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Abstract

In this work, we develop linear bandit algorithms
that automatically adapt to different environments.
By plugging a novel loss estimator into the opti-
mization problem that characterizes the instance-
optimal strategy, our first algorithm not only
achieves nearly instance-optimal regret in stochas-
tic environments, but also works in corrupted envi-
ronments with additional regret being the amount
of corruption, while the state-of-the-art (Li et al.,
2019) achieves neither instance-optimality nor
the optimal dependence on the corruption amount.
Moreover, by equipping this algorithm with an ad-
versarial component and carefully-designed test-
ings, our second algorithm additionally enjoys
minimax-optimal regret in completely adversarial
environments, which is the first of this kind to our
knowledge. Finally, all our guarantees hold with
high probability, while existing instance-optimal
guarantees only hold in expectation.

1. Introduction

We consider the linear bandit problem with a finite and fixed
action set. In this problem, the learner repeatedly selects
an action from the action set and observes her loss whose
mean is the inner product between the chosen action and
an unknown loss vector determined by the environment.
The goal is to minimize the regret, which is the difference
between the learner’s total loss and the total loss of the best
action in hindsight. Two standard environments are heavily-
studied in the literature: the stochastic environment and
the adversarial environment. In the stochastic environment,
the loss vector is fixed over time, and we are interested
in instance-optimal regret bounds of order o(7¢) for any
€ > 0, where T is the number of rounds and o(-) hides some
instance-dependent constants. On the other hand, in the
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adversarial environment, the loss vector can be arbitrary in
each round, and we are interested in minimax-optimal regret
bound O(v/T), where O(-) hides the problem dimension
and logarithmic factors in 7'.

While there are many algorithms obtaining such optimal
bounds in either environment (e.g., (Lattimore & Szepesvari,
2017) in the stochastic setting and (Bubeck et al., 2012) in
the adversarial setting), a natural question is whether there
exists an algorithm achieving both guarantees simultane-
ously without knowing the type of the environment. Indeed,
the same question has been studied extensively in recent
years for the special case of multi-armed bandits where the
action set is the standard basis (Bubeck & Slivkins, 2012;
Seldin & Slivkins, 2014; Auer & Chiang, 2016; Seldin &
Lugosi, 2017; Wei & Luo, 2018; Zimmert & Seldin, 2019).
Notably, Zimmert & Seldin (2019) developed an algorithm
that is optimal up to universal constants for both stochas-
tic and adversarial environments, and the techniques have
been extended to combinatorial semi-bandits (Zimmert et al.,
2019) and finite-horizon tabular Markov decision processes
(Jin & Luo, 2020). Despite all these advances, however,
it is still open whether similar results can be achieved for
general linear bandits.

On the other hand, another line of recent works study the
robustness of stochastic linear bandit algorithms from a
different perspective and consider a corrupted setting where
an adversary can corrupt the stochastic losses up to some
limited amount C'. This was first considered in multi-armed
bandits (Lykouris et al., 2018; Gupta et al., 2019; Zimmert
& Seldin, 2019; 2021) and later extended to linear bandits
(Li et al., 2019) and Markov decision processes (Lykouris
et al., 2019; Jin & Luo, 2020). Ideally, the regret of a robust
stochastic algorithm should degrade with an additive term
O(C) in this setting, which is indeed the case in (Gupta
et al., 2019; Zimmert & Seldin, 2019; 2021; Jin & Luo,
2020) for multi-armed bandits or Markov decision processes,
but is not achieved yet for general linear bandits.

In this paper, we make significant progress in this direction
and develop algorithms with near-optimal regret simultane-
ously for different environments. Our main contributions
are as follows.
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o In Section 4, we first introduce Algorithm 1, a simple
algorithm that achieves O(c(X, 0) log® T + C') regret
with high probability in the corrupted setting,! where
¢(X,0) is an instance-dependent quantity such that
the instance-optimal bound for the stochastic setting
(i.e. C =0)1is O(c(X,0)logT). This result signifi-
cantly improves (Li et al., 2019) which only achieves
O(dG I%gQ T + d2'5AC log T

the actions and A,;,, is the minimum sub-optimality
gap satisfying ¢(X,0) < O(ﬁ). Moreover, Algo-
rithm 1 also ensures an instance-independent bound
O(dVT + C) that some existing instance-optimal al-
gorithms fail to achieve even when C' = 0 (e.g., (Jun
& Zhang, 2020)).

) where d is the dimension of

e In Section 5, based on Algorithm 1, we further propose
Algorithm 2 which not only achieves nearly instance-
optimal regret O(c(X, #) log® T') in the stochastic set-
ting, but also achieves the minimax optimal regret
(’)(\/T) in the adversarial setting (both with high prob-
ability). To the best of our knowledge, this is the first
algorithm that enjoys the best of both worlds for linear
bandits. Additionally, the same algorithm also guaran-
tees 6(‘%& + C) in the corrupted setting, which is
slightly worse than Algorithm 1 but still significantly
better than (Li et al., 2019).

e Finally, noticing the extra log 7" factor in our bound for
the stochastic setting, in Appendix D we also prove that
this is in fact inevitable if the same algorithm simul-
taneously achieves sublinear regret in the adversarial
setting with high probability (which is the case for
Algorithm 2). This generalizes the result of (Auer &
Chiang, 2016) for two-armed bandits.

At a high level, Algorithm 1 utilizes a well-known opti-
mization problem (that characterizes the lower bound in the
stochastic setting) along with a robust estimator to determine
a randomized strategy for each round. This ensures the near
instance-optimality of the algorithm in the stochastic setting,
and also the robustness to corruption when combined with
a doubling trick. To handle the adversarial setting as well,
Algorithm 2 switches between an adversarial linear ban-
dit algorithm with high-probability regret guarantees and a
variant of Algorithm 1, depending on the results of some
carefully-designed statistical tests on the stochasticity of the
environment.

'In the texts, O(-) often hides lower-order terms (in terms of 7'
dependence) for simplicity. However, in all formal theorem/lemma
statements, we use O(-) to hide universal constants only.

2. Related Work

Linear Bandits. Linear bandits is a classic model to study
sequential decision problems. The stochastic setting dates
back to (Abe & Long, 1999). Auer (2002) first used the
optimism principle to solve this problem. Later, several
algorithms were proposed based on confidence ellipsoids,
further improving the regret bounds (Dani et al., 2008a;
Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al.,
2011; Chu et al., 2011).

On the other hand, the adversarial setting was introduced
by Awerbuch & Kleinberg (2004). Dani et al. (2008b)
achieved the first O(v/T') expected regret bound using the
Geometric Hedge algorithm (also called Exp2) with uni-
form exploration over a barycentric spanner. Abernethy
et al. (2008) proposed the first computational efficient al-
gorithm that achieves O(v/T) regret using the Following-
the-Regularized-Leader framework. Bubeck et al. (2012)
further tightened the bound by improving Exp2 with John’s
exploration. Our Algorithm 2 makes use of any adversar-
ial linear bandit algorithm with high-probability guarantees
(e.g., (Bartlett et al., 2008; Lee et al., 2020)) in a black-box
manner.

Instance Optimality for Bandit Problems. In the
stochastic setting, Lattimore & Szepesvari (2017) showed
that, unlike multi-armed bandits, optimism-based algo-
rithms or Thompson sampling can be arbitrarily far from
optimal in some simple instances. They proposed an algo-
rithm also based on the lower bound optimization problem
to achieve instance-optimality, but their algorithm is deter-
ministic and cannot be robust to an adversary. Instance-
optimality was also considered in other related problems
lately such as linear contextual bandits (Hao et al., 2020;
Tirinzoni et al., 2020), partial monitoring (Komiyama et al.,
2015), and structured bandits (Combes et al., 2017; Jun &
Zhang, 2020). Most of these works only consider expected
regret, while our guarantees all hold with high probability.

Best-of-Both-Worlds. Algorithms that are optimal for
both stochastic and adversarial settings were studied in
multi-armed bandits (Bubeck & Slivkins, 2012; Seldin &
Slivkins, 2014; Auer & Chiang, 2016; Seldin & Lugosi,
2017; Wei & Luo, 2018; Zimmert & Seldin, 2019), semi-
bandits (Zimmert et al., 2019), and Markov Decision Pro-
cesses (Jin & Luo, 2020). On the other hand, linear bandits,
a generalization of multi-armed bandits and semi-bandits, is
much more challenging and currently underexplored in this
direction. To the best of our knowledge, our algorithm is
the first that guarantees near-optimal regret bounds in both
stochastic and adversarial settings simultaneously.

Stochastic Bandits with Corruption. Lykouris et al.
(2018) first considered the corrupted setting for multi-armed
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bandits. Their results were improved by (Gupta et al., 2019;
Zimmert & Seldin, 2019; 2021) and extended to linear ban-
dits (Li et al., 2019; Bogunovic et al., 2020) and reinforce-
ment learning (Lykouris et al., 2019). As mentioned, our
results significantly improve those of (Li et al., 2019) (al-
though their corruption model is slightly more general than
ours; see Section 3). On the other hand, the results of (Bo-
gunovic et al., 2020) are incomparable to ours, because they
consider a setting where the adversary has even more power
and can decide the corruption after seeing the chosen action.
Finally, we note that (Lykouris et al., 2019, Theorem 3.2)
considers episodic linear Markov decision processes in the
corrupted setting, which can be seen as a generalization of
linear bandits. However, this result is highly suboptimal
when specified to linear bandits (©(C2+/T') ignoring other
parameters).

3. Preliminaries

Let X C R< be a finite set that spans R¢. Each element in
X is called an arm or an action. We assume that ||z|]s < 1
for all z € X. A linear bandit problem proceeds in T’
rounds. In eachround t = 1, ..., T, the learner selects an
action x; € X. Simultaneously, the environment decides a
hidden loss vector ¢; € R? and generates some independent
zero-mean noise ¢;(z) for each action z. Afterwards, the
learner observes her loss y; = (x4, £;)+¢¢ (). We consider
three different types of settings: stochastic, corrupted, and
adversarial, explained in detail below.

In the stochastic setting, ¢, is fixed to some unknown vector
6 € R%. We assume that there exists a unique optimal arm
x* € X such that (z*,6) < ming«xzcx(x,6), and define
for each x € X, its sub-optimality gap as A, = (v — x*,0).
Also denote the minimum gap ming,« Ay by Apyin.

The corrupted setting is a generalization of the stochastic
setting, where in addition to a fixed vector 6, the environ-
ment also decides a corruption vector ¢; € R? for each
round (before seeing ;) so that £, = 6 + ¢;.> We define the
total amount of corruption as C' = ), maxcx |[(,¢)l.
The stochastic setting is clearly a special case with C' = 0.
In both of these settings, we define the regret as Reg(T') =

T T
maXgex y o, (T —2,0) = ;1 Ay,

Finally, in the adversarial setting, ¢; can be chosen arbi-
trarily (possibly dependent on the learner’s algorithm and
her previously chosen actions). The difference compared to
the corrupted setting (which also has potentially arbitrary
loss vectors) is that the regret is now defined in terms of /;:
Reg(T') = max,cx ZtT=1<;ct —x, ).

’In other words, the environment corrupts the observation y
by adding {x¢, ¢t). The setting of (Li et al., 2019) is slightly more
general with the corruption on y; being c;(z+) for some function
c¢ that is not necessarily linear.

In all settings, we assume (x, 0), (x, ¢, ), (z,¢;) and y; are
allin [—1, 1] for all ¢ and x € X'. We also denote (z, £;) by
; » and similarly (z, ¢;) by ¢4 5.

It is known that the minimax optimal regret in the ad-
versarial setting is @(d\/T) (Dani et al., 2008b; Bubeck
et al., 2012). The instance-optimality in the stochastic case,
on the other hand, is slightly more complicated. Specif-
ically, an algorithm is called consistent if it guarantees
E[Reg(T)] = o(T¢) for any 6, X, and € > 0. Then, a
classic lower bound result (see e.g., (Lattimore & Szepes-
vari, 2017)) states that: for a particular instance (X, 6), all
consistent algorithms satisfy:?

E[Reg(T)]

lim inf log T

> Q(c(X,0)),

T—o0
where ¢(X, 0) is the objective value of the following opti-
mization problem:

inf Z
Ne.2o)™ ey
2

A
subject to ||x||§{,1(N) < 7"”7

NoAg (D

Ve e X\{z"} ()

and H(N) = > . Nyza " (the notation ||z||; denotes

the quadratic norm vz T Mz with respect to a matrix M).
This implies that the best instance-dependent bound for
Reg(T') one can hope for is O(c(X,0)logT) (and more
generally O(c(X, 0)logT + C) for the corrupted setting).

