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Abstract— A pursuit-evasion differential game where a group
of slow pursuers cooperate in order to capture a high-speed
evader is considered. Pursuit of a fast evader is a challenging
problem and capture is not guaranteed given the arbitrary
initial conditions. Further, cooperation among pursuers is
necessary in order for successful encirclement and capture of
the fast evader. A novel analysis based on Cartesian Ovals is
provided which accurately separates the reachable regions of a
pursuer and high-speed evader in the case where the pursuer
is endowed with a positive capture radius.

I. INTRODUCTION

In multi-player pursuit-evasion games, one of the most
important problems is to design cooperative control schemes
and coordination strategies among members of the same
team in order to achieve a global objective [1]. In particular,
conflict problems between two adversarial teams calls for
implementation of cooperative strategies that can guarantee
certain performance with respect to best actions that the
possibly superior adversary can achieve.

The authors of [2] addressed the problem of cooperative
pursuers which try to capture an evader and the game is
played in a closed convex domain. The papers [3], [4]
considered a pursuit problem with multiple pursuers and a
single evader in an unbounded environment in which each
player has limited-range sensing. The cooperative pursuit of
a single and slower evader has been considered in [5]. The
papers [6], [7] considered the differential game of protecting
a border between a team of pursuers and a team of evaders
where cooperative guidance among members of the same
team is necessary in order to achieve the corresponding goals
and best performance.

Pursuit-evasion games where an evader is faster than the
pursuers have also received attention in the past. For instance,
[8] addressed the pursuit-evasion problem in which a faster
evader must pass between two slower pursuers. The authors
of [9] considered the same problem addressed in this paper,
which is the pursuit of a high-speed evader by a group of
slow pursuers. The need for cooperation among the slower
pursuers was emphasized in this reference. Unfortunately,
the approach proposed in [9] is based on parallel guidance
where the evader is required to tell the pursuers where it is
going to be at the next time step. In differential games, as
in any conflict between intelligent adversarial players, each
party does not share its plan and strategy ahead of time.

This work has been supported in part by AFOSR LRIR No. 21RQ-
CORO084 and in part by NSF award ECCS 2030556.

E. Garcia is with the Control Science Center of Excellence,
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433.
eloy.garcia.2@us.af.mil

S. D. Bopardikar is with the Department of Electrical and Com-
puter Engineering, Michigan State University, East Lansing, MIL
shaunak@egr.msu.edu

The optimal strategies should be state-feedback strategies
[10], [11] and should provide a performance guarantee with
respect to any behavior of the opponent. Unilateral deviations
from the saddle-point solution by any given player only
benefit the adversary.

It is well-known that one or a group of slow pursuers
cannot point capture a fast evader. Hence, several authors
have considered the case where the slow pursuers are en-
dowed with a positive capture radius. The authors of [12],
[13] considered slow pursuers with a positive capture radius
as in this paper. However, they separated the reachable
regions of the evader with respect to any given pursuer
using the corresponding Apollonius circle. This approach
may become conservative since the Apollonius circle, which
is only a function of the speed ratio parameter, does not
take into consideration the capture radius parameter. Similar
approaches have been considered in works such as [14]-
[16], wherein the slow pursuers are endowed with a positive
capture radius but Apollonius circles are used. The authors
of [17] also considered the same problem of pursuit of a fast
evader. Although Apollonius circles are not used explicitly,
their theoretical analysis is based on point capture. Then,
the strategies obtained assuming point capture are used in
their examples when pursuers have a positive capture radius.
This is a similar situation to [12], [13], [15], [16] where the
capture radius parameter is completely disregarded in the
design and analysis of strategies.

