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ABSTRACT

Given an n X d dimensional dataset A, a projection query
specifies a subset C C [d] of columns which yields a new
n X |C| array. We study the space complexity of computing
data analysis functions over such subspaces, including heavy
hitters and norms, when the subspaces are revealed only after
observing the data. We show that this important class of prob-
lems is typically hard: for many problems, we show 2%(@)
lower bounds. However, we present upper bounds which
demonstrate space dependency better than 2¢. That is, for
¢,c¢’ € (0,1) and a parameter N = 2¢ an N¢-approximation
can be obtained in space min(N€, n), showing that it is pos-
sible to improve on the naive approach of keeping informa-
tion for all 2¢ subsets of d columns. Our results are based
on careful constructions of instances using coding theory
and novel combinatorial reductions that exhibit such space-
approximation tradeoffs.
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1 INTRODUCTION

In many data analysis scenarios, datasets of interest are of
moderate to high dimension, but many of these dimensions
are spurious or irrelevant. Thus, we are interested in sub-
spaces, corresponding to the data projected on a particular
subset of dimensions. Within each subspace, we are con-
cerned with computing statistics, such as norms, measures
of variation, or finding common patterns. Such calculations
are the basis of subsequent analysis, such as regression and
clustering. In this paper, we introduce and formalize novel
problems related to functions of the frequency in such pro-
jected subspaces. Already, special cases such as subspace
projected distinct elements have begun to generate interest,
e.g., in Vu’s work [18], and as an open problem in sublinear
algorithms [16].

In more detail, we consider the original data to be repre-
sented by a (usually binary) array with n rows of d dimen-
sions. A subspace is defined by a set C C [d] of columns,
which defines a new array with n rows and |C| dimensions.
Our goal is to understand the complexity of answering queries,
such as which rows occur most frequently in the projected
data, computing frequency moments over the rows, and so
on. If C is provided prior to seeing the data, then the projec-
tion can be performed online, and so many of these tasks
reduce to previously studied questions. Hence, we focus on
the case when C is decided after the data is seen. In particu-
lar, we may wish to try out many different choices of C to
explore the structure of the subspaces of the data. Our model
is given in detail in Section 2.

For further motivation, we outline some specific areas
where such problems arise.

¢ Bias and Diversity. A growing concern in data anal-
ysis and machine learning is whether outcomes are
‘fair’ to different subgroups within the population, or
whether they reinforce existing disparities. A starting
point for this is to quantify the level of bias within
the data when different features are considered. That
is, we want to know whether certain combinations
of attribute values are over-represented in the data
(heavy hitters), and how many different combinations
of values are represented in the data (captured by mea-
sures like Fy). We would like to be able to answer such
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queries accurately for many different (typically over-
lapping) subsets of dimensions.

e Privacy and Linkability. When sharing datasets, we
seek assurance that they are not vulnerable to attacks
that exploit structure in the data to re-identify individ-
uals. An attempt to quantify this risk is given in recent
work [6], which asks how many distinct values occur
in the data for each partial identifier, specified as a sub-
set of dimensions. This prior work considered the case
where the target dimensions are known in advance,
but more generally we would like to compute such
measures for arbitrary subsets, based on frequency
moments and sampling techniques.

e Clustering and Frequency Analysis. In the area of
clustering, the notion of subspaces has been studied
under a number of interpretations. The common theme
is that the data may look unclustered in the original
space due to spurious dimensions inflating the distance
between points that are otherwise close. Many papers
addressed this as a search problem: to search through
exponentially many subspaces to find those in which
the data is well-clustered. See the survey by Parsons,
Haque and Liu [15]. In our setting, the problem would
be to estimate various measures of density or clus-
teredness for a given subspace. A related problem is to
find subspaces (or “subcubes” in database terminology)
that have high frequency. Prior work proceeded under
strong statistical independence assumptions about the
values in different dimensions, for example, that the
distribution can be modeled accurately with a (Naive)
Bayesian model [13].

2 PRELIMINARIES AND DEFINITIONS

For a positive integer Q, let [Q] ={0,1,...,0—1},and A €
[Q]™“ be the input data. The objective is to keep a summary
of A which is used to estimate the solution to a problem P
upon receiving a column subset query C C [d]. Problems P
of interest are described in Section 2.1. Define the restriction
of A to the columns indexed by C as A® whose rows AS,
1 < i < n, are vectors over [Q]!€!. We use the Minkowski
norm ||IX|l, = (Z;;1Xi;|P)'/? to denote the entrywise-f,
norm for vectors (j = 1) and matrices (j > 1).

Computational Model. First, the data A is received under
the assumption that it is too large to hold entirely in memory
so can be modeled as a stream of data. Our lower bounds
are not strongly dependent on the order in which the data is
presented. After observing A, a column query C is presented.
The frequency vector over A induced by Cis f = f(A,C)
whose entries f;(A, C) denote the frequency of Q-ary word
w; € [Q]l€l. We study functions of the frequency vector
f = f(A,C) after the observation of A and receiving column
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query C. The task is, during the observation phase, to design
a summary of A which approximates statistics of A®, the
restriction of A to its projected subspace C. Approximations
of A€ are accessed through the frequency vector f(A,C).
Note that functions (e.g., norms) are taken over f(A,C) as
opposed to the raw vector inputs from the column projection.

REMARK 1 (INDEXING Q-ARY WORDS INTO f). Recall that
the frequency vector (A, C) has length QC! with each entry
f; counting the occurrences of word w; € [Q]I€l. To clearly
distinguish between the (scalar) index i of f and the input
vectors w; whose frequency is measured by f; we introduce the
index function e(w;) = i. We may think of e(-) as simply
the canonical mapping from [Q]!€! into {0,1,2,...,0¢ - 1},
but other suitable bijections may be used.

For example, suppose Q = 2 and A € {0, 1}°*3 with col-
umn indices {1,2, 3} given below. If C = {1, 2}, then us-
ing the canonical mapping from {0, 1}/l into {0, 1,2, 3} (e.g
e(00) = 0,e(01) = 1,...e(11) = 3) we obtain A® and hence
f(A0) =(1,1,0,3).

110 11
010 0 1
A=10 0 1 —  A°=10 0
11 1 11
1 10 11

The vector f = f(A,C) is then the frequency vector over
which we seek to compute statistical queries such as || f]|o.
In this example, ||f|lo = 3 (there are three distinct rows in
AC), while || f||; = 5 is independent of the choice of C.

2.1 Problem Definitions.

The problems that we consider are column-projected forms
of common streaming problems ([11], [3], [4]). Here, we
refer to these problems as “projected frequency estimation
problems” over the input A. We define

FAC) = ) AT = wi,j e [n]}] ()
F(AO) = > fACP (2)
ie{0,1}ICl

e F, estimation: Given a column query C, the F, estima-
tion problem is to approximate the quantity Fj, (A, C) =
Ilf (A C) ||1;; under some measure of approximation to
be specified later (e.g., up to a constant factor). Of par-
ticular interest to us is (projected) Fy (A, C) estimation,
which counts the number of distinct row patterns in
AC.

e f,-heavy hitters: The query is specified by a column
query C C [d], a choice of metric/norm £,,p > 0
and accuracy parameter ¢ € (0, 1). The task is then
to identify all patterns w; observed on A for which
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fitA,0) = $lf(A O)ll,. Such values w; (or equiv-
alently i) are called ¢-f,-heavy hitters, or simply £,-
heavy hitters when ¢ is fixed. We will consider a mul-
tiplicative approximation based on a parameter ¢ > 1,
where we require that all ¢-£, heavy hitters are re-
ported, and no items with weight less than (¢/c) -
Ilf (A, C)llp are included.

