
Algorithm and Hardware Co-Design for FPGA
Acceleration of Hamiltonian Monte Carlo Based

No-U-Turn Sampler
Yu Wang

Dept. of Electrical and Computer Engineering
University of California

Santa Barbara, CA, United States
yu95@ucsb.edu

Peng Li
Dept. of Electrical and Computer Engineering

University of California
Santa Barbara, CA, United States

lip@ucsb.edu

Abstract—Monte Carlo (MC) methods are widely used in
many research areas such as physical simulation, statistical
analysis, and machine learning. Application of MC methods
requires drawing fast mixing samples from a given probability
distribution. Among existing sampling methods, the Hamiltonian
Monte Carlo (HMC) utilizes gradient information during Hamil-
tonian simulation and can produce fast mixing samples at the
highest efficiency. However, without carefully chosen simulation
parameters for a specific problem, HMC generally suffers from
simulation locality and computation waste. As a result, the No-U-
Turn Sampler (NUTS) has been proposed to automatically tune
these parameters during simulation and is the current state-
of-the-art sampling algorithm. However, application of NUTS
requires frequent gradient calculation of a given distribution
and high-volume vector processing, especially for large-scale
problems, leading to drawing an expensively large number of
samples and a desire of hardware acceleration. While some
hardware acceleration works have been proposed for traditional
Markov Chain Monte Carlo (MCMC) and HMC methods, there
is no existing work targeting hardware acceleration of the NUTS
algorithm. In this paper, we present the first NUTS accelerator
on FPGA while addressing the high complexity of this state-of-
the-art algorithm. Our hardware and algorithm co-optimizations
include an incremental resampling technique which leads to a
more memory efficient architecture and pipeline optimization
for multi-chain sampling to maximize the throughput. We also
explore three levels of parallelism in the NUTS accelerator to
further boost performance. Compared with optimized C++ NUTS
package: RSTAN, our NUTS accelerator can reach a maximum
speedup of 50.6X and an energy improvement of 189.7X.

Index Terms—Hamiltonian Monte Carlo, No-U-Turn Sampler,
FPGA, Hardware Acceleration

I. INTRODUCTION

Monte Carlo (MC) method is a powerful algorithm to ap-
proximate a target numerical integration (generally as

∫
f(θ) ·

p(θ)dθ), especially in the cases where the closed form of
the integration is intractable. The efficient application of MC
method requires drawing fast mixing samples from the given
distribution p(θ). Unfortunately, in many applications such as
Bayesian inference, the distributions cannot be solved analyt-
ically, making the deterministic method not available. There-
fore, more generally applicable methods based on Markov
process named Markov Chain Monte Carlo (MCMC) are
proposed. The MCMC family consists of many algorithms

such as Metropolis-Hastings [1], Gibbs sampling and Hamil-
tonian Monte Carlo (HMC) [2]. Among all these algorithms,
HMC is the most generally applicable algorithm with highest
efficiency. HMC gets the idea from quantum physics simu-
lation by introducing an auxiliary momentum variable and
converting the sampling from a target distribution to a step
by step simulation of Hamiltonian dynamics [2]. Unlike its
counterparts in MCMC family which usually suffers from low
efficient random walk behaviors [3] (Metropolis-Hasting), or
the strict requirement of full conditional distributions (Gibbs
sampling) [4], HMC utilizes gradient information during the
simulation and can choose the optimal direction for each step,
allowing the algorithm to draw fastest mixing samples in
theory.

Unfortunately, the general application of HMC is limited
by its requirement of at least two properly tuned parameters,
the step size and the step length of the simulation. Improper
choice of these parameters can dramatically reduce the algo-
rithm’s efficiency. For instance, small step size or step length
will generally result in simulation locality, and produce slow
mixing samples. Large step lengths on the other side, will
cause the simulation trajectory to trace back to its initial state
and waste a lot of computation. While some methods have
been proposed to tune step size on the fly [5], tuning step
length is difficult since the optimal value differs in various
problems or even in drawing different samples from a same
distribution.

