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Abstract— A pursuit-evasion differential game where a group
of slow pursuers cooperate in order to capture a high-speed
evader is considered. Pursuit of a fast evader is a challenging
problem and capture is not guaranteed given the arbitrary
initial conditions. Further, cooperation among pursuers is
necessary in order for successful encirclement and capture of
the fast evader. A novel analysis based on Cartesian Ovals is
provided which accurately separates the reachable regions of a
pursuer and high-speed evader in the case where the pursuer
is endowed with a positive capture radius.

I. INTRODUCTION

In multi-player pursuit-evasion games, one of the most

important problems is to design cooperative control schemes

and coordination strategies among members of the same

team in order to achieve a global objective [1]. In particular,

conflict problems between two adversarial teams calls for

implementation of cooperative strategies that can guarantee

certain performance with respect to best actions that the

possibly superior adversary can achieve.

The authors of [2] addressed the problem of cooperative

pursuers which try to capture an evader and the game is

played in a closed convex domain. The papers [3], [4]

considered a pursuit problem with multiple pursuers and a

single evader in an unbounded environment in which each

player has limited-range sensing. The cooperative pursuit of

a single and slower evader has been considered in [5]. The

papers [6], [7] considered the differential game of protecting

a border between a team of pursuers and a team of evaders

where cooperative guidance among members of the same

team is necessary in order to achieve the corresponding goals

and best performance.

Pursuit-evasion games where an evader is faster than the

pursuers have also received attention in the past. For instance,

[8] addressed the pursuit-evasion problem in which a faster

evader must pass between two slower pursuers. The authors

of [9] considered the same problem addressed in this paper,

which is the pursuit of a high-speed evader by a group of

slow pursuers. The need for cooperation among the slower

pursuers was emphasized in this reference. Unfortunately,

the approach proposed in [9] is based on parallel guidance

where the evader is required to tell the pursuers where it is

going to be at the next time step. In differential games, as

in any conflict between intelligent adversarial players, each

party does not share its plan and strategy ahead of time.
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The optimal strategies should be state-feedback strategies

[10], [11] and should provide a performance guarantee with

respect to any behavior of the opponent. Unilateral deviations

from the saddle-point solution by any given player only

benefit the adversary.

It is well-known that one or a group of slow pursuers

cannot point capture a fast evader. Hence, several authors

have considered the case where the slow pursuers are en-

dowed with a positive capture radius. The authors of [12],

[13] considered slow pursuers with a positive capture radius

as in this paper. However, they separated the reachable

regions of the evader with respect to any given pursuer

using the corresponding Apollonius circle. This approach

may become conservative since the Apollonius circle, which

is only a function of the speed ratio parameter, does not

take into consideration the capture radius parameter. Similar

approaches have been considered in works such as [14]–

[16], wherein the slow pursuers are endowed with a positive

capture radius but Apollonius circles are used. The authors

of [17] also considered the same problem of pursuit of a fast

evader. Although Apollonius circles are not used explicitly,

their theoretical analysis is based on point capture. Then,

the strategies obtained assuming point capture are used in

their examples when pursuers have a positive capture radius.

This is a similar situation to [12], [13], [15], [16] where the

capture radius parameter is completely disregarded in the

design and analysis of strategies.

In the case where the pursuers possess a positive capture

radius, the reachable regions between a pursuer and an

evader are not separated by an Apollonius circle. In such

a case, the reachable regions are separated by the corre-

sponding Cartesian Oval [18] between the evader and the

given pursuer. The following are the major improvements

with respect to [12], [13], [15]–[17]. In this paper, we will

first show that the Cartesian Oval is a function of both

parameters, the speed ratio and the capture radius, and that

the Apollonius circle is a conservative representation of a

single pursuer’s reachable region. Then, we identify active

and non-active pursuers and provide the optimal strategies

of each type of pursuer. Additionally, we derive the strategy

of the evader in order to optimally attack the weakest link in

the pursuer formation. Furthermore, although our analysis is

based on a more complicated function than the Apollonius

circle that separates the reachable regions of the players, we

nevertheless provide optimal strategies in analytical form;

thereby distinguishing this work from preceding papers such

as [12], [13].

