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Abstract— We consider the problem of randomly choosing
the sensors of a linear time-invariant dynamical system subject
to process and measurement noise. Each sensor is sampled
independently and from the same distribution for the purpose
of state estimation by Kalman filtering. Due to our randomized
sampling procedure, the estimation error covariance cannot be
bounded in a deterministic sense. Using tools from random
matrix theory, we derive probabilistic bounds on the steady-
state estimation error covariance in the semi-definite sense for
an arbitrary sampling distribution. Our bounds are functions
of several tunable parameters of interest, such as the number
of sampled sensors and the likelihood that our bounds hold. We
indirectly improve the performance of our Kalman filter for the
maximum eigenvalue metric by finding the optimal sampling
distribution. By minimizing the maximum eigenvalue of the
upper bound, we are able to minimize the maximum eigenvalue
of the steady-state estimation error covariance, the actual
metric of interest. We identify the subset of sensors to sample
with high frequency through the optimal sampling distribution.
We illustrate our findings through several insightful simulations
and comparisons with multiple sampling policies.

Index Terms— Sensor selection, Kalman filtering, Random
matrix theory

I. INTRODUCTION

In large-scale sensor networks, the problem of allocating

the fewest resources possible while simultaneously achieving

some minimal performance is computationally expensive

and, in some settings, infeasible. Examples of such scenarios

include mobile platforms to study the development of severe

weather [1], underwater sensing technologies to detect and

monitor the dispersal of chemical plumes [2], and smart

sensors to monitor traffic [3], to name a few. A common

theme is that the quantity of interest evolves in time. In the

presence of multiple sensors to choose from, the question

naturally arises: Can one select the sensors in an efficient

manner and, simultaneously, provide provable guarantees

on the estimation performance? If the Kalman filter is the

estimator for a linear time-invariant (LTI) dynamical system

subject to noise, then this paper provides an affirmative

answer for randomized sampling with replacement policies.

Sensor selection has a rich history in the control literature

– refer to [4] or [5] for a survey of early works. Metrics

provide a measure on the quality of a sensor selection.

Several metrics and efficient algorithms are discussed in

[6] and [7]. In the context of large sensor networks, one
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approach is to sample sensors in a randomized manner.

Such a sampling scheme offers computational efficiency at

the expense of yielding only probabilistic guarantees on the

quality of the sampled sensor selection. Notable early works

that studied random sampling of sensors and its effect on the

estimation error covariance of the Kalman filter include [8]

and [9]. In [10], [11], and [12], the submodularity property

of Kalman filter metrics and randomized sampling strategies

are addressed.

Recent works employ concentration inequalities to ad-

dress the sensor selection problem for randomized sampling

policies. In [13] and [14], the approximate nature of non-

submodular (non-supermodular) metrics in the Kalman filter

setting are studied in order to justify the efficacy of a greedy

heuristic. The notion of curvature is exploited in [14] in order

to quantify how close a metric is to being submodular and

bounds on the curvature are established by the Bernstein

inequality [15] for a limited setting. In [16] and [17], bounds

on observability Gramian metrics are established with high

probability using the Ahslwede-Winter inequality [18]. Using

the non-trivial result in [19], probabilistic guarantees on

nonlinear observability metrics are established in [16] for

uniform sampling without replacement. In [17], sampling

with replacement policies are addressed for observability

Gramian metrics of LTI dynamical systems. In this work,

a Gramian lower bound is derived in terms of the Gramian

of the original system for sensor placement at each location.

However, such a result comes at a cost because the lower

bound is no longer a bound of the original system. Instead,

the lower bound holds for a scaled version of the original

output system. In other words, guarantees on the observ-

ability Gramian are not directly established for the original

system and the utility of the Ahlswede-Winter inequality

[18] is not fully realized. By focusing on the observability

Gramian, [16] and [17] assume that process and measure-

ment noise are either non-existent or negligible. In this paper,

we address the more practical estimation problem, where the

sensor network and the process it is actively observing are

corrupted by Gaussian noise. We extend the application of

the Ahlswede-Winter inequality [18] for arbitrary sampling

with replacement policies. In contrast to [17], we establish

estimation performance bounds for the original system via

the Kalman filter.