¢ {,-frequency estimation: A related problem is to al-
low the frequency f;(A, C) to be estimated accurately,
with error as a fraction of F, (A, O)Vr = ||f(A, Ollp.
which we refer to as ¢, frequency estimation. Specifi-

cally, for a given w;, return an estimate f; which satis-
fies fi(A.C) - £(A.O)| < BlIF(AO)lly.

f, sampling: The goal of this sampling problem is
to sample patterns w; according to the distribution

' o) _
pie(lxe) AT + A where A = 1/poly(nd), and

return a (1 + ¢’)-approximation to the probability p;
of the item w; returned.

When clear, we may drop the dependence upon C in the
notation and write f; and F,, instead. We will use O and Q
notation to supress factors that are polylogarithmic in the
leading term. For example, lower bounds stated as Q(2¢)
suppress terms polynomial in d.

2.2 Related Work

The model we study is reminscent of, but distinct from,
some related formulations. In the problem of cascaded ag-
gregates [10], we imagine the starting data as a matrix, and
apply a first operator (denoted Q) on each row to obtain a
vector, on which we apply a second operator P. Our problems
can be understood as special cases of cascaded aggregates
where Q is a project-then-concatenate operator, to obtain a
vector whose indices correspond to the concatenation of the
projection of a row. Another example of a cascaded aggregate
is a so-called correlated aggregate [17], but this was only
studied in the context of two dimensions. To the best of our
knowledge, our projection-based definitions have not been
previously studied under the banner of cascaded aggregates.

Other work includes results on provisioning queries for
analytics [2], but the way these statistics are defined is differ-
ent from our formulation. In that setting there are different
scenarios (“hypotheticals”) that may or may not be turned
on: this corresponds to “what-if” analysis whereby a query
is roughly “how many items are observed if a given set of
columns is present (turned on)?” The number of distinct ele-
ments for the query is the union of the number of distinct
elements across scenarios. In our setting, we concatenate
the distinct items into a row vector and count the number of
distinct vectors. Note that in the hypotheticals setting in the
binary case, each column only has 2 distinct values, 0 and 1,
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and thus the union also only has 2 distinct values. However,
we can obtain up to 2¢ distinct vectors. Consequently, As-
sadi et al. are able to achieve poly(d/¢) space for counting
distinct elements, whereas we show a 2%(@ lower bound.
Moreover, they achieve a 2%(9 lower bound for counting
(i.e., F1), whereas we achieve a constant upper bound. These
disparities highlight the differences in our models.

More recently, the notion of “subset norms” was intro-
duced by Braverman, Krauthgamer and Yang [5]. This prob-
lem considers an input that defines a vector v, where the
objective is to take a subset s of entries of v and compute
the norm. Results are parameterized by the “heavy hitter
dimension”, which is a measure of complexity over the set
system from which s can be drawn. While sharing some
properties with our scenario, the results for this model are
quite different. In particular, in [5] a trivial upper bound fol-
lows by maintaining the vector v explicitly, of dimension n.
Meanwhile, many of our results show lower bounds that are
exponential in the dimensionality, as 2Q(d) though we also
obtain non-trivial upper bounds.

3 CONTRIBUTIONS

The main challenge here is that the column query C is re-
vealed after observing the data; consequently, applying a
known algorithm to just the columns C as the data arrives is
not possible. For example, consider the exemplar problem of
counting the number of distinct rows under the projection
C, i.e., the projected Fy problem. Recall that Aic denotes the
i-th row of array AC. Then the task is to count the number
of distinct rows observed in A, i.e.,

Fo(A,C) = {AF : j € [n]}| = I f (A Ollo.

Observe that Fy (A, C) can vary widely over different choices
of C. For example, even for a binary input A € {0,1}™¢
Fo(A, C) can be as large as 2¢ when C consists of all columns
from a highly diverse dataset, and as small as 1 or 2 when C
is a single column or when C selects homogeneous columns
(e.g., the columns in C are all zeros).

3.1 Summary of Results

Our main focus, in common with prior work on streaming
algorithms, is on space complexity. For the above problems
we obtain the following results:

e In Section 4 we show that projected Fy estimation re-
quires 20(d) space for a constant factor approximation,
demonstrating the essential hardness of these prob-
lems. Nevertheless, we obtain a tradeoff in terms of
upper bounds described below.

e Section 5 presents results for £, frequency estimation,
£, heavy hitters, F,, estimation, and £, sampling. We
show a space upper bound of O(¢72 log(1/6)) for Z,
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frequency estimation when 0 < p < 1 and comple-
ment this result with lower bounds for heavy hitters
when p > 1, F, estimation and £, sampling for all
p # 1, showing that these problems require 2*(?) bits
of space.

In Section 6 we show upper bounds for Fy and F,
estimation which improve on the exhaustive approach
of keeping summaries of all 24 subsets of columns,
by showing that we can obtain coarse approximate
answers with a smaller subset of materialized answers.
Specifically, for parameters N = 2¢ and a € (0, 1) we
can obtain an N* approximation in min (N(1/2-®) p)
space. Since the binary entropy function H(x) < 1, this
bound is better than the trivial 2¢ bound.

These bounds show that there is no possibility of “super
efficient” solutions that use space less than exponential in
d. Nevertheless, we demonstrate some solutions whose de-
pendence is still exponential but weaker than a naive 2¢.
Thinking of N = 2%, the above upper and lower bounds im-
ply the actual complexity is a nontrivial polynomial function
of N.

The bounds also show novel dichotomies that are not
present in comparable problems without projection. In par-
ticular, we show that (projected) £, sampling is difficult for
p # 1 while (projected) £,-heavy hitters has a small space
algorithm for 0 < p < 1. This differs from the standard
streaming model in which the (classical) £, heavy hitters
problem has a small space solutions for p < 2 without pro-
jection [14], and (classical) £, sampling can be performed
efficiently for p < 2 [9]. Our lower bounds are built on am-
plifying the frequency of target codewords for a carefully
chosen test word.

Note that there are trivial naive solutions which simply
retain the entire input and so answer the query exactly on
the query C: to do so takes ®(nd) space, noting that n may be
exponential in d. Alternatively, if we know t = |C| then we
may enumerate all (’f) subsets of [d] with size t and maintain
(approximate) summaries for each choice of C. However, this
will entail a cost of at least Q(d’) and as such does not give
a major reduction in cost.