The paper is organized as follows. Section II formalizes

the problem of cooperative pursuit of a high-speed evader.

In Section III, the function that separates the reachable

regions between the evader and a pursuer with a positive



capture radius is obtained. The optimal strategies of non-

active pursuers are derived in Section IV. In Section V, the

strategies of the pair of active pursuers and the strategy of

the evader are presented. Examples are presented in Section

VI and concluding remarks are made in Section VII.

II. PROBLEM STATEMENT

We consider a pursuit-evasion game where a fast evader,

E, tries to avoid being captured by a group of pursuers, Pi,

for i = 1, ..., N . The states of the evader and the pursuers are

respectively specified by their Cartesian coordinates xE =
(xE , yE) and xi = (xi, yi); the players have constant speeds

vE and vi, for i = 1, ..., N . The evader’s control is his

instantaneous heading angle, uE = {ψE}. The team of

pursuers cooperatively choose their instantaneous respective

headings ψi, so the pursuers’ control is uP = {ψi} for

i = 1, ...N . The dynamics/kinematics ẋ = f(x, uE , uP ) are

specified by the system of ordinary differential equations

ẋE = vE cosψE , xE(0) = xE0

ẏE = vE sinψE , yE(0) = yE0

ẋi = vi cosψi, xi(0) = xi0

ẏi = vi sinψi, yi(0) = yi0

(1)

where the admissible controls are given by ψE , φi ∈ [−π, π),
for i = 1, ..., N . We consider the case where the pursuers

have the same speed, that is, v = vi = vj for any two

pursuers Pi and Pj . Also, for a fast evader, we have vE > v.

The speed ratio is defined as γ = v
vE

< 1. Without loss of

generality, we normalize the speeds so that vE = 1 and

v = γ.

The initial state of the system is x0 :=
(xE0

, yE0
, xi0 , yi0) = x(t0). The terminal time tf is

defined as the time instant when the evader is captured

by any one of the pursuers, that is, the game terminates

if
√

(xE − xi)2 + (yE − yi)2 = ρ for some pursuer

i = 1, ..., N , where ρ > 0 denotes the capture radius of

the pursuers. The evader strives to avoid termination of the

game by evading the group of pursuers and avoid being

captured.

III. REACHABLE REGIONS

We begin the analysis of the cooperative pursuit of a high-

speed evader by characterizing the reachable regions between

the fast evader and any given pursuer, Pi. Let

di =
√

(xi − xE)2 + (yi − yE)2,
λi = arctan( yi−yE

xi−xE
),

(2)

denote, respectively, the distance between E and pursuer

Pi and the Line-of-sight (LOS) angle, with respect to the

positive x-axis, from E to Pi, for i = 1, ..., N .

In the papers [12], [13], [15], [16], the Apollonius circle

has been used to separate the reachable regions between a

pursuer and an evader with different speeds and where the

pursuer has a positive capture radius. An Apollonius circle

is defined as the locus of points S such that the following

holds: PiS = γES. This means that, for any point S on

the circle, the distance between Pi and S is equal to the

distance between E and S multiplied by the speed ratio

parameter γ. Also, if both Pi and E head directly to point S

at their respective speeds v and vE , then they reach point S

at the same time instant. Therefore, di = 0 at that point. It is

easy to see that the Apollonius circle separates the reachable

regions between two players with different speed but only if

the capture radius is equal to zero.