A. Contributions

The contributions of this work are three-fold. First, using

the Ahlswede-Winter inequality [18], we derive upper and

lower bounds on the estimation error covariance in the



probabilistic sense. To our knowledge, we introduce the first

concentration inequality to bound the estimation error co-

variance in the semi-definite sense for an arbitrary sampling

with replacement policy. Probabilistic guarantees in the semi-

definite sense are appealing since they imply assurances on

several metrics of significance in state estimation, such as

the maximum eigenvalue, condition number, or trace of the

estimation error covariance, to name a few.

Second, we propose a search procedure for finding the

optimal sampling distribution that minimizes the maximum

eigenvalue of the upper bound for the steady-state estimation

error covariance. We confirm that the optimal sampling

distribution indirectly minimizes our actual metric of interest,

the maximum eigenvalue of the steady-state estimation error

covariance.

Third, we investigate the estimation performance and its

variability for the optimal sampling distribution. We numer-

ically compare the performance of our optimal sampling

distribution against the uniform sampling distribution and a

greedy heuristic.

B. Outline of the paper

This paper is organized as follows. Section II outlines the

randomized sampling policy and the linear dynamical system

under consideration. In Section III, we address the problem

of sensor selection in the Kalman filter setting. We derive

novel bounds on the steady-state estimation error covariance

in the probabilistic sense and propose an optimal sampling

distribution that indirectly improves estimation performance

for the maximum eigenvalue metric. In Section IV, we

present our numerical studies and comparisons with other

sampling strategies. Finally, we summarize our findings and

identify directions for future research in Section V. Due to

constraints, the proofs of all mathematical claims are detailed

in the online technical report [20].

II. PROBLEM FORMULATION

A. Notation

We summarize the notation employed in this paper.

Let λ(·) and λ(·) denote the minimum and maximum

eigenvalue of a Hermitian matrix argument, respectively. We

denote In ∈ R
n×n as the identity matrix and ∆n as the

probability simplex in R
n.

B. Sampling Scheme

We assume each sensor outputs only one measurement

yj,t ∈ R. For clarity, we refer to the individual sensors

available for sampling as candidate sensors. If a candidate

sensor is modeled by an LTI measurement model corrupted

by zero-mean Gaussian noise, i.e.,

yj,t = c
T
j xt + µj,t,

then the pair (cj ,σ
2
j ) is sufficient in completely describing

the measurement properties of the j-th candidate sensor,

where c
T
j denotes the sequence that linearly relates the state

xt to the output yj,t and σ
2
j is the measurement variance

of Gaussian noise µj,t. Let X := {(c1,σ
2
1), . . . , (cnc

,σ2
nc
)}

denote the set of candidate pairs and nc specify the number

of candidate sensors under consideration.

In our sampling scheme, ns sensors are chosen with

replacement out of a sampling pool of nc candidate sensors.

In other words, ns pairs are chosen with replacement from

distribution X . Each candidate sensor is sampled with some

given probability and the list of sampling probabilities is

specified by distribution p ∈ ∆nc . Let S ∈ {1, . . . , nc}
ns

denote the indices of the ns sampled candidate sensors.

Throughout this paper, quantities that are either directly

or indirectly dependent on our randomly chosen sensor

selection are accompanied by a subscript S notation. We

assume the measurement properties (c,σ2) of each candidate

sensor are known prior to sampling.

C. Model

Consider the tuple (A,CS , Q,RS , Im), an LTI state and

measurement model subject to Gaussian noise, i.e.,

xt+1 = Axt + wt,

yt = CS xt + Im vt,
(1)

where xt ∈ R
m is the state vector, yt ∈ R

ns is the output

vector, and ns specifies the total number of measurements

at time instant t. Let A ∈ R
m×m and CS ∈ R

ns×m

denote the state and output matrix, respectively. Each row

of CS consists of row vector cTj , where cj ∈ R
m relates

the state xt to the output yj,t for the j-th sampled sensor.

