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Abstract— We consider the problem of randomly choosing
the sensors of a linear time-invariant dynamical system subject
to process and measurement noise. Each sensor is sampled
independently and from the same distribution for the purpose
of state estimation by Kalman filtering. Due to our randomized
sampling procedure, the estimation error covariance cannot be
bounded in a deterministic sense. Using tools from random
matrix theory, we derive probabilistic bounds on the steady-
state estimation error covariance in the semi-definite sense for
an arbitrary sampling distribution. Our bounds are functions
of several tunable parameters of interest, such as the number
of sampled sensors and the likelihood that our bounds hold. We
indirectly improve the performance of our Kalman filter for the
maximum eigenvalue metric by finding the optimal sampling
distribution. By minimizing the maximum eigenvalue of the
upper bound, we are able to minimize the maximum eigenvalue
of the steady-state estimation error covariance, the actual
metric of interest. We identify the subset of sensors to sample
with high frequency through the optimal sampling distribution.
We illustrate our findings through several insightful simulations
and comparisons with multiple sampling policies.

Index Terms— Sensor selection, Kalman filtering, Random
matrix theory

I. INTRODUCTION

In large-scale sensor networks, the problem of allocating
the fewest resources possible while simultaneously achieving
some minimal performance is computationally expensive
and, in some settings, infeasible. Examples of such scenarios
include mobile platforms to study the development of severe
weather [1], underwater sensing technologies to detect and
monitor the dispersal of chemical plumes [2], and smart
sensors to monitor traffic [3], to name a few. A common
theme is that the quantity of interest evolves in time. In the
presence of multiple sensors to choose from, the question
naturally arises: Can one select the sensors in an efficient
manner and, simultaneously, provide provable guarantees
on the estimation performance? If the Kalman filter is the
estimator for a linear time-invariant (LTI) dynamical system
subject to noise, then this paper provides an affirmative
answer for randomized sampling with replacement policies.

Sensor selection has a rich history in the control literature
— refer to [4] or [5] for a survey of early works. Metrics
provide a measure on the quality of a sensor selection.
Several metrics and efficient algorithms are discussed in
[6] and [7]. In the context of large sensor networks, one
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approach is to sample sensors in a randomized manner.
Such a sampling scheme offers computational efficiency at
the expense of yielding only probabilistic guarantees on the
quality of the sampled sensor selection. Notable early works
that studied random sampling of sensors and its effect on the
estimation error covariance of the Kalman filter include [8]
and [9]. In [10], [11], and [12], the submodularity property
of Kalman filter metrics and randomized sampling strategies
are addressed.

Recent works employ concentration inequalities to ad-
dress the sensor selection problem for randomized sampling
policies. In [13] and [14], the approximate nature of non-
submodular (non-supermodular) metrics in the Kalman filter
setting are studied in order to justify the efficacy of a greedy
heuristic. The notion of curvature is exploited in [14] in order
to quantify how close a metric is to being submodular and
bounds on the curvature are established by the Bernstein
inequality [15] for a limited setting. In [16] and [17], bounds
on observability Gramian metrics are established with high
probability using the Ahslwede-Winter inequality [18]. Using
the non-trivial result in [19], probabilistic guarantees on
nonlinear observability metrics are established in [16] for
uniform sampling without replacement. In [17], sampling
with replacement policies are addressed for observability
Gramian metrics of LTI dynamical systems. In this work,
a Gramian lower bound is derived in terms of the Gramian
of the original system for sensor placement at each location.
However, such a result comes at a cost because the lower
bound is no longer a bound of the original system. Instead,
the lower bound holds for a scaled version of the original
output system. In other words, guarantees on the observ-
ability Gramian are not directly established for the original
system and the utility of the Ahlswede-Winter inequality
[18] is not fully realized. By focusing on the observability
Gramian, [16] and [17] assume that process and measure-
ment noise are either non-existent or negligible. In this paper,
we address the more practical estimation problem, where the
sensor network and the process it is actively observing are
corrupted by Gaussian noise. We extend the application of
the Ahlswede-Winter inequality [18] for arbitrary sampling
with replacement policies. In contrast to [17], we establish
estimation performance bounds for the original system via
the Kalman filter.

