
Good Bot, Bad Bot:

Characterizing Automated Browsing Activity

Xigao Li

Stony Brook University

Babak Amin Azad

Stony Brook University

Amir Rahmati

Stony Brook University

Nick Nikiforakis

Stony Brook University

Abstract—As the web keeps increasing in size, the number
of vulnerable and poorly-managed websites increases commensu-
rately. Attackers rely on armies of malicious bots to discover these
vulnerable websites, compromising their servers, and exfiltrating
sensitive user data. It is, therefore, crucial for the security of the
web to understand the population and behavior of malicious bots.

In this paper, we report on the design, implementation, and
results of Aristaeus, a system for deploying large numbers of
“honeysites”, i.e., websites that exist for the sole purpose of attract-
ing and recording bot traffic. Through a seven-month-long exper-
iment with 100 dedicated honeysites, Aristaeus recorded 26.4 mil-
lion requests sent by more than 287K unique IP addresses, with
76,396 of them belonging to clearly malicious bots. By analyzing
the type of requests and payloads that these bots send, we discover
that the average honeysite received more than 37K requests each
month, with more than 50% of these requests attempting to brute-
force credentials, fingerprint the deployed web applications, and
exploit large numbers of different vulnerabilities. By comparing
the declared identity of these bots with their TLS handshakes
and HTTP headers, we uncover that more than 86.2% of bots
are claiming to be Mozilla Firefox and Google Chrome, yet are
built on simple HTTP libraries and command-line tools.

I. INTRODUCTION

To cope with the rapid expansion of the web, both legitimate

operators, as well as malicious actors, rely on web bots (also

known as crawlers and spiders) to quickly and autonomously

discover online content. Legitimate services, such as search

engines, use bots to crawl websites and power their products.

Malicious actors also rely on bots to perform credential stuffing

attacks, identify sensitive files that are accidentally made public,

and probe web applications for known vulnerabilities [1], [2].

According to recent industry reports [3], bots are responsible

for 37.2% of the total website-related traffic, with malicious

bots being responsible for 64.7% of the overall bot traffic.

Given the abuse perpetrated by malicious bots, identifying

and stopping them is critical for the security of websites and

their users. Most existing bot-detection techniques rely on

differentiating bots from regular users, through supervised

and unsupervised ML techniques, based on features related

to how clients interact with websites (e.g., the speed and

type of resources requested) [4]–[6] as well as through

browser-fingerprinting techniques [7], [8].

In all of the aforementioned approaches, researchers need

to obtain a ground truth dataset of known bots and known

users to train systems to differentiate between them. This

requirement creates a circular dependency where one needs

a dataset resulting from accurate bot detection to be used for

accurate-bot detection. The adversarial nature of malicious bots,

their ability to claim arbitrary identities (e.g., via User-agent

header spoofing), and the automated or human-assisted solving

of CAPTCHAs make this a challenging task [9]–[11].

In this paper, we present a technique that sidesteps the issue

of differentiating between users and bots through the concept

of honeysites. Like traditional high-interaction honeypots, our

honeysites are fully functional websites hosting full-fledged

web applications placed on public IP address space (similar

to Canali and Balzarotti’s honeypot websites used to study the

exploitation and post-exploitation phases of web-application

attacks [12]). By registering domains that have never existed

before (thereby avoiding traffic due to residual trust [13]) and

never advertising these domains to human users, we ensure

that any traffic received on these honeysites will belong to

benign/malicious bots and potentially their operators. To scale

up this idea, we design and build Aristaeus,1 a system that

provides flexible remote deployment and management of

honeysites while augmenting the deployed web applications

with multiple vectors of client fingerprinting.

Using Aristaeus, we deploy 100 honeysites across the

globe, choosing five open-source web applications (WordPress,

Joomla, Drupal, PHPMyAdmin, and Webmin), which are

both widely popular and have been vulnerable to hundreds of

historical vulnerabilities, thereby making them attractive targets

for malicious bots. In a period of seven months (January 24 to

August 24, 2020) Aristaeus recorded 26.4 million bot requests

from 287,017 unique IP addresses, totaling more than 200 GB

of raw logs from websites that have zero organic user traffic.

By analyzing the received traffic, we discovered that from

the 37,753 requests that the average Aristaeus-managed

honeysite received per month, 21,523 (57%) were clearly

malicious. Among others, we observed 47,667 bots sending

unsolicited POST requests towards the login endpoints of our

deployed web applications, and uncovered 12,183 unique bot

IP addresses which engaged in web-application fingerprinting.

In the duration of our experiment, we observed the attempt to

exploit five new high-severity vulnerabilities, witnessing bots

weaponizing an exploit on the same day that it became public.

Furthermore, by analyzing the collected fingerprints and

attempting to match them with known browsers and automation

tools, we discovered that at least 86.2% of bots are lying

about their identity, i.e., their stated identity does not match

their TLS and HTTP-header fingerprints. Specifically, out

1Rustic god in Greek mythology caring over, among others, beekeepers.

of the 30,233 clients, which claimed to be either Chrome or

Firefox, we found that 86.2% are lying, with most matching

the fingerprints of common Go and Python HTTP libraries as

well as scriptable command-line tools (such as wget and curl).

Our main contributions are as follows:

• We design and implement Aristaeus, a system for

deploying and managing honeysites. Using Aristaeus, we

deploy 100 honeysites across the globe, obtaining unique

insights into the populations and behavior of benign and

malicious bots.

• We extract URLs from exploit databases and web-

application fingerprinting tools and correlate them with

the requests recorded by Aristaeus, discovering that more

than 25,502 bots engage in either fingerprinting, or the

exploitation of high-severity, server-side vulnerabilities.

• We curate TLS signatures of common browsers and

automation tools, and use them to uncover the true

identity of bots visiting our infrastructure. We find that

the vast majority of bots are built using common HTTP

libraries but claim to be popular browsers. Our results

demonstrate the effectiveness of TLS fingerprinting for

identifying and differentiating users from malicious bots.

Given the difficulty of differentiating between users and

bots on production websites, we will be sharing our curated,

bot-only dataset with other researchers to help them improve

the quality of current and future bot-detection tools.

II. BACKGROUND

Unsolicited requests have become a fixture of the web-

hosting experience. These requests usually originate from bots

with various benign and malicious intentions. On the benign

side, search-engine bots crawl websites to index content for

their services, while large-scale research projects use bots to

collect general statistics. At the same time, malicious actors

use bots to identify and exploit vulnerabilities on a large scale.

Moreover, high-profile websites are victims of targeted bot

attacks that seek to scrape their content and target user accounts.

Bots and automated browsing. An automated browsing

environment can be as rudimentary as wget or curl requests, or

be as involved as full browsers, controlled programmatically

through libraries such as Selenium [14]. The underlying bot

platforms and their configuration defines the capabilities of

a bot in terms of loading and executing certain resources such

as JavaScript code, images, and Cascading Style Sheets (CSS).

As we show in this paper, the capabilities and behavior of

these platforms can be used to identify them.

Browser fingerprinting. Malicious bots can lie about their

identity. Prior work has proposed detection schemes based on

browser fingerprinting and behavioral analysis to extract static

signatures as well as features that can be used in ML models.

Browser fingerprinting is an integral part of bot detection.

Previous research has focused on many aspects of browsing

environments that make them unique [15]–[17]. The same

techniques have also been used for stateless user tracking by

ad networks, focusing on features that are likely to produce

different results for different users, such as, the supported

JavaScript APIs, list of plugins and browser extensions,

available fonts, and canvas renderings [15], [18], [19].