Let wt ∼ N (0, Q) and vt ∼ N (0, RS) denote the process

and measurement noise, respectively. Assume {wt}
∞
t=0 and

{vt}
∞
t=0 are uncorrelated, zero-mean, white Gaussian pro-

cesses. Additional assumptions on the noise properties of wt

and vt are necessary for subsequent derivations.

Assumption 1. Noise covariance matrices Q and RS are

time-invariant and positive definite.

Assumption 2. Measurement covariance RS is diagonal,

i.e., vt consists of ns uncorrelated random variables, where

vj,t and σ2
j denote the measurement noise and variance,

respectively, corresponding to the j-th sampled sensor.

Note that the pair (cj , σ
2
j ) is sampled with replacement

from distribution X for all j ∈ {1, . . . , ns} as outlined in

Section II-B.

D. Sensor Selection for Kalman Filtering

Under the assumptions of model linearity and Gaussian

noise, the Kalman filter is a minimum mean squared error

(MMSE) estimator that computes an optimal estimate of state

xt in the mean-squared sense. If our measurement vector

yt is available at each time instant t for sensor fusion in

a centralized manner, then the covariance information form

of the Kalman filter can be formulated into the following

recursive equation,

P−1
S,t = (APS,t−1A

T +Q)−1 + CT
SR

−1
S CS , (2)

where PS,t denotes the filtered covariance of the state esti-

mation error at time instant t. If (A,CS) and (A,Q1/2) are



detectable and stabilizable, respectively, then filtered error

covariance PS,t converges to a steady-state solution PS [21].

Note the dependence of CT
SR

−1
S CS on the row vector cT

and measurement variance σ2 of each randomly sampled

sensor. In order to identify the contribution of each randomly

sampled sensor in CT
SR

−1
S CS , Assumption 2 is established.

If a symmetric, positive semi-definite, random matrix Zj is

generated by the pair (cj , σ
2
j ) of the j-th randomly sampled

sensor, i.e.,

Zj = (σ−1
j cj)(σ

−1
j cj)

T ,

then, under Assumption 2, CT
SR

−1
S CS can be decomposed

into a finite sum of independent and identically distributed

(i.i.d.) random matrices,

CT
SR

−1
S CS =

ns
∑

j=1

cj σ
−2
j cTj =

ns
∑

j=1

Zj .

Let Z1, . . . , Zns
denote independent copies of random vari-

able Z, i.e., independently sampled matrices with the same

distribution as Z. The expectation of random matrices Z and

CT
SR

−1
S CS are given by

E[Z] =

nc
∑

j=1

pjZj , E[CT
SR

−1
S CS ] = nsE[Z].

We construct Zj by the pair (cj ,σ
2
j ), i.e.,

Zj = (σ−1
j cj)(σ

−1
j cj)

T

for all j ∈ {1, . . . , nc}. Symmetric, positive semi-definite

matrices Z1, . . . ,Znc
are possible realizations of random

variable Z.

E. Problem Statement

Our focus is on the following complementary problems.

Problem 1. Given an arbitrary sampling distribution p,

determine the upper and lower bounds on the steady-state

error covariance PS in the semi-definite sense.

Problem 2. Find an optimal sampling distribution p∗ that

minimizes the maximum eigenvalue of the upper bound PU

on the steady-state error covariance PS .

Problem 1 asks whether some minimal performance can

be guaranteed with high probability, regardless of the sam-

pling distribution under consideration. If such assurances

exist, then the next question is whether there exists some

ideal sampling scheme that optimizes our state estimation

performance. Problem 2 addresses the latter and asks how

one can strategically choose a sensor selection to minimize a

performance measure, specifically, the maximum eigenvalue

of PS . Since λ(PS) is a random variable, it cannot be directly

minimized. Instead, the maximum eigenvalue of upper bound

PU is minimized in order to indirectly influence our actual

metric of interest. Solutions to Problem 1 and Problem 2 are

found in Section III-A and Section III-B, respectively.

III. MAIN RESULTS

First, we derive probabilistic bounds on the steady-state

error covariance PS in the semi-definite sense. Next, the

expected steady-state solution E[PS ] and its relation to

the bounds PU and PL are explored. Lastly, the sampling

distribution p∗ that optimally minimizes λ(PU ) is obtained

in order to indirectly minimize λ(PS) and improve our state

estimation performance.