A. Contributions

The contributions of this work are three-fold. First, using
the Ahlswede-Winter inequality [18], we derive upper and
lower bounds on the estimation error covariance in the



probabilistic sense. To our knowledge, we introduce the first
concentration inequality to bound the estimation error co-
variance in the semi-definite sense for an arbitrary sampling
with replacement policy. Probabilistic guarantees in the semi-
definite sense are appealing since they imply assurances on
several metrics of significance in state estimation, such as
the maximum eigenvalue, condition number, or trace of the
estimation error covariance, to name a few.

Second, we propose a search procedure for finding the
optimal sampling distribution that minimizes the maximum
eigenvalue of the upper bound for the steady-state estimation
error covariance. We confirm that the optimal sampling
distribution indirectly minimizes our actual metric of interest,
the maximum eigenvalue of the steady-state estimation error
covariance.

Third, we investigate the estimation performance and its
variability for the optimal sampling distribution. We numer-
ically compare the performance of our optimal sampling
distribution against the uniform sampling distribution and a
greedy heuristic.

B. Outline of the paper

This paper is organized as follows. Section II outlines the
randomized sampling policy and the linear dynamical system
under consideration. In Section III, we address the problem
of sensor selection in the Kalman filter setting. We derive
novel bounds on the steady-state estimation error covariance
in the probabilistic sense and propose an optimal sampling
distribution that indirectly improves estimation performance
for the maximum eigenvalue metric. In Section IV, we
present our numerical studies and comparisons with other
sampling strategies. Finally, we summarize our findings and
identify directions for future research in Section V. Due to
constraints, the proofs of all mathematical claims are detailed
in the online technical report [20].

II. PROBLEM FORMULATION
A. Notation

We summarize the notation employed in this paper.
Let A(-) and A(-) denote the minimum and maximum
eigenvalue of a Hermitian matrix argument, respectively. We
denote I, € R™*™ as the identity matrix and A™ as the
probability simplex in R™.

B. Sampling Scheme

We assume each sensor outputs only one measurement
Y5+ € R. For clarity, we refer to the individual sensors
available for sampling as candidate sensors. If a candidate
sensor is modeled by an LTI measurement model corrupted
by zero-mean Gaussian noise, i.e.,

_ T
Yjt = C; Ty + Ujt,

then the pair (c;, 0'?) is sufficient in completely describing
the measurement properties of the j-th candidate sensor,
where c;'-r denotes the sequence that linearly relates the state
74 to the output y;; and 0'? is the measurement variance
of Gaussian noise f15,¢. Let X := {(c1,07%),...,(¢cn,, 0% )}

denote the set of candidate pairs and n. specify the number
of candidate sensors under consideration.

In our sampling scheme, n, sensors are chosen with
replacement out of a sampling pool of n, candidate sensors.
In other words, ng pairs are chosen with replacement from
distribution X. Each candidate sensor is sampled with some
given probability and the list of sampling probabilities is
specified by distribution p € A™. Let S € {1,...,n.}"
denote the indices of the ng sampled candidate sensors.
Throughout this paper, quantities that are either directly
or indirectly dependent on our randomly chosen sensor
selection are accompanied by a subscript S notation. We
assume the measurement properties (¢, o) of each candidate
sensor are known prior to sampling.

C. Model

Consider the tuple (A,Cs,Q, Rs, I,,), an LTI state and
measurement model subject to Gaussian noise, i.e.,

Tpp1 = Az + wy, 1)
yr = Cswy + Iy vy,

where x; € R™ is the state vector, ¥, € R™ is the output
vector, and ng specifies the total number of measurements
at time instant t. Let A € R™*™ and Cg € R"=*™
denote the state and output matrix, respectively. Each row
of Cs consists of row vector ¢!, where c¢; € R™ relates
the state x; to the output y;; for the j-th sampled sensor.
Let w; ~ N(0,Q) and v, ~ N(0, Rs) denote the process
and measurement noise, respectively. Assume {w;}$°, and
{v:}:2, are uncorrelated, zero-mean, white Gaussian pro-
cesses. Additional assumptions on the noise properties of w;
and v; are necessary for subsequent derivations.