It can be shown that ¢(X,6) < O (ﬁ)
but this upper bound can be arbitrarily loose as shown

in (Lattimore & Szepesvari, 2017).

(see Lemma 16),

The solution N, in the optimization problem above speci-
fies the least number of times action z should be drawn in
order to distinguish between the present environment and
any other alternative environment with a different optimal
action. Many previous instance-optimal algorithms try to
match their number of pulls for x to the solution NN, under
some estimated gap A, (Lattimore & Szepesvari, 2017; Hao
et al., 2020; Jun & Zhang, 2020). While these algorithms
are asymptotically optimal, their regret usually grows lin-
early when 7' is small (Jun & Zhang, 2020). Furthermore,
they are all deterministic algorithms and by design cannot
tolerate corruptions. We will show how these issues can be
addressed in the next section.

Notations. We use Ps to denote the probability simplex
over S: {p € R‘;A 2 eesPs = 1}, and define the clip-

ping operator Clipy, ;(v) as min(max(v, a),b) for a < b.

3The original proof is under the Gaussian noise assumption. To
meet our boundedness assumption on ¥, it suffices to consider the
case when y; is a Bernoulli random variable, which only affects
the constant of the lower bound.
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4. A New Algorithm for the Corrupted Setting

In this section, we focus on the corrupted setting (hence
covering the stochastic setting as well). We introduce
a new algorithm that achieves with high probability an
instance-dependent regret bound of O(c(X, 6) log® T + C)
for large T" and also an instance-independent regret bound
of O(dvVT + C) for any T. This improves over previ-
ous instance-optimal algorithms (Lattimore & Szepesvari,
2017; Hao et al., 2020; Jun & Zhang, 2020) from several
aspects: 1) first and foremost, our algorithm handles cor-
ruption optimally with extra O(C) regret, while previous
algorithms can fail completely due to their deterministic
nature; 2) previous bounds only hold in expectation; 3)
previous algorithms might suffer linear regret when 7' is
small, while ours is always O(dv/T + C) for any T The
price we pay is an additional log 7" factor in the instance-
dependent bound. On the other hand, compared to the work
of (Li et al., 2019) that also covers the same corrupted set-

. . 61 2 2.5
ting and achieves O d i‘;g_ ryd AC l_ogT), our results

are also significantly better (recall ¢(X,0) < O(d/Apin)).
although as mentioned in Footnote 2, their results hold for
an even more general setting with non-linear corruption.

Our algorithm is presented in Algorithm 1, which proceeds
in blocks of rounds whose length grows in a doubling man-
ner (2°,2',...). At the beginning of block m (denoted as
B.,,,), we compute a distribution p,, over actions by solving
an optimization problem OP (Figure 1) using the empirical
gap A, , estimated in the previous block (Line 5). Then
we use p,, to sample actions for the entire block m, and
construct an unbiased loss estimator Zm in every round for
every action x (Line 9). At the end of each block m, we use
{tzr }T B, to construct a robust loss estimator Rob,,, , for
each action (Line 12), which will then be used to construct
A, 41, for the next block. We next explain the optimiza-
tion problem OP and the estimators in detail.

OP is inspired by the lower bound optimization (Eq. (1) and
Eq. (2)), where we normalize the pull counts N as a distri-
bution p over the arms such that for a large m, p,, » = éVI

holds for x # z*. One key difference between our algo-
rithm and previous ones (Lattimore & Szepesvari, 2017;
Hao et al., 2020; Jun & Zhang, 2020) is exactly that we se-
lect actions randomly according to these distributions, while
they try to deterministically match the pull count of each
arm to N. Our randomized strategy not only prevents the
environment from exploiting the knowledge on the learner’s
cAhoices, but also allows us to construct unbiased estimator
4; . (Line 9) following standard adversarial linear bandit
algorithms (Dani et al., 2008b; Bubeck et al., 2012). In fact,
as shown in our analysis, the variance of the estimator Zm is
exactly bounded by Hx||é_1 (for t € B,,), which is in turn

bounded in terms of the sub-optimality gap of x in light of

1
2
3
4

5

11
12

Algorithm 1 Randomized Instance-optimal Algorithm
Input: § < 0.1

t« 1

form=20,1,2...do

Define block B,, = {¢, t +1,..., t +2™ — 1}.
Find a randomized strategy p,,, = OP(2™, ﬁm) with

ifm =0,

o~

Am,x =

0
Rob,,,_1,, — min,cx Rob,,_1 5/ else.

Compute second moment S,,, = > EX pmymxxT.
while ¢t € 5,,, do
Sample x; ~ p,, and observe y;.

Compute for all z € X, th =2 'S wy.
|t t+ 1.

for z € X do
Construct robust loss estimators

Rob,, ; = Clip_; (Catoniam ({ETJ}TGB"L))
with o, = Wm.
V Sim

o~

OP(t, A): return any minimizer p* of the following:

i wﬁw; 3
i Y ®
2 A2
S.t. Hx”s(p),l S + 4d, Vl‘ S X, (4)

B

where S(p) = 3,y poxx | and f; = 2" log 1X1.

Figure 1. Optimization Problem (OP)

Catoni,, ({X1,X2,...,X,}) : return X, the unique

root of the function f(z) = > | ¥(a(X; — z)) where
In(1+y+y?/2), ify>0,

Y(y) = )

—In(l —y+y?/2), else.

Figure 2. Catoni’s Estimator

the constraint Eq. (4). The similar idea of imposing explicit
constraints on the variance of loss estimators appears before
in for example (Dudik et al., 2011; Agarwal et al., 2014) for
contextual bandits. Finally, we point out that OP always
has a solution due to the additive term 4d in Eq. (4) (see
Lemma 11), and it can be solved efficiently by standard
methods since Eq. (4) is a convex constraint.



Achieving Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits

Another important ingredient of our algorithm is the ro-
bust estimator Rob,, ., which is a clipped version of the
Catoni’s esimator (Catoni, 2012) constructed using all the
unbiased estimators {ZT,:L’}TG B, from this block for action
x (Figure 2). From a technical perspective, this avoids a
lower-order term in Bernstein-style concentration bounds
and is critical for our analysis. We in fact also believe that
this is necessary since there is no explicit regularization on
the magnitude of ZM, and it can indeed have a heavy-tailed
distribution. While other robust estimators are possible, we
use the Catoni’s estimator which was analyzed in (Wei et al.,
2020) for non-i.i.d. random variables (again important for
our analysis).

The following theorem summarizes the nearly instance-
optimal regret bound of Algorithm 1.

Theorem 1. In the corrupted setting, Algorithm 1 guaran-
tees that with probability at least 1 — 0,

TX 1
Reg(T) = (’)(c(X,G)longog |6 | + M log% 5
C C|x|
O Arnin log Ami1r15> ’

where M* is some constant that depends on X and 0 only.

The dominating term of this regret bound is thus
O(c(X,0)log? T + C) as claimed. The definition of M*
can be found in the proof (Appendix B) and is importantly
independent of 7T". In fact, in Theorem 19, we also provide

an alternative (albeit weaker) bound O(M + C) for
Algorithm 1 without the dependence on M *. <

The next theorem shows an instance-independent bound
of order O(d\/T + C) for Algorithm 1, which previous
instance-optimal algorithms fail to achieve as mentioned.

Theorem 2. In the corrupted setting, Algorithm I guar-
antees that with probability at least 1 — 0, Reg(T) <
O(dvV/Tlog(T|X|/8) + C).

We emphasize that Algorithm 1 is parameter-free and does
not need to know C' to achieve these bounds. In the rest of
the section, we provide a proof sketch for Theorem 1 and
Theorem 2. First, we show that the estimated gap A, ,
is close to the true gap A, with a constant multiplicative
factor and some additive terms that go down at the rate of
roughly 1/+/% up to the some average amount of corruption.

Lemma 3. With probability at least 1 — §, Algorithm 1
ensures for all m and all x,

dym
20m—1, 5
42m+P 1 )

N d’ym
Ay <20, + 4/ 2 + 21, 6
a S T\ 1 om T2Pma (6)

Az < 2£m,m +

where p,, = Y 1 % (p_1 is defined as 0), Cp, =
> reB, MaXgex [Cr 2| is the amount of corruption within
block k, and ,, = 2'°1og(2™|X|/4).

As mentioned, the proof of Lemma 3 heavily relies on the
robust estimators we use as well as the variance constraint
Eq. (4). Next, we have the following lemma which bounds
the objective value of OP.

Lemma 4. Let p be the solution of OP(t,\), where A €
IXI dlog(t|X|/é
. Then we have Zzexpw . =0 (%)

Combining Lemma 3 and Lemma 4, we see that in block m,
the regret of Algorithm 1 can be upper bounded by

0<2mzz:pm,xAx>
=0 <2mzpm ( m+\/27m+pm 1>>

=0 (d\/ﬁ—i— 2mpm,1) ,

where in the first equality we use Lemma 3 and in the sec-
ond equality we use Lemma 4 with the fact that p,,, =
OP(2™,A,,). Further summing this over m and relating
> 2™ pm—1 to C proves Theorem 2.

In addition, based on Lemma 3, we show that when t € B3,
is larger than Q(C'/Amnin) plus some problem-dependent
constant, the estimated gap Am « becomes O(A,). There-
fore, the solution {p,, + }zc x\ {2+ from OP is very close to
{%}xe)ﬁ\{x*}’ where NV is the optimal solution of Eq. (1)
and Eq. (2), except that we have an additional log(2™|X|/4)
factor in the constraint (coming from Sy ). Therefore, the
regret is bounded by O(c(X,0)log(T)log(T|X|/d)) for
large enough 7. Formally, we have the following lemma.

Lemma 5. Algorithm I guarantees with probability at least
1 — 6, for some constant T™ depending on X ,0, and C':

T
S Y b < O (¢(X,6) log(T) log(T|X]/5))

t=T*+1 =«

Finally, to obtain Theorem 1, it suffices to apply Theorem 2
for the regret before round 7" and Lemma 5 for the regret
after.

5. Best of Three Worlds

In this section, building on top of Algorithm 1, we develop
another algorithm that enjoys similar regret guarantees in the
stochastic or corrupted setting, and additionally guarantees
O(V/T) regret in the adversarial setting, without having any
prior knowledge on which environment it is facing. To the
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best of our knowledge, this kind of best-of-three-worlds
guarantee only appears before for multi-armed bandits (Wei
& Luo, 2018; Zimmert & Seldin, 2019) and Markov decision
processes (Jin & Luo, 2020), but not for linear bandits.

Our algorithm requires a block-box access to an adversarial
linear bandit algorithm A that satisfies the following:

Assumption 1. A is a linear bandit algorithm that outputs
a loss estimator £, , for each action x after each time t.
There exist Lo, C1 > 2'dlog(T|X|/6), and universal con-
stant Cy > 20, such that for all t > Lg, A guarantees the
following with probability at least 1 — %: Vr e X,

) S \/a_ 02 Z(és,x _Es,x) .

s=1

)

Eq. (7) states that the regret of .A against action x is bounded
by a v/t-order term minus the deviation between the loss
of z and its estimator. While this might not seem intuitive,
in fact, all existing linear bandit algorithms with a near-
optimal high-probability bound satisfy Assumption 1, even
though this may not have been stated explicitly (and one
may need to slightly change the constant parameters in
these algorithms to satisfy the conditions on C and C5).
Below, we give two examples of such .4 and justify them in
Appendix E.

e A variant of GeometricHedge.P (Bartlett et al., 2008)
with an improved exploration scheme satisfies Assump-
tion 1 with (6’ = 6/(|X|log, T'))

C1 =0 (dlog(T/d)), Lo=0© (dlog*(T/d")).

e The algorithm of (Lee et al., 2020) satisfies Assump-
tion 1 with (Ig = log(dT), 6" = 6/(|X|T))

C1 =0 (d°1g®log(lg /0")) , Lo = © (log(lg /3")).

With such a black-box at hand, our algorithm BOTW is
shown in Algorithm 2. We first present its formal guarantees
in different settings.

Theorem 6. Algorithm 2 guarantees that with probability
at least 1 — 6, in the stochastic setting (C' = 0), Reg(T) is
at most

@] (C(X,H) log T'log |5X| AlogT

1
+M*log? s+ \/ClL()) ,

where M* is the same problem-dependent constant as in
Theorem 1; and in the corrupted setting (C' > 0), Reg(T")
is at most

CilogT
0( Amm

C + V ClL())

Algorithm 2 BOTW (Best of Three Worlds)
Input: an algorithm A satisfying Assumption 1.
Initialize: L < L, (L defined in Assumption 1).

while true do
Run BOTW-SE with input L, and receive output tg.