A. Steady-State Solution Guarantees

Before establishing bounds on the steady-state solution

PS , the filtered error covariance in the deterministic setting is

investigated. If we assume ns sensors are chosen beforehand

and not randomly sampled, then the output matrix and

measurement covariance of an LTI system are deterministic.

Lemma 1 outlines the conditions required to deterministically

upper and lower bound the filtered error covariance of an

arbitrary LTI system in the semi-definite sense.

Lemma 1. (Deterministic Bounds) Consider the following

LTI systems, (A, Y
1/2
3 , Q,Π3,Π

−1/2
3 ), (A,Γ2, Q,Π2, Im),

and (A, Y
1/2
1 , Q,Π1,Π

−1/2
1 ), and define their filtered error

covariance matrices, i.e.,

P−1
1,t = (AP1,t−1A

T +Q)−1 + Y3,

P−1
2,t = (AP2,t−1A

T +Q)−1 + Y2,

P−1
3,t = (AP3,t−1A

T +Q)−1 + Y1,

respectively, such that Yi = ΓT
i Π

−1
i Γi for all i ∈ {1, 2, 3}.

If the following conditions are satisfied,

(C1) 0 � Y1 � Y2 � Y3, and

(C2) 0 � P1,−1 � P2,−1 � P3,−1, and

(C3) (A, Y
1/2
3 ), (A,Γ2), and (A, Y

1/2
1 ) are detectable,

then P1 � P2 � P3 and

P1,t−1 � P2,t−1 � P3,t−1, ∀t ≥ 0.

Lemma 1 in tandem with the Ahlswede-Winter inequality

[18], Theorem 3 in the appendix, yields probabilistic bounds

in the semi-definite sense on the steady-state solution PS for

an arbitrary sampling distribution p.

Theorem 1. (Probabilistic Steady-State Bounds)

Suppose m,ns ∈ N, δ ∈ (0, 1), ρ ∈
[

1, nsε
2

4 log (2m/δ)

)

and

ε =

√

4ρ

ns
log

2m

δ
∈ (0, 1) (3)

for specified sampling distribution p, such that Zj � ρE[Z]
for all j ∈ {1, . . . , nc}. Assume (A,E[Z]1/2) and (A,CS)
are detectable and (A,Q1/2) is stabilizable. If PU and PL

denote steady-state solutions, i.e.,

P−1
U = (APUA

T +Q)−1 + (1− ε)nsE[Z],

P−1
L = (APLA

T +Q)−1 + (1 + ε)nsE[Z],

and if the steady-state error covariance PS satisfies

P−1
S = (APSA

T +Q)−1 + CT
SR

−1
S CS ,



then

P[PL � PS � PU ] ≥ (1− δ).

A few comments are summarized below.

Remark 1. If m is fixed, then the only parameters that can

be tuned to guarantee ε ∈ (0, 1) are δ, ns, and ρ. Quantities

δ and ns can be easily tuned since they are user-specified.

In contrast, tuning the value of ρ is a non-trivial problem

due to its dependence on the sampling distribution p.

Remark 2. The detectability assumptions of Theorem 1 can

be satisfied by one of the following sufficient conditions:

(S1) (A, cj) is observable for all j ∈ {1, . . . , nc}, or

(S2) Prior to randomly selecting ns sensors as outlined in

Section II, if na additional sensors are first strategically

sampled from the sampling pool of candidate sensors and

shown to collectively guarantee observability of the system,

then the steady-state solutions PU , PL, and PS will always

exist, regardless of the sampling distribution p, assuming

the stabilizability condition is satisfied.

Remark 3. From the dependence in (3), we conclude that

for the analysis to be applicable, we require

ns ≥
4ρ

ε2
log

2m

δ
.

Thus, the number of samples show a logarithmic dependence

on m and 1/δ, which is reasonable. However, the 1/ε2

dependence is a consequence of sampling with replacement

and the central limit theorem which is the key result used

in the proof of Theorem 3, the Ahlswede-Winter inequality

[18], that is employed to establish Theorem 1.

