower bounds

Perfect ppswor returns each subset of k keys S = {i1, ..., i} with a certain probability:

k .
S = > I o -

w|{m1,...,m }=S j=1 ||1 o Zh<j Wiy,

Recall that the distribution is equivalent to successive weighted sampling without replacement. It is also equivalent to
successive sampling with replacement if we “skip" repetitions until we obtain k distinct keys.

With p-ppswor and unaggregated data, this is with respect to 2. The WORp 1-pass method returns an approximate
p-ppswor sample in terms of estimation quality and per-key inclusion probability but the TV distance on k-tuples can
be large.

We present here another 1-pass method that returns a k-tuple with a polynomially small VT distance from p-ppswor.

Algorithm 1: 1-pass Low Variation Distance Sampling

Input: ¢, rtHH method, perfect £,,-single sampler method, sample size &, p, 6, n,

Initialization:
Initialize r = C - k log n independent perfect £,-single sampling algorithms A!, ... A"
Initialize an ¢, rHH method R.
Pass 1:
Feed each stream update into A', ..., A™ as well as into R.
Produce sample:
S0
Fori=1,...,r

Let Out; be the index returned by A°
If Out; ¢ S, then
S+ SuU{Out;}
For each j > i, feed the update zoyr, < Tour, — R(Out;) into A7 // R(Out;) is the estimate of wz;
given by R

If |S| = k then exit and return S
end
Output FAIL // Algorithms returns S before reaching this line with high probability

Theorem F.1. Let p € (0,2]. There is a 1-pass turnstile streaming algorithm using k - poly(log n) bits of memory
which, given a stream of updates to an underlying vector x € {—M,—M + 1,...,M — 1, M}", with M = poly(n),
outputs a set S of size k such that the distribution of S has variation distance at most n% from the distribution of a

where C' > 0 is an

|z4]”

sample without replacement of size k from the distribution i = (i1, . . ., fin ), where p; = =T

arbitrarily large constant.

Proof. The algorithm is 1-pass and works in a turnstile stream given an ¢,, tHH method and perfect £,,-single sampler
methods that have this property. We use the ¢, tHH method of [52]], which has this property and uses O(k - log? n)
bits of memory. We also use the perfect £,,-single sampler method of [50], which has this property and uses log?n -

poly(log log n) bits of memory for 0 < p < 2 and O(log3 n) bits of memory for p = 2. The perfect £,,-single sampler
method of [S0] can output FAIL with constant probability, but we can repeat it C'log n times and output the first sample
found, so that it outputs FAIL with probability at most n% for an arbitrarily large constant C' > 0, and consequently we
can assume it never outputs FAIL (by say, always outputting index 1 when FAIL occurs). This gives us the claimed
k - poly(log n) total bits of memory.

We next state properties of these subroutines. The £, rHH method we use satisfies: with probability 1 — n% for an
arbitrarily large constant C' > 0, simultaneously for all j € [n], it outputs an estimate R(j) for which

1/p
R =2t (5p) i@l

We assume this event occurs and add n% to our overall variation distance.
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The next property concerns the perfect £,,-single samplers A7 we use. Each A7 returns an index i € {1,2,...,n} such

that the distribution of ¢ has variation drstance at most — from the distribution . Here C' > 0 is an arbrtrarrly large
constant of our choice.

We next analyze our procedure for producing a sample. Consider the joint distribution of
(Outy, Outs, . .., Outackiogn). The algorithms A" use independent randomness. However, the input to Al
may depend on the randomness of A" for i’ < i. However, by definition, conditioned on A’ not outputting Out;, for
any 7' < 4, we have that Out; is independent of Outy, ..., Out;_, and moreover, the distribution of Out; has variation
distance n% from the distribution of a sample s from p conditioned on s ¢ {Outy, ..., Out;_;}, for an arbitrarily
large constant C' > 0.

