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Abstract

Browser extensions enhance the web experience and have

seen great adoption from users in the past decade. At the same

time, past research has shown that online trackers can use

various techniques to infer the presence of installed extensions

and abuse them to track users as well as uncover sensitive

information about them.

In this work we present a novel extension-fingerprinting

vector showing how style modifications from browser exten-

sions can be abused to identify installed extensions. We pro-

pose a pipeline that analyzes extensions both statically and dy-

namically and pinpoints their injected style sheets. Based on

these, we craft a set of triggers that uniquely identify browser

extensions from the context of the visited page. We analyzed

116K extensions from Chrome’s Web Store and report that

6,645 of them inject style sheets on any website that users

visit. Our pipeline has created triggers that uniquely identify

4,446 of these extensions, 1,074 (24%) of which could not

be fingerprinted with previous techniques. Given the power

of this new extension-fingerprinting vector, we propose spe-

cific countermeasures against style fingerprinting that have

minimal impact on the overall user experience.

1 Introduction

In the last decade, researchers have revealed that a user’s on-

line activity is invisibly tracked by a multitude of third parties.

These third parties record the websites that users visit in an

effort to better understand them (i.e. their socioeconomic char-

acteristics and preferences), most commonly for the purpose

of better ad targetting. This type of tracking happens through

two broad sets of tracking techniques: stateful tracking and

stateless tracking.

Stateful tracking makes use of browser cookies and other

stateful identifiers that enable trackers to recognize returning

users and expand their browsing profiles with newly visited

websites [41]. Because of the limitations of stateful tracking

(such as the existence of options to block third-party cookies

and a browser’s private mode) stateless tracking techniques

arose that enable third parties to track users across sessions,

without relying on previously set cookies or other stateful

identifiers. These stateless techniques essentially “fingerprint”

a user’s browsing environment (such as the exact version

of their browser, the resolution of their screen, and the way

with which their graphics card renders complex 3D images)

and associate browsing sessions with this fingerprint [15, 19,

30, 33, 37]. As long as a user’s fingerprint remains relatively

stable over time, this approach subsumes the need for cookies

and works equally well both in and out of a browser’s private

mode.

The most recent addition to the arsenal of browser fin-

gerprinting is the fingerprinting of browser extensions, such

as, ad-blockers, video downloaders, productivity tools, and

password managers. Prior work has shown that browser exten-

sions can be fingerprinted by the resources they make avail-

able to websites [22, 24, 44], the way they modify a page’s

DOM [29,45,47], and the messages they send between origins

with postMessage [29, 45]. Unlike traditional fingerprinting

which could only be abused in the sense of offering bits of

entropy for differentiating users from each other, the ability to

detect browser extensions can also be abused to infer sensitive

information about users. This is because users choose to in-

stall specific browser extensions and these choices can betray

sensitive information about them. Recent work by Karami et

al. [29] showed that browser extensions can reveal, among

others, a user’s age, religion, political affiliation, and ethnicity.

In this paper, we present a new method of fingerprinting

browser extensions which, to the best of our knowledge, has

never been presented before. Our fingerprinting method arises

from the observation that, like regular web pages, browser ex-

tensions rely on Cascading Style Sheets (CSS) for the styling

of their user interfaces (UIs). These UIs include not only the

user-facing UIs that are invisible to pages (such as the UIs

shown to users who click on an extension’s icon), but also the

ones that extensions inject in the pages where they are active

(e.g. a new download menu under each YouTube video). This

observation coupled with the ability of modern browsers to







Listing 1: Extension-injected CSS rules for the example trigger

r.drwebThreatLink {

background-repeat: no-repeat;

width: 86px;

height: 84px;

background-position: 0 0;

background-image: url(data:image/png;base64

,...);

}

Given that an extension must have the permission to inject

CSS rules in a given webpage (we describe the permission

system and manifest files in more detail in Section 4) we

identify two separate classes of fingerprintable extensions,

that match the ones of Starov and Nikiforakis [47]:

• Fingerprintable on any domain These extensions are

the ones that have permissions to operate on all do-

mains that users visit and thereby potentially inject CSS

rules in all of these domains. Typical examples of these

extensions would be ad-blockers, password managers,

security- and privacy-related extensions, and screenshot

extensions. In this case, any website that a user visits has

the ability to deploy the appropriate CSS-based triggers

and detect the presence of a given extension.