To tackle this problem, the No-U-Turn Sampler (NUTS)
was recently proposed to eliminate the need to hand tune
step length [3]. NUTS can work at least as efficient as HMC
without requiring the user to specify the optimal simulation
parameters and thus is the current state of art sampling algo-
rithm. NUTS has also been incorporated into many mainstream
sampling packages such as STAN [6] and Pyro [7].

Despite the highest efficiency of NUTS, the algorithm
itself is complex to implement and requires frequent gradient
calculation, computation of the distribution values and high
volume vector processing. Using NUTS to draw larger number
of samples from large scale problem is expensive and painful
and thus comes the demand to accelerate the algorithm with



advanced architectures. However, the complexity of the algo-
rithm also brings challenges to designing the corresponding
accelerator.

On the embedded system side, past works have seen imple-
mentation of many MCMC algorithms on hardware platforms
[8] [9], while very few of them are focusing on the imple-
mentation of algorithms in the HMC family. CausaLearn [10]
serves as the first HMC accelerator for the analysis of time
series data utilizing stochastic gradient HMC (SGHMC) algo-
rithm [11] for Gaussian process. While CausaLearn focuses on
the application and acceleration of traditional HMC algorithm
and provides better memory management for problem with
different batch sizes, advanced HMC algorithms which could
further improve sample quality are not further discussed in
that paper. Specifically, evaluation of the NUTS algorithm, as
well as the related algorithm hardware co-optimization, has
yet been explored by the hardware design community.

In this paper, we present the first NUTS accelerator de-
sign on FPGA with algorithm hardware co-optimization. Our
main contributions targeting the challenges in accelerating the
NUTS algorithm can be summarized as:

• Introducing multi-chain sampling in a single PE pipeline
to increase the throughput and hardware utilization.

• Proposing incremental resampling technique for efficient
memory utilization and management.

The rest of the paper is organized as follows: In section
II, conceptual introduction to MCMC, HMC and NUTS are
presented. In section III, analysis of the computation chal-
lenges, as well as our proposed solutions will be discussed.
The accelerator overall architecture is also provided. In section
IV, we will discuss additional issue for implementing NUTS
accelerator on FPGA. In section V, we’ll introduce the ex-
periment setup and in section VI, results and analysis will be
provided. We then will conclude the whole paper in section
VII.

II. BACKGROUND

A. Markov Chain Monte Carlo
Monte Carlo methods approximate a numerical integration

as shown in eq. (1):∫
f(θ) · p(θ) · dθ =

1

n

n∑
i=1

f(θi)

θi ∼ p(θ), i.i.d
(1)

Implementing MC methods requires drawing large amount
of samples subject to a given distribution p(θ). In many
applications, especially real time inference tasks [12], drawing
fast mixing samples is the bottleneck to improve the speed and
accuracy in those algorithms.

However, with the increase of problem size and the com-
plexity in target distributions, deterministic sampling methods
such as reject-accept sampling cannot draw samples efficiently.
Therefore, Monte Carlo Markov Chain (MCMC) sampling
method is proposed to utilize Markov chain to sequentially
draw correlated samples which will finally converge to the
stationary target distribution. Many different algorithms have

been proposed in the MCMC family such as Metropolis
Hasting, Gibbs sampling, slice sampling, Hamiltonian Monte
Carlo (HMC) and the recently proposed No-U-Turn Sampler
(NUTS). Among them, NUTS is the current state of the art
sampling method which are adopted in mainstream software
solutions such as STAN [6] and Pyro [7].

B. Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) introduces an additional

auxiliary momentum (r) that is independent to the sampling
variable (θ) and converts the sampling from the target distri-
bution (p(θ)) to the simulation of ”state” variables (θ, r) of
an equivalent frictionless physical system as shown in Fig.
1 (left), where θ donates the position of the virtual ball and
the auxiliary momentum r donates its velocity. Provided an
initial position θ0 and velocity r0, the total energy H(θ0, r0)
of the Hamiltonian system is conserved. The virtual ball will
slide back and forth on the frictionless plane while samples
are drawn from the simulation trajectory. Meanwhile, in the
energy (H) space, the trajectory will stay on the same energy
level, which is shown in Fig. 1 (right).

Fig. 1. A conceptual explanation of HMC. Left picture illustrates the
frictionless system. Right picture demonstrates energy conservation of the
simulation trajectory in H space.