In the case where the pursuers possess a positive capture
radius, the reachable regions between a pursuer and an
evader are not separated by an Apollonius circle. In such
a case, the reachable regions are separated by the corre-
sponding Cartesian Oval [18] between the evader and the
given pursuer. The following are the major improvements
with respect to [12], [13], [15]-[17]. In this paper, we will
first show that the Cartesian Oval is a function of both
parameters, the speed ratio and the capture radius, and that
the Apollonius circle is a conservative representation of a
single pursuer’s reachable region. Then, we identify active
and non-active pursuers and provide the optimal strategies
of each type of pursuer. Additionally, we derive the strategy
of the evader in order to optimally attack the weakest link in
the pursuer formation. Furthermore, although our analysis is
based on a more complicated function than the Apollonius
circle that separates the reachable regions of the players, we
nevertheless provide optimal strategies in analytical form;
thereby distinguishing this work from preceding papers such
as [12], [13].

The paper is organized as follows. Section II formalizes
the problem of cooperative pursuit of a high-speed evader.
In Section III, the function that separates the reachable
regions between the evader and a pursuer with a positive



capture radius is obtained. The optimal strategies of non-
active pursuers are derived in Section IV. In Section V, the
strategies of the pair of active pursuers and the strategy of
the evader are presented. Examples are presented in Section
VI and concluding remarks are made in Section VII.

II. PROBLEM STATEMENT

We consider a pursuit-evasion game where a fast evader,
E, tries to avoid being captured by a group of pursuers, P;,
fori =1, ..., N. The states of the evader and the pursuers are
respectively specified by their Cartesian coordinates Xxp =
(xg,yr) and x; = (z;,y;); the players have constant speeds
vg and v;, for ¢ = 1,...,N. The evader’s control is his
instantaneous heading angle, ugp = {¢¥g}. The team of
pursuers cooperatively choose their instantaneous respective
headings v;, so the pursuers’ control is up = {;} for
¢ = 1,...N. The dynamics/kinematics x = f(x,ug,up) are
specified by the system of ordinary differential equations

Ip = Vg COSYE, rp(0) =g,

YE = vgsinyg, ye(0) =y, 0
T; = v; COS 1%, Z‘l(O) = Ty,
Ui = v; sin 1y, ¥:(0) = yi,

where the admissible controls are given by Vg, ¢; € [—7, 7),
for © = 1,...,N. We consider the case where the pursuers
have the same speed, that is, v = v; = v; for any two
pursuers P; and P;. Also, for a fast evader, we have v > v.
The speed ratio is defined as v = i < 1. Without loss of

generality, we normalize the speeds so that vy = 1 and
v =".
The initial state of the system 1is Xg =

(ZEy, YEy» Tigr Yis) = X(to). The terminal time ty is
defined as the time instant when the evader is captured
by any one of the pursuers, that is, the game terminates
it /(zgp—2:)2+ (ygp—v:)2 = p for some pursuer
1 =1,...,N, where p > 0 denotes the capture radius of
the pursuers. The evader strives to avoid termination of the
game by evading the group of pursuers and avoid being
captured.

III. REACHABLE REGIONS

We begin the analysis of the cooperative pursuit of a high-
speed evader by characterizing the reachable regions between
the fast evader and any given pursuer, P;. Let

di = /(zi —2p)>+ (v — yE)>?, @)
A; = arctan(¥=242),

denote, respectively, the distance between E and pursuer
P; and the Line-of-sight (LOS) angle, with respect to the
positive z-axis, from E to P;, for t = 1,..., N.

In the papers [12], [13], [15], [16], the Apollonius circle
has been used to separate the reachable regions between a
pursuer and an evader with different speeds and where the
pursuer has a positive capture radius. An Apollonius circle
is defined as the locus of points S such that the following
holds: P;S = yES. This means that, for any point S on
the circle, the distance between P; and S is equal to the
distance between E and S multiplied by the speed ratio

parameter 7. Also, if both P; and E head directly to point S
at their respective speeds v and vg, then they reach point .S
at the same time instant. Therefore, d; = 0 at that point. It is
easy to see that the Apollonius circle separates the reachable
regions between two players with different speed but only if
the capture radius is equal to zero.