TLS fingerprinting. Similarly, the underlying browser and

operating systems can be fingerprinted at the network layer

by capitalizing on the TLS differences between browsers

and environments [20]. Durumeric et al. used discrepancies

between the declared user-agent of a connection and the used

TLS handshake to identify HTTPS interception [21]. In this

paper, we show how TLS signatures (consisting of TLS version,

list of available cipher suites, signature algorithms, e-curves,

and compression methods) can be used to identify the true

nature of malicious bots, regardless of their claimed identities.

Behavioral analysis. Next to browser and TLS

fingerprinting, the behavior of bots on the target website can

signal the presence of automated browsing. To that end, features

such as the request rate, requests towards critical endpoints

(e.g., login endpoint), and even mouse moves and keystrokes

have been used by prior bot-detection schemes [4], [5], [22].

Browsing sessions. To study the behavior of bots, we need

a mechanism to group together subsequent requests from the

same bot. While source IP address can be used for that purpose,

in a large-scale study, the IP churn over time can result in

false positives where an address changes hands and ends up

being used by different entities. To address this issue, we used

the notion of “browsing sessions” as used by server-side web

applications and also defined by Google Analytics [23]. For

each IP address, we start a session upon receiving a request and

end it after 30 minutes of inactivity. This allows for an organic

split of the active browsing behavior into groups. Grouping

requests from the same bot in a session enables us to analyze

activities, such as, changes in a bot’s claimed identity and mul-

tiple requests that are part of a credential, brute-forcing attack.

III. SYSTEM DESIGN

To collect global bot information, we design Aristaeus, a

system that provides flexible honeysite deployment and finger-

print collection. Aristaeus consists of three parts: honeysites,

log aggregation, and analysis modules. Our system can launch

an arbitrary number of honeysites based on user-provided

templates, i.e., sets of existing/custom-made web applications

and scripts using virtual machines on public clouds. Aristaeus

augments these templates with multiple fingerprinting modules

that collect a wide range of information for each visiting client.

The information collected from honeysites is periodically

pulled by a central server, which is responsible for correlating

and aggregating the data collected from all active honeysites.

Figure 1 presents the overall architecture of our system.

A. Honeysite Design

A honeysite is a real deployment of a web application,

augmented with different fingerprinting techniques, and

increased logging. Like traditional honeypots, our honeysites

are never advertised to real users, nor linked to by other

sites or submitted to search engines for listing. If a honeysite

includes publicly-accessible, user-generated content (such as a

typical CMS showing blog posts), Aristaeus creates randomly-

generated text and populates the main page of the honeysite.

CSP rules by loading resources that we explicitly disallowed.

The majority of CSP violations originated from benign

search-engine bots which were capable of loading embedded

resources (such as, third-party images and JavaScript files) but

did not support CSP. The vast majority of bots do not load

CSP-prohibited resources, not because they honor CSP, but

because they do not load these types of resources in general.

Shared/distributed crawling. Since Aristaeus encodes the

client’s IP addresses into each URL cache-breaker, clients are

expected to make requests that match their URLs. However,

out of 1,253,590 requests that bore valid cache breakers, we

found that 536,258 (42.8%) “re-used” cache-breakers given

to clients with different IP addresses.

Given the large percentage of mismatched requests, we can

conclude that most are because of distributed crawlers which

identify URLs of interest from one set of IP addresses and then

distribute the task of crawling across a different pool of “work-

ers”. This behavior is widely observed in Googlebots (19.6%

of all cache-breaker re-use) and the “MJ12Bot” operated by the

UK-based Majestic (32.1% cache-breaker reuse). Interestingly,

malicious bots do not engage in this behavior, i.e., any cache-

breakers that we receive from them match their IP address.

A. Bot Intentions

Based on their activity on our honeysites, we categorize

bot sessions into three categories: “Benign”, “Malicious”, and

“Other/Gray”. Benign bots are defined as bots visiting our

honeysites and asking for valid resources similar to a normal

browser, with no apparent intent to attack our honeysites. For

example, benign bots do not send unsolicited POST requests

nor try to exploit a vulnerability. Contrastingly, malicious

bots are those that send unsolicited POST requests towards

authentication endpoints, or send invalid requests trying to

exploit vulnerabilities. Apart from these two categories, there

are certain bots that because of limited interaction with our

honeysites, cannot be clearly labeled as benign or malicious.

We label these bots as “Other/Gray”.

1) Benign bots

Based on their activity, we categorize search-engine bots

and academic/industry scanners as benign bots. In total, we

recorded 347,386 benign requests, which is 1.3% of the total

requests received by Aristaeus.

Search-engine bots. Search-engine bots are responsible

for the majority of requests in the benign bots category, and

contribute to 84.4% of total benign bots. The general way of

identifying search-engine bots is from their User-Agents where

they explicitly introduce themselves. However, it is possible

for bots to masquerade their User-Agents as search-engine

bots in order to hide their malicious activity. Search engines

typically provide mechanisms, such as reverse DNS lookups,

that allow webmasters to verify the origin of each bot that

claims to belong to a given search engine [37]–[40].

In total, we received 317,820 requests from search-engine

bots, with Google bots contributing 80.2% of these requests.

For instance, we observed four different Google-bot-related

TABLE I: Breakdown of requests from search engine bots

Type Total SEBot Requests Verified Requests

Googlebot 233,024 210,917 (90.5%)

Bingbot 77,618 77,574 (99.9%)

Baidubot 2,284 61 (0.026%)

Yandexbot 4,894 4,785 (97.8%)

Total 317,820 293,337 (92.3%)

user agents (“Googlebot/2.1”, “Googlebot-Image/1.0”,

“AppEngine-Google”, and “Google Page Speed Insights”)

which match documentation from Google [41].

Of the 317,820 requests claiming to originate from

search-engine bots, we verified that 293,337 (92.3%) are

indeed real search-engine bot requests. The share of requests

towards our honeysites from the identified search-engine bots

are listed in Table I.

Academic and Industry scanners. Apart from anonymous

scanners, we identified 30,402 (0.12%) requests originating

from scanners belonging to companies which collect website

statistics (such as BuiltWith [28] and NetCraft [42]), keep

historical copies of websites (such as the Internet Archive [43]),

and collect SEO-related information from websites (such as

Dataprovider.com). Moreover, the crawlers belonging to a

security group from a German university were observed on our

honeysites. We were able to verify all of the aforementioned

bots via reverse DNS lookups, attributing their source IP

address back to their respective companies and institutions.

2) Malicious bots

We define malicious requests by their endpoints and access

methods. As we described in Section III-A, we ensure that

the domains we register for Aristaeus never existed in the past.

Hence, since benign bots have no memory of past versions

of our sites, there should be no reason for a benign bot to

request a non-existent resource. Therefore, we can label all

invalid requests as reconnaissance (i.e., fingerprinting and

exploitation attempts) requests, which we ultimately classify

as malicious. Similarly, we label bots that make unsolicited

POST requests to other endpoints, such as login pages, as

malicious. Overall, we labeled 15,064,878 requests (57% of

total requests) as malicious.

Credential brute force attempts. 13,445,474 (50.8%)

requests from 47,667 IP addresses targeted the login page of

our websites. By analyzing all unsolicited POST requests we

received and checking their corresponding URIs, we discovered

that different web applications attract different attacks. For

example, there are 12,370,063 POST requests towards Word-

Press, 90.3% of which are attempts to brute force wp-login.php

and xmlrpc.php. However, for Joomla, there are 343,263

unsolicited POST requests with only 51.6% targeting the

Joomla log-in page. The remaining requests are not specific to

Joomla and are targeting a wide variety of vulnerable software

(e.g. requests towards /cgi-bin/mainfunction.cgi attack DrayTek

devices that are vulnerable to remote code execution [44]).