We are now interested in generalizing the separation of

reachable regions to the case where the capture radius is

a positive constant. Therefore, we need to incorporate the

capture radius ρ > 0 into the reachable region condition,

that is, PiS = γES + ρ. In other words, we need to define

the locus of points S such that the distance between Pi

and S is equal distance between E and S multiplied by

γ plus the capture constant ρ. In this case, if both Pi and

E head directly to point S at their respective speeds v and

vE , then E reaches point S at the same time instant that Pi

reaches a distance ρ from S. Therefore, di = ρ at that point,

which is exactly the capture condition we want to enforce.

The following theorem characterizes the reachable regions

between E and any given pursuer Pi.

Theorem 1: Reachable regions of E and Pi. Let

(xE , yE) and (xi, yi) denote the instantaneous positions of

E and Pi, respectively. Then, the reachable regions of the

evader and pursuer i, for i = 1, ..., N , where E tries to evade

Pi, are separated by the Cartesian Oval (CO)

x = xE + r(φ) cos(λi + φ),
y = yE + r(φ) sin(λi + φ),

(3)

where

r(φ) =
γρ+di cosφ±

√
(γρ+di cosφ)2−(1−γ2)(d2

i
−ρ2)

1−γ2 , (4)

for φ ∈ [−φi, φi], where

φi = arccos
(

√
(1−γ2)(d2

i
−ρ2)−γρ

di

)

(5)

and the variables di and λi are given by (2).

Proof. The boundary of the reachable region of E with

respect to pursuer Pi is the locus of points that E can reach

before being captured by Pi. The slow pursuer Pi possesses

a capture radius ρ > 0 and therefore, E’s reachable region is

delineated by the Cartesian Oval [18], or capture condition

r′ = γr + ρ (6)

where r denotes the distance traveled by E to reach some

point on the oval and r′ is the distance from Pi to the same

point on the oval, see Fig. 1. For any φ ∈ [−φi, φi], the

following holds

r
′2 = r2 + d2i − 2dir cosφ.

Substituting (6) into the previous equation we obtain

(1− γ2)r2 − 2(γρ+ di cosφ)r + d2i − ρ2 = 0. (7)

The two roots of (7) are given by (4) and both roots are

used to construct the CO. This is due to the fact that for

any φ ∈ [−φi, φi], the condition (6) holds for two different

sets of values of r and r′. Hence, Pi can intercept E on the

front side or on the back side of the CO. These two sides

are shown in solid and dashed lines in Fig. 1 to highlight the
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difference. The two points where the front and the back sides

connect are the points on the CO where the tangent of the

CO passes through E. At those points, the two roots (4) are

the same. Thus, the angle φi in the limiting case, before the

roots become complex, can be obtained from the following

equation

(γρ+ di cosφ)
2 − (1− γ2)(d2i − ρ2) = 0.

Solving for φ in the previous equation, we obtain (5). Finally,

since r = r(φ) and φ is the angle at E, then the Cartesian

Oval is obtained based on the current position of E using

(3). Note that the locus of points (x, y) given by (3) denote

the position of E at the time instant when di = ρ. �

Remark. The Cartesian Oval generalizes the Apollonius

circle to the case of positive capture radius. In the particular

case where ρ = 0, we recover the Apollonius circle condition

r′ = γr. However, if ρ > 0, then the Apollonius circle

becomes a conservative criterion to separate the players

reachable regions since it does not take into account the
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Fig. 3. Team of pursuers around evader with γ = 0.6 and ρ = 2. Initial
configuration where θij > 0 for each pair of neighbor pursuers.

capture condition ρ > 0. It is also worth mentioning that,

if γ = 1 and ρ > 0, then the CO becomes r′ = r + ρ, a

hyperbola. The hyperbola was used by Isaacs [10] to separate

the reachable regions between a pursuer and an evader with

the same speed, but the pursuer has a positive capture radius

ρ > 0.