The simulation of Hamiltonian dynamics is based on the
discretized leapfrog method. A single leapfrog update is done
by eq. (2).

r
′

= r +
ε

2
· ∇θH(θ, r)

θ
′

= θ + ε · ∇rH(θ, r
′
)

r
′

= r
′
+
ε

2
· ∇θH(θ

′
, r

′
)

(2)

Due to the discretized error introduced in leapfrog method,
the energy is not always conserved after steps of simulation. To
preserve detailed balance, an additional Metropolis correction
step has to be introduced to accept the new sample θ

′
with a

given probability: min(1, H(θ
′
,r

′
)

H(θ,r) ).
Clearly, this single simulation trajectory will not traverse the

whole sample space of the given distribution. For instance, the
virtual ball in Fig. 1 (left) will never slide beyond the height of
its starting point if the initial velocity is 0. As a consequence,
after a new sample is drawn from the simulation, the auxiliary
momentum r will be resampled from a multivariate normal
distribution (N (0, 1)) as the new initial value for the next
simulation.

To conclude, the key computation steps for drawing one
sample in HMC are quite straight forward:

a. Specify simulation parameters (ε, L).



b. Run leapfrog methods for L steps:
(θ

′
, r

′
) = leapfrog(θ, r).

c. Accept θ
′

with probability: min(1, H(θ
′
,r

′
)

H(θ,r) ).
d. Redraw r ∼ N (0, 1).
The performance of HMC relies heavily on the user spec-

ified parameters: step size ε and step length L. If ε or L is
too small, the new samples suffer from locality and results in
slow mixing. If ε is large, the simulation error will be too large
and the rejection rate will increase dramatically. If L is too
large, the simulation trajectory will trace back to initiate state
or already visited states, which wastes a lot of computation.
The examples for the three cases are illustrated as in Fig. 2.

Fig. 2. Three cases of improperly chosen simulation parameters.

C. The No-U-Turn Sampler

The optimal simulation length for drawing a new sample
in HMC should satisfy two requirements: first, it should be
sufficiently long enough to prevent locality; second, it should
not be too long to make the trajectory trace back, resulting
in computation waste. NUTS combines slicing sampling and
HMC to eliminate the need of tuning step length by first
defining ”U-Turn”.

1) U-Turn Definition:
NUTS defines a ”U-Turn” as when the Euclidean norm be-

tween the newly simulated state (θnew, rnew) and the starting
state (θold, rold) begins to decrease, i.e. its derivative is smaller
than 0, as shown in eq. (3):

1

2
d((θnew − θold)2) = (θnew − θold) · rnew < 0 (3)

U-turn detection in NUTS is in fact a vector multiplication
and comparison as illustrated in a 2-D example in Fig. 3. When
the position and momentum vector are making an angle of
more than 90 degree, a U-turn is said to be encountered.

Fig. 3. Example of U-turn during the leapfrog simulation.

Unfortunately, directly applying this criteria to HMC will
not satisfy time reversibility which violates detailed balance.

Thus, a balanced tree structure is introduced to help correctly
sample from the target distribution.

2) Balanced Tree:
A balanced tree (B) is constructed recursively by running

leapfrog method in random forward or backward directions,
while doubling the length in each direction, until a stopping
criteria is met to preserve time reversibility. An example of
building a balanced tree is shown in Fig. 4.

Fig. 4. An example of tree doubling process. Each leaf in the balanced tree
corresponds to a simulated state by leapfrog method. First moves left for 1
step, then right for 2 steps, then right for 4 steps. The direction is randomly
chosen.