3.2 Coding Theory Definitions

Our lower bounds will typically make use of a binary code C,
constituted of a collection of codewords, which are vectors (or
strings) of fixed length. We write B(I, k) to denote all binary
strings of length [ and (Hamming) weight k. We first consider
the dense, low-distance family of codes C = B(d, k) but will
later use more sophisticated randomly sampled codes. When
k < d/2, we have (£) > (d/k)* and when k = d/2, we have
(d72) > 29/4/2d. A trivial but crucial property of B(d, k) is
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that any two codewords from this set can have intersecting
1s in at most k — 1 positions.

We define the support of a string y as supp(y) = {i : y; #
0}, the set of locations where y is non-zero. We define child
words to be the set of new codewords obtained from C by
generating all Q-ary words z with supp(z) C supp(y) for
some y € C, and construct them with the star operator
defined next.

Definition 3.1 (star® operation, child words). Let d be the
length of a binary word, k be a weight parameter, and sup-
pose y € B(d, k). Let M = supp(y). We define the function
star?(y) to be the operation which lifts a binary word y to
a larger alphabet by generating all the words over alphabet
[Q] on M. Formally,

star®(y € {0,1}%) = {z : z € [Q]“, supp(z) < supp(y)}

Since the alphabet size Q is often fixed when using this
operation, when clear we will drop the superscript and abuse
notation by writing star(y). Elements of the set star?(y) are
referred to as child words of y.

For any y € B(d, k), there are Q¥ words generated by
star?(y). When star(-) is applied to all vectors of a set U then
we write star(U) = Uy, epstar(u). For example, if y € {0, 1}¢
and Q = 2, then star?(y) is simply all possible binary words
of length d whose support is contained in supp(y). For the
projected Fy problem, the code C = B(d, k) is sufficient.
However, for our subsequent results, we need a randomly
chosen code whose existence is demonstrated in Lemma 3.2.
The proof follows from a Chernoff bound.

LEmMMA 3.2. Fixe,y € (0,1) and let C C B(d, ed) be such
that for any two distinct x,y € C we have |x Ny| < (e2 +y)d.
With probability at least 1 — exp(—2dy?) there exists such a
code C with size 2°0°9 instantiated by sampling sufficiently
many words i.i.d. at random from B(d, ed).

ProoF. Let X be the random variable for the number of
1s in common between x and y sampled uniformly at ran-
dom. Then the expectation of X is E[X] = % =¢e?d and
although the coordinates of x, y are not independent, they
are negatively correlated so we may use a Chernoff bound
(see Section 1.10.2 of [7] for self-contained details). Our aim
is to show that the number of 1s in common between x and
y can be at most yd more than its expectation. Then, via an
additive Chernoff-Hoeffding bound:

P(X — E(X) > yd) < exp(=2dy?).

This is the probability that any two codewords x and y are
not too similar, so by taking a union bound over the ©(|C|?)
pairs of codewords, the size of the code is |C| = exp(dy?) =
2y2d/ln 2 O
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3.3 Overview of Lower Bound
Constructions

Our lower bounds rely upon non-standard reductions to the
Index problem using codes C defined in Section 3.2. These
reductions are more involved than is typically found as we
need to combine the combinatorial properties of C along
with the star(-) operation on Alice’s input. In particular, the
interplay between C and star(-) must be understood over
the column query S given by Bob, which again relies on
properties of C used to define the input.

Recall that the typical reduction from Index is as follows:
Alice holds a vector a € {0,1}", Bob holds an index i €
[N] and he is tasked with finding a; following one-way
communication from Alice. The randomized communication
complexity of Index is Q(N) [12]. We adapt this setup for our
family of problems, following an approach that has been used
to prove many space lower bounds for streaming algorithms.

The general construction of our lower bounds is as follows:
first we choose a binary code C (usually independently at
random) with certain properties such as a specific weight
and a bounded number of 1s in common locations with other
words in the code. In the communication setting, Alice holds
a subset T C C while Bob holds a codeword y € C and
is tasked with determining whether or not y € T. Bob can
also access the index function (Remark 1) e(y) which simply
returns the index or location that y is enumerated in C. The
corresponding bitstring for the Index problem that Alice
holds is a € {0, 1}/l which has a; = 1 for every element
w; € T (under a suitable enumeration of {0, 1}9). We use the
star(T) operator (defined in Section 3.2) to map these strings
into an input A for each of the problems (i.e., a collection of
rows of datapoints). Upon defining the instance, we show
that Bob can query a proposed algorithm for the problem
and use the output to determine whether or not Alice holds
y. This enables Bob to return a, (), which is 1 if Alice holds
y € T and 0 otherwise. Hence, determining if y € T or
y € C\ T solves Index and incurs the lower bound Q(|C]).
Our constructions of C establish that |C| is exponentially
large in d.

4 LOWER BOUNDS FOR Fj

In this section, we focus on the Fy (distinct counting) pro-
jected frequency problem. The main result in this section is
a strong lower bound for the problem, which is exponential
in the domain size d.

We use codes C = B(d, k) as defined in Section 3.2.

THEOREM 4.1. Let Q > 2 be the target alphabet size and
k < d/2 be a fixed query size with Q > k. Any algorithm
achieving an approximation factor of |Q|/k for the projected
Fy problem requires space 2°(9)
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Proor. Fix the code C = B(d, k), recalling that any x € C
has Hamming weight k, and for distinct x,y € C at most
k — 1 bits are shared in common. We will use these facts to
obtain the approximation factor.

Obtain the collection of all child words Cp from C by using

star9(-) as defined in Section 3.2. We will reduce from the
Index problem in communication complexity as follows. Al-
ice has a set of (binary) codewords T C C and initializes the
input array A for the algorithm with all strings from the set
star(T). Bob has a vector y € C and wants to know ify € T
or not. Let S = supp(y) so that |S| = k and Bob queries the
Fy algorithm on columns of A restricted to S. First suppose
that y € T. Then Alice holds y so star(y) is included in A
and there must be at least Q patterns observed. Conversely,
ify ¢ T, then Alice does not include y in A. However, by the
construction of C, y shares at most (k — 1) 1s with any dis-
tinct y’ € C. Thus, the number of patterns observed on the
columns corresponding to S is at most (k]fl)Qk_1 = kQk-1.

