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Abstract

In statistical learning, algorithms for model selection allow the learner to adapt to the complexity
of the best hypothesis class in a sequence. We ask whether similar guarantees are possible for
contextual bandit learning.

1. Introduction

Model selection is the fundamental statistical task of choosing a hypothesis class using data, with
statistical guarantees dating back to Vapnik’s structural risk minimization principle. Despite decades
of research on model selection for supervised learning and the ubiquity of model selection procedures
such as cross-validation in practice, very little is known about model selection in interactive learning
and reinforcement learning settings where exploration is required. Focusing on contextual bandits,
a simple reinforcement learning setting, we ask: Can model selection guarantees be achieved in
contextual bandit learning, where a learner must balance exploration and exploitation to make
decisions online?

2. Problem Formulation

We consider the adversarial contextual bandit setting (Auer et al., 2002). The setting is defined by a
context space X and a finite action space A := {1,..., K'}. The learner interacts with nature for T’
rounds, where in round ¢: (1) nature selects a context x; € X and loss ¢; € [0, 1]“4, (2) the learner
observes z; and chooses action a;, and (3) the learner observes ¢;(a;). We allow for an adaptive
adversary, so that x; and ¢; may depend on aq,...,a;—1. In the usual problem formulation, the
learner is given a policy class IT c (X — A), and the goal is to minimize regret to II:

T T
Reg(II) := TQSTXE t;ft(at) - ;@(W(fﬁt)) :

When II is finite, the well-known Exp4 algorithm (Auer et al., 2002) achieves the optimal regret

bound of O(\/ KT log|II|).
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The Model Selection Problem. In the contextual bandit model selection problem, we assume that
the policy class under consideration decomposes as a nested sequence:'

HICHQC---CHM:H.

The goal of the learner is to achieve low regret to all classes in the sequence simultaneously, with the
regret to policy class IT,, scaling only with log [I1,,|. Intuitively, this provides a luckiness guarantee:
if a good policy lies in a small policy class, the algorithm discovers this quickly.

To motivate the precise guarantee we ask for, let us recall what is known in the simpler full-
information online learning setting, where the learner gets to see the entire loss vector ¢; at the end
of each round. Here, the minimax rate is O (/7 log|I1|), and it can be shown (Foster et al. (2015);
see also Orabona and Pal (2016)) that a variant of the exponential weights algorithm guarantees

Reg(I1,;,) < O(\/T(log]l'[m\ + logm)), for all m e [M]. (1)

In other words, by paying a modest additive overhead of log m, we can compete with all M policy
classes simultaneously. The most basic variant of our open problem asks whether the natural analogue
of Eq. (1) can be attained for contextual bandits.

Open Problem 1a Design a contextual bandit algorithm that for any sequence 11 c Ils c ---I1j,
ensures

T T
mﬁxE[;Et(at)—;&(w(ast))]SO(\/KT(log|Hm|+logm)>, forallme[M]. (2)

mwell,
We also welcome the following weaker guarantees.

Open Problem 1b Design a contextual bandit algorithm that for any sequence 11 c Ils c ---I1;
ensures either:

1. Reg(IL,n) < O(poly(K, M,loglog|Tl]) - /T log[IL,[) for all m ¢ [M].
2. Reg(IL,,) < O(poly (K, M,loglog|M|) - T log'~*[IL,,|) for all m € [M], where o € [1/2,1).

Alternatively, prove that no algorithm can achieve item 2 above for any value o € [1/2,1).

The first item here differs from Open Problem 1a only in the dependence on K, M, and log log|II|
factors, which we do not believe represent the most challenging aspect of the problem. The second
item is a further relaxation of the original guarantee. Here we simply ask that the model selection
algorithm has regret sublinear in 7' whenever /7 log|I1,,| is sublinear. In other words, if policy
class II,, is learnable on its own, the model selection algorithm should have sublinear regret to
it. To attain this behavior it is essential that the exponents o and 1 — a sum to one. Indeed, it is
relatively easy to design algorithms with exponents that do not sum to one,> but we do not know of
an algorithm satisfying item 2 above for any « € [1/2,1). This stands in contrast to other problems
involving adaptivity and data-dependence in contextual bandits (Agarwal et al., 2017a), where
attaining adaptive guarantees with suboptimal dependence on 7' is straightforward, and the primary
challenge is to attain /7-type regret bounds. We also welcome a lower bound showing that this type
of model selection guarantees is not possible for contextual bandits.