We are now interested in generalizing the separation of
reachable regions to the case where the capture radius is
a positive constant. Therefore, we need to incorporate the
capture radius p > 0 into the reachable region condition,
that is, P;,S = vES + p. In other words, we need to define
the locus of points S such that the distance between P;
and S is equal distance between E and S multiplied by
v plus the capture constant p. In this case, if both P; and
E head directly to point S at their respective speeds v and
vg, then E reaches point S at the same time instant that P;
reaches a distance p from S. Therefore, d; = p at that point,
which is exactly the capture condition we want to enforce.
The following theorem characterizes the reachable regions
between E and any given pursuer P;.

Theorem 1: Reachable regions of FE and P;. Let
(zg,yr) and (x;,y;) denote the instantaneous positions of
E and P;, respectively. Then, the reachable regions of the
evader and pursuer ¢, for ¢ = 1, ..., N, where F tries to evade
P;, are separated by the Cartesian Oval (CO)

v =xp+1(¢)cos(\; + ),
Yy =ye +1r(¢)sin(A; + ¢),

3)

where

v s )2 (1— 2
r(8) = yp+d; COS¢i\/(’yp+cli:c$25¢)2 (1—~2)(d3 92)7 4)

for ¢ € [—¢;, ¢;], where

¢i — arccos ( (I*WQ)ﬁ?*PQ)*’YP) (5)
and the variables d; and \; are given by (2).
Proof. The boundary of the reachable region of E with
respect to pursuer P; is the locus of points that E can reach
before being captured by P;. The slow pursuer P; possesses
a capture radius p > 0 and therefore, E’s reachable region is
delineated by the Cartesian Oval [18], or capture condition

r=qr+p (6)

where r denotes the distance traveled by E to reach some
point on the oval and 1’ is the distance from P; to the same
point on the oval, see Fig. 1. For any ¢ € [—¢;, ¢;], the
following holds

72 =12 4+ d? — 2d;r cos ¢
Substituting (6) into the previous equation we obtain
(1 —=~2)12 = 2(yp + d; cos p)r + d? — p? = 0. (7)

The two roots of (7) are given by (4) and both roots are
used to construct the CO. This is due to the fact that for
any ¢ € [—¢;, ¢;], the condition (6) holds for two different
sets of values of r and . Hence, P; can intercept E on the
front side or on the back side of the CO. These two sides
are shown in solid and dashed lines in Fig. 1 to highlight the



Fig. 1. Cartesian Oval for p = 1, v = 0.5, X\;(0) = 0 and d;(0) = 3.
The particular value of ¢ shown in this figure is ¢ = ¢;.
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Fig. 2. Cartesian Ovals for different values of p including the Apollonius
circle case (p = 0), for a given initial distance d;(0) = 3.

difference. The two points where the front and the back sides
connect are the points on the CO where the tangent of the
CO passes through E. At those points, the two roots (4) are
the same. Thus, the angle ¢; in the limiting case, before the
roots become complex, can be obtained from the following
equation

(vp +d;i cos §)? — (1 —7°)(d} — p*) = 0.

Solving for ¢ in the previous equation, we obtain (5). Finally,
since r = r(¢) and ¢ is the angle at E, then the Cartesian
Oval is obtained based on the current position of E using
(3). Note that the locus of points (x,y) given by (3) denote
the position of E at the time instant when d; = p. [J
Remark. The Cartesian Oval generalizes the Apollonius
circle to the case of positive capture radius. In the particular
case where p = 0, we recover the Apollonius circle condition
r’ = ~r. However, if p > 0, then the Apollonius circle
becomes a conservative criterion to separate the players

reachable regions since it does not take into account the
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Fig. 3. Team of pursuers around evader with v = 0.6 and p = 2. Initial
configuration where 6;; > 0 for each pair of neighbor pursuers.

capture condition p > 0. It is also worth mentioning that,
if vy =1 and p > 0, then the CO becomes ' = r + p, a
hyperbola. The hyperbola was used by Isaacs [10] to separate
the reachable regions between a pursuer and an evader with
the same speed, but the pursuer has a positive capture radius
p>0.