• Fingerprintable on some domains Many extensions

are tailored to one or more specific domains, typically

those of popular services, such as, GMail, Twitter, and

YouTube. In this case, these extensions can only be fin-

gerprinted on these domains. Note however that prior

research has identified the large footprint of third parties

on the popular web [35]. Any JavaScript-capable third

party that is present on a domain on which an exten-

sion is active, can deploy arbitrary trigger elements and

therefore fingerprint these specialized extensions.

4 Data collection and processing

In this section, we detail our initial dataset of browser exten-

sions and how we process them to extract and verify their fin-

gerprints. The presented pipeline is used to build our database

of style fingerprints that we analyze in Section 5.

4.1 Initial dataset

For our experiments, we collected 116,485 extensions from

the Chrome Store in April 2019, intentionally excluding irrel-

evant themes and apps. We cover all types of extensions from

the most popular ones with millions of users to those with

one or no user at all at the time of writing. Each collected ex-

tension was submitted to the pipeline detailed below in order

to obtain a final “ready-to-use” fingerprinting script, which

Table 1: Changed visible properties of the example trigger

window.getComputedStyle Position & Dimensions

background getBoundingClientRect.bottom

backgroundImage getBoundingClientRect.height

backgroundPosition getBoundingClientRect.right

backgroundPositionX getBoundingClientRect.width

backgroundPositionY offsetHeight

backgroundRepeat offsetWidth

blockSize

height

inlineSize

perspectiveOrigin

transformOrigin

webkitLogicalHeight

webkitLogicalWidth

webkitPerspectiveOrigin

webkitTransformOrigin

width

can be deployed on any domain and URL. This fingerprinting

script consists of DOM triggers for particular style changes

and logic to determine the cause of each change. In addition,

we also collected 501,349 extensions and their versions dating

back from as early as 2014 to perform a longitudinal analysis

(see Section 5.7 for more details).

We gathered these extensions by crawling daily the Chrome

Store website with a custom script written in Python that

makes HTTP requests using the requests library. It stores

all metadata and extensions encountered in a MongoDB

database. Though the appropriate setting of the HTTP User

Agent, the script pretends to be a recent Chrome browser

version (updated occasionally over the years) and fetches the

information page of all publicly listed extensions available at

https://chrome.google.com/webstore/sitemap. It then

proceeds to download all extensions that have a new version

that does not exist in our database. The script is ~100 lines of

Python code and executes daily via a cronjob since 2014.

4.2 Processing pipeline

Figure 3 provides an overview of our processing pipeline to

generate style fingerprints. At the very end of our pipeline,

each remaining trigger links back to a single browser exten-

sion from our dataset. It should be noted that this pipeline can

be executed as often as necessary to obtain new fingerprinting

scripts for updated browser extensions. Our implementation

is currently limited to the WebExtension format supported

by Chrome, Firefox, Opera, Edge, and Brave. Note, however,

that our attack uses standardized JavaScript APIs and can

therefore be extended to other extension systems.





Listing 3: CSS rule from the “Wikiwand: Wikipedia Modernized”

(WikiWand) extension

#ww_hovercard .ww_image img {

display: block;

float: right;

max-height: 150px;

max-width: 180px;

width: auto;

height: auto;

margin: 10px;

border-radius: 2px;

}

Listing 4: Decoy trigger for the WikiWand extension

<div id="ww_hovercard">

<div class="ww_image">

<img trigger="yes"></img>

</div>

</div>

It should be noted that we limited ourselves to 50 triggers

per extension as some of them included full libraries with

hundreds of rules. Generating triggers for each of them would

have been redundant as only a few of them are needed to iden-

tify them. At the same time, the fact that there are hundreds

of ways that these extensions can be fingerprinted shows the

difficulty of defending against this type of fingerprinting.

4.2.3 Confirming trigger fingerprints

The third step consists in verifying that all generated triggers

are correct and can be exploited to perform extension finger-

printing. Indeed, even if triggers were built directly from CSS

rules, it can be hard to predict the exact runtime behavior of an

extension. Other styles could counter its effect and dynamic

code could remove an element or change its class on the fly.

For these reasons, we need to perform a thorough verification

as there is no guarantee that a decoy trigger will be effective

in identifying an extension. As part of this verification, we

perform the following checks:

• We need to ensure that the observed changes are consis-

tent over multiple runs. We collect style changes from the test

page of each extension three times and check that they are

identical. This check helps us to discard non-deterministic

changes that are the result of unreliable extension behavior.