Assumption 1. Noise covariance matrices () and Rg are
time-invariant and positive definite.

Assumption 2. Measurement covariance Rgs is diagonal,
i.e., v consists of ng uncorrelated random variables, where
v and sz denote the measurement noise and variance,
respectively, corresponding to the j-th sampled sensor.

Note that the pair (cj,or]z) is sampled with replacement
from distribution X for all j € {1,...,n,} as outlined in
Section II-B.

D. Sensor Selection for Kalman Filtering

Under the assumptions of model linearity and Gaussian
noise, the Kalman filter is a minimum mean squared error
(MMSE) estimator that computes an optimal estimate of state
x; in the mean-squared sense. If our measurement vector
y¢ 1s available at each time instant ¢ for sensor fusion in
a centralized manner, then the covariance information form
of the Kalman filter can be formulated into the following
recursive equation,

Psi=(APs, A" +Q)" '+ C§R5'Cs, (2

where Ps; denotes the filtered covariance of the state esti-
mation error at time instant ¢. If (A, Cs) and (A, Q'/?) are



detectable and stabilizable, respectively, then filtered error
covariance Ps ; converges to a steady-state solution Ps [21].
Note the dependence of CZR5'Cg on the row vector ¢
and measurement variance o2 of each randomly sampled
sensor. In order to identify the contribution of each randomly
sampled sensor in C% Rg'Cyg, Assumption 2 is established.
If a symmetric, positive semi-definite, random matrix Z; is
generated by the pair (¢;,07) of the j-th randomly sampled
sensor, i.e.,

Zj = (o7 ¢j) o5 ey)T,
then, under Assumption 2, CgRgle can be decomposed
into a finite sum of independent and identically distributed
(i.i.d.) random matrices,

Ng Ns
T p—1 _ -2 7T _ .
CER5'Cs = cjo;%] =) 7
j=1

j=1

Let Z4, ..., Z,, denote independent copies of random vari-
able Z, i.e., independently sampled matrices with the same
distribution as Z. The expectation of random matrices Z and
CTRS'Cy are given by

Ne

E[Z] =Y p;Z;, E[C§Rs'Cs] =n.E[Z].
j=1

We construct Z; by the pair (c;, 0']2-), ie.,

-1 —1_\T
Zj = (o5 ¢;)(o; ¢))
for all j € {1,...,n.}. Symmetric, positive semi-definite
matrices Z,...,2,, are possible realizations of random
variable Z.

E. Problem Statement

Our focus is on the following complementary problems.

Problem 1. Given an arbitrary sampling distribution p,
determine the upper and lower bounds on the steady-state
error covariance Ps in the semi-definite sense.

Problem 2. Find an optimal sampling distribution p* that
minimizes the maximum eigenvalue of the upper bound Py
on the steady-state error covariance Ps.

Problem 1 asks whether some minimal performance can
be guaranteed with high probability, regardless of the sam-
pling distribution under consideration. If such assurances
exist, then the next question is whether there exists some
ideal sampling scheme that optimizes our state estimation
performance. Problem 2 addresses the latter and asks how
one can strategically choose a sensor selection to minimize a
performance measure, specifically, the maximum eigenvalue
of Ps. Since A(Ps) is a random variable, it cannot be directly
minimized. Instead, the maximum eigenvalue of upper bound
Py is minimized in order to indirectly influence our actual
metric of interest. Solutions to Problem 1 and Problem 2 are
found in Section III-A and Section III-B, respectively.

III. MAIN RESULTS

First, we derive probabilistic bounds on the steady-state
error covariance Pg in the semi-definite sense. Next, the
expected steady-state solution E[Ps]| and its relation to
the bounds Py and Pp are explored. Lastly, the sampling
distribution p* that optimally minimizes \(Py) is obtained
in order to indirectly minimize \(Ps) and improve our state
estimation performance.