In the balanced tree with height i, there are i subtrees and a
top full balanced tree, each has its left most and right most leaf
state as (θ−, r−) and (θ+, r+). U-turn in this case is defined as,
when any of the subtrees or the top tree satisfies the condition
in eq. (4):

(θ+ − θ−) · r− < 0, or

(θ+ − θ−) · r+ < 0
(4)

3) Slice Sampling and Valid Sample Set:
A valid sample set (C) is constructed by samples from

(B) which satisfies the requirement of slice sampling. Given
the root node of (B) as (θ0, r0), and the logarithm of the
distribution (L(θ)), a slice variable (u) is first drawn as in
eq. (5):

u ∼ Uniform[0, exp(L(θ0)− 1

2
r0 · r0)] (5)

For any state (θ, r) in B, if eq.(6) is satisfied, the state will be
added to C.

log(u) ≤ L(θ)− 1

2
r · r (6)

4) Uniform Sampling from Valid Sample Set:
Once the valid sample set (C) is constructed, the final

sample can be drawn uniformly from C. However, the size of
valid sample set grows exponentially with the balanced tree
depth i and may consume unacceptable amount of memory.
Therefore, in practice, NUTS samples from the valid set during
the process of constructing B by recursively draw samples
from each subtree with weights (which is the number of valid
samples in that subtree). This is proved to be equal to drawing
a sample uniformly from the final valid sample set. A detailed
example will be provided in later section.

5) Stopping Criteria:
The tree stops expanding when either one of the two

conditions are met. First, a U-turn is detected in B as in eq.



(4). Second, the simulation error is sufficiently large as shown
in eq. (7), where ∆max is a large positive value.

log(u)−∆max ≤ L(θ)− 1

2
r · r (7)

6) Adaptively Tuning ε:
NUTS also adaptively tunes ε during the burn-in period

before the Markov chain converges to its stationary distribution
with dual averaging algorithm [5]. The algorithm is provided
as in eq. (8):

Hm = (1− 1

m+ t0
)Hm−1 +

1

m+ t0
(δ − α

nα
)

log(εm) = µ−
√
m

γ
Hm

log(ε
′

m) = m−κlog(εm) + (1−m−κ)log(εm−1)

(8)

Where m is simulation steps, t0, δ, γ, κ are empirical param-
eters, α, nα are values derived during building B. Since it is
not the major computation overhead in NUTS, optimizing this
algorithm is not within the scope of our accelerator design.

As a summary, after ε is tuned, the key steps for drawing
one sample in the NUTS algorithm can be summarized as
below:

a. Draw slice variable u with initial state (θ0, r0).
b. Run multiple leapfrog simulations and recursively build

a balanced tree (B) while repeatedly checking stopping
criteria.

c. Construct valid sample set (C) from the balanced tree.
d. Uniformly draw a new sample θ

′
from the valid sample

set.
e. Redraw momentum r ∼ N (0, 1).
While NUTS eliminates the need to manually tuning pa-

rameters and achieves highest efficiency. The complexity of
this state of art algorithm, both in its sequential computation
nature and high memory requirement, brings challenges to
its accelerator design on FPGA. Detailed analysis of these
difficulties and corresponding solutions are discussed in the
next section.

III. ALGORITHM AND HARDWARE CO-OPTIMIZATION OF
NUTS

Samples in the NUTS algorithm are drawn from a Markov
chain where a certain new sample has dependency on the
previous sample. This sequential data processing flow brings
challenge to the general parallel acceleration of the algorithm.
One of the common practices is to run multiple Markov chains.
While some algorithms require the data sharing and exchang-
ing between different chains running at different temperature
[9], the NUTS benefits from the data independency between
different chains and simplifies multi-chain sampling. On the
FPGA platform, however, it is not suitable to directly adopt
the idea, since we are encountering unique challenges which
we summarize as two key points:

• Non-linear pipeline problem due to feedback dataflow.
• Inefficient memory utilization and management for stor-

ing intermediate vectors.

To deal with these challenges, we propose three solutions
for the design of NUTS accelerator:

• Fitting multiple sampling chains in a single PE pipeline
to increase throughput and hardware utilization.

• Utilizing our proposed incremental resampling technique
for efficient memory utilization and management.

• Leveraging three levels of parallelism to further increase
the throughput.