• We also need to verify that our baseline calculation is

effective. In our test pages, we use a baseline element to de-

cide if a style was applied to an element or not. This baseline

element is located in a hierarchy that mimics the decoy one,

but with one important difference: it does not have any IDs

or class names. This way, if we detect differences between

the baseline element and the decoy trigger, we can build the

extension fingerprint from their differences.

Listing 5: Decoy trigger with the baseline elements.

<div class="trigger" id="26622">

<!-- Baseline Elements -->

<div orig_id="ww_hovercard">

<div orig_class="ww_image">

<img trigger="no"></img>

</div>

</div>

<!-- Trigger Elements -->

<div id="ww_hovercard">

<div class="ww_image">

<img trigger="yes"></img>

</div>

</div>

</div>

Listing 5 shows the final code our system generated for

the trigger that we presented in Listing 4. The first structure

is the baseline one while the second one is the one where

the extension (if present) will apply the corresponding style.

The style differences between the two will form the style

fingerprint of the extension.

4.2.4 Verifying collisions between extensions

While the analysis of a single extension can obviously reveal

injected CSS styles, this is not sufficient to extract and craft

unique fingerprints. If a change of style is triggered by an ex-

tension, there is no guarantee that no other extension produces

the exact same style change. Some extensions could share

the same IDs and class names while others could inject very

generic rules. To characterize possible collisions, we exposed

each extension capable of injecting CSS against the triggers

of all extensions and recorded all the style changes.

5 Analysis

This section provides a detailed reporting of how extensions

are fingerprintable through the styles they inject. We look at

what makes them identifiable and, for the ones that are not

identifiable, we explore the reasons why. We focus on study-

ing extensions that inject style rules universally on all web

pages (and are therefore fingerprintable on all page). Finally,

we also look at older versions of the extensions present in

our dataset to understand whether extensions are becoming

fingerprintable over time.

5.1 Pipeline statistics

Table 2 reports on the impact of our pipeline on our complete

dataset of 116,485 Chrome extensions.



Table 2: Number of extensions and triggers kept after each step of the pipeline shown in Figure 3 (Ma=Manifest, My=Mystique)

Steps

Initial dataset 1 2 3 4

Extensions 116,485
6,543 (Ma) 137 (My)

6,645 (Combined)
5,885 4,806 4,446

Triggers - - 102,997 54,788 40,722

Step 1. After parsing the manifest.json file of all extensions,

17,712 extensions (15.2%) inject at least one CSS file through

the Content script directive and 6,543 of them are doing so

on any domain. By using Mystique, we detected 137 exten-

sions that rely on tabs.insertCSS to inject styles dynami-

cally into a page. Since 35 them were already injecting styles

declaratively, we ended up with 6,645 potential fingerprint-

able extensions. Note that this number represents the ceiling

of our fingerprinting technique. An extension that does not

inject CSS rules cannot be fingerprinted through them.

Step 2. To generate the corresponding triggers, we use the

rules present in CSS files listed in the manifests and the ones

recorded by Mystique. In total, we generated 102,997 decoy

triggers distributed across 5,885 test pages, one page for each

extension. For the extensions where we could not generate

triggers, it was mainly due to the presence of pseudo-classes

in the rules. Pseudo-classes are keywords in CSS that reflects

the state of an element like hover, focus or active and

they require specific user interaction to be activated. Even

though we could craft pages for these specific scenarios, our

goal is to study style fingerprinting that can happen in the

background without user interaction, so we discarded them.

Other extensions that had empty CSS files or with all rules

commented out were also removed at this stage.

Step 3. The goal of this step is to confirm that differences

in styles are indeed detectable. We ran all the extensions

on their own test pages with Selenium to collect the style

fingerprints. For some extensions, we observed no difference

between the trigger element and the baseline. This happened

when some of the rules were very generic and did not rely on a

specific classes or IDs. For other extensions, Selenium crashed

or did not return any data. At the end of this step, we had

54,788 confirmed triggers for 4,806 potentially fingerprintable

extensions.