L+ 2tg.

In the case when A is the variant of GeometricHedge.P, the
last bound is

0 (dlog(T&\’V&) log T N C) .

Therefore, Algorithm 2 enjoys the nearly instance-optimal
regret O(c(X, 0) log® T') in the stochastic setting as Algo-
rithm 14, but slightly worse regret O(“8— dlog” T | ) in the
corrupted setting (recall again ¢(X, ) < d/ Amin). In ex-
change, however, Algorithm 2 enjoys the following worst-
case robustness in the adversarial setting.

Theorem 7. In the adversarial setting, Algorithm 2 guaran-
tees that with probability at least 1 — 0, Reg(T') is at most

The dependence on 7T’ in this bound is minimax-optimal as
mentioned, while the dependence on d depends on the coef-
ficient C'; of the black-box. Note that because of this adver-
sarial robustness, the 1og2 T dependence in Theorem 6 turns
out to be unavoidable, as we show in Theorem 27. In addi-
tion, Theorem 7 also works for the stochastic setting, which
implies a regret bound of O(v/dT log(T|X|log, T/9)).
This is a factor of v/d better than the guarantee of Algo-
rithm 1 shown in Theorem 2.

Next, in Section 5.1, we describe our algorithm in detail.
Then in Section 5.2 and Section 5.3, we provide proof
sketches for Theorem 7 and Theorem 6 respectively.

5.1. The algorithm

Algorithm 2 BOTW takes a black-box A satisfying Assump-
tion 1 (with parameter Lg) as input, and then proceeds in
epochs until the game ends. In each epoch, it runs its single-
epoch version BOTW-SE (Algorithm 3) with a minimum
duration L (initialized as Lg). Based on the results of some
statistical tests, at some point BOTW-SE will terminate
with an output g > L. Then BOTW enters into the next
epoch with L updated to 2t(, so that the number of epochs
is always O(log T)).

BOTW-SE has two phases. In Phase 1, the learner executes
the adversarial linear bandit algorithm 4. Starting from

“Note that when we choose A as the variant of Geomet-
ricHedge.P, Cl Y log L log2 T') which is dominated

Amin

by the term O( (z’\.’7 0)log® T') when T is sufficiently large.
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t = L (i.e. after the minimum duration specified by the
input), the algorithm checks in every round whether Eq. (9)
and Eq. (10) hold for some action & (Line 3). If there exists
such an 7, Phase 1 terminates and the algorithm proceeds
to Phase 2. This test is to detect whether the environment
is likely stochastic. Indeed, Eq. (9) and Eq. (10) imply that
the performance of the learner is significantly better than
all but one action (i.e., 7). In the stochastic environment,
-
This is exactly the timing when the learner should stop
using A whose regret grows as (’)(\f ) and start doing more
exploitation on the better actions, in order to keep the regret
logarithmic in time for the stochastic environment. We
define tg to be the time when Phase 1 ends, and A be the
empirical gap for action x with respect to the estimators
obtained from A SO far (Line 4). In the stochastic setting,
we can show that A, = ©(A,) holds with high probability.

this event happens at roughly ¢t ~ © ( ) with T = z*.

In the second phase, we calculate the action distribution
using OP with the estimated gap {A }zex. Indeed, if Ay’s
are accurate, the distribution returned by OP is close to the
optimal way of allocating arm pulls, leading to near-optimal
regret.’ For technical reasons, there are some differences
between Phase 2 and Algorithm 1. First, instead of using py,
the distribution returned by OP, to draw actions, we mix it
with ez (the distribution that concentrates on Z), and draw
actions using p; = em + 3 Ly,. This way, Z is drawn with

probability at least 5. Moreover, the loss estimator ét o 18
now defined as the followmg

To-1,. =
Sy Xy, z

-~ x
gt,m =
Dtz

z#

r=2

ue ®)

p ]I{act = .’/L'\},

where gt = er x fﬁt_mx:cT. While the construction of
Zm for x # T is the same as Algorithm 1, we see that the
construction of Ztg is different and is based on standard
inverse probability weighting. These differences are mainly
because we later use the average estimator instead of the
robust mean estimator for Z (the latter produces a slightly
looser concentration bound in our analysis). Therefore, we
must ensure that Z is drawn with enough probability, and

that the magnitude of th is well-controlled.

Then, we define the average empirical gap in [1,¢] forz # T
and ¢ in Phase 2 as the following:

&,x—<2m (t —to)Roby ; — Zm) (13)

s=1
where
Rob; ; = Clip|_ y (Catoniaz <{Z‘f’x}tr=t0+1>)

SHere, we solve OP at every iteration for simplicity. It can in
fact be done only when time doubles, just like Algorithm 1.

1

2
3

4

10

Algorithm 3 BOTW-SE (BOTW - Single Epoch)

Input: L (minimum duration)

Define: f1 = logT

Initialize: a new instance of A.

// Phase 1

fort=1,2,...do

Execute and update A. Receive estimators {EI}ZG x-
if ¢ > L and there exists an action Z such that

t t
>y = bz > —5\/frCit, ©)
s=1 s=1

t t R
D oys— > low < =25\/frCit, YV #£%, (10)
s=1 s=1

thento « t, A, % (Z’;”zl lzr - ZS@), break.

// Phase 2
fort =ty+1,...do

Letpt = ()P(LL7 3) and ﬁt = 5€z + %pt.

Sample z; ~ p; and observe y;.

Calculate Zu and ﬁm based on Eq. (8) and Eq. (13).
if

Jo A7, Ay d {0.3933571.8134 or (1)
t
> (s —fus) = 20V TrCilo. (12)
s=to+1
B then break.

1 Return tg.

1
2

with o, = <t_t0 +§°g=<t(')fl'/2ﬁl>£”2 - ) (c.f Figure 2).
Note that we use a simple averageT estimator for Z, but a
hybrid of average estimator of Phase 1 and robust estimator
of Phase 2 for other actions. These gap estimators are use-
ful in monitoring the non-stochasticity of the environment,
which is done via the tests Eq. (11) and Eq. (12). The first
condition (Eq. (11)) checks whether the average empirical
gap A, ; is still close to the estimated gap A, at the end of
Phase 1. The second condition (Eq. (12)) checks whether
the regret against Z incurred in Phase 2 is still tolerable. It
can be shown that (see Lemma 10), with high probability
Eq. (11) and Eq. (12) do not hold in a stochastic environ-
ment. Therefore, when either event is detected, BOTW-SE
terminates and returns the value of ¢, to BOTW, which will
then run BOTW-SE again from scratch with L = 2.

In the following subsections, we provide a sketch of analysis
for BOTW, further revealing the ideas behind our design.
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5.2. Analysis for the Adversarial Setting (Theorem 7)

We first show that at any time ¢ in Phase 2, with high proba-
bility, T is always the best action so far.

Lemma 8. With probability at least 1 — 0, for at any t in
Phase 2, we have T € argmin . y Z§=1 U o

Proof sketch. The idea is to prove that for any = # Z, the
deviation between the actual gap Z’;:l(&,x — {5 z) and
the estimated gap tﬁm. is no larger than O(tA,). This
is enough to prove the statement since tﬁm is of order
Q(tA,) in light of the test in Eq. (11).

Bounding the derivation for Phase 2 is somewhat similar

to the analysis of Algorithm 1, and here we only show
how to bound the derivation for Phase 1: 3% (£, , —

é:x) We start by rearranging Eq. (7) to get: (Cy —
]-) Ziozl(gs,m - Zs,z)) S \/Tt()* Ziil(€s7ms *Zs,m) =

VCity — Zi":l(ﬁgac - qu) + toA,. By the termina-
tion conditions of Phase 1, we have 22021(48% —lsz) >
=5/ frCito and A, > 20/ frC1 /to, which then shows
(S (b = Bra)| < SIEGRFR: — O(ty4,) as de-
sired. (See Appendix C for the full proof.) O

We then prove that, importantly, the regret in each epoch is
bounded by O(+/%g) (not square root of the epoch length):

Lemma 9. With probability at least 1 — 6, for any time t in
Phase 2, we have for any x € X,

i (boe, = o) = O (V/Citofr) .

s=1

Proof sketch. By Lemma 8, it suffices to consider x =
Z. By Eq. (7), we know that the regret for the first ¢
rounds is directly bounded by O (\/ C’lto). For the re-
gret incurred in Phase 2, we decompose it as the sum of

Zi:to_u(ys —Lsz)s Zi:to_u(gs,f —ls5 — €5(7)), and
Ziztoﬂ(es(ﬁf) — es(xs)). The first term is controlled
by the test in Eq. (12). The second and third terms are
martingale difference sequences with variance bounded by
O(1 — ps,z), which as we further show is at most 1/sA2
with ﬁmin = ming4z ﬁz By combining Eq. (9) and
Eq. (10), it is clear that ﬁmin > 20/ frC1/ty and thus
the variance is in the order of ¢ /s. Applying Freedman’s
inequality, the last two terms are thus bounded by O(+/7o)
as well, proving the claimed result (see Appendix C for the
full proof). O

Finally, to obtain Theorem 7, it suffices to apply Lemma 9
and the fact that the number of epochs is O(log T').

5.3. Analysis for the Corrupted Setting (Theorem 6)

The key for this analysis is the following lemma.

Lemma 10. In the corrupted setting, BOTW-SE ensures
with probability at least 1 — 150:

900frC1  900C?
[ ] f < max {7 o= L}
0= A?nin ’ fTCl ’

o If C < LVFrOIL, then 1) 7 = a*; 2) A, €
[0.7A;, 1.3A,] for all x; and 3) Phase 2 never ends.

Using this lemma, we show a proof sketch of Theorem 6 for
the stochastic case (i.e. C' = 0). The full proof is deferred
to Appendix C.2.

Proof sketch for Theorem 6 with C' = 0. By Lemma 10,

we know that after roughly © (%) rounds in Phase 1,
the algorithm finds T = x*, estimates A, up to a constant
factor of A,, and enters Phase 2 without ever going back
to Phase 1. By Eq. (7), the regret in Phase 1 can be upper
bounded by O ( C - —fgfl) =0 ( - \/f?)

min

To bound the regret in Phase 2, we show that as long as ¢
is larger than a problem-dependent constant 7, there exist
{Nz}oex satisfying > o NA, < 2¢(X,0) such that

{p;tk,x}IGX\{x*} = {% }mex\{z*} is a feasible solution
of Eq. (4). Therefore, we can bound the regret in this regime
as follows:

t
Z Z ﬁs,xAm

s=T*+1xzeX

t
1
Z Z §ps,xAz

s=T*+1lzecX

t
1 ~
Z Z ﬁps,wa

s=T*+1lzecX

t
> Y i

s=T*+1lzxzeX

t

s=T*+1zxzeX
<O (c(X,0)10g°T).

A

(¥ =2)

(A, € [0.7A,,1.3A,))

IN

IN

(optimality of py)

IA

(Ay € [0.7A,,1.3A,))
(definition of p})

Combining the regret bounds in Phase 1 and Phase 2, we
prove the results for the stochastic setting. O
6. Conclusion

In this work, we make significant progress on improving the
robustness and adaptivity of linear bandit algorithms. Our
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algorithms are the first to achieve near-optimal regret in var-
ious different settings, without having any prior knowledge
on the environment. Our techniques might also be useful for
more general problems such as linear contextual bandits.