Figure 2 shows the Cartesian Ovals between E and Pi for

di(0) = 3 and for different values of ρ. This figure clearly

shows how the reachable region of Pi is in fact a function

of ρ. In general, we have that as di → ρ, the Apollonius

circle becomes an extremely conservative representation of

the pursuer’s reachable region. Although the CO is a fourth-

order curve and analysis becomes more difficult compared to

the simpler quadratic curve given by the Apollonius circle,

we are nevertheless able to obtain analytic solutions for

the optimal strategies of the evader and the pursuers in the

pursuit-evasion game under consideration in this paper.

The reachable regions of E and Pi are separated by the

CO (3) where Pi seeks to block the path of E. Two cases

may occur, E is blocked by Pi on the front side of (3) or E

is blocked by Pi on the back side of (3). In the former, the

separation d = ρ is first attained when E reaches the CO. In

the latter, the CO condition (6) is satisfied, and d = ρ, at the

time instant when E reaches the CO. However, d < ρ holds

for a time interval prior to E reaching the CO if E aims

directly at the CO. Since E needs to avoid capture, at the

first time instant such that d = ρ, E needs to switch guidance

in order to maintain a safe separation d = ρ to avoid being

captured by E. It is worth to note that the obtained strategies

in this paper do not warrant blocking on the back side of the

CO and switch guidance is not necessary.

IV. COOPERATIVE STRATEGY OF NON-ACTIVE

PURSUERS

It is clear that one slow pursuer is unable to capture the

faster evader, even if the pursuer is endowed with a positive

capture radius. Hence, a team of slow pursuers needs to

cooperate in order to strategically overlap their reachable

regions, the COs described in (3), in order to deny an exit



path to an already encircled evader. We assume that the team

of pursuers forms a ring-like formation around the evader and

we denote as neighbor pursuers, any two adjacent pursuers

in the ring formation. Hence, any given pursuer has two and

only two neighbors to which it looks to overlap COs. Fig.

3 shows a team of pursuers where their capture radius is

ρ = 1. In this figure, the pursuers are drawn as circular discs

of radius ρ centered at the pursuer’s current position. The

Cartesian Oval between the evader and each pursuer is also

shown in the figure. It can be seen that, initially, there is an

overlap between any two adjacent COs and the evader seems

to be contained since there is no initial escape route.

Consider two neighbor pursuers Pi and Pj and assume,

without loss of generality, that λi > λj . Let θij denote the

overlapping angle between E and any two neighbor pursuers

Pi and Pj , which is given by

θij = φi + φj − (λi − λj), (8)

where λi is given by (2) and φi is given by (5), for i, j =
1, ..., N .

Lemma 1: If θij < 0 for some pair of neighboring

pursuers Pi and Pj , then the evader is able to escape by

implementing a constant heading angle ψA such that

ψA ∈ (λj + φj , λi − φi). (9)

The angles φi, φj , and θij are shown in Fig. 4.

We consider then the case where, initially, θij > 0 for

i = 1, ..., N and for any neighbor Pj such that λi − λj > 0.

Even in the case where all overlapping angles are strictly

positive, capture of the evader is not guaranteed since, as

the evader moves, the rate of change of each θij changes

and “gaps” may be created if the pursuers do not cooperate

and do not find optimal pursuit and containment strategies.

In order to exemplify this case, consider the initial conditions

in Fig. 3 and also consider the case where all the pursuers

implement the classical Pure Pursuit (PP) guidance, that is,

at every time instant, the pursuers head directly at E. The

evader chooses a route between two pursuers, say P1 and

P2, and, since the pursuers implemented PP, a wide gap soon

appears between P1 and P2, where now θ12 < 0. Figure 5

shows the trajectories of the players where the current COs

are also shown. Hence, E is able to escape from the pursuers

since they did not cooperate. In general, advantage in number

is not enough to achieve a goal if the team of players do not

cooperate and coordinate their actions. The main problem,

therefore, is to design cooperative strategies such that E is

contained and is eventually captured by the pursuers. This

problem is tackled in the remaining of the paper.