Interestingly, system management tools attract different

patterns of attacks. While 76.2% of POST requests towards

TABLE II: Top fingerprinting requests

Path # requests Unique IPs Target applications

/CHANGELOG.txt 116,513 97
Drupal, Joomla,
Moodle and spip

/(thinkphp|TP)/
(public|index)

55,144 3,608 ThinkPHP

/wp-content/plugins 32,917 2,416 WordPress

/solr/ 23,307 919 Apache Solr

/manager/html 10,615 1,557 Tomcat Manager

phpMyAdmin targeted login endpoints, virtually all POST

requests (99.95%) for Webmin targeted its specific login

endpoints. This suggests that most bots targeting Webmin

focus on brute-forcing credentials, as opposed to targeting

other, publicly-accessible pages.

By examining the username and password combinations

that were attempted against our honeysites, we observe that

attackers always try to login as “admin” using either common

passwords [45], or variations of our honeysite domains (i.e.

attempting a “www.example.com” password on the honeysite

serving the example.com domain). From the number of

attempts, we found 99.6% of bots (as identified by their IP

address) issued fewer than 10 attempts per domain before chang-

ing their targets. Only 0.3% of bots issued more than 100 brute-

force attempts per domain. The most active bot issued 64,211

login-related requests towards our WordPress honeysites.

Reconnaissance attempts. To identify requests related

to reconnaissance, we incorporate a two-prong mapping

approach. First, we generate signatures based on popular

libraries and databases that include URIs related to Application

fingerprinting, Exploitation attempts, Scanning for open-access

backdoors, and Scanning for unprotected backup files. We

provide details for each specific library and dataset later in

this section. Second, we manually identify the intention of

requests for endpoints that received more than 1,000 requests

in our dataset, mapping each request to the aforementioned

categories of attacks whenever possible. This filtering step is

necessary since we cannot possibly create a comprehensive

database that includes signatures for all bot requests. As an

example of the power of this prioritized-labeling method,

via this process we discovered attacks exploiting the recent

CVE-2020-0618 vulnerability in MSSQL Reporting Servers

which was not part of our original database of signatures.

Overall, we collected a total of 16,044 signatures, with 179

signatures matching requests in our dataset. These signatures

cover 25,502 (9% of total) IP addresses which generated

659,672 requests.

• Application fingerprinting: In this study, fingerprinting

attempts refer to requests that aim to uncover the presence of

specific web-application versions and their plugins. To quantify

these requests, we use the signatures from BlindElephant [46]

and WhatWeb [47], two open-source fingerprinting tools that

have large databases of fingerprints for popular web applications

and their plugins. By requesting specific files and matching

their content with the signatures in their database, these tools

can identify the type and specific version of the target web

application. We extract the file paths from the databases of

fingerprints and correlate these signatures with our web server

logs, to identify fingerprinting attempts from malicious bots. To

ensure that we do not label regular crawling as fingerprinting,

we discount requests towards generic files, such as, index.php

and robots.txt even if these are valuable in the context of web-

application fingerprinting. Overall, our database includes 13,887

URL-based signatures used to identify fingerprinting attempts.

Table II lists the top 5 paths in our database of fingerprinting

signatures that received the most requests. In total, we received

223,913 requests that were categorized as fingerprinting at-

tempts and originated from 12,183 unique bot IP addresses.

Within our database of signatures, /CHANGELOG.txt has

received the largest number of requests since this file can be

used to identify the version of Drupal, Joomla, Moodle (Online

learning platform), and SPIP (Collaborative publishing system).

Second, we observe requests towards remote-code execution

(RCE) vulnerabilities in ThinkPHP deployments which are

known to be targeted by multiple botnets [48]. The fingerprint-

ing of Apache Solr is related to the versions that were reported

to be vulnerable to RCE in November 2019 [49]. Finally, in the

top five categories of fingerprinting requests, we observe large

numbers of requests towards specific vulnerable WordPress plu-

gins as well as the default deployment of Tomcat Manager. The

rest of fingerprinting-related requests follow the same patterns

of probing for highly-specific endpoints, belonging to applica-

tions that are either misconfigured or known to be vulnerable.

• Exploitation attempts: We define exploitation attempts

as requests towards URIs that are directly used to trigger known

exploits. We use exploits from exploit-db.com to generate

signatures for exploitation attempts. Unfortunately, automati-

cally generating signatures based on public exploit descriptions

is challenging due to the diverse format of vulnerability reports.

As a result, we incorporate a human-assisted automation tool

that extracts the URLs of signature candidates for the human

analyst to verify. At the same time, we hypothesize that bots

will most likely focus on server-side exploits that are easy

to mount (such as SQL injections and RCEs) and therefore

focus on these types of exploits, as opposed to including client-

side attacks, such as, XSS and CSRF. The resulting signature

database includes 593 signatures for the 5 web applications

in our dataset corresponding to vulnerabilities from 2014 to

2020. Our database includes 174 exploits for WordPress, 297

exploits for Joomla, 40 for Drupal, 52 for phpMyAdmin, and

19 exploits for Webmin, as well as 14 exploits extracted by

looking at the most requested paths on our honeysites.

Overall, we matched 238,837 incoming requests to

exploitation attempts that originated from 10,358 bot IP

addresses. Table III includes the top 5 endpoints used in

these attempts. In this table, we report on the CVE number

whenever possible, and in the absence of a CVE number, we

report the EDB-ID (Exploit-db ID) for these vulnerabilities.

The RCE vulnerability in PHPUnit received the most

exploitation attempts, followed by a setup PHP code injection

vulnerability of phpMyAdmin, and an RCE on exposed XDebug

servers (PHP Remote debugging tool). Next, an RCE vulner-

TABLE III: Top exploit requests

Path # requests Unique IPs CVE/EDB-ID

/vendor/phpunit/
.../eval-stdin.php

70,875 346 CVE-2017-9841

/scripts/setup.php 67,417 1,567 CVE-2009-1151

/?XDEBUG SESSION
START=phpstorm

23,447 7 EDB-44568

/?a=fetch&content=<php>die(
@md5(HelloThinkCMF))</php>

21,819 953 CVE-2019-7580

/cgi-bin/mainfunction.cgi 20,105 2,055 CVE-2020-8515

ability in ThinkCMF (CMS application based on thinkPHP)

is also targeted by malicious bots. The last entry in Table III

refers to a Draytech vulnerability which is significant in that its

exploit was released during our study, allowing us to observe

how fast it was weaponized (discussed more in Section VIII).

Interestingly, 3,221 (14%) of IP addresses that sent

fingerprinting or exploitation requests were observed in both

categories, suggesting that some bots cover a wide range of

vulnerabilities, as opposed to focusing on a single exploit.

Next to exploitation attempts, we also searched for requests

that included tell-tale shell commands (such as rm -rf /tmp

and wget) in one or more request parameters. In this way, we

discovered an additional 24,379 shell-related requests.

Though most injected shell commands attempt to

download a malicious payload from a publicly accessible IP

address/domain, we discovered that 2,890 requests contain

the URL of a private IP address, such as “192.168.1.1:8088”

which of course is unreachable from our web servers. These

requests could either belong to a buggy bot that extracts the IP

address of the wrong network interface after exploiting a host,

or could indicate botnets which are meant to attack the routers

in a local network, but finally ended up on the public web.

• Scanning for open-access backdoors: We generate

a list of 485 well-known PHP, ASP, Perl, Java and bash,

backdoors. We use the same lists as Starov et al. [50] to extract

the signatures of known web backdoors and augment their

lists with two repositories that host web shells [51], [52]. Our

signatures matched 42 web shells (such as, shell.php, cmd.php

and up.php) requested 144,082 times by 6,721 bot IP addresses.

• Scanning for unprotected sensitive files: Another

group of bots query for unprotected sensitive files, by either

guessing the names of likely-sensitive files (such as backup.sql)

or capitalizing on administrator behavior (e.g. keeping known

working copies of sensitive files with a .old suffix) and leaks

due to specific editors (such as accessing the temporary swap

files left behind by Vim).