In light of the work (Zimmert & Seldin, 2019) for multi-
armed bandits that shows a simple Follow-the-Regularized-
Leader algorithm achieves optimal regret in different set-
tings, one interesting open question is whether there also
exists such a simple Follow-the-Regularized-Leader algo-
rithm for linear bandit with the same adaptivity to different
settings. In fact, it can be shown that their algorithm has
a deep connection with OP in the special case of multi-
armed bandits, but we are unable to extend the connection
to general linear bandits.
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A. Auxiliary Lemmas for OP

Proof of Lemma 4. Consider the minimizer p* of the following constrained minimization problem for some ¢ > 0:

min > pA, + —In(det(S(p)))) , (14)

€A
p X:CEX

where S(p) = 3, .y pawa . We will show that

~ 2
Y A, < = (15)
TzeEX
€A,
)15 ey -1 < 2’ : : (16)

To prove this, first note that relaxing the constraints from p € Py to the set of sub-distributions {p : ZL cx Pz < 1 and p, >
0, Vz} does not change the solution of this problem. This is because for any sub-distribution, we can always make it a
distribution by increasing the weight of some x with ﬁm = 0 (at least one exists) while not increasing the objective value
(since In(det(S(p))) is non-decreasing in p, for each x). Therefore, applying the KKT conditions, we have

A, — szS(p*)*leAx+A:o, (17)

where A\;, A > 0 are Lagrange multipliers. Plugging in the optimal solution p* and taking summation over all z € X', we
have

O=Zp;3 Zp; TS(p 13:—2/\95]0;4—)\

reX weX zeX

Z pEA, — 2 Tr(S (p*)~1S(p*)) + A (complementary slackness)

zeX

reX

>3 piA, (A= 0)

zeX

Therefore, we have erxp;Ax < %d and \ < %d as Zmexpj;ﬁw > 0. This proves Eq. (15). For Eq. (16), using Eq.
(17), we have

12y = 5 (B = +2) <5 (B, 42) < ff i

2d

where the first inequality is due to A, > 0, and the second inequality is due to A < ¢

Now we show how to transform p* into a distribution satisfying the constraint of OP. Choose £ = i LetG = {x: A <
1 G,k

%} We construct the distribution ¢ = p + 54", where ¢%* is defined in Lemma 11 with k = \[, and prove that ¢
satisfies Eq. (4). Indeed, for all z ¢ G, we have by definition \/iAx > 1 and thus
VIA, tA2

2 2 N _ .
||$Hs(q)—1 < Hx”%S(p*)—l <EAL+2d= ﬂt +2d < —= ﬁt +4d,

for z € G, according to Lemma 11 below, we have Hx||§(q <z|? 15(q0m)-1 <dd< B= Y
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Combining the two cases above, we prove that ¢ satisfies Eq. (4). According to the optimality of p, we thus have

Z pxﬁm < Z q;cﬁx

reX TEX
1 ~ 1 ~
=5 Z pEA, + 3 Z @ A, (by the definition of ¢)
zeX reX
< 12d + 1 + 1 (by Eq. (15) A, < 1, the definition of G, and the choice of )
- — — . N xS 1, N K
S3% "o T vk y BEq
d 1 d
<t <6t) , (by the definition of £)
G Vi
proving the lemma. O

The following lemma shows that for any G C X/, there always exists a distribution p € Py that puts most weights on actions
from G, such that ||z |~ < O(d) forallz € G.

ex PIIIT)71

Lemma 11. Suppose that X C R? spans R? and let px be the uniform distribution over X. For any G C X and k € (0, %]
there exists a distribution q¢ € P such that H:E||%(ch),1 < 2d for all x € G, where ¢°* 2 k -px + (1 — k) - q and

S(p) = ZZEX pmx.’L‘T.

Proof. Let Pt ={p € Px |p=r-px+(1—kK)-q,q € Pg}. As X spans the whole R? space, Hx||%(p)_1 is well-defined
for all p € Pg. Then we have

. 2
min max 2ll5-1(p)

PEPE z€
-1
. T T
= min max =TT »TT
-1
. T T
= max min T, T 18
-1
K
< ma; zxx—r, — 4+ (1 — K)qy x|
qep§<zq <Z<X| ( )q> ) >
TEX TEX
-1
K
<2max ( (1—k) qurx !, ( +(1- /@)qw) x| (k< 1)
2P < ZX ZX ] ’
-1
K K
<2max ( — x| 4+ (1 — k) Gezx < + (1 - k)gq, ) zx!
(1 % e \ e

= 2d,

where the second equality is by the Sion’s minimax theorem as Eq. (18) is linear in g and convex in p. O

Lemma 12. Given {A}ze% suppose there exists a unique T such that 35 = 0, and ﬁmin = mings ﬁm > 0. Then
Y owPaly < 24Pt \ohen t > 1898t \where p is the solution to OP(t, A).

Amint A2

min

Proof. We divide actions into groups Gy, G1, G, . . . based on the following rule:

Go = {7},
G = {m (21712 < A2 < 9iA2 }

min min
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Let n be the largest index such that GG, is not empty and z; =

Gi,fﬁ

a distribution ¢%#* with k = such that |22

1
n-27| X\’

p over actions as the following:

p is a valid distribution as

17:5 = _Z Z szqgj#/v

i>1 zeG; j>1

SR IPIETEES 3 o Ve

i>1 zeG; i>1 zeG,; j;ﬁi j>1

21-3 -3 Y ol

i>1 i>1 x€Gy j#i,j>1
>1- E Zi — E Zi
i>1 i>1
1
> —.
2

s
2i-2A2 ¢

[eF
(Zye.}c‘ qy vy

(condition ¢ > fdﬁt and thus )7, 22; < 37, =BT

for ¢ > 1. For each group 7, by Lemma 11, we find

_1 < 2d for all z € G;. Then we define a distribution

")
ifx #72

ifx =17

Gj,
(ZIGG q:c“K‘ S 1andqu K = ’I’LQ"‘X‘ f0r$¢G)

(by deﬁmtlon < z; for all 4, j)

_ 1
2i-2.16 — 5)

min

Now we show that p also satisfies the constraint of OP( t,A ). Indeed, for any = # 7 and ¢ such that z € G;, we use the

facts p, > ziqy # for y # T by definition and pz 2 52 2?:" ¥ = zlqAG ©" as well to arrive at:
1 2d _ 2~ IA2. tA2
2 2 _ 2 .
I#ls-2 < HUCH( Syexziay ) Ziin”(Zyexqfi'”ny)il 2 Btmm - 5:6’

for x = 7, we have p3 > % as shown above and thus,

12181 = 1S®)~

[

Thus, p satisfies Eq. (4). Therefore,

rzeX reX
THAT

<222 2i— 2At2 a7V B

i>1zeG; j>1 rnln

B2 > 15G) 3R,

= §||§||é§(ﬁ)fl = |23 < 2-

(by the feasibility of p and the optimality of p)

(by the definition of p, and G;)

Y Y Y el ey e
i>10eGs jAiy>1 222 Amint 31 aco, 277 2Amint
dﬁt dﬁtqcﬂw&€ G,k
<> D S P (Pt L fore ¢ G)
- n+j—ij2— i/2— n-2n. ‘X‘
i>1 2€G; j#i,j>1 |X| ‘n 20T At i>1 ey 27272 Apyint
<y 2 2 (+i-5>9
i>1 21/272Amint Amint

proving the lemma.

O
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Lemma 13. Let A, € [#Aw, \/FAJ} forall z € X for some r > 1, and p = OP(t,A) for some t > %. Then

24rdB, m
LrexPebe < K UF

Proof. By the condition on AI, we have t > 127 df > 16d6* . Also, the condition implies that Az* = A, « = 0and A >0

for all x # z*. Therefore, " -

24dﬁt 24T’dﬁt
Amint ’

> e SV paA, <f

zEX TEX mmt

where the second equality is due to Lemma 12 and the other inequalities follow from 37« € [#Az, VrA, | forallz. O

In the following lemma, we define a problem-dependent quantity M.

Lemma 14. Consider the optimization problem:

min E N A,
Nz }zex,Ny>0
{Na}ocx reX

A2
s.t. ||x||H(N) 1 < Ve e X,

where H(N) = Y"1 Nyxzxz " and X~ = X\{z*}. Define its optimal objective value as c(X ,0) (same as in Section 3).
Then, there exist {N}},cx satisfying the constraint of this optimization problem with ) NA, < 2¢(X, 0) and N
being finite. (Define M =3, Ny.)

Proof. If there exists an assignment of { N, },cx for the optlmal objectlve value which has finite N, then the lemma
trivially holds. Otherwise, consider the optimal solution {N }rex with Nm* = 00. According to the constraints, the
following holds for all z € X'~

AQ
_ < ==,
1\}511 H"L‘”(Nw*m*T-‘rEyex— Nyny) Fe 2

As |X| is finite, by definition, we know for any ¢, there exists a positive value M, such that for all N > M,
2 _ A?nm -
Hx||(Nx*x*T+Ey€X_ Nyny)’l =& + €. Choosing € = , we have when N > M, forallz € X

AZ A2
2 - min 2
||mH(Nz*z*T+Zzgxf ﬁwzz‘r)*l < 2 + 2 < ALE

Therefore, consider the solution {N}},cx where N} = 2N, if z € X~ and N}. = 2M,. We have ||ac||i((]\[)_1 < %i.
Moreover, the objective value is bounded by 3>,y NZA, =23 o1 N A, = 2¢(X,0). O

Lemma 15. Suppose A, € #Agﬂ, \/FA:C] Sorall x € X for somer > 1, and p = OP(t, ﬁ)for some t > 1Py M, where
M is defined in Lemma 14. Then ') » pz Qg < @c(z’l’, 0).

Proof. Recall N* defined in Lemma 14. Define p, a distribution over X, as the following:

N *
Pz = rﬂ;tm’ TF T
xr — ~
1= s P T =2"

It is clear that p is a valid distribution since ¢ > r ;M. Also, note that by the definition of M and the condition of t,

P = 1— Z BN, >1- B M > B M > BN,
By 2t 2t 2t 2t
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-~

Below we show that p satisfies the constraint of OP(¢, A,). Indeed, for any = # z*,

fog Bt N«
lll%@-1 < |$||2< oy N\ (B > ey
yex 2t YY >
2t 9
=5 17, )
tA2 o .
< 3 (by the constraint in the definition of { N} },cx)
TPt
tA2 ~ )
< 25 Ay € [ LA VAL

for x = z*, we have py« > 1 — 7"82‘tM > % by the condition of ¢:

* — * — * 1 * *
|z H%(mfl = [|5(p) e H%@) > ||S(p) e ||2;mw*T = §||9C ||A§(;3)71 = |z H%fl(m <2
2

Notice that A~ € [#Aﬁ,ﬁAI*] implies Az« = A, = 0. Thus,

S pele VP Y pA, By € | H00vTAL))

reX zeEX
<r Z ;HTKI (by the feasibility of p and the optimality of p)
reX
N* L
< 1B Z 2—wa (by the definition of p and A« = 0)
reX
2 Ny A 1
<r ﬂtzg z (Ag € WA(E,\/;AJ/‘})
reX
7’2Bt .
< " c(X,0), (>, NiA, < 2¢(X,0) proven in Lemma 14)
finishing the proof. O

Lemma 16. We have ¢(X,0) < %-

Proof. The idea is similar to that of Lemma 12. Define Gy = {z*}, G; = {x: A2 € [271,2))AZ, 1 and n be the
1

largest index such that GG,, is not empty. For each i > 1, let qG’?"“ € Py with K = EiErR be the distribution such that

(e
Hars||é(qgw),1 < 2dforall z € G; (see Lemma 11). Let N,- = oo and for z € G;, we let N, = 221 %

show that { NV, },cx satisfies the constraint Eq. (2). min

. Next we

In fact, fix € G; C X', by definition of { N, },cx, we have

i—1 2
2 < 2] = 27 omin 2 <2iA, <
(e renen) ™ S sy =g s 22 R <

zEX T3i-1AZ .
min

|k
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where the first inequality is because S(q©#*) is invertible. Therefore, the objective value of Eq. (1) is bounded as follows:

qu z ..
Z Noly = Z Z Z 29— 1AJ2 z (by the definition of N,)
TeX i>1xzeG; j>1
4qu N
= Z Z Z 9 —i/2— 1Axmm (by the definition of G;)

i>12€G; j>1

4G, 4dqSi"
:ZZ Z 27— 1/26;A ZZ 1/2qlA

i>1 zeG; j#£i,j>1 i>1 zeG,

4d 4d ,
SZ Z Z . . ontj—i/2— 1Am1n+z 1A, (qgw |X| 5w for j # i,z € G;)

i>1 ze€G; J#w>1

4d 4d ‘
: ; 2"_i/2_1Am1n * Z 2i/2_1Amin (j ) 1)

4% '
- Z 2Y2— 1Am1n - Amm -
Therefore, we have c(X, 0) < ﬁfﬁf -

B. Analysis for Algorithm 1

In this section, we analyze the performance of Algorithm 1 in the stochastic or corrupted setting. For Theorem 1, we
decompose the proof into two parts. First, we show in Lemma 17 (a more concrete version of Lemma 5) that for some
constant T* specified later, we have ZtT:T*H Pralg = O(e(X,0)log Tlog(T|X|/0)). Second, using Lemma 4, we
know that Algorithm 1 also enjoys a regret bound of O(dv/T log(T'|X|/8) + C), which gives O(dv/T* log(T*|X|/5) + C)
for the first 7" rounds and proves Theorem 2.