The overview of the NUTS accelerator architecture with
our proposed ideas is shown in Fig. 5. The NUTS accelerator
consists of a processing element (PE) array where each PE
contains multiple computational modules and local memories
with multiple different chains running in a same pipeline. The
leapfrog module utilizes eq. (2) to update θ and r. The sample
validation module uses eq. (6) to determine whether the current
sample is valid or not. The U-turn detection module checks if
a U-turn is already encountered with eq. (4). The intermediate
memory temporarily stores the newly simulated samples and
momentum vectors requested by the U-turn detection module.
The valid sample memory efficiently stores the valid samples
with our proposed incremental resampling technique. The
temporary newly simulated samples will continuously be sent
back to the leapfrog module after sample validation and U-turn
detection until the stopping criteria is met. After that, a sample
from a certain chain will be uniformly drawn from the valid
sample memory with our proposed incremental resampling
technique.

The design challenges and our proposed solutions will be
discussed with more details in the later section.

For better explanation, we use a reduced vanilla NUTS
PE which simulates a single Markov chain with only key
components that are relevant to data flow and memory issue as
shown in Fig. 6. The sample evaluation module combines the
sample validation module and the U-turn detection module in
Fig. 5 together. We assume the processing latency of leapfrog
module and the evaluation module is tl and te.

A. Non-linear pipeline problem due to feedback dataflow

In the vanilla PE architecture, the time for simulating and
evaluating a new sample is tl+te. The leapfrog module cannot
take any new inputs before the current sample is evaluated.
As a result, the whole pipeline in the PE is functioning at
low efficiency with a period of tl + te. In this case, if we
simply adopt the multi-chain sampling idea by duplicating
multiple PEs to run independent chains, all PEs will not be
functioning at maximum throughput, resulting in extremely
low utilization of computational resources. To address this
issue, we propose that since different chains in NUTS are data
independent from each other while the computation flows are
exactly the same, the computation of different chains can be
fitted into a single pipeline. In other words, while the pipeline
input (the leapfrog module) is waiting for the new sample to
be simulated and evaluated, samples from other chains can
be taken in and processed. The pipeline can continuously
take inputs as simulating a new Markov chain until the new
sample of the first chain is evaluated and sent back to the



Fig. 5. Overview of the NUTS accelerator architecture with our proposed ideas. In the PE architecture, square blocks with different colors represent samples
from different chains.

Fig. 6. The vanilla PE architecture for NUTS accelerator. The red block
indicates a sample in the current chain and the number represents the sequence
of samples.

input. As shown in Fig. 7 (left). The benefit of this multi-
chain sampling within a single pipeline is that it increases the
pipeline throughput and sample generation rate while utilizing
the same amount of computational resources. However, it also
brings the requirement for additional storage of valid sample
sets from all different chains, which brings another need for
efficient memory utilization.

B. Inefficient memory utilization and management for storing
intermediate vectors

The valid sample set in the NUTS algorithm stores all
valid samples from the balanced tree during the simulation
until the stopping criteria is met. Since the tree depth i is
usually growing with the problem dimension D, the total
number of valid samples can be as large as 2i, resulting in
exponential growing in the memory requirement. As a result,
NUTS utilizes its balanced tree structure to reduce the number
of intermediate vectors that needed to be stored to O(i). Here,
we use a balanced tree with 8 samples, i.e. the tree depth is 3
to illustrate how NUTS samples from the valid sample set as
shown in Fig. 8 (left). The top tree with 8 samples is divided
into two smaller subtrees, which are further divided into 4
smaller subtrees with 2 samples each. The higher level trees
will perform weighted resampling from the lower level trees
as explained in the bottom of Fig. 8. During the simulation,
the samples are coming sequentially and the actual sampling
process of NUTS in memory is shown in Fig. 9.

However, the sampling method of NUTS is not suitable
for FPGA implementation. On the one hand, the number of
samples to be stored is O(i), while the tree heights vary from
different distributions or different simulation points within a
same distribution. Previous experiment results show that the
maximum tree height can be different from 2 to 20 [3], with
no upper bound guaranteed. This randomness in tree height
prevents allocating optimal memory resources and brings
challenge in the potential over-utilization of on-chip memory,
especially when we are utilizing multi-chain sampling. On
the other hand, while we cannot benefit from the recursive
balanced tree on FPGA, this method is also bringing challenge
in the expensive memory management for large number of
high dimensional vectors. As shown in Fig. 9, to perform
the method in NUTS, the accelerator needs to continuously
keep track of the following information: the valid sample
numbers (weights) of all the subtrees, the available address
of the memory where the new samples should be stored.
Additionally, the number of weighted resampling actions is
also different when different sample arrives, varying from 0
to 3 in the example. These are all bringing difficulties in the
design of control logic and management of the temporary
memory. The PE architecture with multi-chain sampling in
a single pipeline and the NUTS method to sample from valid
sample set is shown in Fig. 7 (middle).