1. It is also natural to consider infinite sequences of policy classes, but we restrict to finite sequences for simplicity.
2. For example we can attain regret VT- log|IL,,| for all m by running Exp4 with a particular prior over policies.
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Stochastic Setting. The model selection problem for contextual bandits has yet to be solved
even for the stochastic setting, and even when the model is well-specified. Here, we assume: (1)
{(x, Kt)}til are drawn i.i.d. from a fixed distribution D; (2) Each class II,, is induced by a class
of regression functions F,,, ¢ (X x A - [0,1]), in the sense that II,,, = {ﬂ'f | fe fm}, where
mf(x) = argmin, 4 f(x,a); (3) The problem is realizable/well-specified in the sense that there
exists index m, and regression function f, € F,,, such that E[{(a) | 2] = f«(z,a), for all z, a.

The final version of our open problem asks for a model selection guarantee when the problem
is stochastic and well-specified. Note that these assumptions imply that the optimal unconstrained
policy (in terms of expected loss) is 7, . As such, here we only ask for a regret bound against class
1I,,, . From an algorithmic perspective, this is the easiest version of the problem.

Open Problem 2 For some value o € [1/2,1), design an algorithm for contextual bandits that for
any sequence F1 c Fo c ---Fpr = F, whenever data is stochastic and realizable, ensures

T T
E[ Y ti(ar) = > bi(my, (z4)) | < O(poly (K, M,loglog|F|) - T*log'~*|Fym. ). (3)
t=1 t=1

Alternatively, prove that no algorithm can achieve this guarantee for any value of o € [1/2,1).

We offer $300 for the first solution to either Open Problem 1 or Open Problem 2.

3. Challenges and Partial Progress

Many natural algorithmic strategies for model selection fail under bandit feedback. These include
(a) running Exp4 over all policies with a non-uniform prior adapted to the nested policy class
structure, (b) the Corral aggregation strategy (Agarwal et al., 2017b), and (c) an adaptive version
of the classical e-greedy strategy (Langford and Zhang, 2008). These strategies all require tuning
parameters (e.g., the learning rate ) in terms of the class index m of interest, and naive tuning gives
guarantees of the form O(T*log?[IL,,,|) for a + 8 > 1. Adaptive online learning algorithms like
AdaNormalHedge (Luo and Schapire, 2015) and Squint (Koolen and Van Erven, 2015) also fail
because they do not adequately handle bandit feedback.® We refer the reader to Foster et al. (2019)
for more details on these strategies in the context of model selection. The main point here is that
model selection for contextual bandits appears to require new algorithmic ideas, even when we are
satisfied with weak O (T log!™®|IL,,,|)-type rates where o > 1/2.

In a recent paper (Foster et al., 2019), we showed that a guarantee of the form Eq. (3) is achievable
when F,,, consists of linear functions in d,,, dimensions, under distributional assumptions on D. Our
strategy was inspired by the fact that if the optimal loss L* = E [E (mg, (:c))] is known, one can test if
a given class F,,, contains the optimal policy by running a standard contextual bandit algorithm and
checking whether it substantially underperforms relative to L*. In our linear setup, we showed that
one can estimate a surrogate for the optimal loss L* at a “sublinear” rate, which allowed us to run
this testing strategy and achieve a guarantee akin to Eq. (3) with no prior information. However, we
do not know if this strategy can succeed beyond specialized settings where sublinear loss estimation
is possible. Along these lines, Locatelli and Carpentier (2018) also observe that knowledge of L*
can enable adaptive guarantees in Lipschitz bandits, where adaptivity is not possible in the absence
of such information (such lower bounds do not appear to carry over to the contextual case).