In what follows, we define two types of pursuers, active

and non-active pursuers. The active pursuers is the pair of

neighbor pursuers in charge of capturing E while protecting

the weakest link which is the link between COs with the

smallest value of θij . The strategies of E and the pair

of active pursuers will be discussed in the next section.

In this section, the objective of the non-active pursuers

is to cooperate with the active pursuers by designing and

implementing containment strategies that aim at preserving

the overlapping of the COs. In more detail, if Pj is not active
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in capturing E then its objective is to avoid a gap between

its overlapping angle; its best choice is to maximize the rate

of change of the overlapping angle θij in order to avoid the

creation of a gap in the link between itself and its teammate

Pi.

Theorem 2: Optimal strategies of non-active pursuers.

Consider the overlapping angle θij between Pi and Pj where

Pi is an active pursuer and Pj is non-active and suppose

that Pj cooperates with Pi in order to maximize the rate of

change of θij . Then, the optimal, state-feedback strategy of

Pj which maximizes θ̇ij is given by

ψ∗
j = arccos(− ρ

dj
) + λj . (10)

Remark. This strategy can be applied to each remaining

non-active pursuer to create a chain reaction that maximizes

the overlap between each CO. Every non-active pursuer

cooperates with the neighbor which is the closest to the active

pursuers in order to maximize the rate of change of each

overlapping angle and deny any escape route to the evader.
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Also note that a perfect information game is considered,

where each player is aware of the position of every other

player in the game. With this information, every player is

able to compute all overlapping angles and there is no need

for communication between pursuers.

V. EVADER’S ATTACK OF WEAKEST LINK

Throughout this section we assume, without loss of gen-

erality, that λi > λj for a pair of active pursuers Pi and

Pj . We also assume that λi − λj < π. The evader tries to

evade the pursuers by attacking the weakest link, that is, the

link between two pursuers Pi and Pj such that θij is the

smallest. Player E’s strategy looks to minimize the rate of

change of θij . This is the best opportunity for E to create

a gap. Then, the strategy for the pursuers is to protect the

weakest link and capture E. Players Pi and Pj for which θij
is the smallest become the active pursuers and their optimal

strategy is to capture E at the intersection of their COs. The

active pursuers do not minimize their overlapping angle, they

capture the evader at the earliest interception point according

to the reachable regions of both active pursuers with respect

to the evader. These reachable regions are given by the

corresponding Cartesian Ovals.

Let xm =
xi+xj

2 and ym =
yi+yj

2 denote the coordinates

of the midpoint between pursuers Pi and Pj . In order

to obtain the optimal headings of the active pursuers we

consider the relative coordinate frame, x′ − y′, shown in

Fig. 6 where the origin is located at (xm, ym) and the

pursuers are located along the x-axis such that Pir = (δ, 0)
and Pjr = (−δ, 0) where δ = 1

2

√

(xi − xj)2 + (yi − yj)2.

The coordinates of E in the relative frame are denoted by

(xEr
, yEr

).
Theorem 3: Optimal strategies of active pursuers. The

optimal, state-feedback strategy of the active pursuers is to

defend the weakest link θi∗j∗ where

{i∗, j∗} = argmini,j{θij}, (11)

and θij are given by (8) for any pair of neighbor pursuers

Pi and Pj . The optimal headings of the active pursuers in

the relative coordinate frame are given by

cosψ∗
ir

= −δ√
δ2+y∗2

sinψ∗
ir

= y∗√
δ2+y∗2

cosψ∗
jr

= δ√
δ2+y∗2

sinψ∗
jr

= y∗√
δ2+y∗2

(12)

where y∗ is the solution of the following equation

(1− γ2)2y4 + 4γ2yEr
(1− γ2)y3

+2[(1− γ2)c+ 2γ2(γ2y2Er
− ρ2)]y2

+4γ2yEr
(2ρ2 + c)y + c2 − 4γ2ρ2(x2Er

+ y2Er
) = 0,

(13)