Step 4. The final step is to make sure that no two extensions

share the exact same style fingerprint. We tested each of the

6,645 extensions on all the triggers from the 4,806 potentially

fingerprintable extensions to identify possible collisions be-

tween fingerprints. We describe the results of this particular

step in more detail in Section 5.4. After verification, we re-

moved 14,066 decoy triggers that produced the exact same

change between two or more extensions. 4,446 (3.8%) ex-

tensions out of our initial set of 116,485 extensions can be

uniquely identified on any webpage because of the styles they

inject.

5.2 Evaluating different fingerprinting

strategies

An advantage of style fingerprinting compared to more tradi-

tional browser fingerprinting, is that the quantity of collected

data can be adapted depending on the desired speed and pre-

cision of the fingerprinting process. This difference translates

into three different collection strategies:

1. Triggers: If an extension has a unique trigger that is not

shared with any other extension, it is sufficient to test if the

style of the trigger is different from the one of the baseline.

The identification is fast as there is no need for additional

data processing.

2. Triggers and properties: If several extensions share the

same trigger, it can be enough to collect the list of modi-

fied properties to identify each of them. For example, for

extensions modifying a link element, one extension may

increase the size of the font while another may change

the background color. By identifying which properties of

the styled element were modified, one can differentiate

between the two extensions.

3. Trigger, properties, and values: This last strategy is the

one that produces the most data but it can lead to more

precise results as you one can attribute a specific change

directly to the right extension.

Table 3 shows the number of fingerprintable extensions

depending on the chosen strategy. Strategies 2 and 3 offer

an improvement of 6% and 15% respectively from Strategy

1 but albeit at a slightly higher performance cost as more

data is collected and processed. When comparing the use of

computed styles and dimensions, the numbers are compara-

ble between the two with no major differences. Dimension

changes, however, could be sensitive to differences between

devices particularly when the database of fingerprints was gen-

erated with a device that had a much larger screen, compared

to the one that is being fingerprinted. One possible solution is

to have multiple databases of dimension-related style finger-

prints so that the fingerprinting algorithm can match the ones

that are the closest to the user’s own screen size. We view

this as an implementation detail to make the fingerprinting











Listing 6: JS snippet showing the use of getComputedStyle as part

of a cross-browser compatibility layer

function get_element_style_property(elem , property

) {

var value;

if (elem.currentStyle)

value = elem.currentStyle[property];

else if (window.getComputedStyle)

value = window.getComputedStyle(elem).

getPropertyValue(property);

else

value = elem.style[property];

return value;

}

roles of these wrapper functions are two-fold: 1) they serve

as a cross-browser compatibility layer for reading the style

sheets of an HTML element (e.g., Element.currentStyle

is a proprietary version of getComputedStyle and available

only on old versions of Internet Explorer, which do not support

getComputedStyle), and 2) they provide a way to read the el-

ement’s inline style as fallback when the getComputedStyle

method is removed by scripts (e.g., by invoking delete

window.getComputedStyle).

Note that as shown in Listing 6, besides their primary roles

mentioned above, these wrapper functions often offer the

added convenience of returning the value of a particular CSS

property specified as one of the wrapper’s arguments.

Compatibility Tests The getComputedStyle API is also

used for compatibility testing. In such cases, CSS rules are

set for an element injected by the script on-the-fly, and the

script then immediately reads back the CSS properties of the

element using getComputedStyle. One example of this is

found in the popular jQuery, where the code sets the CSS

property top to be 1% and then checks whether the read-back

value is in pixels. The reason for this test is that for certain

CSS properties (e.g., top), some browsers will return their

percentage values rather than absolute pixel values (see [7]),

while the rest of the script is expecting pixel values.

Visibility Testing Another category of use cases for

getComputedStyle is to test the visibility of an element on

the page by checking, for example, if the value of the CSS

property display is set to none (which means the element is

not rendered on the page). Besides display, the properties

visibility and opacity are often also included in these

types of checks, as well as element dimensions, e.g., checking

if the value of the width property is zero.

Adblocker Detection We have observed a few cases from

our sample where the script is detecting whether the user has

installed an adblocking extension. Specifically, the script ac-

complishes this by injecting an element with an ID or class

name targeted by the filter rules of the adblocker, and checks

whether the adblocker prevents the injected element from be-

ing displayed on the page (e.g., by using visibility testing

methods that we described). In total, we observed this be-

havior in three out of the 40 sample scripts that we manually

examined (all three scripts are identified by EL/EP as trackers).