Similar to web-shell signatures, we used popular word lists

used in security scanners, such as SecLists [51], to build a

database of 1,016 signatures. These signatures matched 52,840

requests from 5,846 unique bot IP addresses. Files with the

.env extension which include potentially sensitive environment

variables used in Docker as well as other popular development

platforms were requested 29,713 times by 1,877 unique bot IP

addresses. Bots also requested a wide range of likely sensitive

file extensions including .old, .sql, .backup, .zip, and .bak as

well as text editor cache files such as .php˜ and .swp files.

Based on all of our signatures introduced in this section,

we observe 929 unique bot IP addresses that participated in

all of the aforementioned types of attacks. This demonstrates

that there exist bots that are equipped with a large number

of exploits and are willing to exhaust them while attacking

a host, before proceeding to their next victim.

B. Duration and frequency of bot visits

We grouped the requests recorded by Aristaeus into

1,760,124 sessions. Overall, 44.9% of sessions only consist

of a single request. 46% of sessions include between 2-20

requests, whereas there exist 2,310 sessions that include more

than 1,000 requests. The majority of bots spend as little as 1-3

seconds on our honeysites. 58.1% of the bots that visited our

honeysites left within 3 seconds, and among these bots, 89.5%

left within 1 second. Contrastingly, 10.7% of bots spent more

than 30 minutes on our honeysites.

A large fraction of bots visiting our honeysites perform too

few and too generic requests for us to be able to categorize

them as benign or malicious. Specifically, 11,015,403 requests

(41.68% of total requests) fall into this category. We provide

additional details for these bots below:

Single-shot scanners. 50.04% of the IP addresses that

visited our honeysites only sent a single request and did

not exhibit any obviously malicious behavior. This is clearly

bot behavior since modern browsers make tens of follow-up

requests in order to load the required first-party and third-party

resources. Similarly, these bots are unlikely to be indexing

websites since that would also require follow-up requests

for pages linked from the main page. We hypothesize that

these single-shot bots are either populating databases for later

processing (by more persistent bots) or are searching for

specific content that is not present on our setup.

Internet-wide scanners. We attributed 114,489 requests to

four different Internet-wide scanners, including Masscan [53]

(21.4%) and Zgrab [54] (73.1%). Moreover, our honeysites

recorded “Stretchoid” (34.3%) and “NetSystemsResearch”

(3.69%) bots, which claim to identify online assets of organiza-

tions and the availability of public systems. The exact intention

behind these requests remains unclear since these tools can be

collecting data for both benign as well as malicious purposes.

C. Unexpected changes in bot identity

In this section, we focus on bots that switched their identity

across requests. We look for changes in certain HTTP headers,

such as, the user agent, as well as artifacts of a change in the

used automation tool, such as, the reordering of HTTP headers.

Multiple User-Agents from the same IP address. At least

14.28% of all IP addresses that visited our honeysites sent

requests with two or more user agents. There may be benign

reasons why a bot would present two or more User-Agent

(UA) strings, such as, bots behind NATs and proxies, or bots

that upgraded their versions of browsers/crawling tools. At

the same time, we observed clear spoofing behavior, such as,

bots changing their UAs with every request. We summarize

the types of UA changes below:

1) Changing the operating system. As shown in the

following example, only the operating system part of the

user agent was changed across two requests.

• ”Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:52.0)

Gecko/ 20100101 Firefox/52.0”

• ”Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0)

Gecko/ 20100101 Firefox/52.0”

We identified 5,479 IP addresses that claimed more than

one OS during their requests. One possible explanation

is that these bots are searching for server-side cloaking,

i.e., our honeysites presenting different content to users

of Windows vs. Linux.

2) Changing the browser version. We use the Levenshtein

distance to measure User-Agent string similarity of a

certain IP address, recording their minimum and maximum

similarity. We observed that when the changes are limited

to browser versions as presented in the bots’ UAs, the

requests exhibit more than 90% similarity. A total of

11,500 IP addresses present these types of version changes.

In light, however, of our findings in Section VII-A3

regarding bots imitating common browsers, these version

changes are likely to be part of a spoofing strategy, as

opposed to honest announcements of browser updates.

3) Switching user agents frequently We observed 4,440

(1.54%) IP addresses that sent requests with more than

5 UAs, and there are 542 IP addresses presenting more

than 20 UAs across their requests. In extreme cases, we

observed 44 IP addresses that sent more than 50 unique UA

headers. However, by looking at other HTTP headers and

their TLS fingerprint, we can attribute their requests to just

one or two tools. This uncovers the strategy of frequently

rotating UAs, presumably to evade server-side blocking.

Ordering of HTTP headers. During our analysis of

crawling tools, we observed that specific orders of headers

can be attributed to usage of certain tools. For instance, we

discovered that wget and curl have consistent orderings across

versions and are different from each other. By capitalizing on

this observation, we identified 23,727 bots that presented more

than one header orderings, revealing the usage of more than

one tools, regardless of UA claims. Moreover, we discovered

28,627 IP addresses that have only one ordering of HTTP

headers, but have multiple UAs, which means they are changing

their claimed identities, without changing the underlying tools.

VII. TLS FINGERPRINTING

Aristaeus serves content to both HTTP and HTTPS requests

to accommodate as many bots as possible. Overall, bots made

10,156,305 requests over HTTPS (38.4% of total requests).

Out of all HTTPS requests, we extracted 558 unique TLS fin-

gerprints. This indicates that most bots use the same underlying

TLS library which is related to the tool and the operating system

that they are using. We can therefore use these TLS fingerprints

to identify bots and corroborate their claimed identities.

A. TLS Fingerprint of Web Bots

1) Bots behind NAT/Proxy

It is expected that some bots will use proxies before

connecting to a website, both in order to evade rate-limiting

and blocklisting as well as to potentially distribute the load

across multiple servers. Therefore, some requests that originate

from the same IP address may be emitted by different bots. To

understand whether multiple bots are “hiding” behind the same

IP address or whether a single bot is just sending requests

with multiple UAs, we can compare the TLS fingerprints

across requests of interest. To perform this analysis, we make

use of the following observations:

• Basic Web crawling tools. Tools like curl and wget will

produce only one fingerprint for a given OS and TLS library

combination. We use this information to identify the use of

these tools in the presence of UA spoofing.

• Support for GREASE values in the TLS stack. Chrome,

Chromium, and Chromium-based browsers (such as Brave and

Opera) support GREASE, a new, TLS-handshake-related, IETF

standard [55]. The GREASE values that are sent in the TLS

handshakes produce multiple TLS fingerprints across multiple

requests, with differences in TLS cipher suites, extensions, and

E-curves. As a result, the TLS fingerprint of the aforementioned

browsers will be different in the first and the last 1-2 bytes for

all GREASE-related handshake values. GREASE was added

to Chrome in Version 55 [56] which we verified by testing

Chrome on several popular platforms (Ubuntu 16.04, Ubuntu

18.04, CentOS 7, Windows 10, Mac OS, and Android 8).

Contrastingly, browsers such as Firefox, Edge, and Safari

have not implemented GREASE at the time of our analysis.

As a result, GREASE values are absent from the handshakes

and therefore the TLS fingerprints of these browsers remain

the same across requests. For these browsers, we collected

their fingerprints over different operating systems and used

these fingerprints to uncover the true identity of bot requests.

Out of 43,985 IP addresses with a TLS fingerprint, there are

1,396 (3.17%) IPs with two or more sets of TLS fingerprints.

For this 3.17%, we observe that the requests originated from

different tools and/or OSs, hiding behind the same IP address.

If there was a TLS intercepting proxy in place, we would

not observe multiple TLS fingerprints but rather a single

TLS fingerprint (that of the intercepting proxy). Nevertheless,

distinguishing multiple clients behind a TLS proxy remains

a challenge for TLS fingerprinting.