In order to measure the average state estimation perfor-

mance of our sampling scheme in Section II, we introduce

an analytical lower bound on the expectation of the steady-

state solution PS that closely approximates it.

Lemma 2. (Analytical Lower Bound) If (A,E[Z]1/2) and

(A,Q1/2) are detectable and stabilizable, respectively, and

if L denotes the solution to the following,

L−1 = (ALAT +Q)−1 + nsE[Z],

then L � E[PS ].

Lemma 2 is used to explain how the bounds PU and PL

of Theorem 1 are related to the expected steady-state error

covariance E[PS ].

Remark 4. In the limit as ε tends to 0, PU and PL tend to

identical solutions, i.e.,

lim
ε→0

P−1
U = (APUA

T +Q)−1 + nsE[Z],

lim
ε→0

P−1
L = (APLA

T +Q)−1 + nsE[Z].

For this special case, PU and PL are denoted by PI , and

P−1
I = (APIA

T +Q)−1 + nsE[Z]. (4)

A simple comparison of Lemma 2 and (4) shows that L
and PI are identical. This implies that PU and PL bound a

lower bound of E[PS ], denoted as L, for all ε ∈ (0, 1). As ε
decreases (increases), PU and PL converge towards (diverge

from) L in the semi-definite sense.

B. Optimal Sampling Scheme

In Section III-A, the steady-state error covariance is

bounded in the probabilistic sense for an arbitrary sampling

distribution p. Due to its dependence on a randomly chosen

sensor selection S , the steady-state solution PS cannot

directly be influenced. Instead, the bounds PU and PL of

Theorem 1 must be used to indirectly affect state estimation

performance. In this section, the maximum eigenvalue of the

steady-state solution PS is the performance metric of interest.

By minimizing the maximum eigenvalue of the upper bound

PU , λ(PS) is similarly minimized with high probability.

Theorem 2. (Optimal Sampling Distribution) A sampling

distribution p∗ρ = {p∗i }
nc

i=1 that optimally minimizes λ(PU )

with respect to a selected ρ ∈
[

1, nsε
2

4 log (2m/δ)

)

and an

arbitrarily small η > 0 is computed by solving the following

semi-definite program (SDP).

max
λ,X,{pi}

nc

i=1

λ

s.t. λ > 0, X � ηIm, {pi}
nc

i=1 ∈ ∆nc

ε =

√

4ρ

ns
log

2m

δ
∈ (0, 1)

[

X +ATQ−1A (ATQ−1)
(ATQ−1)T Γ3

]

� 0

Γ3 = Q−1 + (1− ε)ns

nc
∑

j=1

pjZj − λIm

Zi � ρ

nc
∑

j=1

pjZj , ∀i ∈ {1, . . . , nc}

Theorem 2 computes the sampling distribution p∗ρ for a

selected ρ and η. In order to find the sampling distribution p∗

that optimally minimizes λ(PU ), irrespective of ρ, a search

algorithm is necessary.

Remark 5. One should expect that minimizing ρ will min-

imize λ(PU ) upon inspection of constraint (3), since mini-

mizing ρ minimizes ε and, subsequently, tightens the bounds

outlined in Theorem 1. Though this heuristic can be used to

identify a relatively minimal λ(PU ), it cannot be guaranteed

to find the global minimum. Instead, the optimal ρ∗ that

globally minimizes λ(PU ) can be found incrementally. By

employing a binary or bisection search procedure throughout

the feasible regime of ρ, Theorem 2 can be consecutively

applied to find the ρ that globally minimizes λ(PU ) within

a predefined constant γ of the optimal ρ∗.

IV. SIMULATION RESULTS

In this section, the optimal sampling distribution found in

Section III-B is demonstrated to substantially minimize the

maximum eigenvalue of upper bound PU relative to a trivial

uniform sampling distribution. We also show that relative to

a greedy heuristic the estimation performance of our optimal



sampling distribution is consistently better on-average for the

maximum eigenvalue metric.

In our numerical analysis, the state dimension m = 3,

the number of candidate sensors nc = 200, and δ = 0.10.