To deal with the difficulty mentioned above, we propose
an incremental resampling technique for the required uniform
sampling from the valid sample set to provide additional mem-
ory efficiency and better memory management. The key idea is
that we don’t want to perform uniform sampling until the valid
sample set is fully constructed, which typically requires huge
amount of memory, but to keep and drop samples during the
simulation of the Markov chain while making sure that every
sample should have an equal chance of being selected as long
as it is valid. To achieves this, suppose the number of valid
samples are n before a new sample arrives, if we accept the
new sample with probability I

I+n , where I is 1 if it’s valid
or 0 if not. It is easy to prove that if we follow this process
across the simulation, all valid samples will have an equal
chance of being selected. An illustration of our proposed idea



Fig. 7. Different PE architectures. The left adopts multi-chain sampling within a single pipeline. The middle adopt multi-chain sampling and uses the NUTS
sampling method to sample the valid set. The right adopt multi-chain sampling and our incremental resampling technique to sample the valid set. The blocks
in different colors imply samples from different chains.

for the same previous example is shown in Fig. 8 (right). Our
proposed method not only requires to store only 1 temporary
sample per chain, but also only needs to keep track of the
total valid sample numbers, which eliminates the need for
additional complex logic for memory management. The PE
architecture with multi-chain sampling in a single pipeline and
our proposed method to sample from the valid sample set is
shown in Fig. 7 (right).

Fig. 8. The sampling techniques to uniformly draw samples from the valid
sample set in NUTS (left) and in our proposed idea (right).

C. Three levels of parallelism in NUTS accelerator design
To accelerate the NUTS algorithm for high dimension

problems, the design effort should also focus on the high
volume vector processing including vector and vector / matrix
multiplication, vector and vector addition, etc. With this,
we can extract three levels of parallelism in the design of
NUTS accelerator. The lowest level includes acceleration of
vector processing by unrolling different dimensions, utilizing
multiplier-adder trees, etc. The second level of parallelism fits

Fig. 9. The sampling process in NUTS for the example in Fig.8 with a
memory that can hold 3 samples.

multiple chains in a single pipeline within the PE to maximize
the hardware utilization. On the top level, multiple PEs are
running independently to further increase the throughput.

IV. HARDWARE IMPLEMENTATION
While the overall architecture is shown in Fig. 5, for the

hardware implementation on FPGA, the rich parallel com-
putation resources and block RAM (BRAM) can be further
utilized to improve the performance. The high volume vector
processing requirement can be speed up by unrolling multiple
dimensions for parallel processing or utilizing the multiplier-
adder tree structure. The large number of intermediate vector
results should also be stored in multiple small blocks of



BRAMs to allow parallel accessing of different dimensions
of the vectors and further reduce the data accessing latency.

V. EXPERIMENTAL SETUP

For high dimensional distributions, sampling is becoming
extremely painful due to the increasing exploration difficulty.
Drawing samples from multivariate Gaussian distributions
is also becoming a challenging task. As a result, they are
usually utilized to evaluate the efficiency of different sampling
algorithms [3]. In our paper, we also use highly correlated
multivariate Gaussian distributions with different dimensions
(128, 64, 32, 16) as the target distributions. Their covariance
matrices are generated by the Wishhart distribution with
identity scale matrix and degree of freedoms as 128, 64, 32,
and 16, respectively, as suggested by the experiment setup in
[3]. The inverse of the covariance matrices are pre-calculated
and stored in the local BRAM of the NUTS accelerator.