which minimizes

J(y) =
√

x2Er
+ (yEr

− y)2, (14)

and c = δ2 − ρ2 − γ2(x2Er
+ y2Er

).
Remark. The pursuers’ strategy is a state feedback strat-

egy; at every time instant, the weakest link is calculated and

the pair of pursuers associated with the weakest link become

the active pursuers according to (11) which can be computed

based only on state information. In other words, the evader

may decide not to aim at the initial smallest overlapping

angle, if the smallest overlapping angle changes, then the

pursuers’ strategy switches, that is, the active pursuers will

be the new pair of pursuers associated with the new smallest

overlapping angle. Additionally, the optimal headings (12)

only depend on the state of the players.

Theorem 4: Optimal strategy of evader. The evader’s

optimal, state-feedback strategy in order to minimize the rate

of change of the weakest link, that is, minimize θ̇i∗j∗ , is given

by

sinψ∗
E =

ΨEs√
Ψ2

Es
+Ψ2

Ec

, cosψ∗
E =

ΨEc√
Ψ2

Es
+Ψ2

Ec

(15)

where

ΨEs
= 1

dj
(cosλj − ρ√

d2

j
−ρ2

sinλj)

− 1
di
(cosλi +

ρ√
d2

i
−ρ2

sinλi),

ΨEc
= 1

di
(sinλi − ρ√

d2

i
−ρ2

cosλi)

− 1
dj
(sinλj +

ρ√
d2

j
−ρ2

cosλj).

(16)

VI. EXAMPLES AND FUTURE WORK

A. Example

Consider the example with five pursuers and the initial

positions of E and each pursuer as shown in Fig. 3. The

parameters are γ = 0.6 and ρ = 2. The weakest link is

between pursuers P1 and P2 since θ12 is the smallest. The

evader is captured as it is shown in Fig. 7. The values of

each overlapping angle θij as a function of time are shown

in Fig. 8. It can be seen in this example that θ12 remains the

smallest for t ∈ [0, tf ]; also, θ12 > 0 for t ∈ [0, tf ] and E

is captured by P1 and P2.
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B. Future Work

In the future, we plan to extend the proposed approach

to the case of irregular formations of pursuers. In such

cases, there may not exist an intersection between neighbor

pursuers, but θij > 0 since one pursuer is much closer to

E than its neighbor is. Intuitively, E needs to go around

the closest pursuer in order to create a gap, that is, to make

θij < 0 and guarantee a safe escape. We expect to find the

correct coordination between neighbor pursuers in this case

and also obtain the corresponding strategy of E.

We note in that example that θi∗j∗ is monotonically

increasing. In future work, we will formally prove that

if θi∗j∗(t0) > 0, then, θ̇i∗j∗(t;ψ
∗
E , ψ

∗
i , ψ

∗
j ) > 0, for all

t ∈ [t0, tf ]. This is an important property because, once

θi∗j∗ > 0, a gap in the weakest link cannot be created by

the evader. However, while E is attacking the weakest link,

other overlapping angles are not necessarily monotonically

increasing. This is related to dispersal surfaces since it

could occur that a different link becomes as weak as the

initial weakest link. Therefore, future work should address

all possible choices for the players when they arrive at the

dispersal surface.

VII. CONCLUSIONS

The problem of pursuit of a superior evader by a group of

pursuers was analyzed. This problem represents a quintessen-

tial example of cooperation in adversarial scenarios. The

evader has advantage in speed. The pursuers, although slower

than the evader, have advantage in number and a non-zero

capture radius. However, in order to exploit the advantage

in number, the pursuers need to devise the best way to

cooperate in order to keep encirclement of and eventually

capture the fast evader. This paper provided a step forward

into realizing such type of cooperation by providing an

accurate representation of the players reachable regions, and

accordingly designing the players’ strategies.
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