We assume the process covariance matrix Q = 0.5 Im and

the measurement noise variance of each candidate sensor

is identical, such that σ
2
j = 0.5 for all j ∈ {1, . . . , nc}.

The entries of state matrix A and output vector c for each

candidate sensor are chosen independently and uniformly at

random out of the interval [0, 1]. Detectability conditions of

Theorem 1 are satisfied by verifying that the synthetically

generated pair (A, cj) is observable for all j ∈ {1, . . . , nc}.

In Figure 1, the optimal sampling distribution p∗ρ and its

corresponding λ(PU ) are computed using Theorem 2 for

varying ρ values and a fixed number of sampled sensors

ns = 100. Figure 1 confirms our discussion in Remark 5,

such that minimizing ρ tends to minimize λ(PU ) in general.

Furthermore, the nature of the maximum eigenvalue curve

over the regime of feasible ρ values leads us to conjecture

that λ(PU ) is a convex function of ρ. If proven true, the

search procedure outlined in Section III-B would be obsolete

and the globally minimum λ(PU ) could be solved directly

with minor alterations to Theorem 2.

In Figure 2, the optimal sampling distribution p∗ is plotted.

Note that sampling distribution p∗ is sparse and Figure 2

identifies the small subset of candidate sensors collectively

responsible for minimizing λ(PU ) by the greatest margin.

In Figure 3, the sampling distribution p∗ that globally

minimizes λ(PU ) is computed for varying number of sam-

pled sensors and compared against the λ(PU ) curve for

a trivial uniform sampling distribution as a benchmark.

Figure 3 shows that the uniform sampling distribution is only

applicable for a limited regime of sampled sensors. In fact, if

too few sensors are sampled, then the probabilistic guarantees

of Theorem 1 no longer hold. In contrast, the λ(PU ) curve

for the optimal sampling distribution p∗ requires significantly

fewer sampled sensors to substantially minimize the maxi-

mum eigenvalue of upper bound PU .

In Figure 4, quantities λ(PU ), λ(PL), and λ(PS) are

plotted for varying number of sampled sensors and compared

against the λ(P ) obtained via a greedy heuristic. For each ns

the maximum eigenvalue of bounds PU and PL are computed

using their corresponding optimal sampling distribution p∗.

Similarly, for each ns and corresponding optimal distribution

p∗, the average maximum eigenvalue of steady-state solution

PS is estimated by 100 Monte Carlo trials. In the greedy

heuristic, ns sensors are sampled with replacement out of

the sampling pool of candidate sensors. At each sampling

instant, the candidate sensor that minimizes λ(P ) is greedily

chosen. Figure 4 shows that the average λ(PS) generated by

sampling distribution p∗ is consistently smaller than the λ(P )
of the greedy heuristic. In other words, the average λ(PS)
consistently outperforms the greedily chosen λ(P ).

V. CONCLUSION

In this paper, we consider the sensor selection problem in

the context of state estimation for the Kalman filter. Novel
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Fig. 1. Maximum eigenvalue of the upper bound PU for a limited regime

of ρ values. Non-zero values of λ(PU ) indicate feasible ρ values. The red

asterisk locates the optimal ρ∗ value that globally minimizes λ(PU ).
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Fig. 2. Optimal sampling distribution p∗ that globally minimizes λ(PU ).

bounds on the steady-state error covariance of a randomly

sampled sensor selection were derived in the probabilistic

sense. We confirmed that the sampling distribution that

minimizes the maximum eigenvalue of the upper bound

indirectly minimizes the maximum eigenvalue of the steady-

state error covariance. Our simulations demonstrated that the

optimal sampling distribution significantly outperforms the

trivial uniform sampling distribution in terms of the maxi-

mum eigenvalue of the upper bound. A numerical analysis

showed that the maximum eigenvalue of the steady-state

error covariance generated by the optimal sampling distribu-

tion consistently outperforms on-average a greedy heuristic.

Our results are expected to be significant in the analysis of

large sensor networks, since manually choosing the sampling

distribution that minimizes a non-trivial objective function is

infeasible.

Future directions include extending our analytical guaran-

tees on estimation performance to the constrained setting,

where each candidate sensor is limited in availability and

cannot be sampled with replacement indefinitely.