Let E be the event that we sample & distinct indices, i.e., do not output FAIL in our overall algorithm. We show below
that Pr[E] > 1 — n% for an arbitrarily large constant C' > 0. Consequently, our output distribution has variation

distance 17" from an idealized algorithm that samples until it has & distinct values.

Consider the probability of outputting a particular ordered tuple (i1, ...,i) of k distinct indices in the idealized
algorithm that samples until it has k distinct values. By the above, this is

- M 2% M
Hlﬁ:——” =+ [[—+—
c/71_ _ c _ T
o O e g by e i L Xgrey iy
for an arbitrarily large constant C' > 0. Summing up over all orderings, we obtain the probability of obtaining the
sample {iy, ..., i} is within (1 £ -L) times its probability of being sampled from y in a sample without replacement
of size k, where C>0isa sufﬁcrently large constant.

It remains to show Pr[E] < n~C for an arbitrarily large constant C' > 0. Here we use that for all j € {1,2,...,n},

R(j)=z; £ (2k)1/p Itail; (x) - Let ¥; be the number of trials until (and including the time) we sample the i-th
distinct item, given that we have just sampled ¢ — 1 distinct items. The total probability mass on the items we have
already sampled is at most i - 57 ||tail, (= )|IB, and thus the probability we re-sample an item already sampled is at most

<. It follows that E[Y;] < 2. Thus, the number of trials in the algorithm is stochastically dominated by Ef 1 Z;, where
Z is a geometric random variable with E[Z;] = 2. This sum is a negative binomial random variable, and by standard
tail bounds relating a sum of 1ndependent geometric random variables to binomial random variables[62]] EL is at most
Ck log n with probability 1 — — for an arbitrarily large constant C' > 0.

This completes the proof. O

We now analyze the memory in Theorem more precisely. Algorithm|l|runs » = O(k logn) independent perfect
¢,-sampling algorithms of [50]. The choice of r = O(klogn) is to ensure that the variation distance is at most Soly ()
however, with only » = O(k) such samplers, the same argument as in the proof of Theorem [F.1| gives variation distance
at most 2~9(). Now, each £,-sampler of [50] uses O(log® n(loglogn)?) bits of memory for 0 < p < 2, and uses
O(log3 n) bits of memory for p = 2. We also do not need to repeat the algorithm O(logn) times to create a high
probability of not outputting FAIL; indeed, already if with only constant probability the algorithm does not output
FAIL, we will still obtain k distinct samples with 2~©(*) failure probability provided we have a large enough = O(k)
number of such samplers.

Algorithm I also runs an ¢, rtHH method, and this uses O(k log n) bits of memory [52]. Consequently, to acheive

variation distance at most 2~ ©(*) Algorlthml uses O(klog® n(loglogn)?) bits of memory for 0 < p < 2, and

O(klog® n) bits of memory for p = 2.

We now show that for 0 < p < 2, the memory used of Algorithm [I]is best pos51ble for any algorithm, up to a

multiplicative O((loglogn)?) factor. For p = 2, we show our algorithm’s memory is optimal up to a multiplicative

O(logn) factor. Further, our lower bound holds even for any algorithm with the much weaker requirement of achieving

variation distance at most %, as opposed to the variation distance at most 2~ ©(%) that we achieve.

Theorem F.2. Any 1-pass turnstile streaming algorithm which outputs a set S of size k such that the distribution of S

has variation distance at most % from the distribution of a sample without replacement of size k from the distribution

w= (1., n), where pi; = %, requires Q(klog® n) bits of memory, provided k < n°° for a certain absolute
p

constant Cy > 0.