2) TLS fingerprint of Tools

Given that only 558 unique TLS fingerprints are shared

among all 10,156,305 requests, this means that the majority

of requests can be attributed to a small number of tools and

TLS libraries.

To perform the matching of bot TLS fingerprints to known

tools, we manually extracted the TLS fingerprint of the Go-

http-client, wget, curl, Chrome, Firefox, Opera, Edge and IE

browsers, and included them in our database of signatures.

Moreover, for other TLS fingerprints that we could not repro-

duce in our setup, we assume that a crawler will not pretend to

be another crawler. For example, a crawler built using Python

may pretend to be Chrome or Firefox (in order to bypass anti-

bot mechanisms), but it has no reason to pretend to be curl given

that both tools are well known for building bots and therefore

receive the same treatment from anti-bot tools and services [8].

TABLE IV: Popular TLS fingerprint distribution. Entries below the
line correspond to Chromium-based tools that were not in the top
ten, in terms of unique bot IP count.

Tools
Unique

FPs
IP Count

Total
Requests

Go-http-client 28 15,862 8,708,876
Libwww-perl or wget 17 6,102 120,423
PycURL/curl 26 3,942 80,374
Python-urllib 3 8 2,858 22,885
NetcraftSurveyAgent 2 2,381 14,464
msnbot/bingbot 4 1,995 44,437
Chrome-1(Googlebot) 1 1,836 28,082
Python-requests 2.x 11 1,063 754,711
commix/v2.9-stable 3 1,029 5,738
Java/1.8.0 8 308 1,710
MJ12Bot 2 289 28,065

Chrome-2(Chrome, Opera) 1 490 66,631
Chrome-3(Headless Chrome) 1 80 2,829
Chrome-4(coc coc browser) 1 4 101

Total 113 38,239 9,879,326

Therefore, after excluding browser TLS fingerprints, we used

the description from the majority of recorded UA headers that

match the unknown TLS fingerprints, to label them.

Table IV lists the most popular tools covering 113 unique

fingerprints. Given that one of these tools is based on Google

Chrome, the bottom part of Table IV lists any additional

fingerprints that we could trace back to Chrome. The total of

these 14 tools produced 9,879,326 requests, covering 97.2%

of all TLS requests. Bots using the Go language (and therefore

the Go-provided TLS libraries) are by far the most popular,

exceeding more traditional choices such as, Python, perl, and

wget. We observe a total of four different Chromium-related

fingerprints, with distinct fingerprints for bots operated

by Google (Googlebot, Google-Image, and Google Page

Speed Insights), headless Chrome, and the coc coc browser

corresponding to a Vietnamese version of Chrome.

These results show the power of TLS fingerprinting in cor-

roborating the identity of benign bots and identifying malicious

bots that are lying about their identities. Out of 38,312 requests

that claimed to be msnbot/bingbot and have a valid TLS finger-

print, we were able to use reverse DNS to verify that all of them

were indeed real msnbot or bingbots. Similarily, out of 28,011

requests that claimed to be Googlebot, we matched 27,833

(99.4%) of them through TLS fingerprinting and identify them

as real Googlebots. The remaining bots also failed in producing

the expected reverse DNS results, pointing to malicious actors

who claim the Googlebot identity to avoid getting blocked.

3) Using TLS fingerprinting to uncover the real identity of bots

Given our ability to match claimed user agents (UAs) with

presented TLS fingerprints, we checked the TLS fingerprints

of all HTTPS-capable bots searching for a mismatch between

the stated UAs and the observed TLS fingerprints. Overall, we

discovered that 27,860 (86.2%) of the total of 30,233 clients

that claim to be Firefox of Chrome, were in fact lying about

their identity.

Fake Chrome. Among the 12,148 IP addresses that claimed

to be Chrome through their UAs, 10,041 of them do not contain

the expected GREASE values in their cipher suites. As a result,

we can conclude that more than 82.6% of clients are lying about

being Chrome. From their TLS fingerprints, we can conclude

that they are mostly curl and wget running on Linux OSs.

Fake Firefox. Similarly, 18,085 IP addresses claimed

through their UAs, to be Firefox. However, 12,418 (68.7%)

of these Firefox clients actually matched the fingerprints of

Go-http-client, and 3,821 (21.1%) matched the fingerprints of

libwww-perl. A small number of requests (5.7%) matched to

either python or curl. The remaining 539 IP addresses do not

match any of the TLS fingerprints in our database, including

the fingerprints of Firefox. Overall, our results show that at

least 17,819 out of 18,085 (98.5%) IP addresses that claimed

to be Firefox are lying about their identity.

Real Chrome. 351 of the 2,419 IP addresses that show signs

of GREASE support in their TLS handshakes, claimed to be-

long to mobile Safari. This is not possible, given that Safari does

not currently support GREASE (neither for Mac nor for the

iPhone). This indicates actors (benign or malicious) who wish

to obtain the content that websites would serve to mobile Safari

browsers, but lack the ability to instrument real Apple devices.

Other TLS fingerprints. Finally, there are 11,693 of bots

that have other types of TLS fingerprints, but they mostly be-

long to Go-http-client, Python-urllib, curl, and wget, as shown

in Table IV. They exhibit a wide range of UAs including MSIE,

Android Browser, .NET CLR, and MS Word. This indicates

a much larger landscape of spoofed client identities, past the

Chrome/Firefox spoofing that we investigated in this section.

4) TLS fingerprints in Exploitation attempts

We applied our method of matching TLS fingerprints to

the stated identities of the bots behind the malicious requests

we previously discussed in Section VI-A2. Table V presents

the results. First, we can observe that there are almost no

real browsers accessing those resources, corroborating our

exploitation labels (under the reasonable assumption that

attackers do not need full-fledged browsers to send malicious

payloads to vulnerable websites). Second, there are major

variations in the different type of malicious requests. For

example, 93.4% of exploit requests are using Golang, but only

171 requests are using Golang to look for misplaced Backup

files. Similarly, libwww/wget is popular in the backdoor

requests, but these tools do not appear in backup file probing

requests. These results indicate different generations of tools

and attackers, using different underlying technologies to

exploit different website vulnerabilities.

VIII. CASE STUDIES

Bots only focusing on JS resources. Even though many

bots do not request images and other resources (presumably

as a way of speeding up their crawls) we observed bots that

only request JavaScript resources. One bot in our dataset

(IP address: 101.4.60.1**) was particularly interesting, as

it only downloaded JavaScript files but never, according to

Aristaeus’ tests, executed them. Given that the IP address of

this bot belongs to a Chinese antivirus company, we suspect

that the intention of that bot is to collect JavaScript files for

anti-malware research purposes.

TABLE V: TLS fingerprint of malicious requests

Type Python Golang
libwww /

wget
Chrome /

Firefox
Unknown Total

Backdoor 231 1,718 349 3 482 2,783

Backup File 411 171 84 0 1,803 2,469

Exploits 275 18,283 607 0 390 19,555

Fingerprinting 1,524 3,670 630 139 7,226 13,189

Spikes in incoming traffic. We observe two major spikes

in our dataset. The first traffic surge happened from May

28th to June 17th, where a group of bots continuously sent

us log-in attempts and XML-RPC requests. These bots

initially requested /wp-includes/wlwmanifest.xml) to check if a

honeysite was an instance of WordPress. They then extracted

the list of users from the author-list page, and then started

brute-forcing the admin account through POST requests

towards xmlrpc.php (targeting WordPress’s authentication

point that is meant to be used as an API). This group of

bots issued a total of 4,851,989 requests, amounting to

18.4% of the total requests. Similarly, the second traffic surge

corresponds to 21.9% of the total requests in our dataset.