A. Steady-State Solution Guarantees

Before establishing bounds on the steady-state solution
Pg, the filtered error covariance in the deterministic setting is
investigated. If we assume n sensors are chosen beforehand
and not randomly sampled, then the output matrix and
measurement covariance of an LTI system are deterministic.
Lemma 1 outlines the conditions required to deterministically
upper and lower bound the filtered error covariance of an
arbitrary LTI system in the semi-definite sense.

Lemma 1. (Deterministic Bounds) Consider the following
LTI systems, (A, Y31/2, Q, 113, Hglm), (A, T2,Q,1, I,,,),
and (A, Y11/2’ Q, Hl,Hfl/z), and define their filtered error
covariance matrices, i.e.,

Pitl = (Apl,tflAT +Q) !+ Y5,

Pz_,tl = (AP2,t—1AT + Q)+ Vs,

P3_,t1 = (APS,t—lAT +Q) '+ 1,
respectively, such that Y; = FiTHi_lfi for all i € {1,2,3}.
If the following conditions are satisfied,
(C1) 0 XY, XY, XY3, and
(C2) 0= P, 12 P 1 23P3 1, and
(C3) (A, },31/2), (A,T2), and (A,Y11/2) are detectable,
then Py < P, < P3 and

Py 1 2Py 1 2 P3yq, VE>0.

Lemma 1 in tandem with the Ahlswede-Winter inequality
[18], Theorem 3 in the appendix, yields probabilistic bounds
in the semi-definite sense on the steady-state solution Ps for
an arbitrary sampling distribution p.

Theorem 1. (Probabilistic Steady-State Bourgds)
Suppose m,ns €N, § € (0,1), p € [1, W) and

4p 2m
=4/ —log — 1
€ \/ns g € (0,1) 3)

for specified sampling distribution p, such that Z; < pE[Z]
forall j € {1,...,n.}. Assume (A,E[Z])Y/?) and (A,Cs)
are detectable and (A, Q'/?) is stabilizable. If Py and Py,
denote steady-state solutions, i.e.,

Pyt = (APGAT + Q)7 + (1 — e)n E[Z],

Pt = (AP, AT + Q)7 + (1 + e)nE[Z],

and if the steady-state error covariance Ps satisfies

Psl = (APsAT + Q)™ + CER5'Cy,



then
P[P, < Ps <X Py] > (1 -9).
A few comments are summarized below.

Remark 1. If m is fixed, then the only parameters that can
be tuned to guarantee ¢ € (0,1) are 0, ng, and p. Quantities
0 and ng can be easily tuned since they are user-specified.
In contrast, tuning the value of p is a non-trivial problem
due to its dependence on the sampling distribution p.

Remark 2. The detectability assumptions of Theorem 1 can

be satisfied by one of the following sufficient conditions:

(S1) (A, c;j) is observable for all j € {1,...,n.}, or

(S§2) Prior to randomly selecting ns sensors as outlined in
Section 11, if n, additional sensors are first strategically
sampled from the sampling pool of candidate sensors and
shown to collectively guarantee observability of the system,
then the steady-state solutions Py, Pr, and Ps will always
exist, regardless of the sampling distribution p, assuming
the stabilizability condition is satisfied.

Remark 3. From the dependence in (3), we conclude that
for the analysis to be applicable, we require

4 2m

N > 6—5 log 5

Thus, the number of samples show a logarithmic dependence
on m and 1/8, which is reasonable. However, the 1]¢>
dependence is a consequence of sampling with replacement
and the central limit theorem which is the key result used
in the proof of Theorem 3, the Ahlswede-Winter inequality

[18], that is employed to establish Theorem 1.

In order to measure the average state estimation perfor-
mance of our sampling scheme in Section II, we introduce
an analytical lower bound on the expectation of the steady-
state solution Pgs that closely approximates it.

Lemma 2. (Analytical Lower Bound) If (A,E[Z])'/?) and
(A, QY %) are detectable and stabilizable, respectively, and
if L denotes the solution to the following,

L7t = (ALAT + Q)™ + n.E[Z],
then L < E[Ps].