We observe that if we can distinguish the case of kQF~
from Qk , then we could correctly answer the Index instance,
i.e., if we can achieve an approximation factor of A such that:

A ®
kQk1 k-

Any protocol for Index requires communication propor-
tional to the length of Alice’s input vector a, which trans-
lates into a space lower bound for our problem. Alice’s set
T C C defines an input vector for the Index problem built
using a characteristic vector over all words in C, denoted
by a € {0,1}/€!, as follows. Under a suitable enumeration of
C = {w1,wa,...,w|q|}, Alice’s vector is encoded via a; = 1
if and only if Alice holds the binary word w; € T. From the
separation shown earlier, Bob can determine if Alice holds a
word in T, thus solving Index and incurring the lower bound.
Hence, space proportional to |C| = (Z) is necessary. We use
the standard relation (Z) > (d/k)* and choose k = ad/2 for
a constant a € [0, 1) from which we obtain |C| > 2942 to
achieve the stated approximation guarantee. O

Setting k = ad/2 allows us to vary the query size and directly
understand how this affects the size of the code necessary
for the lower bound. For a query of size k, the size of the
input to the projected Fy problem is a (d/k)* x d array A
of total size d**'/k*. Theorem 4.1 is for k < d/2. When
k = d/2 we can use the tighter bound for the central binomial
term on the sum of the binomial coefficients and obtain the
following stronger bounds. The subsequent results use the
same encoding as in Theorem 4.1. However, at certain points
of the calculations the parameter setttings are slightly altered
to obtain different guarantees.
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CoroLLARY 4.2. LetQ > d/2 be an alphabet size andd /2 be
the query size. There exists a choice of input data A € [Q]™¢
such that any algorithm achieving approximation factor 2Q/d
for the projected Fy problem on the query requires space 2@

Proor. Repeat the argument of Theorem 4.1 with k = d/2.
The approximation factor from Equation (3) becomes: A =
%. The code size for Index is |C| > 2¢/V2d. Note that |C] is
29(d) 45 % log,(d) can always be bounded above by a linear
function of d. The instance is an array whose rows are the
Q42 child words in star?(C). Hence, the size of the instance
to the Fy algorithm is: © (2¢Q%/2d1/2). i

Corollary 4.3 follows from Corollary 4.2 by setting Q = d.

COROLLARY 4.3. A 2-factor approximation to the projected
Fy problem on a query of size d /2 needs space 29 with an
instance A whose size is @(2dd% ).

Theorem 4.1 and its corollaries suffice to obtain space
bounds over all choices of Q. However, Q could potentially
grow to be very large, which may be unsatisfying. As a result,
we will argue how the error varies for fixed Q. To do so, we
map Q down to a smaller alphabet of size g and use this code
to define the communication problem from which the lower
bound will follow. The cost of this is that the instance is a
logarithmic factor larger in the dimensionality.

COROLLARY 4.4. Let q be a target alphabet size such that
2<q< |0l Leta =Qlog,(Q) = 1 andd" = dlog,(Q).
There exists a choice of input data A € [q]™® for which any
algorithm for the projected Fy problem over queries of size d /2
that guarantees error O(a/d") requires space 2%(%.

Proor. Fix the binary code C = B(d, d/2) and generate all
child words over alphabet [Q] to obtain the approximation
factor A = 2Q/d as in Corollary 4.3. For every w € C there
are Q%2 child words so the child code Cp now has size
n = ©(2909/2 ]\/d) words. Since Q can be arbitrarily large,
we encode it via a mapping to a smaller alphabet but over a
slightly larger dimension; specifically, use a function [Q] —
[q]'°%4'Q which generates g-ary strings for each symbol
in [Q]. Hence, all of the stored strings in Cp C [0]¢ are
equivalent to a collection, C; over [q]91°84(Q) Although
|Col = |Cql, words in Cp are length d, while the equivalent
word in C, has length dlog,(Q). This collection of words
from C; now defines the instance A € [q]"Xdlogq(Q), each
word being a row of A. Taking & = Qlog,(Q) and d’ =
dlog,(Q) results in an approximation factor of:

20 2«
A= 1T 4)
Alice’s input vector a is defined by the same code C and held
set T C C as in Theorem 4.1 so we incur the same space
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Table 1: Comparison of the lower bounds for Fj,. Theo-
rem 4.1 uses C = B(d, k), corollaries use C = B(d, d/2).

Instance A for F Approx. Factor

a\* 0
Theorem 4.1 (F) X d over [Q] T
dd 20
Corollary 42 2¢Q%2 x d over [Q] =
Corollary 4.3 29d%/? x d over [d] 2
2
Corollary 4.4 24092 x d log, Q over [q] TQ

bound. Likewise, Bob’s test vector y and column query S also
remain the same as in that theorem.
m]

Corollary 4.4 says that the same accuracy guarantee as Corol-
lary 4.2 can be given by reducing the arbitrarily large alpha-
bet [Q] to a smaller one over [q]. However, the price to pay
for this is that the size of the instance A increases by a factor
of log,(Q) in the dimensionality. These various results are
summarized in Table 1.

5 ¢,-FREQUENCY BASED PROBLEMS

In this section, we extend the techniques from the previous
section to understand the complexity of projected frequency
estimation problems related to the £, norms and F,, frequency
moments (defined in Section 2.1). A number of our results are
lower bounds, but we begin with a simple sampling-based
upper bound to set the stage.

5.1 ¢, Frequency Estimation

We first focus on the projected frequency estimation problem
showing that a simple algorithm keeping a uniform sample of
the rows works for p < 1. The algorithm uSample(A, C, t,b)
first builds a uniform sample of ¢ rows (sampled with re-
placement at rate = t/n) from A and evaluates the absolute
frequency of string b on the sample after projection onto C.
Let g be the absolute frequency of b on the subsample. To
estimate the true frequency of b on the entire dataset from
the subsample, we return an appropriately scaled estimator
f;(b) = g/a which meets the required bounds given in Theo-
rem 5.1, recalling that e(b) is the index location associated
with the string b. The proof follows by a standard Chernoff
bound argument and is given in Appendix A.1.

THEOREM 5.1. Let A € {0,1}"™? be the input data and let
C C [d] be a given column query. For a given string b €
{0, 1}, the absolute frequency of b, f,(»), can be estimated
up to ¢||fll1 additive error using a uniform sample of size

O(e 2 log(1/6)) with probability at least 1 — 5.
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The same algorithm can be used to obtain bounds for all
0 < p < 1. By noting that ||f]|1 < [|fll, for0 < p < 1 we
can obtain the following corollary.

COROLLARY 5.2. Let A, b,C be as in Theorem 5.1. Let 0 <
p < 1. Then uniformly sampling O(e~2 log(1/8)) rows achieves

fow) - ﬁ(,,>| < ellfll, with probability at least 1 — &.

Both Theorem 5.1 and Corollary 5.2 are stated as if C is
given. However, since the sampling did not rely on C in any
way, we can sample complete rows of the input uniformly
prior to receiving the query C, which is revealed after ob-
serving the data. The uniform sampling approach also allows
us to identify the £, heavy hitters in small space: for each
item included in the sample (when projected onto column set
C), we use the sample to estimate its frequency, and declare
those with high enough estimated frequency to be the heavy
hitters. By contrast, for p > 1 we are able to obtain a 2%(¢)
space lower bound, given in the next section.

5.2 ¢, Heavy Hitters Lower Bound

Recall that the objective of (projected) £, heavy hitters is to
find all those rows in AC whose frequency is at least some
fraction of the £, norm of the frequency distribution of this
projection. For the lower bound we need a randomly sam-
pled code as defined in Lemma 3.2. The lower bound argu-
ment follows a similar outline to the bound for Fy, although
now Bob’s query is on the complement of the support of his
test vector y (i.e., S = [d] \ supp(y)) rather than supp(y).
Akin to Theorem 4.1, we will create a reduction from the
Index problem in communication complexity, and use its
communication lower bound to argue a space lower bound
for projected £, heavy hitters. The proof will generate an
instance of £, heavy hitters based on encoding a collection of
codewords, and consider in particular the status of the string
corresponding to all zeroes. We will consider two cases: when
Bob’s query string is represented in Alice’s set of codewords,
then the all zeros string will be a heavy hitter (for a subset
of columns determined by the query); and when Bob’s string
is not in the set, then the all zeros string will not be a heavy
hitter. We begin by setting up the encoding of the input to
the Index instance.