3See, also, e.g., https://math.stackexchange.com/questions/1565559/
tail-bound-for-sum-of-geometric-random-variables
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Proof. We use the fact that such a sample S can be used to find a constant fraction of the ¢,(k, 1) residual heavy
hitters in a data stream. Here we do not need to achieve residual error for our lower bound, and can instead define
such indices i to be those that satisfy [x;[” > ¢ ||z|2. Notice that there are at most k such indices 7, and any sample
S (with or without replacement) with variation distance at most 1/3 from a true sample has probability at least
1—(1-1/k)*-1/3>1—1/e—1/3 > .29 of containing the index i. By repeating our algorithm O(1) times, we
obtain a superset of size O (k) which contains any particular such index ¢ with arbitrarily large constant probability, and
these O(1) repetitions only increase our memory by a constant factor.

It is also well-known that there exists a point-query data structure, in particular the Count Sketch data structure
(151 67, which only needs O(log |S|) = O(log k) rows and thus O((k log k) log n) bits of memory, such that given
all the indices j in a set S, one can return all items j € S for which |z;[P > 1[|z(| and no items j € S for which
|2;|P < o [|z[|p. Here we avoid the need for O(logn) rows since we only need to union bound over correct estimates
in the set S.

In short, the above procedure allows us to, with arbitrarily large constant probability, return a set .S containing a random
.99 fraction of the indices j for which |z, [P > + b, and containing no index j for which [z;[P < o [|[|5.

We now use an existing Q(k log2 n) bit lower bound, which is stated for finding all the heavy hitters [52]), to show an

Q(klog® n) bit lower bound for the above task. This is in fact immediate from the proof of Theorem 9 of [52], which is
a reduction from the one-way communication complexity of the Augmented Indexing Problem and just requires any
particular heavy hitter index to be output with constant probability. In particular, our algorithm, combined with the
O((klog k) log n) bits of memory side data structure of [15]] described above, achieves this.

Consequently, the memory required of any 1-pass streaming algorithm for the sampling problem is at least Q(k log? n)—

O((klog k) logn) bits, which gives us an Q(k log® n) lower bound provided k < n<° for an absolute constant Cy > 0,
completing the proof. [

G Estimates of one-pass WORp

We first review the setup. Our one-pass WORp method returns the top £ keys by ;f as our sample .S and returns ;;( k41)
as the threshold. The estimate of f(v,) is O for z ¢ S and for z € S'is

—— f(?rl/p)

fvg) = — . 31
1 —exp (—rm( Yz )p)
VI 1)

We assume that f(w) is such that for some constant c,

Ve < 1/2,|f(1 4+ e)w) — f(w)] < cef(w) . (32)

‘We need to establish that
Bias[f(v.)] < O(e) f (1)
MSE(f(v)] < (1 + O(e)Var[f (1) | + O(e) f(1)?

—

where f(v,) are estimates obtained with a (perfect) p-ppswor sample.

Proof of Theorem[5.1] From (10, the rtHH sketch has the property that for all keys in the dataset,
125 = ¥ loe < V(i) - (33)
For sampled keys, |v;| > |1/}, ;)| and hence lvi—vr| < e[V eyl < elvi]. Using (6) we obtain that ||V, — v, || < e|vy].

From our assumption (32) , we have |f(v)) — f(va)| < cef (vy).

We consider the inclusion probability and frequency estimate of a partlcular key x, conditioned on fixed randomlzatlon
r, of all other keys z # z. The key z is included in the sample if 1/* > (k+1)- We consider the distribution of 1/*

as a function of r,, ~ EXp[1]. The value has a form of F + l/x/’l’g; , where the erro E satisfies [E| < e|vf; | ,)[. The

19



A PREPRINT - AUGUST 18, 2020

conditioned inclusion probability thus falls in the range

P P
P, = Priva/r}/” eyl > ;;(k)} =Pr [m < (VQEl) 1 =1—exp(— (Vm|> )

V¥ (lt1) :l:5|1/E*k) V¥ (kt1) :l:z—:|1/E*k)

We estimate p/, by

Pl =1—exp (—m(/\y‘“’ )p> . (34)

V¥ (k1)

This estimate has a small relative error. This due to the relative error in 77 and because |(1 — exp(—(1 =+ €)b))) — (1 —

exp(—b))| = O(e)(1 — exp(—b)) and ( V“;”k) )P) is an O(e) relative error approximation of (=<==—)P.

v* v () —E
We first consider the bias. Instead of using the unbiased inverse probability estimate f(v,,)/pl, when x is sampled (with
probability p/) our estimator (f(v.)/pl approximates both the numerator and the denominator.