Figure 2 shows the Cartesian Ovals between E and P; for
d;(0) = 3 and for different values of p. This figure clearly
shows how the reachable region of P; is in fact a function
of p. In general, we have that as d; — p, the Apollonius
circle becomes an extremely conservative representation of
the pursuer’s reachable region. Although the CO is a fourth-
order curve and analysis becomes more difficult compared to
the simpler quadratic curve given by the Apollonius circle,
we are nevertheless able to obtain analytic solutions for
the optimal strategies of the evader and the pursuers in the
pursuit-evasion game under consideration in this paper.

The reachable regions of E and P; are separated by the
CO (3) where P; seeks to block the path of E. Two cases
may occur, F is blocked by P; on the front side of (3) or £/
is blocked by P; on the back side of (3). In the former, the
separation d = p is first attained when E reaches the CO. In
the latter, the CO condition (6) is satisfied, and d = p, at the
time instant when FE reaches the CO. However, d < p holds
for a time interval prior to E reaching the CO if E aims
directly at the CO. Since E needs to avoid capture, at the
first time instant such that d = p, F needs to switch guidance
in order to maintain a safe separation d = p to avoid being
captured by E. It is worth to note that the obtained strategies
in this paper do not warrant blocking on the back side of the
CO and switch guidance is not necessary.

IV. COOPERATIVE STRATEGY OF NON-ACTIVE
PURSUERS

It is clear that one slow pursuer is unable to capture the
faster evader, even if the pursuer is endowed with a positive
capture radius. Hence, a team of slow pursuers needs to
cooperate in order to strategically overlap their reachable
regions, the COs described in (3), in order to deny an exit



path to an already encircled evader. We assume that the team
of pursuers forms a ring-like formation around the evader and
we denote as neighbor pursuers, any two adjacent pursuers
in the ring formation. Hence, any given pursuer has two and
only two neighbors to which it looks to overlap COs. Fig.
3 shows a team of pursuers where their capture radius is
p = 1. In this figure, the pursuers are drawn as circular discs
of radius p centered at the pursuer’s current position. The
Cartesian Oval between the evader and each pursuer is also
shown in the figure. It can be seen that, initially, there is an
overlap between any two adjacent COs and the evader seems
to be contained since there is no initial escape route.

Consider two neighbor pursuers P; and P; and assume,
without loss of generality, that \; > \;. Let 6;; denote the
overlapping angle between E and any two neighbor pursuers
P; and P;, which is given by

Oij = ¢i + &5 — (Ni — Aj), 8

where \; is given by (2) and ¢; is given by (5), for i,j =
1,...,N.

Lemma 1: If 0;; < 0 for some pair of neighboring
pursuers P; and P;, then the evader is able to escape by
implementing a constant heading angle ¥4 such that

Ya € (Nj+ ¢4, Ai — ¢i)- )

The angles ¢;, ¢;, and 0;; are shown in Fig. 4.

We consider then the case where, initially, 6;; > 0 for
i =1,..., N and for any neighbor P; such that \; — A; > 0.
Even in the case where all overlapping angles are strictly
positive, capture of the evader is not guaranteed since, as
the evader moves, the rate of change of each 6;; changes
and “gaps” may be created if the pursuers do not cooperate
and do not find optimal pursuit and containment strategies.
In order to exemplify this case, consider the initial conditions
in Fig. 3 and also consider the case where all the pursuers
implement the classical Pure Pursuit (PP) guidance, that is,
at every time instant, the pursuers head directly at E. The
evader chooses a route between two pursuers, say P; and
P5, and, since the pursuers implemented PP, a wide gap soon
appears between P; and P, where now 615 < 0. Figure 5
shows the trajectories of the players where the current COs
are also shown. Hence, E is able to escape from the pursuers
since they did not cooperate. In general, advantage in number
is not enough to achieve a goal if the team of players do not
cooperate and coordinate their actions. The main problem,
therefore, is to design cooperative strategies such that F is
contained and is eventually captured by the pursuers. This
problem is tackled in the remaining of the paper.