The NUTS accelerator is implemented on Xilinx VCU-118
evaluation kit with single precision floating point representa-
tion at 200MHz. To evaluate our proposed architecture, 4 de-
signs are implemented with the following setup: design 1 is the
baseline accelerator design without the multi-chain sampling
and the efficient memory architecture. Design 2 implements
the multi-chain sampling but does not implement the efficient
memory architecture. The maximum balanced tree depth of
design 1 and design 2 is set to be 20. Design 3 implements both
multi-chain sampling and the efficient memory architecture.
All three designs are using a multiplier-adder tree with a depth
of 8, which can process vector multiplication with a dimension
of 64. Design 4 additionally explores the PE level parallelism
by using multiple PEs with both multi-chain sampling and
the efficient memory architecture. The depth of the multiplier
adder trees in design 4 is 7 and the number of PEs is 2, to
keep the computation resources the same as in design 3. All
the designs limit the number of chains running to be 4. The
samples of all designs are collected through a PCIE interface
and the power is reported by Vivado 2019.2 including both
static and dynamic power.

The R interface for highly optimized C++ NUTS sampling
library: RSTAN, is used as software measurement which
samples from the same multivariate Gaussian distributions.
The number of chains is set to be 4 and the same number of
samples (8000) are drawn as in the hardware implementation.
RSTAN is running on an Intel I7-8750H CPU @ 2.2GHz,
boost 3.7GHz and the power is reported with Intel power
Gadget 3.6. The average power of the software routine for
inputs with 128 dimension to 16 dimension are 33.46W,
24.09W, 17.99W, 14.83W respectively.

VI. EXPERIMENT RESULTS AND ANALYSIS

The resource utilization of all designs is reported in Table.
I. Compared with design 1 and design 2, fitting 4 chains in
a single pipeline results in the same logic and computational
resource utilization but with additional 4X memory consump-
tion. Compared with design 2 and design 3, our proposed
incremental resampling technique provides additional saving

in logic resources (6.8% saving in LUT, 7.3% saving in FF)
and 13.9% in BRAM.

The execution time, normalized speedup and energy im-
provements compared to RSTAN are summarized in Table. II.
Comparison between the speedup and the energy improvement
between different designs are shown in Fig. 10 and Fig. 11.
The speedup difference between design 2 and design 3 comes
from the randomness during the simulation. In design 3, the
number of chains for all inputs is limited to 4 while for
lower dimension problems, the number of chains that can be
accommodated can be larger. In this case, the pipeline is not
functioning at maximum throughput and shows an decrease in
speedup in lower dimension problems. In design 4, the input
with 128 and 64 exceed the capacity of multiplier adder tree
and vector processing array, thus, the computation of vector
operations takes additional time cycles. This is the reason why
we are not seeing expected 2X performance boost in these two
cases.

The results also shows that implementing multi-chain sam-
pling will bring up to additional 4X speedup (this may vary
because of the randomness during NUTS simulation). We also
demonstrate that leveraging the PE level parallelism by using
2 PEs as in design 4, while utilizing the roughly same amount
of logic and computation resources as in design 3, can bring
additional speedup of up to 50.6X and energy efficiency of up
to 189.7X compared with RSTAN.

Fig. 10. Normalized speedup compared with RSTAN.

Fig. 11. Normalized energy improvement compared with RSTAN.

For sample evaluation, we compare 4000 samples from
the 64 dimension target distribution which are collected from



TABLE I
RESOURCE UTILIZATION (%) OF FOUR DESIGNS.

Design LUT LUTRAM FF DSP BRAM Power (W)
Design 1 11.89 2.46 7.82 18.8 2.06 6.87
Design 2 12.92 2.86 8.81 18.8 8.21 7.01
Design 3 12.04 2.66 8.21 18.8 6.42 6.88
Design 4 13.23 2.89 9.33 18.9 12.84 7.04

Total 1182240 391840 2364480 6840 2160 \

TABLE II
EXECUTION TIME (S) OF NUTS ACCELERATOR, NORMALIZED ACCELERATION AND ENERGY IMPROVEMENT COMPARED WITH RSTAN FOR THE

SAMPLING OF DIFFERENT MULTIVARIATE GAUSSIAN DISTRIBUTIONS.