Failed cloaking attempts. Modifying the HTTP user agent

header is likely the most common method of cloaking used

by the bots (both malicious bots trying to exploit websites

as well as benign bots operated by researchers and security

companies). Yet during our study, we observed failed attempts

to modify this header. For instance, we observed wrong

spellings of the “User-Agent” header including “useragent”

and “userAgent”. Similarly, the “Host” header also included

different spellings and letter cases, such as “HOST”, “host”,

or “hoSt”. The appearance of these spelling artifacts means

that these header fields are forged. For certain HTTP libraries

however, an incorrect spelling results in both the original

header and the new header being sent out. Therefore, some

requests recorded by Aristaeus included both ”User-Agent” and

”userAgent” headers. For these bots, the original ”User-Agent”

header indicated, e.g., ”python-requests/2.23.0”, whereas the

“userAgent” header reported ”Mozilla/5.0 (Windows NT 6.1;

WOW64; rv:45.0) Gecko/20100101 Firefox/45.0”.

Time to weaponize public exploits. During the seven-

month span of this study, we observed requests that tried to

exploit five remote command execution (RCE) vulnerabilities

that went public after the start of our data collection. As

a result, we have visibility over the initial probes for these

exploits. The five RCE vulnerabilities affect the following

software/firmware: DrayTech modems (CVE-2020-8585),

Netgear GPON router (EDB-48225), MSSQL Reporting

Servers (CVE-2020-0618), Liferay Portal (CVE-2020-7961),

and F5 Traffic Management UI (CVE-2020-5902).

For the first vulnerability on DrayTech devices, the exploit

was released on March 29, 2020 and we observed exploitation

attempts on Aristaeus’ honeysites a mere two days later.

In a similar fashion, the exploit for Netgear devices went

public on March 18 2020, and the first exploitation attempts

were recorded by Aristaeus on the same day. Next, the proof-

of-concept exploit for MSSQL reporting server vulnerability

went public by the researcher who reported this vulnerability

on February 14, 2020, and we received exploitation attempts

for this vulnerability 4 days later [57]. The Liferay vulnerability

went public on March 20, 2020 and exploiting requests showed

up in Aristaeus’ logs after 4 days. Finally, the F5 vulnerability

was publicly announced on June 30, 2020 and we observed

requests towards F5 TMUI shell on the same day.

Based on these five occasions, we can clearly observe

that the time window between an exploit going public and

malicious actors probing for that vulnerability is short and, in

certain cases (such as the Netgear and F5 devices) non-existent.

IX. DISCUSSION

In this section, we first highlight the key takeaways from

our analysis of the data that Aristaeus collected, and then

explore how the size of our infrastructure relates to the

number of bots discovered. We close by discussing Aristaeus’s

limitations as well as future work directions.

A. Key Takeaways

• Everyone is a target: Just by being online and publicly ac-

cessible, each one of Aristaeus’ honeysites attracted an average

of 37,753 requests per month, 21,523 (57%) of which were

clearly malicious. Each online site is exposed to fingerprinting

and a wide range of attacks, abusing both operator error (such

as, common passwords) as well as recently-released exploits.

• Most generic bot requests are generated by rudimentary

HTTP libraries: Throughout our data analysis, we observed

that 99.3% of the bots that visit our websites do not

support JavaScript. This renders the state-of-the-art browser

fingerprinting that is based on advanced browser APIs and

JavaScript, ineffective. To combat this, we demonstrated

that TLS fingerprinting can be used to accurately fingerprint

browsing environments based on common HTTP libraries.

• Most bots are located in residential IP space: Through

our experiments, we observed that the majority (64.37%) of

bot IP addresses were residential ones, while only 30.36%

of IP addresses were located in data centers. This indicates

that bots use infected or otherwise proxied residential devices

to scan the Internet. We expect that requests from residential

IP space are less susceptible to rate limiting and blocklisting

compared to requests from data centers and public clouds, out

of fear of blocking residential users.

• Generic bots target low-hanging fruit: Aristaeus’ logs

reveal that 89.5% of sessions include less than 20 requests,

and less than 0.13% of sessions include over 1,000 requests.

The bruteforce attempts exhibit similar patterns: 99.6% IP

addresses issue fewer than 10 attempts per domain, while only

0.3% IP addresses issued more than 100 attempts per domain.

This indicates that most bots are highly selective and surgical

in their attacks, going after easy-to-exploit targets.

• IP blocklists are incomplete: The vast majority (87%)

of the malicious bot IPs from our honeysite logs were not

listed in popular IP blocklists. This further emphasizes the

limited benefits of static IP blocklisting and therefore the

need for reactive defenses against bots. At the same time, the

poor blocklist coverage showcases the practical benefits of

Aristaeus, which can discover tens of thousands of malicious

clients that are currently missing from popular blocklists.

on limited labeled bot traffic from an industry partner. By

using data augmentation methods, they are able to synthesize

samples and expand their dataset used to train ML models.

In our paper, we sidestep the issue of having to manually

label traffic as belonging to malicious crawlers, through the

use of honeysites, i.e., websites which are never advertised

and therefore any visitors must, by definition, either be

benign/malicious crawlers or their operators who follow-up on

a discovery from one of their bots. We therefore argue that the

access logs that we collected via our network of honeysites

can be used as ground truth in order to train more accurate

ML-based, bot detection systems.

Network telescopes and honeypots. Network telescopes and

honeypots are two classes of systems developed to study

Internet scanning activity at scale. First introduced by Moore et

al. [67], Network Telescopes observe and measure the remote

network security events by using a customized router to reroute

invalid IP address blocks traffic to a collection server. These

works are effective in capturing network security events such

as DDoS attacks, Internet scanners, or worm infections. Recent

work by Richter et al. [68], applies the same principles to

89,000 CDN servers spread across 172 Class A prefixes and find

that 32% all logged scan traffic are the result of localized scans.

While large in scale, network telescopes either do not provide

any response or interactive actions, or support basic responses

at the network level (e.g., sending back SYN-ACK if received

a SYN from certain ports [69]). This makes them incapable of

analyzing crawler interaction with servers and web applications.

Honeypots provide decoy computing resources for the

purpose of monitoring and logging the activities of entities

that probe them. High-interaction honeypots can respond to

probes with high fidelity, but are hard to set up and maintain.

In contrast, low-interaction honeypots such as Honeyd [70]

and SGNET [71] intercept traffic sent to nonexistent hosts

and use simulated systems with various “personalities” to

form responses. This allows low-interaction honeypots to be

somewhat extensible while limiting their ability to respond

to the probes [72].

Our system, Aristaeus, combines some of the best properties

of both these worlds. Aristaeus is extensible and can be

automatically deployed on globally-dispersed servers. However,

unlike network telescopes and low-interactive honeypots, our

system does not restrict itself to the network layer responses

but instead utilizes real web applications that have been

augmented to perform traditional as well as novel types of

client fingerprinting. In these aspects, our work most closely

relates to the honeynet system by Canali and Balzarotti which

utilized 500 honeypot websites with known vulnerabilities

(such as SQL injections and Remote Command Execution

bugs), and studied the exploitation and post-exploitation

behavior of attackers [12]. While our systems share similarities

(such as the use of real web applications instead of mock web

applications or low-interaction webserver honeypots), our focus

is on characterizing the requests that we receive, clustering

them into crawling campaigns, and uncovering the real identity

of crawlers. In contrast, because of their setup, Canali and

Balzarotti [12] are able to characterize how exactly attackers

attempt to exploit known vulnerabilities, what types of files

they upload to the compromised servers, and how attackers

abuse the compromised servers for phishing and spamming (all

of which are well outside Aristaeus’s goals and capabilities).

XI. CONCLUSION

In this paper, we presented the design and implementation of

Aristaeus, a system for deploying and managing large numbers

of web applications which are deployed on previously-unused

domain names, for the sole purpose of attracting web bots.