Although this method of adblocker detection is conceptually

similar to what we describe in this paper, an important dif-

ference is that ad-blockers are expected to hide content and

therefore checking for the absence of ad-like elements is a

straightforward technique, variations of which were known as

early as 2011 [32]. Contrastingly, our technique generalizes

over all types of extensions (not just ad-blockers) and allows

for the precise identification of an extension, as opposed to

merely knowing whether an ad-blocker is present or absent.

Toggling Style Properties Lastly, there is also a category

of getComputedStyle usage that probes for and toggles the

displayed visual properties of elements on the page (e.g.,

toggles the visibility of an element by first checking whether

the visibility property is set to hidden, and if so set it to

visible).

6.2 Hiding Extension Effects

Given that we cannot just retire the getComputedStyle API,

an alternative method for protecting users is to break the link

between the injected content styles and the values returned by

the getComputedStyle function. This would effectively hide

the presence of extensions from webpages and therefore pro-

tect the users of browser extensions from being fingerprinted.

This hiding can be done at different layers in the browser,

each with its advantages and disadvantages.

In this section, we explain how a browser extension can

replace the default getComputedStyle function with one

that ignores the styles injected by extensions. In Appendix A,

we provide the details of an alternative solution that modifies

the browser in order to achieve the same results. Our hope

is that, once browser vendors confirm that this is an issue

worth tackling, that these details can provide a roadmap for

the changes that need to happen.

Browser extension The biggest advantage of a browser

extension is that it is lightweight and easy to distribute but it

is limited to a finite set of browser APIs. Yet, making direct

modifications to the DOM can provide a robust protection

against CSS-based, extension fingerprinting, thanks to the

existence of Shadow DOMs. Figure 9 provides a high-level

overview of our approach.

A Shadow DOM is a hidden tree in the DOM that can be

attached to elements in the regular DOM tree. Its purpose is

to isolate all of its content from the regular DOM tree: IDs,

names and styles do not “leak out” from Shadow DOMs and

elements from the regular DOM tree also do not “bleed in.”

This feature was primarily introduced for developers to avoid

naming conflicts when designing Web Components and we





7 Related work

Browser fingerprinting has received signification attention

from the research community over the last decade. Eckers-

ley [19], Laperdrix et al. [30] and Gómez-Boix et al. [23]

showed that it can be used to identify users on the Internet

even though this may prove difficult at a very large scale.

Moreover, later studies quantified the use of fingerprinting on

the public web and showed its growing adoption by popular

sites [14, 15, 20, 38]

Extension fingerprinting attacks Prior work has also inves-

tigated the specific problem of fingerprinting browser exten-

sions. Sjosten et al. [44] demonstrated how Web Accessible

Resources (WARs) could be abused to enumerate the presence

of specific browser extensions. Gulyás et al. [24] built on their

findings and performed a study on 16,393 users to understand

how WAR fingerprinting contributes to users’ uniqueness.

They found that 54.86% of users with at least one detectable

extension could be uniquely identified. Orthogonal to the use

of WARs, Starov and Nikiforakis [47] looked at the finger-

printability of extensions through DOM modifications. With

a tool named XHound, they tested the 10,000 most popular

Chrome extensions and found that 9% of them introduce mod-

ifications that are detectable on any domain. Sanchez-Rola et

al. [42] used a timing side-channel to infer the presence of any

browser extension installed in the browser, even if they are

disabled in incognito mode. Van Goethem and Joosen [49]

presented in the same year a variation of this attack to link a

user’s isolated browsing sessions. These side channels have

been fixed by the Chromium team [3, 4] and can therefore no

longer be used for extension fingerprinting. Finally, Karami et

al. [29] recently introduced a tool called Carnus to automate

the creation and detection of extension fingerprints. They

combine both WAR and behavioural fingerprints but also add

inter and intra-communication based enumeration. Out of

102,482 extensions, they can detect 29,428 of them.

To the best of our knowledge, we are the first to show

that injected style sheets can be used for detecting installed

browser extensions, and to measure the vulnerability of exten-

sions in the wild. As we showed in Section 5.6, this technique

allowed us to fingerprint more than 1,000 extensions which

were “invisible” to all other current methods of extension

fingerprinting.

Extension fingerprinting defences Three studies have pre-

sented extensive designs to mitigate extension fingerprinting.