Lemma 2 is used to explain how the bounds Py and Pr,
of Theorem 1 are related to the expected steady-state error
covariance E[Ps].

Remark 4. In the limit as € tends to 0, Py and Py, tend to
identical solutions, i.e.,

lim Pyl = (AP AT + Q)7 + nsE[Z],
lim Pt = (AP, AT + Q)7 + nsE[Z].
For this special case, Py and Pp, are denoted by Pr, and
Pt = (AP AT + Q)7 + n E[Z]. 4)

A simple comparison of Lemma 2 and (4) shows that L
and P are identical. This implies that Py and Pr, bound a

lower bound of E[Ps|, denoted as L, for all ¢ € (0,1). As €
decreases (increases), Py and Pr, converge towards (diverge
from) L in the semi-definite sense.

B. Optimal Sampling Scheme

In Section III-A, the steady-state error covariance is
bounded in the probabilistic sense for an arbitrary sampling
distribution p. Due to its dependence on a randomly chosen
sensor selection S, the steady-state solution Ps cannot
directly be influenced. Instead, the bounds Py and Pj of
Theorem 1 must be used to indirectly affect state estimation
performance. In this section, the maximum eigenvalue of the
steady-state solution Ps is the performance metric of interest.
By minimizing the maximum eigenvalue of the upper bound

Py, M(Ps) is similarly minimized with high probability.
Theorem 2. (Optimal Sampling Distribution) A sampling

distribution pj, = {pj}i, that optimally minimizes M Py)
with respect to a selected p € [LW;;/&) and an
arbitrarily small 1 > 0 is computed by solving the following

semi-definite program (SDP).

max A
AvX:{Pi}?zcl
s.t. A>0, X =nly, {pi}ic, € A"
4p 2m
€= ’/ni,;lOgT € (0,1)
{X + ATQ7 1A (ATQl)] -0
@y )"

Fg = Q71 + (1 — E)TLS ijZj — )\Im

j=1
Z, <p ijzj, Vie{l,...,n.}
j=1

Theorem 2 computes the sampling distribution p; for a
selected p and 7. In order to find the sampling distribution p*
that optimally minimizes \(Py), irrespective of p, a search
algorithm is necessary.

Remark 5. One should expect that minimizing p will min-
imize \(Py) upon inspection of constraint (3), since mini-
mizing p minimizes € and, subsequently, tightens the bounds
outlined in Theorem 1. Though this heuristic can be used to
identify a relatively minimal \(Py), it cannot be guaranteed
to find the global minimum. Instead, the optimal p* that
globally minimizes \(Py) can be found incrementally. By
employing a binary or bisection search procedure throughout
the feasible regime of p, Theorem 2 can be consecutively
applied to find the p that globally minimizes \(Py) within
a predefined constant v of the optimal p*.

IV. SIMULATION RESULTS

In this section, the optimal sampling distribution found in
Section III-B is demonstrated to substantially minimize the
maximum eigenvalue of upper bound Py relative to a trivial
uniform sampling distribution. We also show that relative to
a greedy heuristic the estimation performance of our optimal



sampling distribution is consistently better on-average for the
maximum eigenvalue metric.

In our numerical analysis, the state dimension m = 3,
the number of candidate sensors n., = 200, and 6 = 0.10.
We assume the process covariance matrix (Q = 0.5 [,,, and
the measurement noise variance of each candidate sensor
is identical, such that a'J2» = 0.5 for all j € {1,...,n.}.
The entries of state matrix A and output vector ¢ for each
candidate sensor are chosen independently and uniformly at
random out of the interval [0, 1]. Detectability conditions of
Theorem 1 are satisfied by verifying that the synthetically
generated pair (A, ¢;) is observable for all j € {1,...,n.}.