To prove Lemma 17, we first show in Lemma 3 that A, and ﬁm,x are close within some multiplicative factor with some
additional terms related to the corruption. This holds with the help of Eq. (4) and the use of robust estimators. For notational
convenience, first recall the following definitions from Lemma 3.

Definition 1.

Ym é 215 10g(2m|X|/5) _ BQm,
Cm & ) maxergl,
TEBm ¥
k .
o 2 o 2 ifm >0,
0, m=—1.

Proof of Lemma 3. We prove this by induction. For base case m = 0, ﬁmyx = 0 by definition, and Also, A, < 2 < 4/ dva
and Eq. (5) holds.

If both inequalities hold for m, then

2
~ m dym
) 2mA3n@ 2 (2Am T/ 12w t 2pm—1) 16 - 2mAi 16 - 2mp72nfl
2l < ——= +4d < pad< 2Z B0 gy 202 Pmot (g
m Tm Tm Tm Tm

where the first inequality is because of Eq. (4) of OP(2™, ﬁnw). Next, we show that the expectation of Zm; is (z,0 4+ ¢;)
and the variance of ¢, ,, is upper bounded by ||:17||§,1 for 7 € B,,. In fact, we have

E (0] =E[e7 S5l er ((or,8 4 e+ e)] = (2,0 + 7). (20)

£ [?} <Elz' S, wrxl Spte -yl <aTSpte = |loffha @1)
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Now we are ready to prove the relation. Let ¢, ; = 2}71 ZT eB,, Cra- Under the induction hypothesis for the case of m,

using Lemma 29 with p; = (x, 0 + ¢;), with probability at least 1 — we have for all x € X:

47115

~

AJJ - Am-{-l,x
= (z,0) — (x*,6) — Rob,, , + minRob,,, ,
T

< (z,0) — (z*,0) — Rob,;, » + Rob,, ,~
x*,cr - x,cr 2Cy,
< RObmw*_<$*,9>—M + Rob,mg—<3:,9>—Z s, | )
' 2m ’ 2m 2m
1 m 2 - 2 4log(2™|X|/9)
< 27771 <04;1: <2 ||x||57;1 + Z (C-r,a; - Cm,w) > + a—z
TEBM,
1 4log(2™|X|/6 2C,,
+ om <o¢m <2mx*||§m1 + ; (Cror — Cm7m*)2> + g(ax* / )> + om (by Eq. (21) and Lemma 29)
1 m 2 m TYm 1 my| % |2 m Tm 2C,
_2m<Oé:c(2 ||£EH ;14—2 )+212>+27n(ax*(2 HCC || _1+2 )+% +2T
(using the definition of ~,, and ZTEB Cro — Cmz)? <> B, 2, <2m
2 Cm )
=i 2m\/ 2m||a?H2 . +2m> Ym + 61 om \/(2m||x*|2m1 +2m) 'ym—i—ﬁ (by the choice of o)
16 - 22m A2 16 - 22mp2 C
16-2md + ———"— | ym + 51 by Eq. (19
= 64 - Qm\/ T + P )’7 T om-1 (by Eq. (19))
<%y \/ Cm Vatb<a+ Vb
- 2 16 - 2m m—1 =
AI dYm ..
< 7 \V 16 2m + Pm- (by definition of p,,)

Therefore, A, < 2£m+1,x + 4/ dg?,i + 2pm, which proves Eq. (5). The other claim Eq. (6) can be proven using similar

analysis. Taking a union bound over all m finishes the proof. O

Lemma 17 (A detailed version of Lemma 5). Let T* £ 22 + 40’ log <2M(;|X‘ ) where M' = 220 (M + ) and
M is defined in Lemma 14. Then Algorithm 1 guarantees with probability at least 1 — §:

T
SN pmeae < O(c(X,0)log(T) log(T/6)) .
t=T*+1 =z

R
epoch such that ¢t € B,,,, which means t € [2™*, me“) and thus 3; > 7,,,. Then we have,

Proof. First, note that according to Lemma 28, t > 4M’ log (%) implies t > M’ log (th‘> > %‘l&. Let m; be the

min

dYm, dYm 2C 1 1
- < . < 7Amm AInln A ) 22
dogme TP S\ gme T gmt = g Smin® =90 @2)

where the first inequality is by definition of p,, and the second inequality is because 2™+t > t > T* > 220 and

min

t> Si\d%"t Then by Lemma 3, we have for all  # z*, A, < 2Amt o+ Bz Amt » < 2A, + A= which gives

min

Ap <47y, 0, A, . <4A,. (23)

Since ﬁm v > LA, forall z # x*, we must have Amt =+ = Az« = 0. Moreover, according to the definition of T, we
have t > 220Mlog(%) > 16/, M. Therefore, the conditions of Lemma 15 hold. Applying Lemma 15 with r = 16, we
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get

> Pmale <O (ﬁjt c(x,e)) .

Summing over t > T + 1, we get with probability at least 1 — 4,

T
DY pmewBe = O (Bre(X,0)log(T)) = O (c(X,0)log(T) log(T|X|/6)) .

t=T*+1 =

Now we are ready to prove the main result Theorem 1.

Proof of Theorem 1. Let E,[-] denote the conditional expectation given the history up to time ¢. By Freedman’s inequality,
we have

T
Reg(T) = Z Z 1z, = 2} A,

t=1xecX
T T 2
<Y PmaBa+2 |log(1/8) > K [ [ D 1z = 2}A, + log(1/6)
t=1zxeX t=1 THT*
T T [
SIS pmeala+2 |log(1/6)Y By | > 1z = 2}A, | +log(1/0) (A, < 1)
t=1zxeX t=1 _:I:;éa:*

T
< Z Z pmt,xAz +2 IOg(l/(S) Z Z pmt,zAx + 10g(1/5)

t=1zxeX t=1zxeX

T
<2 D pmyala +2log(1/5). (24)

t=1zeX

Fix a round ¢ and the corresponding epoch m;. According to Lemma 4, we know that

(dlog@mtm/é))

Z pmt,mﬁmt@ <0 9mt/2

rzeX

Therefore, combining Lemma 3, the regret in epoch m is bounded by

2" Y Pmale <27 <2me m+o<

rzeX

_|_
RS
3
R N
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Summing up the regret till round 7', we have

log, T log, T' log, T’
Zme, B <30 O(d-2"10g(2"|X1/8) + /27 ) + O Z Y 2%«
t=1xeX m=0 m=k
log, T
= O [ dVTlog(T|X|/5) + Z Ch
-0 (dﬁ log(T|X|/6) + C) . 25)

Using Eq. (25) for t < T and using Lemma 17 for the rest, we know that

S pnewe < O (e(X,0)log(T) log(TIX|/6) + dv/T* log(T*[X|/5) + C) .

t=1zxcX

Combining this with Eq. (24), we get

t=1zeX

-0 (c (X, 0)log(T) log(T|X|/8) + dV'T* log(T*|X|/5) + C)

X M'\X M' X
O(cX@ log(T) log(T'|X|/0) + d ¢ 1og(c| | —|—d\/M’l | |>1og( | |)+C>

Amin Amln )
C C|X| . 3
= 0| (X, 0)log(T) log(T|X|/0) + dy | L log { = | + O+ M" (log(1/4))* (26)
for some constant M* that depends on M’ = 218 (M + A;i_ ) and log | X|. O

In the following, we prove an alternative bound of O(d(ioigT + (), which is independent of M *. The following lemma is
an analogue of Lemma 17, but the constant 7" is independent of M™.

Lemma 18. Let T' & 320 -+ :sd lo (2622%‘2(‘ ) Then Algorithm 1 guarantees with probability 1 — §

min min

Z met, A, <o(d10g( )log(TX|/5)>

A
t=T"+1zEX mimn

Proof. First, note that according to Lemma 28, ¢ > Zzsd log (2242#2(5‘) implies ¢t > ii—sfi log (%) Let m; be the
epoch such that ¢ € B,,,, which means ¢ € [2™, 2mt+1m)mand thus mﬁ: > Ymy- Therefore:n ;;e still have Eq. (22), which
further shows that we have Eq. (23) and ﬁm .o+ = Ay« = 0. Moreover, according to the definition of 77, we have
t> 274 Llo (12 > 25648, /A2

get

Therefore, the conditions of Lemma 13 hold. Applying Lemma 13 with r = 16, we

min*

dpy
E me el <O ———— ).
T P S = <2mtAmin>
Summing over ¢ > T” + 1, we get with probability at least 1 — 6,

3, Soreus =0 (D) o (HEDSE),

t=T'+1 =
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Theorem 19. Algorithm 1 guarantees that with probability at least 1 — 6,

d? o [ T)X|
Reg(T) = 0O <Amin log (Amin5) + C) .

Proof. Using Eq. (25) for ¢t < T’ and using Lemma 18 for the rest, we know that

T
SN pale <O (C”Og(T) os(TIX1/0) | 4o/ 108(T|2]/5) + c) .

A,
=1 reX min

Combining this with Eq. (24), we get

T
Reg(T) = O (Z > Pmiale + 1og(1/5)>

t=1xeX
log(T) log(T|X
—0 <d o )Aog_( V) 4 4 rog(| 41 /8) + C)
dlog(T)log(T|X|/d) C C|X| d d|X| d| x|
© ( BV Rs) T 2 e ) e )
3, 3. dX|
dlog(T)log(T|X|/6) C C|x| d2log (53 --)
= 1 - T min’
© ( Amin * d Amin °8 Amin5 + ¢ * Amin
. o TIX] : , .
<O A log A s +C|. (using AM-GM inequality and C' < T, T > d)
O
Finally, we prove Theorem 2, which is a direct result by combining Eq. (25) and Eq. (24).
Proof of Theorem 2. Combining Eq. (25) and Eq. (24), we have
T
Reg(T) = O (Z > Donen s + log(1 /5)) -0 (dﬁ log(T|X|/8) + C) .
t=1zeX
O

C. Analysis of Algorithm 2

In this section, we show that Algorithm 2 achieves both minimax-optimality in the adversarial setting and near instance-
optimality in the stochastic setting. In Appendix C.1, we prove Theorem 7, showing that Algorithm 2 enjoys O(\/T )
regret in the adversarial setting. In Appendix C.2, we prove Theorem 6, showing that Algorithm 2 also enjoys nearly
instance-optimal regret in the stochastic setting and slightly worse regret in the corrupted setting.

C.1. Analysis of Algorithm 2 in the adversarial setting

To prove the guarantee in the adversarial setting, we first prove Lemma 8, which shows that at any time in Phase 2, Z has the
smallest cumulative loss within [1, ¢].

Proof of Lemma 8. By Assumption 1, for any x, and any ¢ in Phase 1,

t
Z(‘es,z - ZFs,m’)

s=1

t

Z(Es,ms _fs’z) S \/a_ 02

s=1

< \/Cit — (Cy— 1)
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which implies

.

1 R t
< Cit+ by o — ls x| - 27

At time ¢y, we have with probability at least 1 — 24,

to

Z(gs,x - z\s,m)

— (x/clto +Zesm Zesm) (by Eq. (27))

< 02 1 (2 vV Cito + ng z Z%) (by Azuma’s inequality)
< 02 1 (2\/C1t0+5\/fTC1to+Z€5x Z(s I) (by Eq. (9))

02 — (VFrCito + oA, (28)

Bounding the deviation of (¢ — ¢¢)Rob, ,, for © # Z:

For all x # 7, the variance of Emr is bounded as follows:
~ - ~ ~
Var(fro) SE|2,| <E |75 0] 870002 < Jallhs < 2)lall3o, (29)

where the last inequality is due to S, = %ﬁc\?fT + %ST > 1S, Therefore, using Lemma 29 with y; = {; ., with probability

at least 1 — 20, for all ¢ in Phase 2 and all z # T,

t t
Qy 2 Z H:I:”QT—l+ Z (g‘rz

(tftO RObtm* Z E‘rm >

2

2log H1X

Z b, ) TR
Qg

T=to+1 T=to+1 T=to+1 T/'=to+1
¢ 11X
4log 5
<ap 3 (2l +1)+
T=to+1 Qg
t 2|
<204 Z (2||:z:|\2_1+1> logT (Choose v, optimally)
r=to+1 !
x| — [2rA2
<2 |410 z 494, 30
< g ) Tt (30)
T=to+1

where the last inequality is due to Eq. (4). For 7 > t, since

to
A 1 n JrCh
:1:_* gsx_s.f >2 ’ 31
F(h i) o/ a

0

£m>20\/fT01>20\/deﬁT>201/dBT>201/dﬁT>31/dBT
T T T T 2T

we have
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and 9d < Q;Az Note that h(7) = W an increasing function when § < 0.1. Using Eq. (30) and 9d < 2;A , we
have
tx 4TA2 txl 1 A,
(t —to) - Robg o — Z lon| <2, |4log | | Z T x<2\/16t2A21 |5| <5 (32)
s=to+1 r=to+1 B

For the first ¢y rounds, according to Eq. (28), we have

to

Z(és,m_‘es,m) S C

s=1

<\ L LAtA,
- (TV/FrCito + 108, ) < =, (33)

Cy—1

where the last inequality is due to Eq. (31). Combining Eq. (32) and Eq. (33) and noticing that C'y > 20, we have for all
T # 7,
to t

Z(ﬁsw - ZS,I) + Z (zsﬁw - RObt@) <

s=1 s=to+1

L.7tA,

10 (34)

Bounding the deviation of 22:1 ngg (recall that we use the standard average estimator for ):

For the first £y rounds, according to Eq. (28), since ﬁg = 0, we have

to

> ez —Liz)| <

s=1

Fort > ty + 1, according to Freedman’s inequality and the fact that E, {%5} =E, { 5?;; .