THEOREM 5.3. Let ¢ € (0,1) be a parameter and fix p > 1.
Any algorithm which can obtain a constant factor approxima-

tion to the projected £,-heavy hitters problem requires space
2Q(d).

Proor. Fix € > 0. Let C C B(d, ed) be a code whose
words have weight ed and any two distinct words x, y have
at most (€2 + y)d ones in common. By Lemma 3.2 such a C
exists and |[C| = 2% (9,

Suppose Alice holds a subset T c C. Let a € {0, 1}IC!
be the characteristic vector over all length-d binary strings
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for which a,(,) = 1 if and only if Alice holds u € T. Bob
holds y € C and wants to determine if Alice holds y € T.
Ascertaining whether or not Alice holds y would be sufficient
for Bob to solve Index and incur the Q(|C|) lower bound.

The input array, A, for the £,-heavy hitters problem is
constructed as follows.

(1) Alice populates A with 2¢¢ copies of the length-d all
ones vector, 14

(2) Next, Alice takes Q = 2 and inserts into A the col-
lection star?(T), which is the expansion of her input
strings to all child-words in binary. That is, for every
s € T, Alice computes all binary strings x of length d
with supp(x) C supp(s) and includes these in A.

Let S = [d] \supp(y), so that |S| = d—ed = (1—€)d. Without
loss of generality we may assume S = {1,2,...,(1-¢)d} and
we denote the (1—e¢)d length vector which is identically 0 on
S by Os. Suppose there is an algorithm A which approximates
the £,-heavy hitters problem on a given column query up
to a constant approximation factor. Bob queries (A for the
heavy hitters in the table A under the column query given by
the set S, and then uses this information to answer whether
ornoty eT.

Case 1:y € T.If y € T, then we claim that O is a ¢-£, heavy
hitter for some constant ¢, i.e., feos) = @I, We will
manipulate the equivalent condition f:zos) > ¢PF,. Since
y € T, the set star(y) is included in the table A as Alice
inserted star(s) for every s that she holds. Consider any
child word of y, that is, a w € star(y). Since y is supported
only on [d] \ S and supp(w) C supp(y), every w; = 0 for
i € S.So Og is observed once for every w € star(y) and
there are |star(y)| = 2¢¢ such w. Hence, Os occurs at least
2¢4 times.

Now that we have a lower bound on the frequency of O,
it remains to upper bound the F,, value when y € T so that
we are assured Og will be a heavy hitter in this instance. The
quantity we seek is the Fj, value of all vectors in AS, written
F, (A, S); which we decompose into the contribution from Og
present due to y being in T, and two special cases from the
block of 2¢¢ all-ones rows and ‘extra’ copies of Os which are
contributed by vectors y” # y. We claim that this F, (4, S)
value is at most |C| 1P 2¢d+(€*+y)dp 4 3. 9epd

First, let y* € C with y’ # y and consider prefixes z
supported on S which can be generated by possible child
words from star(y’). Since our code requires that [y’ Ny| <
(e2+y)d, y’ can have at most (e2+y)d 1slocatedin S = [d]\S,
and hence must have at least (¢ — €2 — y)d 1s located in S.
Since [star(y’)| = 2°?, the number of copies of z inserted
is at most 264-(ed~€*d—yd) — 9e”d+yd Thjs occurs for every
y’ € C so the total number of occurences of z is at most
|IC |2(€2+Y)d. The contribution to F, for this scenario is then
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|C|P2(€**1)dP Observe that each codeword y’ generates at
most 2¢¢ vectors under the star(y’) operator, so we have an
upper bound of |C|2¢¢ such vectors generated, with a total
contribution of |C|1+P2(52P+E+Yp)d.

Next, we focus on the two special vectors to count which
have a high contribution to the F,, value. Recall that Alice
specifically included 14 into A 2¢¢ times so the p-th powered
frequency is exactly 2¢77 for this term. From the above argu-
ment, Os also has frequency 2¢¢ from star(y). But O is also
created at most 2(€**")4 times from each y’ # y in T, giv-
ing an additional count of at most |C|2(€2+Y)d. Based on our
choice of € and y, we can ensure that this is asymptotically
smaller than 2¢¢, and so the total contribution from these
two special vectors is at most 3 - 2. So in total we achieve
that F,, is at most |C|P2ed+(€+n)dp 4 3. 9¢pd 4 claimed.

Then Os meets the definition to be a ¢-f, heavy hitter
provided

2epd > ¢p(|c|1+p25d+(52+y)pd +3. QEpd).

Assuming p > 1, and choosing € sufficiently smaller than
(p — 1)/p and y sufficiently small, we have that

|C|1+p25d+(ez+y)pd < QO(de(1+p))+ed+€(p—1)d+ypd < gepd

Hence, we require 274 > ¢P0(27%), ie., 2¢¢ > $O(2¢9),
which is satisfied for a suitably small but constant ¢.

Case 2: y ¢ T. On the other hand, suppose that y ¢ T.
Then the claim is that Os is not a ¢-£,-heavy hitter. Now
the vector Os does not occur with a high frequency because
star(y) is not included in A. However, certain child words
in star(T) could also generate Os when projected onto S
and this is the contribution we need to upper bound. Again,
any codeword s € T has at least (¢ — €2 — y)d 1s present
on S. So for a particular s € T, Os can occur 2€%d+yd times.
Taken over all y’ € C for which Alice includes in A, the
frequency of Os in this case is at most |C|2¢° %/, Taking
¢ < 1/3,y < /3 and using |C| = 2"°4/"2 (Lemma 3.2) we
have fo(05) < 20-72¢d Meanwhile, there are 2°? copies of the
string 1, inserted into A meaning that F, (A, S) > 2¢°? and
hence F;/P is strictly greater than f(o,). Hence, Os is not
a ¢-{, heavy hitter provided that ﬁz(os)/F;/p = 270.28¢d jg
strictly less than ¢ = 1/4, this is satisfied for suitable ¢ and
d.

Concluding the proof. Bob can use his test vector y and
a query S with a constant factor approximation algorithm
A for the £,-heavy hitters problem and distinguish between
the two cases of Alice holding y or not based on whether
Os is reported. As a result, Bob can determine if y € T and
consequently solve Index, thus incurring the Q(|C|) = 2°(@
lower bound. O
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The instance A is initialized with 2¢¢ rows of the vector 14
and the child words starQ(T). Forany ¢ € star?(T), |star9(t)| =
2¢d g0 the size of the instance A is (|T| + 1)2¢? x d.

5.3 F, Estimation

The space complexity of approximating the frequency mo-
ments F, has been widely studied since the pioneering work
of Alon, Matias and Szegedy [1]. Here, we investigate their
complexity under projection. For p = 1, the frequency is
always the number n of rows in the original instance irre-
spective of the column set C, so only one word of space is
required. We therefore devote attention to p # 1.