Using Aristaeus, we conducted a seven-month-long, large-scale

study of crawling activity recorded at 100 globally distributed

honeysites. These honeysites captured more than 200 GB of

crawling activity, on websites that have zero organic traffic.

By analyzing this data, we discovered not only the expected

bots operated by search engines, but an active and diverse

ecosystem of malicious bots that constantly probed our

infrastructure for operator errors (such as poor credentials

and sensitive files) as well as vulnerable versions of online

software. Among others, we discovered that an average

Aristaeus-managed honeysite received more than 37K requests

per month from bots, 50% of which were malicious. Out of

the 76,000 IP addresses operated by clearly malicious bots

recorded by Aristaeus, 87% of them are currently missing from

popular IP-based blocklists. We observed that malicious bots

engage in brute-force attacks, web application fingerprinting,

and can rapidly add new exploits to their abusive capabilities,

even on the same day as an exploit becoming public. Finally,

through novel header-based, TLS-based, and JavaScript-based

fingerprinting techniques, we uncovered the true identity of

bots finding that most bots that claim to be a popular browser

are in fact lying and are instead implemented on simple HTTP

libraries built using Python and Go.

Next to all the insights into the abuse by malicious bots,

Aristaeus allowed us to curate a dataset that is virtually

free of organic user traffic which we will make available

to researchers upon publication of this paper. This bot-only

dataset can be used to better understand the dynamics of bots

and design more accurate bot-detection algorithms.

XII. AVAILABILITY

One of the main contributions of this paper is the curation

of a bot-only, traffic dataset. To facilitate and advance research

on the topic of bot detection, our dataset will be available to

other researchers upon request.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback. This

work was supported by the Office of Naval Research under

grant N00014-20-1-2720, N00014-20-1-2858, by the National

Science Foundation under grants CNS-1813974, CNS-1941617,

and CMMI-1842020, as well as by a 2018 Amazon Research

award. Any opinions, findings, or conclusions expressed in

this material are those of the authors and do not necessarily

reflect the views of the sponsors.

REFERENCES

[1] A. Shirokova, “Cms brute force attacks are still a threat.” [Online].
Available: https://blogs.cisco.com/security/cms-brute-force-attacks-are-
still-a-threat

[2] T. Canavan, CMS Security Handbook: The Comprehensive Guide for

WordPress, Joomla, Drupal, and Plone. John Wiley and Sons, 2011.
[3] Imperva, “Bad bot report 2020: Bad bots strike back.” [Online].

Available: https://www.imperva.com/resources/resource-library/reports/
2020-bad-bot-report/

[4] A. G. Lourenço and O. O. Belo, “Catching web crawlers in the act,”
in Proceedings of the 6th international Conference on Web Engineering,
2006, pp. 265–272.

[5] P.-N. Tan and V. Kumar, “Discovery of web robot sessions based on
their navigational patterns,” in Intelligent Technologies for Information

Analysis. Springer, 2004, pp. 193–222.
[6] G. Jacob, E. Kirda, C. Kruegel, and G. Vigna, “Pubcrawl: Protecting

users and businesses from crawlers,” in Presented as part of the 21st

USENIX Security Symposium (USENIX Security 12), 2012, pp. 507–522.
[7] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “FP-Crawlers:

Studying the Resilience of Browser Fingerprinting to Block Crawlers,”
in MADWeb’20 - NDSS Workshop on Measurements, Attacks, and

Defenses for the Web.
[8] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis,

“Web Runner 2049: Evaluating Third-Party Anti-bot Services,”
in 17th Conference on Detection of Intrusions and Malware

& Vulnerability Assessment (DIMVA), 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02612454

[9] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in 11th USENIX Workshop on

Offensive Technologies (WOOT 17), 2017.
[10] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and

S. Savage, “Re: Captchas-understanding captcha-solving services in an
economic context.” in USENIX Security Symposium, vol. 10, 2010, p. 3.

[11] S. Sivakorn, J. Polakis, and A. D. Keromytis, “I’m not a human:
Breaking the google recaptcha,” Black Hat, 2016.

[12] D. Canali and D. Balzarotti, “Behind the Scenes of Online Attacks: an
Analysis of Exploitation Behaviors on the Web,” in Proceedidngs of the

20th Network & Distributed System Security Symposium (NDSS), 2013.
[13] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Antonakakis,

“Domain-z: 28 registrations later measuring the exploitation of residual
trust in domains,” in IEEE Symposium on Security and Privacy (SP),
2016, pp. 691–706.

[14] “Seleniumhq browser automation,” https://www.selenium.dev/.
[15] P. Eckersley, “How unique is your web browser?” in International Sym-

posium on Privacy Enhancing Technologies Symposium, 2010, pp. 1–18.
[16] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in 2013 IEEE Symposium on Security and

Privacy, 2013, pp. 541–555.
[17] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprintability

of browser extensions,” in IEEE Symposium on Security and Privacy

(SP), 2017, pp. 941–956.
[18] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:

Diverting modern web browsers to build unique browser fingerprints,”
in IEEE Symposium on Security and Privacy (SP), 2016, pp. 878–894.

[19] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
E. Weippl, and F. Wien, “Fast and reliable browser identification with
javascript engine fingerprinting,” in Web 2.0 Workshop on Security and

Privacy (W2SP), vol. 5, 2013.
[20] L. Brotherston, “Tls fingerprinting.” [Online]. Available:

https://github.com/LeeBrotherston/tls-fingerprinting
[21] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,

M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of
https interception.” in Proceedings of the 24th Network and Distributed

System Security Symposium (NDSS), 2017.
[22] K. Park, V. S. Pai, K.-W. Lee, and S. B. Calo, “Securing web service

by automatic robot detection.” in USENIX Annual Technical Conference,

General Track, 2006, pp. 255–260.
[23] G. Analytics, “How a web session is defined in analytics.” [Online].

Available: https://support.google.com/analytics/answer/2731565?hl=en
[24] Valve, “Fingerprintjs2.” [Online]. Available: https:

//github.com/Valve/fingerprintjs2
[25] M. W. Docs, “Content security policy (csp).” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

[26] S. Stamm, B. Sterne, and G. Markham, “Reining in the web with content
security policy,” in Proceedings of the 19th international conference

on World wide web, 2010, pp. 921–930.

[27] N. Virvilis, B. Vanautgaerden, and O. S. Serrano, “Changing the game:
The art of deceiving sophisticated attackers,” in 2014 6th International

Conference On Cyber Conflict (CyCon 2014). IEEE, 2014, pp. 87–97.

[28] B. P. Ltd, “Web technology usage trends (accessed march 27,2020).”
[Online]. Available: https://trends.builtwith.com

[29] “Wordpress: About us,” https://wordpress.com/about/.

[30] “Ip2location lite ip-asn database,” https://lite.ip2location.com/database/
ip-asn.

[31] X. Mi, X. Feng, X. Liao, B. Liu, X. Wang, F. Qian, Z. Li, S. Alrwais,
L. Sun, and Y. Liu, “Resident evil: Understanding residential ip proxy
as a dark service,” in 2019 IEEE Symposium on Security and Privacy

(SP), 2019.

[32] D. Liu, S. Hao, and H. Wang, “All your dns records point to us:
Understanding the security threats of dangling dns records,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 1414–1425.

[33] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna, “Cloud strife:
mitigating the security risks of domain-validated certificates,” 2018.

[34] S. F. McKenna, “Detection and classification of web robots with
honeypots,” Naval Postgraduate School Monterey United States, Tech.
Rep., 2016.

[35] R. Barnett, “Setting HoneyTraps with ModSecurity: Adding Fake
robots.txt Disallow Entries,” https://www.trustwave.com/en-us/resources/
blogs/spiderlabs-blog/setting-honeytraps-with-modsecurity-adding-
fake-robotstxt-disallow-entries/.