Ps > 3, we have with probability at least 1 — 4,

t t
PR Uiz

s=to+1 s=to+1

< 24/2tlog(t|X[/5) + 21og(t|X]/8) < v/Cht.

Combining the above two inequalities, we have

< 34/ frCat. (35)

In sum: combining the bounds for x # T and x = Z, we have for all x # T,

t

Z(gs,:c - gs,i) Z (gs,m - Es@) -2

-
I
-

s=1 s=1
to N N t—1 R
>3 (Tow—boz) + ((t —to— DRoby-1. — Y w)
s=1 s=tp+1
1L7(t— 1A,
— 3/ frCi(t—1) — % -2 (Eq. (34) and Eq. (35))
. 1 DA, .
> (t—DA_1 =4/ frC1(t—1) — Tt 10 ) (by the definition of A;_; , in Eq. (13))
~ 3.7t — 1A,
>t =1)Ar 12— % (by Eq. 31))

> 0.02(t — 1)A, > 0,

where the last inequality is because ¢ belongs to Phase 2, which means that at time ¢ — 1, Eq. (11) is satisfied. O
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Now we are ready to prove our main lemma in the adversarial setting.

Proof of Lemma 9. By Lemma 8, we know that the regret comparator is . By the regret bound of A and the fact that
to > Lo (recall Ly from Assumption 1), we have

to

> (s, — te2) <0 (V0ito)

s=1

For the regret in Phase 2, first note that it suffices to consider ¢ not being the last round of this phase (since the last round
contributes at most 2 to the regret). Then, consider the following decomposition:

t t—1
Z (es,:vs gs,?) § (ys - 63(1‘3) - Es,i) +2
s=to+1 s=to+1
t—1 t—1 t—1
= (1o Toz)+ D (Ber—tua—e@)+ D (6@~ eolws) +2
s=to+1 s=to+1 s=to+1
TERM 1 TERM 2 TERM 3

TERM 1 is upper bounded by O (\/ fTClto) since it corresponds to the termination condition Eq. (12).

TERM 2 is a martingale difference sequence since
(ls 7+ €5(2))I{xs = T}

B [fue - tes - @) =, L2l - bz +e@)] -0

The variance is upper bounded by

(tz + @ (R 1)]

Ps,z

E, |:<Zs,§ - fs,i - 55(5))2] =E;

< 2(1 = Pps3), (36)

where the last term is because ps z > %

TERM 3 is also a martingale difference sequence. As €, () € [—2, 2], its variance can be upper bounded by

E, [(es(;’i) — eo(ws))?] < 16E: [I{zs # T}] = 16(1 — Py .5). 37)

Therefore, with probability at least 1 —§ /¢, we have TERM 2+TERM 3 = O <\/Zi_t0+1 (1 —psz)log(t/o) + log(t/5)>
by Freedman’s inequality.

As p; = OP(t, ﬁ) and t > tg > 40&@ > %, by Lemma 12, we have

n min

~ Ay 12dS
1=Pra=5(1=pz) < 5D Pram— < =5 (38)

1
2
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Combining the above with ﬁmin > 20 C%({T, we get

t
TERM 2 + TERM 3 = O log(t/6) Z gft + log(t/9)

s=tg+1 $ min

_ dtopy log(t/0) log(t)
—0 <\/ 4 e + 10g(t/6)>

0 (\/to log(1/3) + log(t/é))

where the last step uses the definition of 3, and C; > 21°dlog(T'|X|/d) from Assumption 1.

Combining all bounds above, we have shown

t

Z(gs,wd —lsz)=0 (\/ CltOfT> ;

s=1

proving the lemma. O

Theorem 7 can then be proven by directly applying Lemma 9 to each epoch and using the fact that the number of epochs is
at most O(logT).

C.2. Analysis of Algorithm 2 in the corrupted stochastic setting

In this section, we prove our results in the corrupted setting. To prove the main lemma Lemma 10, we separate the proof
into two parts, Lemma 20 and Lemma 22.

Lemma 20. In the stochastic setting with corruptions, within a single epoch,

1. with probability at least 1 — 46, ty < max { 902];7701, Q;JToigf, L};

min

2. fC < %\/fTClL, then with probability at least 1 — 0, T = x*;

3. ifC< %\/fTCHL, then with probability at least 1 — 20, tg > %,’

min

4. ifC < %\/fTC’lL, then with probability at least 1 — 39, A, € [0.7A,,1.3A,] for all x # x*.
Proof. In the corrupted setting, we can identify ¢ + ¢; as ¢; in the adversarial setting. We first show the following property:

at any ¢ in Phase 1 and with probability at least 1 — 4, for any z,

t

Z(Es,x - Zs,x)

s=1

Cs <VCit+tAL +2C. (39)

By the guarantee of A, we have with probability at least 1 — §, for any 2 and ¢ € [T

t

Z(ﬁsﬁw - Zs,a:)

s=1

t t

>~V Clt + ng,w - Z€s7ws~ (40)

Cs

Since 4y 4, > l¢ z» — MaXgex |tz |, we have for any ¢,

t

t
Zes,a:s Z Zes,l‘* -C. (41)
s=1

s=1
Combining Eq. (40) and Eq. (41), and using 45  — {5 o+ < Ay + max, ey |cs o] for any z € X, we get Eq. (39).

Below, we define DEV, , 2 |3 (€s0 — ls)
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Claim 1’s proof: Let¢ = max M, gfoTog , L}. Below we prove that if Phase 1 has not finished before time ¢, then

for the choice of T = x*, both Eq. (9) and Eq. (10) hold with high probability at time ¢.
Consider Eq. (9). With probability at least 1 — 24,

W

Mﬁ

ls o, — VOt (by Azuma’s inequality)

w
Il
—

M~

by oo —/Cit =C (by Eq. (41))

s=1
t
> ZZI —2/Cit—3C (by Eq. (39) and A, = 0)
s=1
t
>3 o =3V rCit, (t > S0C- and v/FrCit > 30C)

»
Il
—

showing that Eq. (9) holds for T = z*.
For Eq. (10), by the regret bound of A, with probability at least 1 — 24, for x # x*,

t

t
D_ys =Dt
s=1

s=1

t
(ys - és,xs) + Z(gs rs ‘es,x*) + Z(es,z* - és,x) + Z(Zs,m - 2\s,z)

1 s=1 s=1

<+ (\/ C1t — C2DEVy o+ ) + (—tA; +C)+DEV,, (by the regret bound of A and Azuma’s inequality)

|
Mﬁ

S

1

<(2+ 30) VIrCit —tA, + N (JcTt FEA, + 20) (by Eq. (39) and that 30C' < /frCit)
2

< —0.95tA, + 2.1/ frCit. (Cy > 20)

By the condition of ¢, we have tA, > 30+/frC1t for all x £ x*. Thus, the last expression can further be upper bounded by

(=30 x 0.95 4 2.1)+/frCit < —25+/frCit, indicating that Eq. (10) also holds for all = # x*. Combining the two parts
above finishes the proof.

Claim 2’s proof: Note that Eq. (9) and Eq. (10) jointly imply that

to

D (low—lez) > 20/ frCitg Vo #2. (42)

s=1
However, with probability at least 1 — ¢, for any = # z*,

to tO

to to
Z(gs,z* - gs,z) - Z(zs,m* - es,z*) + Z(gs,z* - gs,z) + Z(gs,m - es,z)
s=1 s=1

s=1 s=1
< DEVy, o« + (—toAy + C) + DEVy,

1 1

< (VCito +20) + (—toh, +C) + o (VCito + toAr, +20) (by Eq. (39))
2 2

< 5v/ frCito. (using C' < +/frCitg and Co > 20)

Therefore, to make Eq. (42) hold, it must be that Z = z*.
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Claim 3’s proof: Suppose that t; < %, and let z be such that A, = A,,;,. Then we have
to = N to
}:(@@—zwﬁ)g}jw&r—&@4+mmvmw+DEwmﬂ (hold w.p. 1 — &)
s=1 s=1
1
g(mAmH+Cy+5—@MCﬁm+mAmn+mﬂ (hold w.p. 1 — & by Eq. (39))
2
< 2t0Amin + 24/ frCito (by C' < 351/ frCito and Cy = 20)
< 16+/ frCito + 24/ frCito (to < S5F<Y)
= 18+/ frCito.

Recall that Eq. (42) needs

to hold, and recall from Claim 2 that = z* holds with probability 1 — ¢. Thus, the bound above

is a contradiction. Therefore, with probability 1 — 24, tg > S4frCh

min

Claim 4’s proof. For notational convenience, denote the set [a — b, a + b] by [a = b]. We have

tOKm =
-

-

N

C[(

which finishes the proof.

to tO
Z (69 x = gs‘ r*) € [Z(gs,r - gs,m*) :l: (DEVtO,.r + DEVtO,x* )]

s=1
mA £(C+ 5 mnnm+mA +uﬂ>} (hold w.p. 1 — & by Eq. (39))
tUA + ( toAs + v/ fTolto):| (using C < \/chlt() and Cy > 20)
mA i( toAy + mA)] (by Claim 3, tg > %3F<* holds w.p. 1 — 26)
[1103t

O

The next lemma shows that when L grows large enough compared to the total corruption C, the termination condition
Eq. (12) will never be satisfied once the algorithm enters Phase 2.

Lemma 21. Algorithm 2 guarantees that with probability at least 1 — 100, for any t in Phase 2, when 0 < C' < \/fTC’1

we have

t

Z (Z/s _Z\si) < 20/ frCito.

s=to+1

Furthermore, when t > M' = 108, M (M is the constant defined in Lemma 14), we have

t

>

s=to+1

Proof. Recall that ys = ¥ . + €5(z5) and 4, 3

t

Z (ys - z;,%)
s=to+1
t

= Z (£S7w3_£s,§)+ Z

s=to+1

(s~ Tz) = O (e(X,0)log Tlog(TIX|/6) + /FrCulo + dBa VM)

~

= Lot yfz, = 3} Thus,

TERM 1

TERM 2 TERM 3 TERM 4
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Except for TERM 1, all terms are martingale difference sequences. Let Eq be the expectation taken over the randomness
before Phase 2. Similar to the calculation in Eq. (36) and Eq. (37), we have

gs T ~ 2 ~ ~ s z ~ 2 ~
E, (EA — 2Py, = x}) < 2Eo[1 — e, E, (63(33) _ @y, - x}) < 8Fo[1 — Pa 5]
S, T Psz
and
E, [(es(@s) = €())°] < 16B0[1 - B3]
By Freedman’s inequality, we have with probability at least 1 — 34, for all ¢ in Phase 2,
TERM 2 + TERM 3 + TERM 4
t t
<22 Y Eoll - p.s]log(T/6) +1og(T/5) +2,[16 > Eo[l — puz]log(T/) + 4log(T/d)
s=so+1 s=so+1

+2,/8 Z Eo[1 — Ps 2] log(T/8) + 210g(T/9)
s=so+1

t

<20,| Y Eoll - puzllog(T/6) + Tlog(T/s).

s=s0+1

Then we deal with TERM 1. Again, by Freeman’s inequality with probability at least 1 — 4, for all ¢ in Phase 2,