In what follows, we define two types of pursuers, active
and non-active pursuers. The active pursuers is the pair of
neighbor pursuers in charge of capturing £ while protecting
the weakest link which is the link between COs with the
smallest value of 0;;. The strategies of E and the pair
of active pursuers will be discussed in the next section.
In this section, the objective of the non-active pursuers
is to cooperate with the active pursuers by designing and
implementing containment strategies that aim at preserving
the overlapping of the COs. In more detail, if P; is not active
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Fig. 4. Cartesian Ovals of two neighboring pursuers showing their overlap
and the tangent points.
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Fig. 5. All pursuers implement PP guidance and a gap is created for E to
escape. \/: initial position of each player. Circular discs: current position
of P;. X: current position of E.

in capturing E then its objective is to avoid a gap between
its overlapping angle; its best choice is to maximize the rate
of change of the overlapping angle 6;; in order to avoid the
creation of a gap in the link between itself and its teammate
P;.

Theorem 2: Optimal strategies of non-active pursuers.
Consider the overlapping angle 60;; between P; and P; where
P; is an active pursuer and P; is non-active and suppose
that P; cooperates with P; in order to maximize the rate of
change of 6;;. Then, the optimal, state-feedback strategy of
P; which maximizes ;; is given by

Yi = arccos(—d%) + A (10)

Remark. This strategy can be applied to each remaining
non-active pursuer to create a chain reaction that maximizes
the overlap between each CO. Every non-active pursuer
cooperates with the neighbor which is the closest to the active
pursuers in order to maximize the rate of change of each
overlapping angle and deny any escape route to the evader.
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Fig. 6. Pair of active pursuers and intersection of their Cartesian Ovals.

Also note that a perfect information game is considered,
where each player is aware of the position of every other
player in the game. With this information, every player is
able to compute all overlapping angles and there is no need
for communication between pursuers.

V. EVADER’S ATTACK OF WEAKEST LINK

Throughout this section we assume, without loss of gen-
erality, that A\; > \; for a pair of active pursuers P; and
P;. We also assume that \; — A\; < 7. The evader tries to
evade the pursuers by attacking the weakest link, that is, the
link between two pursuers F; and P; such that 6;; is the
smallest. Player E’s strategy looks to minimize the rate of
change of 6;;. This is the best opportunity for E to create
a gap. Then, the strategy for the pursuers is to protect the
weakest link and capture E. Players F; and P; for which 0;;
is the smallest become the active pursuers and their optimal
strategy is to capture E' at the intersection of their COs. The
active pursuers do not minimize their overlapping angle, they
capture the evader at the earliest interception point according
to the reachable regions of both active pursuers with respect
to the evader. These reachable regions are given by the
corresponding Cartesian Ovals.

Let z,, = HT% and y,,, = denote the coordinates
of the midpoint between pursuers P; and P;. In order
to obtain the optimal headings of the active pursuers we
consider the relative coordinate frame, =’ — 3/, shown in
Fig. 6 where the origin is located at (z,,,y.) and the
pursuers are located along the z-axis such that P, = (4,0)
and Pj, = (—6,0) where § = 2\/(z; — 2;)? + (y; — y;)>
The coordinates of E in the relative frame are denoted by
(LUE,,»? yE,)

Theorem 3: Optimal strategies of active pursuers. The
optimal, state-feedback strategy of the active pursuers is to
defend the weakest link 6« ;- where

Yity;
2

(1)

and ¢;; are given by (8) for any pair of neighbor pursuers
P; and P;. The optimal headings of the active pursuers in

{Z*,j*} = argminm{@j},

the relative coordinate frame are given by

cosy; = ﬁy*'z
sinyf = #ﬁ ”
cosy; = ﬁyﬂ 12)
sing;, =

where y* is the solution of the following equation

N

(1- 72)2%4 + WgETgl; 72)%3

+2[(1 =) e+ 29 (Vyzm, — p)ly

+472yE, (20° + )y + & — 42 p* (2, +yp ) =0,
(13)

which minimizes

J(y) = \/x?; + (&, — )%,

(14)

and ¢ = 0% — p* — (23, +u% ).