[36] R. Haswell, “Stopping bad robots with honeytraps,” https:
//www.davidnaylor.co.uk/stopping-bad-robots-with-honeytraps.html.

[37] Google, “Verifying googlebot.” [Online]. Available:
https://support.google.com/webmasters/answer/80553

[38] Microsoft, “Verifying bingbot.” [Online]. Available:
https://www.bing.com/toolbox/verify-bingbot

[39] Yandex, “Verifying yandexbot.” [Online]. Available: https://yandex.com/
support/webmaster/robot-workings/check-yandex-robots.html

[40] Baidu, “How can i know the crawling is from baiduspider.” [Online].
Available: https://help.baidu.com/question?prod id=99&class=0&id=
3001

[41] Google, “Overview of google crawlers.” [Online]. Available:
https://support.google.com/webmasters/answer/1061943

[42] Netcraft, “Netcraft: Active cyber defence,” URL:

https://www.netcraft.com/, 2014.

[43] “Internet Archive: Digital Library of Free & Borrowable Books, Movies,
Music & Wayback Machine,” https://archive.org/.

[44] C. Security, “Multiple vulnerabilities in draytek products
could allow for arbitrary code execution.” [Online]. Available:
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-draytek-
products-could-allow-for-arbitrary-code-execution 2020-043/

[45] M. Daniel, H. Jason, and g0tmi1k, “10k most common credentials.”
[Online]. Available: https://github.com/danielmiessler/SecLists/blob/
master/Passwords/Common-Credentials/10k-most-common.txt

[46] “The blindelephant web application fingerprinter.” [Online]. Available:
https://github.com/lokifer/BlindElephant

[47] “Whatweb.” [Online]. Available: https://github.com/urbanadventurer/
WhatWeb

[48] “Thinkphp remote code execution vulnerability
used to deploy malware.” [Online]. Available:
https://www.tenable.com/blog/thinkphp-remote-code-execution-
vulnerability-used-to-deploy-variety-of-malware-cve-2018-20062

[49] “Exploit code published for two dangerous apache
solr remote code execution flaws.” [Online]. Available:
https://www.zdnet.com/article/exploit-code-published-for-two-
dangerous-apache-solr-remote-code-execution-flaws/

[50] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis, “No
honor among thieves: A large-scale analysis of malicious web shells,”
in Proceedings of the 25th International Conference on World Wide

Web, ser. WWW ’16, 2016, p. 1021–1032.

[51] “Seclists: A collection of multiple types of lists
used during security assessments.” [Online]. Available:
https://github.com/danielmiessler/SecLists

[52] “lhlsec/webshell.” [Online]. Available: https://github.com/lhlsec/webshell

[53] R. D. Graham, “Masscan: Mass ip port scanner,” URL: https://github.

com/robertdavidgraham/masscan, 2014.

[54] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications,” in Presented as

part of the 22nd USENIX Security Symposium (USENIX Security 13),
2013, pp. 605–620.

[55] D. B. Internet Engineering Task Force (IETF), “Applying generate
random extensions and sustain extensibility (grease) to tls extensibility.”
[Online]. Available: https://tools.ietf.org/html/rfc8701

[56] “Chrome platform status: Grease for tls,” https://www.chromestatus.com/
feature/6475903378915328.

[57] “Cve-2020-0618: Rce in sql server reporting services (ssrs).” [Online].
Available: https://www.mdsec.co.uk/2020/02/cve-2020-0618-rce-in-sql-
server-reporting-services-ssrs/

[58] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson,
“Hulk: Eliciting malicious behavior in browser extensions,” in 23rd

USENIX Security Symposium (USENIX Security 14), 2014, pp. 641–654.
[59] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-

download attacks and malicious javascript code,” in Proceedings of the

19th international conference on World wide web, 2010, pp. 281–290.
[60] J. Lee, S. Cha, D. Lee, and H. Lee, “Classification of web robots:

An empirical study based on over one billion requests,” computers &

security, vol. 28, no. 8, pp. 795–802, 2009.
[61] M. C. Calzarossa, L. Massari, and D. Tessera, “An extensive study of web

robots traffic,” in Proceedings of International Conference on Information

Integration and Web-based Applications & Services, 2013, p. 410.
[62] M. Allman, V. Paxson, and J. Terrell, “A brief history of scanning,”

in Proceedings of the 7th ACM SIGCOMM conference on Internet

measurement, 2007, pp. 77–82.
[63] M. D. Dikaiakos, A. Stassopoulou, and L. Papageorgiou, “An

investigation of web crawler behavior: characterization and metrics,”
Computer Communications, vol. 28, no. 8, pp. 880–897, 2005.

[64] P. Huntington, D. Nicholas, and H. R. Jamali, “Website usage metrics: A
re-assessment of session data,” Information Processing & Management,
vol. 44, no. 1, pp. 358–372, 2008.

[65] G. Xie, H. Hang, and M. Faloutsos, “Scanner hunter: Understanding
http scanning traffic,” in Proceedings of the 9th ACM symposium on

Information, computer and communications security, 2014, pp. 27–38.
[66] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,

“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” The 41st IEEE Symposium on Security and

Privacy (IEEE SP), Jan 2020.
[67] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Network telescopes:

Technical report,” Cooperative Association for Internet Data Analysis
(CAIDA), Tech. Rep., 2004.

[68] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet
from a massively distributed network telescope,” in Proceedings of the

Internet Measurement Conference, 2019, pp. 144–157.
[69] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The internet

motion sensor-a distributed blackhole monitoring system.” in NDSS, 2005.
[70] N. Provos, “A virtual honeypot framework.” in USENIX Security

Symposium, vol. 173, 2004, pp. 1–14.
[71] C. Leita and M. Dacier, “Sgnet: a worldwide deployable framework

to support the analysis of malware threat models,” in 2008 Seventh

European Dependable Computing Conference. IEEE, 2008, pp. 99–109.
[72] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection

signatures using honeypots,” ACM SIGCOMM computer communication

review, vol. 34, no. 1, pp. 51–56, 2004.

XIII. APPENDIX

TABLE VI: Aristaeus dataset description

Dataset Requests %Requests
Unique

IP Addresses
Blocklist
Coverage

Shared Crawling Begin Date End Date

Benign 347,386 1.3% 6,802 6.91% Yes

2020-01-24
00:00:01

2020-08-24
23:59:59

Malicious 15,064,878 57% 76,396 13% No

Unknown / Gray 11,015,403 41.68% 206,111 11.64% No

Total 26.4 million 100% 287K 11.61% (Mixed)

TABLE VII: Top requested URL in different web applications

Rank WordPress Joomla Drupal PHPMyAdmin Webmin

1
/xmlrpc.php
(62.664%)

/administrator-
/index.php
(48.333%)

/user/login?destination=
/node/1#comment-form

(81.143%)

(POST)/index.php
(75.65%)

/session login.cgi
(79.93%)

2
/wp-login.php

(25.094%)
/administrator/

(41.512%)
/wp-login.php

(18.064%)
(POST)/phpmyadmin/index.php

(9.658%)
/wp-login.php

(13.649%)

3
/wp-admin/
(12.239%)

/wp-login.php
(9.29%)

/xmlrpc.php
(0.476%)

(GET)/phpmyadmin
/index.php
(5.715%)

/xmlrpc.php
(4.51%)

4

/administrator
/index.php
(0.001%)

/xmlrpc.php
(0.822%)

/administrator/
(0.222%)

/wp-login.php
(8.228%)

/robots.txt
(1.684%)

5
/administrator

(0.001%)
/wp-admin/
(0.044%)

/administrator/index.php
(0.095%)

/vendor/phpunit/phpunit-
/src/Util/PHP/eval-stdin.php

(0.749%)

/wp-admin/
(0.227%)