Sjosten et al. [43] propose a defence system called Latex

Gloves to prevent WAR fingerprinting. Extensions are repack-

aged to modify the whitelist of websites on which they can run

and a special extension blocks unauthorized probing through

the webRequest API. Starov et al. [45] also uses a whitelist

to enforce strict access to browser extensions resources. Both

of these approaches can mitigate our presented attack by basi-

cally turning off an extension on an undesired website. How-

ever, it remains unclear whether users are capable of configur-

ing these whitelists and what is the real protection that these

mechanisms offer, in the presence of multiple JavaScript third

parties in popular sites who can take advantage of the trust

associated with the first-party website.

CloakX by Trickel et al. follows a different approach for

protecting extensions against fingerprinting [48]. It random-

izes what makes an extension identifiable while maintain-

ing equivalent functionality, i.e., it randomizes the path of

web accessible resources to prevent WAR probing attacks,

it changes the behavioural fingerprint by changing ID and

class names that are injected, and it adds a proxy to handle

dynamic references to randomized elements. CloakX does

not account for styles and therefore cannot stop our new CSS-

based, extension-fingerprinting attack.

8 Conclusion

Stateless tracking significantly affects the privacy of web users

and has recently received increased attention by researchers

and browser vendors. In this paper we focus on the CSS rules

that browser extensions inject in visited web pages as part of

their logic and show how these rules can be abused to identify

a user’s installed extensions. To understand the magnitude

of this problem, we developed a pipeline that leverages both

static and dynamic analysis of browser extensions in order

to identify a set of triggers that can be used for CSS-based,

extension fingerprinting. Our analysis of 116,485 extensions

revealed that 4,446 (3.8%) of them can be uniquely identified

on any webpage based on the styles they inject. We inves-

tigate how the involved browser APIs are used in the wild,

propose concrete countermeasures that browser vendors can

adopt to mitigate this problem, and provide a countermea-

sure solution via a browser extension that demonstrates our

defense mechanism.

Availability

The artifact accompanying this paper can be found

at https://github.com/plaperdr/fingerprinting-in-

style. Our defense prototype can be installed and tested on

a demo page in a Chromium-based browser. We also provide

the complete set of 4,446 extensions detectable through style

fingerprinting along with the generated trigger pages.
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A Countering style fingerprinting at the

browser level

While browser extensions are lightweight and can easily be

installed, their scope of actions is limited to the available

WebExtension APIs. A built-in protection can go beyond

in terms of flexibility and performance by having its logic

directly integrated with native code. We also argue that this

problem should be fixed directly by browser vendors to protect

all their users from style leakage. To that end, we provide here

a blueprint of the modifications that could be made to prevent

style leakage through extensions.

Overview Figure 11 provides information on how the

browser can be modified to provide protection. The approach

is similar in essence to the one applied to fix the visited history

leakage [1,2,17] but extended in many ways to fulfill our goal.

Throughout the entire page rendering pipeline, the only stage

that needs to be changed is the Style one. It is responsible for

collecting all style sheets and computing the style for each

individual element. In a nutshell, to prevent style leakage,





Table 6: List of the top 50 properties ranked by the number of extensions modifying them with injected styles

Property Count

perspectiveOrigin 4302

transformOrigin 4302

webkitPerspectiveOrigin 4302

webkitTransformOrigin 4302

inlineSize 4268

webkitLogicalWidth 4268

width 4268

position 3749

blockSize 3743

height 3743

webkitLogicalHeight 3743

top 3662

left 3631

Property Count

background 3610

right 3583

bottom 3538

border 3439

borderBlockEnd 3403

borderBottom 3403

webkitBorderAfter 3403

borderInlineStart 3390

borderLeft 3390

webkitBorderStart 3390

backgroundColor 3387

borderInlineEnd 3361

borderRight 3361

Property Count

webkitBorderEnd 3361

borderBlockStart 3355

borderTop 3355

webkitBorderBefore 3355

borderColor 3348

borderBlockEndColor 3304

borderBottomColor 3304

webkitBorderAfterColor 3304

borderInlineStartColor 3303

borderLeftColor 3303

webkitBorderStartColor 3303

borderInlineEndColor 3269

borderRightColor 3269

Property Count

webkitBorderEndColor 3269

borderBlockStartColor 3265

borderTopColor 3265

webkitBorderBeforeColor 3265

padding 3166

zIndex 3166

font 3152

paddingInlineStart 3052

webkitPaddingStart 3052

paddingLeft 3051

paddingInlineEnd 2983
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