The reduction to Index for Theorem 5.4 follows a simi-
lar outline as Theorem 5.3 for p > 1. For p < 1, we en-
code the problem slightly differently, closer to that in Theo-
rem 4.1. Again, the reduction to Index relies on Bob deter-
mining whether or not Alice holds y, which for F, estima-
tion amounts to Bob evaluating F, (A, S) and comparing to a
threshold value.

THEOREM 5.4. Fix a real number p > 0 withp # 1. A
constant factor approximation to the projected F,, estimation
problem requires space 2@,

Proor. For p > 1 we begin by noticing that in the proof
for Theorem 5.3 one can also monitor the F}, value of the
input to the problem rather than simply checking the heavy
hitters. In particular, depending on whether or not Alice
holds Bob’s test word, y, the projected Fj, changes by more
than a constant. Consequently, we invoke the same proof for
Fy, p > 1 and obtain the same 22 Jower bound.

On the other hand, suppose that p < 1. We assume a code
C c B(d, ed) with the property that any distinct x,x" € C
have |x N x’| < cd for some small constant ¢ > €2 (see
Lemma 3.2). Again, Alice holds a subset T C C and inserts
star(T) into the table for the problem A. Throughout this
proof we use a binary alphabet so suppress the Q notation
from starQ(-). Bob holds a test vector y € C and is tasked
with determining whether or not Alice holds y € T. We
distinguish between the cases when Alice holds y € T or not
as follows. Bob uses y to determine the query column set S =
supp(y) and will compare against the returned frequency
value from the algorithm.

Case 1: y ¢ T. Consider some y’ € C \ {y}. Since y and ¢’
are both codewords, they can have a 1 coincident in at most
cd locations. So if Alice does not hold y then the codewords
we need to consider are all binary words in the code which
have at most c¢d 1s in common with y on S. We denote this
collection of words by M, i.e., the set of binary strings of
length d that have at most cd locations set to 1. There are r
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such vectors, where r is defined by:

re Z( ) <cd- ( ) O(d)2°¢d,

The total count of all strings generated by Alice’s encoding is
at most 2¢¢|C|: each string in C generates 2¢¢ subwords from
the star(-) operation. We now evaluate the £,-frequency of
elements in the set M, denoted F,,(M). For p < 1, the value
F, (M) is maximized when every element of M has the same
number of occurrences, |C|2¢?/r. As there are at most r
members of M, we obtain F, (M) < |C|P2¢9Pr1=P Recalling
the bounds on |C| and r, this is:

20dp+€dp+®((1—p)cd) . O(dl_p). (5)

We can now choose c to be a small enough constant so that
(5) is at most 2(1~9¢ for a constant « > 0 by Lemma A.2 in
Appendix A.2.

Case 2: y € T. Now consider the scenario when y € T so
that Alice has inserted star(y) into the table A. Here, we can
be sure that each of the 2¢¢ strings in star(y) appears at least
once over the column set S, and so the F, value is at least
26d1p — QEd.

We observe that these two cases obtain the constant factor
separation, as required. Then, Bob can use his test vector y
and a query S with a constant factor approximation algo-
rithm to the projected Fj,-estimation problem and distinguish
between the two cases of Alice holding y or not. Thus, Bob
can determine if y € T and consequently solve the Index
problem, incurring the Q(|C|) = 2%(4 lower bound for a ¢
arbitrarily small. O

REMARK 2. For p > 1 we adopt the same instance as in
Theorem 5.3 so the instance is of size (|T| + 1)2°¢ x d. On the
other hand, for 0 < p < 1, only the words in star2(T) are
required so A has size |T|2°% x d.

5.4 {,-Sampling

In the projected £,-sampling problem, the goal is to sample
a row in A€ proportional to the p-th power of its number of
occurrences. One approach to the standard (non-projected)
t,-sampling problem on a vector x is to subsample and find
the £,-heavy hitters [14]. Consequently, if one can find £,-
heavy hitters for a certain value of p, then one can perform ¢,-
sampling in the same amount of space, up to polylogarithmic
factors. Interestingly, for projected £,-sampling, this is not
the case, and we show for every p # 1, there is a 2%(@
lower bound. This is despite the fact that we can estimate
t,-frequencies efficiently for 0 < p < 1, and hence find the
heavy hitters (Section 5.1).
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THEOREM 5.5. Fix a real number p > 0 with p # 1, and let
e€(0,1/2). Let S C [d] be a column query and i be a pattern
observed on the projected data AS. Any algorithm which returns
a pattern i sampledfrom a distribution (p1, ..., pn), where

e

pre 0905
to pi, A = 1/poly(nd) and ¢ > 0 is a sufficiently small
constant, requires 29 bits of space.

—22— +A together with a (1+¢”)-approximation

Proor. Case 1: p > 1. The proof of Theorem 5.3 argues
that the vector Os is a constant factor £,-heavy hitter for any
p > 1if and only if Bob’s test vector y is in Alice’s input set
T, via a reduction from Index. That is, we argue that there
are constants C; > Co for which if y € T, then fe}ZOS) > C1Fp,
while if y ¢ T, then feIZOs) < CoF,. Consequently, given an
£,-sampler with the guarantees as described in the theorem
statement, then the (empirical) probability of sampling the
item Os should allow us to distinguish the two cases. This
holds even tolerating the (1 + ¢’)-approximation in sampling
rate, for a sufficiently small constant ¢’. In particular, ify € T,
then we will indeed sample Og with Q(1) probability, which
can be amplified by independent repetition; whereas, ify ¢ T,
we do not expect to sample Os more than a handful of times.
Consequently, for p > 1, an £,-sampler can be used to solve
the £,-heavy hitters problem with arbitrarily large constant
probability, and thus requires 2%(9) space.

Case 2: 0 < p < 1. Wenow turnto 0 < p < 1. In the
proof of Theorem 5.4, a reduction from Index is described
where Alice holds the set T and Bob the string y. Bob can
generate the set star(y) of size 2°¢ which is all possible binary
strings supported on the column query S. From this, Bob
constructs the set M’ = {z € star(y) : | supp(2)| = %d} We
observe that if y € T then at least half of the strings in star(y)
are supported on at least ¢d/2 coordinates which implies
|M’| > 2¢4=1 The total F, in this case can be bounded by a
contribution of |M’|1? + 224 The first term arises from the
|M’| strings in M’ with a frequency of 1, while the second
term is shown in Case 1 of Theorem 5.4. Since |M’| < 2¢¢, we
have that F,, < 2¢4+1 in this case. Consequently, the correct
probability of £,-sampling returning a string in M’ is at least
i for the “ideal” case of ¢ = 0, A = 0. Even allowing ¢ < %
and A = 1/poly(nd), this probability is at least 1/10.

Otherwise, if y ¢ T, we exploit that y’ # y can coincide in
at most cd = O(e%d) coordinates and | supp(z)| > ed/2 > cd
for any z € M’. Hence, no z € M’ can occur in star(y’) for
another y’ € C\ {y} on the column projection S. In this case,
there should be zero probability of sampling a string in M’
(neglecting the trivial additive probability A).