In the numerator of the estimator, we replace f(v,) by the relative error approximation f(v.,). Therefore overall, we
use a small relative error estimate of the actual inverse probability estimate when it is non zero, which translates to a
bias that is O(e) f (vy).

We next bound the Mean Squared Error (MSE) of the estimator (I7). We express the variance contribution of exact
—
p-ppswor conditioned on the same randomization 7, of all keys z # x. Thisis Var[f(v,) ] = (1/p, — 1) f (v)?, where
P
Do = Pr[ym/r;/p 2 vyl =1—exp(— (V”f ) ). The MSE contribution is
(®)

plz(f(yalc)/p/z/ - f(Vx))Q + (1 - p;:)f(yz)2 . (35)

We observe that the approximate threshold (that determines p!,) approximates the perfect p-ppswor threshold: \1//\*( k) —
/

Vil < elviy)l- When p, < 1/2, (33) approximates Var[ﬂyz\) ] with relative error O(¢).

When p, is close to 1 this is dominated by O(e) f (v, )?.
O

We remark that our analysis of the error only assumed the rHH error bound (33)) which holds for all sketch types
including Counters. The bias analysis can be tightened for Count Sket ch that returns unbiased estimates of the
frequency.

H Pseudocode
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Algorithm 2: 2-pass WORp

Input: ¢, tHH method, sample size k, p, ¢, n,
Initialization:
Draw a random hash r, ~ D // Random map of keys x to 7.

1
¢<— glpn,k,q/p((s)
Initialize KeyHash // random hash function from strings to [n]

R.Initialize(k,v) // Initialize rHH structure randomization
Pass I: // Use composable aggregation (process input keys into rHH structures and merge
rHH structures)

begin

L Process data element e = (e.key, e.val) into rHH sketch R

R.Process(KeyHash(e.key), e.Va|/r1/p )

e.key // Generate and process output element

Pass I1: // For keys with top 2k estimates 1;:, collect exact frequencies vj.
Yy IS z aq

Initialize a composable top-2k structure T'. The structure stores for each key its priority and frequency. The structure
collects exact frequencies for the keys with top 2k priorities. Merge(T7, T%): Add up values and retain 3% top
priority keys.

Process data element ¢ = (e.key, e.val) into T’

begin

if e.key € T then
| Tle.key].val+ = e.val

else

est + R.Est[KeyHash(e.key)] // u/;‘e\y

if est > lowest priority in T then
Insert e.key to T’
Te.key].val + e.val
T|e.key].priority + est
if 171>2k then
| Eject lowest priority key from T

/p

Produce sample: Sort T by T'[z].val * s // actual v} for keys in T

Return (z, T'[x].val) for top-k keys and (k + 1)th T'[z].val P/

21



	1 Introduction
	2 Preliminaries
	2.1 Bottom-k sampling (ppswor and priority)
	2.2 Bottom-k sampling by power of frequency
	2.3 Residual heavy hitters (rHH)

	3 WORp Overview
	4 Two-pass WORp
	4.1 Practical optimizations

	5 One-pass WORp
	6 One-pass Total Variation Distance Guarantee
	7 Experiments
	A Properties of rHH sketches
	B Overview of the proof of Theorem 3.1
	B.1 Approximating Psi by simulations

	C Domination of the ratio distribution
	D Tail bounds on Rk,n,
	E Ratio of magnitudes of transformed weights
	F 1-pass with total variation distance on sample k-tuple: upper and lower bounds
	G Estimates of one-pass WORp
	H Pseudocode