3. Their regret bounds do not contain the usual “local norm” term used in the analysis of Exp4 and other bandit algorithms.
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For (non-contextual) multi-armed bandits, several lower bounds demonstrate that model selection
is not possible. Lattimore (2015) shows that for multi-armed bandits, if we want to ensure O(\/T)
regret against a single fixed arm instead of the usual O(~/KT) rate, we must incur Q( K+/T') regret
to one of the remaining arms in the worst case. This precludes a model selection guarantee of the
form /T|A,,| for nested action sets A; c Ay c ..., which is a natural analogue of Eq. (2) for
bandits.* Related lower bounds are also known for Lipschitz bandits (Locatelli and Carpentier, 2018;
Krishnamurthy et al., 2019). On the positive side, Chatterji et al. (2019) show that, with distributional
assumptions, it is possible to adapt between multi-armed bandits and linear contextual bandits.

4. Consequences and Connections to Other Problems

Switching Regret for Bandits. In full-information online learning, algorithms for switching regret
(Herbster and Warmuth, 1998) simultaneously ensure that for all sequences of actions a7, ..., a7},
E[Zthl l(a) - XL, Et(at*)] <0(\/S(a};)-T), where S(a},) denotes the number of switches
in the sequence. In the (non-contextual) multi-armed bandit setting, with no prior knowledge of
the number of switches .S, the best guarantee we are aware of is E[ZtT:I li(ar) - YL 6 (a; )] <

O(\ /S(aj.r) KT+ T3/ 4) which can be attained by combining the Bandits-over-Bandits strategy
from Cheung et al. (2019) with Exp3.> A solution to Open Problem 1a would immediately yield
a nearly-optimal switching regret bound of O(+/S (aj.p) - KT) for bandits by choosing the mth
policy class II,, to be the set of all sequences aj, ..., a} with at most m switches.® Solving Open
Problem 1a would also lead to similar improvements in switching regret for contextual bandits.

Second-Order Regret Bounds for Online Learning. Consider full-information online learning,
and let P; denote the algorithm’s distribution over policies at time ¢. An unresolved COLT 2016
open problem of Freund (2016) asks whether there exists an algorithm for this setting with regret at

most O(\/Zthl Var.p, (¢e(m(z))) - log(l/s)) against the top e-quantile of policies for all € > 0

simultaneously. A slight strengthening of Freund’s open problem asks for the following bound:

T T
t_Zl]EﬂNPt e(ﬂ(l't))—EwNQet(W({I?t)) SO t_zlvaI'Tert(Et(’]T(.’L‘t)))'KL(QHPl) s VQEAH.

“)

Eq. (4) implies the weaker quantile bound by choosing () to be uniform over the top e-fraction of

policies and P, to be the uniform distribution over all policies. While the log(1/e)-type quantile

bound does not seem to imply Eq. (4) directly, historically KL.-based bounds have quickly followed
quantile bounds (Chaudhuri et al., 2009; Luo and Schapire, 2015; Koolen and Van Erven, 2015).

The guarantee in Eq. (4) would immediately yield a positive resolution to Open Problem 1a via

the following reduction: (1) Choose P;(7) o< for all 7 € IT,,,; (2) To handle bandit feedback,

Le(a)
pi(a)
algorithm at each round, where p;(a) := ¥ oq Pi(7) I{mw(x;) = a}. Conversely, a lower bound

showing that Eq. (2) is not attainable would imply that no full-information algorithm can achieve Eq.
(4), which strongly suggests that the quantile bound in Freund’s open problem is also not attainable.

1
[TLyy | m2

draw a; ~ p; and feed importance weighted losses @t(a) = 1I{a; = a} into the full-information

4. This does not preclude a guarantee of the form Eq. (2), however, since we pay for the maximum number of actions.
5. Auer et al. (2002) achieves regret O(+/.S - K'T'), but only when a bound S on the switches is known a-priori.
6. Formally, this is accomplished by setting X = [T'] and 7 (t) = a;.
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