To summarize, in the case that y € T, by querying the
projection S then a constant fraction of the F,-mass is on the
set M’, whereas when y ¢ T, then there is zero F,-mass on
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the set M. Since Bob knows M’, he can run an £,-sampler and
check if the output is in the set M’, and succeed with constant
probability. It follows that Bob can solve the Index problem
(amplifying success probability by independent repetitions
if needed), and thus again the space required is 2%(@. o

REMARK 3. Forp > 1 we again adopt the same instance as
in Theorem 5.3 which has size (|T| + 1)2°¢ x d. However, for
0 < p < 1, we require the instance from Theorem 5.4 so A has
size |T|2¢4 x d.

6 PROJECTED FREQUENCY ESTIMATION
VIA SET ROUNDING

Although our lower bounds rule out the possibility of com-
puting constant factor approximations to projected frequency
problems in sub-exponential space, it is still possible to com-
pute non-trivial approximations using exponential space but
still better than naively enumerating all column subsets of
[d]. We design a class of algorithms that proceed by keeping
appropriate sketch data structures for a “net” of subsets. The
net has the property that for any query C C [d] there is a
C’ C [d] stored in the net which is not too different from
C. We can then answer the query on C using the summary
data structure computed for columnset C’. To formalize this
approach we need some further definitions, the first of which
conceptualizes the notion of a net over subsets.

Definition 6.1 (a-net of subsets). Let P ([d]) denote the
power set of [d]. Fix a parameter a € (0,1/2). An a-net of
P ([d]) is the set N = {U : |U| < 24/272d or |U| > 27/2+ad}
which contains all subsets U € P ([d]) whose size is at most
2d/2-ad oy at Jeast 24/2+2d,

Let H(x) = —xlog,(x) — (1 — x) log, (1 — x) denote the
binary entropy function.

LEMMA 6.2. Let N be an a-net for P ([d]). Then |N| <
oH(1/2-a)d+1

Proor. The total number of subsets whose size is at most
2d/2-ad jg S a (‘f) and ;< 4a (‘f) < 2H(1/2=)d [ Theorem
3.1]. By symmetry we obtain the same bound for the number
of subsets of size at least 24/2+%¢_yielding the claimed total.

O

6.1 From a-nets to Projections

Suppose that we are tasked with answering problem P =
P(A, C) on a projection query C. We know that if C is known
ahead of time then we can encode the input data A € [Q]™¢
on projection C as a standard stream over the alphabet [Q] /€.
The use of a-nets allows us sketch some of the input and
use this to approximately answer a query. For a standard
streaming problem, we will say that an algorithm yields a
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Algorithm 1: Projected frequency by query round-
ing
Input: Data A € {0, 1}, parameter a € (0,1/2),
frequency estimation problem P, query C
revealed after A
1 Function ProjectedFreq(A, a,C):

2 Generate an a-net N

3 For every U € N evaluate a f approximate sketch
to estimate P(A, U)

4 Given a projection query C after observing A:

5 Obtain C’, an a-neighbour to C in N

6 return P(A, C’) to f relative error

B-approximation to the true solution z* if the returned esti-
mate z € [z"/f, fz*]. A sketch obtaining such approximation
guarantees will be referred to as a f approximate sketch. We
additionally need the following notion of error due to the
distortion incurred when answering queries on elements of
the a-net rather than the given query.

Definition 6.3 (Rounding distortion). Let P = P(A,C) be
a projection query for the problem P on input A € [Q]™¢
with projection C. Let N € P ([d]) be an a-net. The round-
ing distortion r(a, P) is the worst-case determinstic error
incurred by solving P(A, C’) rather than P(A,C) for an a-
neighbour C’ € N of C so that P(A,C)/r(a,P) < P(A,C’) <
r(a,P)P(A,C).

Definition 6.3 is easiest to conceptualize for the F problem
when A € {0, 1}”Xd. Specifically, P = Fy and the task to solve
is P = Fy(A, C). For a given query C, with an a-neighbour
C’ in the net, the gap between the number of distinct items
observed on C’ at most doubles for each column in the set
difference between C and C’. Since C’ is an a-neighbour, we
have |C’ A C| < ad so the worst-case approximation factor
in the number of distinct items observed over C’ rather than
Cis 294,

More generally, we can categorize the rounding distortion
for other typical queries, as demonstrated in the following
lemma. Note that if the query is contained in the a-net N
then we will retain a sketch for that problem; hence the
distortion is only incurred for queries not contained in the
net.

LEMMA 6.4. Fixa € (0,1/2), suppose A € {0,1}>? and N
be an a-net. If C is a projection query for the following cases,
the rounding distortion can be bounded as:

(1) P = Fy(A,C) thenr(a, Fy) = 2%¢

(2) P=F,(AC),p > 1 thenr(a, F,) = 224 (P~1)

(3) P=F,(AC),p < 1 thenr(a, F,) = 204(1-P)
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Figure 1: Space-approximation tradeoff for d = 20 as « is varied from 0 to 1/2. Relative space is 2/1(1/2-®)d j2d

Proor. Item (1) is an immediate consequence of the dis-
cussion above following Definition 6.3 so we focus on (2) and
(3). Suppose p > 1. Let fo = f(A, C) denote the frequency
vector associated to the projection query C over domain
[2/€1]. First, consider a single index j € [2/€!] with (fo)j =x.
Let C’ be an a-neighbour for C in N, and without loss of
generality, assume that |C| < |C’|. The task is to estimate
||fc||§ = xP from ||fc/||§, where for = f(A, C’) is a frequency
vector over the domain [2/€'!] which is a |C”\ C| factor larger
than the domain for fo. However, observe that in fc, the
value of x is spread across the at most 2°? entries that agree
with j on columns C. The contribution to F, from these en-
tries is at most x? (if the mass of x is mapped to a single entry).
On the other hand, by Jensen’s inequality, the contribution
is at least 279 (x/299)P = x? /2%4(P=1) Hence, considering
all entries j, we obtain ||fc||£/2“d(p’1) < |fe I|§ < ||fc||§.
In the case |C| > |C’|, essentially the same argument shows
that ||fc||§ < ||fc/||§ < ||fc||§2“d(1’_1). Thus we obtain the
rounding distortion of 2%¢(P~V_For p < 1, we proceed as
above, except by concavity, the ordering is reversed. O

Observe that the distortion reduces to 1 (no distortion) as
we approach p = 1 from either side. This is intuitive, since
the F; problem is simply to report the number of rows in the
input, regardless of C, and so the problem becomes “easier”
as we approach p = 1.

With these properties in hand, we can give a “meta-algorithm”

as described in Algorithm 1. In Theorem 6.5 we can fully
characterize the accuracy-space tradeoff for Algorithm 1 as
a function of & and d.

THEOREM 6.5. Let A € {0,1}™¢ be the input data and
C C [d] be a projection query. Suppose P = P(A,C) is the
projected frequency problem, a € (0,1/2) and r(a,d) is the
rounding distortion. With probability at least 1 — § a pr(a, d)
approximation can be obtained by keeping O(2H(1/2-®)d) p_
approximate sketches.