Remark. The pursuers’ strategy is a state feedback strat-
egy; at every time instant, the weakest link is calculated and
the pair of pursuers associated with the weakest link become
the active pursuers according to (11) which can be computed
based only on state information. In other words, the evader
may decide not to aim at the initial smallest overlapping
angle, if the smallest overlapping angle changes, then the
pursuers’ strategy switches, that is, the active pursuers will
be the new pair of pursuers associated with the new smallest
overlapping angle. Additionally, the optimal headings (12)
only depend on the state of the players.

Theorem 4: Optimal strategy of evader. The evader’s
optimal, state-feedback strategy in order to minimize the rate
of change of the weakest link, that is, minimize 0; -, is given
by

sty =~ costy = e (13
where
1 .
Vg, = d—j(cos)\J —— sin \;)
J
— %(cos i + 7{1;’ — sin \;),
) i 16)
Up = L(sin\; — —2— cos \; (
Pe = @ (indi = g cos A
Sy P .
-3 (Sln)\j + WCOS)\‘])
VI. EXAMPLES AND FUTURE WORK
A. Example

Consider the example with five pursuers and the initial
positions of E and each pursuer as shown in Fig. 3. The
parameters are v = 0.6 and p = 2. The weakest link is
between pursuers P; and P; since 0;5 is the smallest. The
evader is captured as it is shown in Fig. 7. The values of
each overlapping angle 0;; as a function of time are shown
in Fig. 8. It can be seen in this example that 615 remains the
smallest for ¢ € [0,%/]; also, 812 > 0 for t € [0,t] and E
is captured by P; and Ps.
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Fig. 7. Example. v/: initial position of each player. Circular discs: current
position of P;. X: current position of E.
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Fig. 8. Example. Overlapping angles as a function of time.

B. Future Work

In the future, we plan to extend the proposed approach
to the case of irregular formations of pursuers. In such
cases, there may not exist an intersection between neighbor
pursuers, but ¢;; > 0 since one pursuer is much closer to
E than its neighbor is. Intuitively, E¥ needs to go around
the closest pursuer in order to create a gap, that is, to make
6;; < 0 and guarantee a safe escape. We expect to find the
correct coordination between neighbor pursuers in this case
and also obtain the corresponding strategy of E.

We note in that example that 0;«;- is monotonically
increasing. In future work, we will formally prove that
ift 03+« (to) > 0, then, O;j(t; 05, ¢7,¢7) > 0, for all
t € [to,ty]. This is an important property because, once
;=5 > 0, a gap in the weakest link cannot be created by
the evader. However, while F is attacking the weakest link,
other overlapping angles are not necessarily monotonically
increasing. This is related to dispersal surfaces since it

could occur that a different link becomes as weak as the
initial weakest link. Therefore, future work should address
all possible choices for the players when they arrive at the
dispersal surface.

VII. CONCLUSIONS

The problem of pursuit of a superior evader by a group of
pursuers was analyzed. This problem represents a quintessen-
tial example of cooperation in adversarial scenarios. The
evader has advantage in speed. The pursuers, although slower
than the evader, have advantage in number and a non-zero
capture radius. However, in order to exploit the advantage
in number, the pursuers need to devise the best way to
cooperate in order to keep encirclement of and eventually
capture the fast evader. This paper provided a step forward
into realizing such type of cooperation by providing an
accurate representation of the players reachable regions, and
accordingly designing the players’ strategies.
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