Execution time (s) Normalized acceleration Energy improvement over RSTAN
128-D 64-D 32-D 16-D 128-D 64-D 32-D 16-D 128-D 64-D 32-D 16-D

RSTAN 1164.1 67.9 32.1 4.4 1 1 1 1 1 1 1 1
Design 1 138.3 8.7 5.6 0.85 8.4 7.8 5.7 5.2 40.9 27.4 14.9 11.2
Design 2 34.0 2.07 1.3 0.19 34.2 32.8 24.7 23.2 163.3 112.7 63.4 49.1
Design 3 32.9 2.13 1.19 0.23 35.3 32.1 26.9 19.4 171.7 112.4 70.3 41.8
Design 4 29.2 1.43 0.63 0.12 39.9 47.3 50.6 36.4 189.7 161.9 129.3 76.7

RSTAN and the NUTS accelerator. Two dimensions are se-
lected for illustration and the plot is shown in Fig. 12.

Fig. 12. Scatter plot of random two dimensions of the 4000 samples from the
64 dimension multivariate Gaussian distribution, the left plot is from RSTAN,
the right plot is from NUTS accelerator

VII. CONCLUSION

In this paper, we present the first NUTS accelerator for
the state of art algorithm on FPGA with hardware algorithm
co-optimization on two aspects: first, we introduce multi-
chain sampling in a single PE pipeline to maximum the
throughput and hardware utilization. Second, we propose an
incremental resampling technique to provide better memory
efficiency and better memory management compared with
standard NUTS algorithm. We also leverage three levels of
parallelism in our hardware design to further improve the
performance. Results show that our proposed ideas can lead to
4X additional speedup with multi-chain sampling and 13.9%
saving in memory resources. Compared with optimized C++
library RSTAN, our design can achieve speedup up to 50.6X
and energy improvement up to 189.7X.

VIII. ACKNOWLEDGEMENT

This paper is based upon work supported by the National
Science Foundation (NSF) under Grant No.1741173. Any
opinions, findings, conclusions or recommendations expressed

in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.
[Online]. Available: http://link.aip.org/link/?JCP/21/1087/1

[2] R. Neal, “Mcmc using hamiltonian dynamics,” Handbook of Markov
Chain Monte Carlo, 06 2012.

[3] M. D. Homan and A. Gelman, “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo,” J. Mach. Learn. Res.,
vol. 15, no. 1, p. 1593–1623, Jan. 2014.

[4] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, “Parallel gibbs
sampling: From colored fields to thin junction trees,” ser. Proceedings
of Machine Learning Research, G. Gordon, D. Dunson, and M. Dudı́k,
Eds., vol. 15. Fort Lauderdale, FL, USA: JMLR Workshop and
Conference Proceedings, 11–13 Apr 2011, pp. 324–332. [Online].
Available: http://proceedings.mlr.press/v15/gonzalez11a.html

[5] Y. Nesterov, “Primal-dual subgradient methods for convex problems,”
Mathematical Programming, vol. 120, pp. 221–259, 04 2009.

[6] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich,
M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell,
“Stan: A probabilistic programming language,” Journal of Statistical
Software, Articles, vol. 76, no. 1, pp. 1–32, 2017. [Online]. Available:
https://www.jstatsoft.org/v076/i01

[7] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep Universal Probabilistic Programming,” Journal of Machine
Learning Research, 2018.

[8] S. Liu, G. Mingas, and C. Bouganis, “An unbiased mcmc fpga-based ac-
celerator in the land of custom precision arithmetic,” IEEE Transactions
on Computers, vol. 66, no. 5, pp. 745–758, 2017.

[9] G. Mingas and C.-S. Bouganis, “Parallel tempering mcmc acceleration
using reconfigurable hardware,” in Reconfigurable Computing: Archi-
tectures, Tools and Applications, O. C. S. Choy, R. C. C. Cheung,
P. Athanas, and K. Sano, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 227–238.

[10] B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, “Causalearn: Auto-
mated framework for scalable streaming-based causal bayesian learning
using fpgas,” 02 2018, pp. 1–10.

[11] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradient hamiltonian
monte carlo,” in Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ser.
ICML’14. JMLR.org, 2014, p. II–1683–II–1691.

[12] R. M. Neal, Bayesian Learning for Neural Networks. Berlin, Heidel-
berg: Springer-Verlag, 1996.