ProorF. Let N be a a-net for P ([d]) and for every U € N
generate a sketch with accuracy parameter € for the problem
P on the projection defined by U C [d]. Either the projection
C € N, in which case we can report a f§ factor approximation,
or C ¢ N in which case we take an a-neighbour, C’ € N and
return the estimate z for P(A, C’). The sketch ensures that
the answer to P(A, C’) is obtained with accuracy f, which
by the rounding distortion is a fr(a, d) approximation. To
obtain this guarantee we build one sketch for every U € N,
for a total of O(2H(1/2-®)d) gketches (via Lemma 6.2). By
setting the failure probabilty for each sketch as § = 1/2%¢
and then taking a union bound over the a-net we achieve
probability at least 1 — 4. O

We remark that similar results are possible for the other
functions considered, £, frequency estimation, £, heavy hit-
ters and £, sampling. The key insight is that all these func-
tions depend at their heart on the quantity f;/[ fll,, the
frequency of the item at location j divided by the £, norm.
If we evaluate this quantity on a superset of columns, then
both the numerator and denominator may shrink or grow,
in the same ways as analyzed in Lemma 6.4, and hence their
ratio is bounded by the same factor, up to a constant. Hence,
we can also obtain (multiplicative) approximation algorithms
for these problems with similar behavior.

Illustration of Bounds. First, observe that, irrespective of
the problem P, the number of sketches needed is sublinear
in 27, This is due to the fact that the entropy H(1/2—a) < 1
for a > 0, so the size of the net |[N| < 24 For 0 < p <2, we
have f-approximate sketches with § = (1 + ¢) whose size is
6(8_2), which is constant for constant €. For example, we
obtain a 2%¢ approximation (ignoring small constant factors)
for Fy in space O(2H(1/2-9) g) using for instance the (1 + €)-
approximate sketch from [11] which requires O(¢72 +log n’)
bits for an input over domain {1,...,n’}. Since n’ < 2d,
and setting € = 1, we obtain the approximation in space
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0(d2H1(1/2=®)d) This is to be compared to the bounds in
Section 4, where it is shown that (binary) instances of the
projected Fy problem require space 2°(?). These results show
that the constant hidden by the Q() notation is less than 1.

In Figure 1 we illustrate the general behavior of the bounds
for d = 20. We plot the relative space by 2H(1/2=®) /24 while
varying a over (0, 1/2) (plotted in the leftmost pane). This
shows the space reduction in using the a-net approach com-
pared to naively storing all 2¢ queries. The central pane
shows how the approximation factor 2% (on a log scale)
varies with a. We plot the space-approximation tradeoff in
the rightmost pane and the approximation factor is again
plotted on a log,-scale. This plot suggests that if we reduce
the space by a factor of 4 (i.e., permit relative space 272)
then the approximation factor is on the order of 10s. Mean-
while, if we use relative space 278, then the approximation
remains on the order of hundreds: this is a substantial saving
as the number of summaries kept for the approximation is
212 = 4096 < 220 ~ 10°.

7 CONCLUDING REMARKS

We have introduced the topic of projected frequency estima-
tion, with the aim of abstracting a range of problems involv-
ing computing functions over projected subspaces of data.
Our main results show that these problems are generally
hard, in terms of the space requirements: in most cases, we
require space which is exponential in the dimensionality d of
the input. However, interestingly, the exact dependence is not
as simple as 27: we show that coarse approximations can be
obtained whose cost is substantially sublinear in 2¢. Letting
N =2, our upper and lower bounds establish that the space
complexity for a number of problems here is polynomial in
N, though substantially sublinear. And, in a few special cases
(¢ frequency estimation for p < 1), a sufficiently constant-
sized sample suffices for accurate approximation of projected
frequencies. It remains an intriguing open question to close
the gaps between the upper and lower bounds, and to find
the exact form of the polynomial dependence on N for these
problems.
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Bounds on Projected Frequency Estimation

A  OMITTED PROOFS

A.1 Omitted Proof for Section 5.1

THEOREM A.1 (RESTATED THEOREM 5.1). Let A € {0, 1}™¢
be the input data and let C C [d] be a given column query. For
a given string b € {0, 1}C, the absolute frequency of b, fu(»),
can be estimated up to ¢||f||1 additive error using a uniform
sample of size O(¢7210g(1/8)) with probability at least 1 — 5.

Proor. LetT ={i € [n] : Al.c = b} be the set of indices on
which the projection onto query set C is equal to the given
pattern b. Sample t rows of A uniformly with replacement
at a rate g = t/n. Let the (multi)-subset of rows obtained be
denoted by B and the matrix formed from the rows of B be
denoted A. For every i € B, define the indicator random
variable X; which is 1 if and only if the randomly sampled
index i satisfies AIC = b, which occurs with probability |T|/n.
Next, we define T = T N B so that |T| = >i_, X; and the
estimator Z = ¥|f| has E(Z) = |T|. Finally, apply an additive
form of the Chernoff bound:

P(|Z-E(Z)| > en) = P (Em - |T|| > sn)
=p (‘ITI - £|T|| > et

< 2exp (-€%t).

Setting § = 2 exp (—¢*¢) allows us to choose t = O(¢72log(1/6)),

which is independent of n and d. The final bound comes
from observing that || f||1 = n, fo) = |T| and f,;) =Z. O
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A.2 Omitted Proof for Section 5.3

A key step in the proof of Theorem 5.4 is that in Equation
(5), the expression

2cdp+edp+®((1—p)cd) . O(dl—p)

can be bounded by a manageable power of two. We formalize
this in Lemma A.2.

LEMMA A.2. Under the same assumptions as in Theorem
5.4, there exists a small constant ¢ > 0 which bounds Equation
(5) by at most 211~ for some a > 0.

Proor. Here we use base-2 logarithms and let 0 < ¢ < 1
be a small constant which we need to bound. Also, let 0 <
p < 1 be a given constant. Observe that the O(d'™?) term
only contributes positively in the exponent term of (5) so
we can ignore it from the calculation. Write 20(¢4(1=p)) =
2¢da(1-p) for @ > 0. This follows from:

d ed ed 1
<= < 2(2+10g o)ed 6
(cd) - (cd ) - ©)
soleta = 2 +log % For clarity, we proceed by using the
trivial identity 1 — (1 — v) = v and show that 1 — v > 0 for v
a function of ¢, p, d. We need to ensure:

cpd +edp +acd(1 —p) < (1 - a)ed. (7)

This amounts to showing that:

vEceple+p+ac(l-p)le<(1-a)
Now, v = p(c/e+1—ac/e) + ac/e and we require v < 1. We
may enforce the weaker property of p(c/e +1 — a/e) < 1
because ¢ > 0 and for ¢ < 4 we also have « > 0 (inspection
on Equation (6)) so ac/e > 0, and so can be omitted. Solving
for ¢ we obtain ¢(1-a) < e(1/p—1). Recalling the definition
of « this becomes:

c(loge—-1) <e(1l/p-1) (8)

from which positivity on c yields clog ¢ < e(1/p—1). Hence,
it is enough touse ¢ < e(1/p — 1). O
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