In Figure 1, the optimal sampling distribution pj, and its
corresponding A\(Py) are computed using Theorem 2 for
varying p values and a fixed number of sampled sensors
ns = 100. Figure 1 confirms our discussion in Remark 5,
such that minimizing p tends to minimize A(Py) in general.
Furthermore, the nature of the maximum eigenvalue curve
over the regime of feasible p values leads us to conjecture
that A\(Py) is a convex function of p. If proven true, the
search procedure outlined in Section III-B would be obsolete
and the globally minimum A(Py) could be solved directly
with minor alterations to Theorem 2.

In Figure 2, the optimal sampling distribution p* is plotted.
Note that sampling distribution p* is sparse and Figure 2
identifies the small subset of candidate sensors collectively
responsible for minimizing A(Py;) by the greatest margin.

In Figure 3, the sampling distribution p* that globally
minimizes \(Py) is computed for varying number of sam-
pled sensors and compared against the A(P) curve for
a trivial uniform sampling distribution as a benchmark.
Figure 3 shows that the uniform sampling distribution is only
applicable for a limited regime of sampled sensors. In fact, if
too few sensors are sampled, then the probabilistic guarantees
of Theorem 1 no longer hold. In contrast, the A(Py) curve
for the optimal sampling distribution p* requires significantly
fewer sampled sensors to substantially minimize the maxi-
mum eigenvalue of upper bound Fp.

In Figure 4, quantities \(Py), A(Pr), and \(Ps) are
plotted for varying number of sampled sensors and compared
against the A\(P) obtained via a greedy heuristic. For each n
the maximum eigenvalue of bounds Py and P, are computed
using their corresponding optimal sampling distribution p*.
Similarly, for each ng and corresponding optimal distribution
p*, the average maximum eigenvalue of steady-state solution
Ps is estimated by 100 Monte Carlo trials. In the greedy
heuristic, ng sensors are sampled with replacement out of
the sampling pool of candidate sensors. At each sampling
instant, the candidate sensor that minimizes A(P) is greedily
chosen. Figure 4 shows that the average \(Ps) generated by
sampling distribution p* is consistently smaller than the \(P)
of the greedy heuristic. In other words, the average A(Ps)
consistently outperforms the greedily chosen \(P).

V. CONCLUSION

In this paper, we consider the sensor selection problem in
the context of state estimation for the Kalman filter. Novel

0.25
0.2
015
g
|<
0.1+
0.05 -
0
2.5 3 35 4 4.5 5 5.5
P
Fig. 1. Maximum eigenvalue of the upper bound Py for a limited regime
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Fig. 2. Optimal sampling distribution p* that globally minimizes A(Py).

bounds on the steady-state error covariance of a randomly
sampled sensor selection were derived in the probabilistic
sense. We confirmed that the sampling distribution that
minimizes the maximum eigenvalue of the upper bound
indirectly minimizes the maximum eigenvalue of the steady-
state error covariance. Our simulations demonstrated that the
optimal sampling distribution significantly outperforms the
trivial uniform sampling distribution in terms of the maxi-
mum eigenvalue of the upper bound. A numerical analysis
showed that the maximum eigenvalue of the steady-state
error covariance generated by the optimal sampling distribu-
tion consistently outperforms on-average a greedy heuristic.
Our results are expected to be significant in the analysis of
large sensor networks, since manually choosing the sampling
distribution that minimizes a non-trivial objective function is
infeasible.

Future directions include extending our analytical guaran-
tees on estimation performance to the constrained setting,
where each candidate sensor is limited in availability and
cannot be sampled with replacement indefinitely.
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APPENDIX

A non-trivial inequality from random matrix theory,
known as the Ahlswede-Winter inequality [18], allows us to
bound sums of independent positive semi-definite matrices.

Theorem 3. (Ahlswede-Winter Inequality) Let Z be a
random, symmetric, positive semi-definite m X m matrix.
Define U = E[Z] and suppose that Z < pU almost surely,
for some scalar p > 1. Let Z1,. .., Zy,, denote independent
copies of Z, i.e., independently sampled matrices with the
same distribution as Z. For any € € (0, 1), we have
]. s 52’”5
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(1-e) *nsz T2 (14U| > 1-2me T

j=1

Theorem 3 is Corollary 2.2.2 in [22] with minor alterations

to the notation.