7 Uew, —lez) < DY Peallon—Llez)+4 Z Eo[1 — P,z log(T/8) + 21log(T/4)

s=to+1 s=to+1x#T s=to+1

SCH+ Y0 D PewlBs = Ag) +4,| Y Eo[l - Pus]log(T/5) + 2log(T/9)

s=to+1 z#T s=to+1

t

t
1 -~
<C+ 3 E E Ps,zDy + 4 E Eo[1 — ps z]log(T/d) + 21og(T/9).

s=to+1 x#£7T s=tg+1
~ 1 A~
(ps,x = st,:r for 7é IE)

When C' € [0, 55/ frC1L] C [0, 35/ frCito), according to Lemma 20, we know that with probability 1 — 46, Z = * and
A, € [0.7A,,1.3A,).
Also by Lemma 20, with probability 1 — 24, for any s > to, we have s > to > % > 45?—65. These conditions satisfy

min min

the requirement in Lemma 13 with » = 3. Therefore we can apply Lemma 13 and get

72d B
S peais 0 (44)

xr =
TEX Amms

for all s > ty. Combining all the above, we get

t t

~ 72dB: logt ~
S (5 Fus) = O PP g |57 Bolt — ] loa(1/6) + 91os(T/6).
s=to+1 i s=to+1
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As argued in Eq. (38),1 —p, 3 < 12‘16 : . Therefore, the above can be further upper bounded by

mm

~ 1 12 .
> (?/ —fs@) < ¢4 Hdbilogt > A;ws log(T/8) (B, € [0.7A,,1.3A,],1— oz < 245)

A2

s=to+1 Amin s=to+1 Smin® min®
<Cc+ 96dABt logt n 144dABT logT (by definition of 1)
Amin Amin
<O+ 10, /%dﬁT log T (to > 5 2 555 )
< %\/M+ 10,/%%10{9 (€ < L /TrCrio)
< 204/ frChto. (C1 > dBr)

Below, we use an alternative way to bound ), ps Q.. Let M’ > 208y, M, which implies M’ > 108y, M. For
s € [to + 1, M'], we use Lemma 4, and bound

M’

M’ 1 1 M’
Z Zps,an: 07 Z Zp‘;x x 07 ;

s=to+1zeX s=to+1zeX

<0 (d,BM/\/M’) . 45)
For s > M’, we use Lemma 15 and bound

Z D paals < Z 0<CX9)) O (e(X,0)8;1ogt) . (46)

s=M'+1zeX s=M'+1

Combining Eq. (45) and Eq. (46) and following a similar analysis in the previous case, we have

t t
> (o, — Loz) < C+ O (ABar VM + (X5 0)Bylogt) +4,| > o[l = 53] 10g(T/6) + 210g(T/)

s=to+1 s=to+1

<0 (C(X, 0) log T log(T|X|/8) + \/frCito + dﬂM,m) .

Now we are ready to show that once L grows large enough, Phase 2 never ends.
Lemma 22. IfC < 3—10\/fTC’1 L, then with probability at least 1 — 159, Phase 2 never ends.

Proof. 1t suffices to verify the two termination conditions Eq. (11) and Eq. (12) are never satisfied. Eq. (12) does not hold
because of Lemma 21. Consider Eq. (11). Let ¢ be in Phase 2 and = # Z. According to Eq. (34) and Eq. (35), we have with
probability 1 — 54,

to t

Z(KS,I - Zs,m) + Z (65@ — RObt’m) <

s=1 s=to+1

L.7tA,
0

)| <3V frCit < 0.15tA,.

t

2(65,5 -

s=1

Therefore, we have

to t

x S Z(es,z _?s,x) + Z (gs,z _RObt,z) +

s=1 s=to+1

< 0.32tA, + C < 0.372tA,. < LVTrCrt < 0.052tA min)

‘tﬁm
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This means that
~ ~ 1 ~ ~ ~
tA o <tA; +0.372tA,; < ﬁtAx + 0.372tA, < 1.81tA,,

1 ~ ~ ~
ﬁtA:v —0.372tA; > 0.39tA,.

Therefore, Eq. (11) is not satisfied. O]

1A > tA, — 0.372A,

Y

Finally, we prove the regret bound for the corrupted stochastic setting.

Proof of Theorem 6. First, we consider the pure stochastic setting with C' = 0. According to Lemma 20, we know that
the algorithm has only one epoch as C' < \/ frC1L is satisfied in the first epoch. Specifically, after at most 902{:7Tcl

min

rounds in Phase 1, the algorithm goes to Phase 2 and never goes back to Phase 1. Then we can directly apply the second
claim in Lemma 21 to get the regret bound in the stochastic setting. Specifically, we bound the regret in Phase 1 by

<\/ClL0 +./Cq - 900fTCl> =0 (\/C’lLO + CIT V}f’%T) For the regret in Phase 2, according to the second claim in

Lemma 21, we bound the regret by O (c(X; 0)log T log % +dBy VM ) =0 (c(X 6)log T log T\X\ 4+ M* IOg% %)
where M * is the same as the one in Eq. (26). Combining them together proves the first claim.

Now we consider the corrupted stochastic setting with C' > 0. Suppose that we are in the epoch with L = L*, which is the

* 900frCy1  900C? P . 900frC1  900C?
first epoch such that L* > max {7A§,in Gy } Therefore, in previous epochs, we have L. < max {7Amm Ty [
900f7.Cy 900C?
bl f C

min

According to Lemma 20, we have {3 < max { } in the previous epoch and L* = 2t,.

We bound the regret before this epoch, as well as the regret in the first phase of this epoch by the adversarial regret bound:
VirCh C frCy
O( leTL*+ ClL()) :O( ClL0+ leT X ( + =0 01L0+ +C
\/ \/ Amin Vv fT C'1 Amln

If we use GEOMETRICHEDGE.P as the adversarial linear bandit algorithm and f7 = log 7', then the above is upper bounded
by

0 (dlongAog(‘T|X|/5) +C’> .

For Phase 2 of the epoch with L = L*, according to Lemma 20, we know that this phase will never end and by definition of
L*, we have C < —«/fTCl . Note that in this phase A €[0.7A,,1.3A,].

Therefore, by taking a summation over ¢ on Eq. (44), we bound the regret in this interval by

dBrlogT dlogTlog(T|X|/))
© < Amin ) =0 < Amin '

Combining the regret bounds finishes the proof of the second claim. O

D. Lower Bound

In this section, we prove that the log? T factor in our bound for the stochastic setting is unavoidable if the same algorithm
also achieves sublinear regret with high probability in the adversarial case. The full statement is in Theorem 27, and we first
present some definitions and related lemmas. We fix a stochastic linear bandit instance (i.e., we fix the parameter 6 and the
action set X'). Assume that ||z < 1forall z € X and ||0|| < 1. We call this instance the first environment. The observation
y; is generated according to the following Bernoulli distribution®:

<.’Et7 0>,
<.13t, 0>

% In the Bernoulli noise case, we are only looking at a subclass of problems (i.e., those with [|¢]| < * and ||| < 1). For problems that
are outside this class, the Bernoulli noise case might be much easier than the Gaussian noise case.

, {1 with probability £ +
=

1
2
—1  with probability £ — %
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Again, let ¢(X, 6) be the solution of the following optimization problem:

inf N A,
velilox 2
A
s.t. ||x||H(N <=2 VreX =X\{z"},

where H(N) =Y, Nyzz . We also define Ayin = mingz,+ A,

For a fixed v € (0, 1) (which is chosen later), we divide the whole horizon into intervals of length

2 S—1
AR P T

log T). We denote these intervals as 7y, . .., Zg. Observe that |Z;| > 1°—

Zj<i |Z;| for all 4.

Anmin

where S = © (10 1=y
A

min

Definition 2. Let U = c,,S(log T8V = % = Creg(log T) =5 for some B > 0 and some universal constant Creg-

Assumption 2. Let A be a linear bandit algorithm with the following regret guarantee: there is a problem-dependent
constant Ty (i.e., depending on 0 and X ) such that for any T > Ty,

T
ER%GWﬂﬂzﬂmZﬂAI<UmWﬁ)

for some 5 > 0.

Definition 3. Let G; £ E [Ztezi Tz, ] where the expectation E is with respect to the environment of 6 and the algorithm
ALt G=Y7 G

Definition 4. Let T;(x) £ Y, .7 L[z, = x].

Lemma 23. Let T > Ty. There exists an action x # x* such that

A2
2
> =
2l > 22
Proof. We use contradiction to prove this lemma. Suppose that for all x # x* we have Hac||é_1 < % Then observe that
2 Al A1
Hars||§,1 < 5t where G = 3 - G. Therefore,
N, —E i 1[z; = 2]
t=1
satisfies the constraint of the optimization problem Eq. (47). Therefore,
L Reg
0) < ZNxAx:E Z]lx,_x _TT'
TFT* t=1
This contradicts with the assumption on the regret bound of A. O
Lemma 24. If there exists an © # x* such that
A2
2 o> Tz
el > 32,
then there exists i € [S] such that
A2
2 T
||x||G;1 > SR
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Proof. We use contradiction to prove the lemma. Suppose that ||z o1 < 2v - forall i € [S].

Then

1
lalig-s = 2, . gy < g5 (ol -+ llall3 )
1 A2 A2
S?V 2U

where in the first inequality we use

1 B

which is a generalization of the “arithmetic-mean-harmonic-mean inequality” (Mond & Pecaric, 1996). O

2
Az

Lemma 25. Let T > Tp. If ||z then ||z — z*|12, . > g

01—2V’

Proof. We have

2|12

B[ ()] “‘8)

lol2 0 < 2l — 2712+ 271 < 2w — a2+

where the last inequality is because of the definition of G;. For large enough T', we must have E [T;(x*)] > %7*_“2‘/. Oth-

*112
erwise, by Markov’s inequality, with probability at least l, in interval ¢ the algorithm draws z* at most MAIL%”V times, and

min

i—1 .
thus the regret of A would be at least A, (|L\ 16H$ I* V) (( 4 ) TY Amin — 16AHZ. I* Creg(log T)15> =

Amin
Q (T7 Apin), violating the assumption on .A. Therefore, for large enough 7', we have
202 _ AL
<

min

E[Ti(«*)] = 4V —

7H‘T”2 —1

where the last inequality is by our assumption. Combining this with Eq. (48), we get
2% < 4fle — 2%

and the conclusion follows based on our assumption. O

Note that when the conclusion of Lemma 25 holds, that is, ||z — z* ||2 = >0 (A'Z'> =0 (
the exploration in interval ¢ is not enough, since by the lower bound in (Lattimore & Szepesvan 2017), the amount of

= (log T') ) it means that

exploration should make ||z — z || . <0 ( ) Therefore, the next natural idea is to change the parameter 6 in this

log T
interval 4, and argue that the amount of exploration A is not enough to “detect this change with high probability”.

AZ

We now let ¢ be the first interval such that there exists « with ||z — z* ||é,1 > 5. Also, we use 2’ to denote the x that

satisfies this condition. Define
Gi'(a! —a¥)

0 =0-—
[l — (|2,

2A,.

Notice that in this case,
(2 —2*,0") = (' —2%,0) =20, = —A,.
That is, ' is a better action than =* under the parameter 6.

We now define the second environment as follows: in intervals 1,...,7 — 1, the losses are generated according to 6, but
in intervals i, ..., .S, the losses are generated according to 6’. We use E and E’ to denote the expectation under the first
environment and the second environment, and P, P’ to denote the probability measures respectively. For now, we only focus
on interval ¢ (so the probability measure is only over the sequence (z, 4; 5, )iez,)-
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Lemma 26. KL (P,P") < 64V.

Proof. Note that for any =,

o' G (2 — z%)
2,0y — (x,0)| = | ————5—"2A,
227G N — 2 (2 —2) e
[l — =12 -
2 D||op||€
< 33||t|l(q);>p| H (let ® = G; M2 — 2*) (2’ —2*)T)
1
< 2|z[l]|6]] < 3 (by the assumption [|0]] < 1)
Therefore, |(z,0')| < |[(z,0)| + 1 < 3.
Notice that for p,q € [— %, %], the KL divergence between the following two distributions:
_J1 with probability 3 + 1p ond _J1  with probability 3 + 1¢
Y7 1-1  with probability 1 — 1p "\ -1 with probability 1 — 1
is
1 1+p 1 1-p 9
kl £-(1 In——+=(1-p)l <2(p—q)* 49
(p.a) = 5( +p)n1+q+2( p)nl_qf(p q) (49)
Therefore,
KL (P,P') < > E[T;(z) ]kl ((x,0), (z,0')) (by Lemma 1 in (Gerchinovitz & Lattimore, 2016))
reX
<9 EIT: /\2
<2} E[T(x)/(z,0 ¢ (by Eq. (49))
x
=2[|6 — GIH%J,; (by definition of G;)
8AZ,
= ,7$2 (by definition of 8")
o =22,
< 64V. (by the choice of x)
O

Finally, we are ready to present the lower bound. Roughly speaking, it shows that if an algorithm achieves O(c(X, 6) log® T')
regret in the stochastic case with z € [1, 2), then it cannot be robust in the adversarial setting, in the sense that it cannot
guarantee a regret bound such as o(T') - poly(d, In(1/§)) with probability at least 1 — 6.

Theorem 27. For any vy € (0, 1), if an algorithm guarantees a pseudo regret bound of

11—~
Creg * C(X, 9) 10g74 (log T)2
Amin

for constant c..; = 5k in stochastic environments for all sufficiently large T, then there exists an adversarial environment
; e _1 ; .
such that with probability at least iT 17, the regret of the same algorithm is at least %T”Amin.
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Proof. Let A be the event: {Ti(x*) < 12‘ } By Lemma 5 in (Lattimore & Szepesvari, 2017) and choosing 8 = 0, we have

P(A) +P'(A°) > %exp(—KL(P, P)

1

> 3 exp(—64V) (by Lemma 26)
1

= 5 exp (—64creg logT) (by definition of V)

64c

1/1 e

=—| = . 50
5 (7) 50)

Notice that when event A happens under the first environment, the regret is at least % By the assumption on A, we
have

|Ii|Amin

1—
P(A) x < Regp < Creg - (X, 9)7Z(log T)?,
log Amin
implying that
1—~ 2
Creg‘C(Xae)l ——(log T') ) 2
B(A) < S < e Olog ).
4
(Amin ) T Amin
Combining this with (50), we get
P/(A°) > 0.5 - T~ % — ¢ - c(X,0)(log T)? - T7. (51)
Choose ¢y = 5%, we have P/(A¢) > 0.25 - T~ %< for large enough T'. Then notice that when A® happens under the
second environment, the regret within interval Z; (against comparator x’) is at least ‘L‘% Since under the second
environment, the learner may have negative regret against «’ in interval 1,...,¢ — 1, in the best case the regret against ' in
interval 1,... 4 is at least
|Ii|Amin ‘I ‘Amln T7 Amin
(T T, > :
S (T [Tima]) 2 R >
T A

In conclusion, in the second environment, algorithm A suffers at least =—=min regret in the first ¢ intervals with probability
atleast 0.25 - T—17. O

E. Adversarial Linear Bandit Algorithms with High-probability Guarantees

In this section, we show that the algorithms of (Bartlett et al., 2008) and (Lee et al., 2020) both satisfy Assumption 1.

E.1. GEOMETRICHEDGE.P

We first show GEOMETRICHEDGE.P in Algorithm 4 for completeness. We remark the differences between the original
version and one shown here. First, we consider the noisy feedback y; instead of the zero-noise feedback ¢; ,,. However,
most analysis in (Bartlett et al., 2008) still holds. Second, instead of using the barycentric spanner exploration (known to be
suboptimal), we use John’s exploration shown to be optimal in Bubeck et al. (2012). With this replacement, Lemma 3 in
Bartlett et al. (2008) can be improved to |€Atl\ < d/v and ||x||25(pt),1 <d/~.

Now, consider martingale difference sequence M;(x) = Z:L — {4y . We have | M, (x)| < % +1%band

T
o=\ 3 Var (M) < Zn 213y
t=1
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Algorithm 4 GEOMETRICHEDGE.P

Input: X, v,n,d’, and John’s exploration distribution ¢ € Py.
SetVz € X, wy(z) =1, and Wy = |X|.

fort =11 T do

Set py(z) = (1 — 7) 442 + q(x), Y € X.

Sample x; according to distribution p;.

Observe loss y; = £y 5, + €.(xy), where £y 5, = (x4, 4y).
Compute S(py) = Y, cxpe(z)zz’ and £, = S(py) 'y - yi.
Vz € X, compute

log(1/4")

lbo=(2,0),  lo="1lo—2]2l3,,, g e = we(z)exp (fnei,z) :

| Compute Wy 1 =) cp wip1(z).

Using Lemma 2 in (Bartlett et al., 2008), we have that with probability at least 1 — 24" log, T (set ' = 6/(|X| log,(T))),

T

Z _etw

< 2max{20 by/log(1/6") }\/1og(1/6’)

< 40+/1og(1/6") + 2b - log(1/6")
T
<4\ llwl2,, -V log(1/687) +2 <i + 1> log(1/4")

T
1 log(1/6")
SCQ<ZH:C”%<’"“ Ogc(iT/ )*402 dT'log(1/4") +2( +1>1og(1/5’) (52)
t=1

ADEVy .

where the last inequality is by AM-GM inequality. Note that th = th + 2”55“%(17,5)—1 \/ %. Plugging this into Eq.
(52), we have with probability at least 1 — 26’ log, T'

T T
S lw <> b — <Z 2l -1 4] e 10g(1/5 > +4C,/dT log( 1/5/+2( + 1) log(1/8)).  (53)
t=1 t=1

The counterpart of Lemma 6 in Bartlett et al. (2008) shows that with probability at least 1 — 6,

Tzz Voo < (Vd 1 5) + & 5 (¢
;t,xt ZZpt e < (Vd+1) 2Tog(1/)+3log(1/)(’y+1>. (54)

t=1xecX

Using Eq. (53), we have the counterpart of Lemma 7 in Bartlett et al. (2008) as follows: with probability at least 1 — 24,

'yzz ftx<yzz zm+4cm/dT10g1/6'+27( +1)1og(1/5

t=1zecX t=1zcX
< AT +4Coy+/dT 1og(1/8") + 2 (d + ) log(1/4"). (55)
The counterpart of Lemma 8 in Bartlett et al. (2008) is: with probability at least 1 — 4,

T
SN @), <dT + %\/H log(1/0). (56)

t=1zecX
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Plugging Eq. (54), Eq. (55), and Eq. (56), into Equation (2) in (Bartlett et al., 2008), with have with probability at least
1— 396,

Wria <N

1 IR
©8 Wi —1—7v

T
(‘Zet,m +24/dT log(1/0") + (Vd + 1)y/2T log(1/5) + glog(l/é) (fj + 1> +T+

4Coy\/dT 1og(1/6") 4+ 2 (d + ) log(1/8") + 2ndT + %d\/ZT log(1/6) + 8nlog(1 /5’)\/CTT> . (57

Again using Eq. (53) and Equation (4) in (Bartlett et al., 2008), we have with probability at least 1 — §, for all z € X,
T
Wria ~
log W, > —n (Z QI) —log | X|
log(1/¢") d /
> T,Za c+7 (Z [E T — 4nCo\/dT log(1/8") — 2n 5+ 1) log(1/6") —log|X|.

Combining this with Eq. (57) and assuming v < 1 5, we have that with probability at least 1 — 50, for every x € &,

Sl <Y b L (Z 31 2L )+4cgﬁmog 742 (241 onta/ + 25
t=1 t=1

2/dT log(1/8") + (Vd +1)y/2T log(1/3) + = 1 log(l/é) ( ) +~T 4 2C2+/dT log(1/4")+

2 (d 4 ~)log(1/8") + 2ndT + T\/2Tlog(1 /6) + 8nlog(1/8")VdT.

Recalling the definition of DEV7 , in Eq. (52) and combining terms, we have

T T
> lia, €Y Ao —Cy-DEVE, + O ( dTlog(1/6") + — d 10g(1/5 )) + 4T + 2ndT+

t=1 t=1

ZZ—d\/QT log(1/6) + 8nlog(1/6")VdT. (58)

It remains to decide ) and ~. Note that the analysis of (Bartlett et al., 2008) requires |nl7m| < 1. From the proof of Lemma

4 in (Bartlett et al., 2008), we know that |17ng| < "7‘1 (1 + 24/ logST/é/)) Thus, we set ) = v/ (d + 2d4/ bgg%‘”) SO

that \77!7”| < 1 always holds. Therefore,

log |X|
n

dlog®(|X|/d")
T

5=

T T
5 b €3 b = Ca Deva, + 0 (VaTTog(17) + Llog(21/)) + 2

t=1 t=1

+3vT + 8ylog(1/4")

Choosing v = min { ; w }, we have with probability at least 1 — 76, for all x € X,

3
th:ct<2€tx—02 DEVT;C+O< dT log(|X|/d") + dlog2

t=1

(1x1/))

3
< 2

M’ﬂ\

o — CyDEVE, + O <\/dT10g(X| logy(T)/8) + dlog2 (|| 10g2(T)/5))

6" = 0/(|X|logy(T)))

t

Il
-

MH

<

T
thw th

+0 (\/dTlog | X|1ogy(T)/6) + dlogg(Xllogg(T)N)) , (Eq. (52))

t=1

which proves Eq. (7).
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E.2. The algorithm of (Lee et al., 2020)

Now we introduce another high-probability adversarial linear bandit algorithm from (Lee et al., 2020). The regret bound of
this algorithm is slightly worse than (Bartlett et al., 2008). However, the algorithm is efficient when there are infinite or
exponentially many actions. For the concrete pseudocode of the algorithm, we refer the readers to Algorithm 2 of (Lee et al.,
2020). Here, we focus on showing that it satisfies Eq. (7).

We first restate Lemma B.15 in (Lee et al., 2020) with explicit logarithmic factors: Algorithm 2 of (Lee et al., 2020) with

n < W&lg/é) for some universal constant C's > 0 guarantees that with probability at least 1 — 6,

T

dlogT
Z(zt —x,0) <O ( c7)7g +nd*T + lg2 VT log(lg /(5)) + DEVyp, - (C’4 —
t=1

(59)

1
Csnd?1g® /Tlog(lg /0) > ’

with probability 1 —4, Cy, C5 > 0 are two universal

where lg = log(dT'), DEVr,, is an upper bound on ‘Z;‘F:l(ﬁt,w — Zm)
constants, and we replace the self-concordant parameter in their bound by a trivial upper bound d.

Therefore, choosin = min Cs L L for some Cy > 20, the
gn d*1g% log(1g /9)” 20, C5d? 1g% \/Tlog(lg /6) ’ 2C2C5d? 1% /T log(lg /3) 2=

coefficient of DEVr , becomes at most —C', leading to

B

(wy—a,0) <O (d3 1g* log(lg /) + d® lg* /T log(Ig /5)) — Cy - DEVr,

T
th:v gtm

Finally, using a union bound over all = similar to Theorem B.16 of (Lee et al., 2020), we get with probability at least 1 — 24,
forevery x € X,

~
I
-

<0 (d3 lg* log(lg /6) + d®1g* /T log(Ig /5))

T
S fai—,) <O (d3 1g? log(lg /68") + d®1g* /T log(Ig /5"))
t=1

T
—Co|> (lrw—lra)
t=1

where " = 0/(|X|T). Therefore, we conclude that this algorithm satisfies Eq. (7) as well.

F. Auxiliary Lemmas

In this section, we provide several auxiliary lemmas that we have used in the analysis.

Lemma 28. (Lemma A.2 of (Shalev-Shwartz & Ben-David, 2014)) Let a > 1 and b > 0. If x > 4alog(2a) + 2b, then we
have © > alog(x) + b.

Lemma 29 (Concentration inequality for Catoni’s estimator (Wei et al., 2020)). Let Fy C --- C F, be a filtration,
and X1, ..., X, be real random variables such that X, is F;-measurable, E[X; |.7:1 1] = w; for some fixed p;, and
S EBUXi — )2 Fic1] <V for some fixed V. Denote p = L3 | u; and let [in, o be the Catoni’s robust mean
estimator of X1, ..., X, with a fixed parameter o > 0, that is, un,a is the unique root of the function

where

_ m(+y+y*/2),  ify=0
Vi) = {ln(l —y+y?/2), else.

Then for any & € (0,1), as long as n is large enough such that n > o*(V + >°1_ (u; — p)?) + 2log(1/8), we have with
probability at least 1 — 29,

oV + S0y = p)?) |, 2log(1/)

|/7n,a - ,U| <
an
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Choosing o optimally, we have

N 2 n
[fin,o — | < - 2 (V + Z(/“ - u)2> log(1/9).
i=1
In particular, if 1y = -+ - = p,, = p, we have

- 2
[fino = | < =/2V log(1/9).



