
Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

Astérisque
421, 2020, p. 7–124
doi:10.24033/ast.1124

MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES

by

Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla, Michael Rapoport
& Tonghai Yang

Abstract. — We form generating series, valued in the Chow group and the arithmetic
Chow group, of special divisors on the compactified integral model of a Shimura vari-
ety associated to a unitary group of signature (n− 1, 1), and prove their modularity.
The main ingredient in the proof is the calculation of vertical components appearing
in the divisor of a Borcherds product on the integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura unitaires)
Nous formons des séries génératrices, à valeurs dans le groupe de Chow et dans le

groupe de Chow arithmétique, formées des diviseurs spéciaux sur le modèle intégral
compact d’une variété de Shimura associée à un groupe unitaire de signature (n−1, 1),
et prouvons leur modularité. L’ingrédient principal de la preuve est le calcul des
composantes verticales apparaissantes dans le diviseur d’un produit de Borcherds sur
le modèle intégral.

1. Introduction

The goal of this paper is to prove the modularity of a generating series of special
divisors on the compactified integral model of a Shimura variety associated to a uni-
tary group of signature (n − 1, 1). The special divisors in question were first studied
on the open Shimura variety in [33, 34], and then on the toroidal compactification
in [24].

This generating series is an arithmetic analogue of the classical theta kernel used
to lift modular forms from U(2) and U(n). In a similar vein, our modular generating
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series can be used to define a lift from classical cuspidal modular forms of weight n
to the codimension one Chow group of the unitary Shimura variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field k ⊂ C of odd
discriminant disc(k) = −D. We are concerned with the arithmetic of a certain unitary
Shimura variety, whose definition depends on the choices of k-hermitian spaces W0

andW of signature (1, 0) and (n−1, 1), respectively, where n ≥ 3. We assume thatW0

and W each admit an Ok-lattice that is self-dual with respect to the hermitian form.
Attached to this data is a reductive algebraic group

(1.1.1) G ⊂ GU(W0)×GU(W )

over Q, defined as the subgroup on which the unitary similitude characters are equal,
and a compact open subgroup K ⊂ G(Af ) depending on the above choice of self-dual
lattices. As explained in § 2, there is an associated hermitian symmetric domain D,
and a Deligne-Mumford stack Sh(G,D) over k whose complex points are identified
with the orbifold quotient

Sh(G,D)(C) = G(Q)\D×G(Af )/K.

This is the unitary Shimura variety of the title.
The stack Sh(G,D) can be interpreted as a moduli space of pairs (A0, A) in which

A0 is an elliptic curve with complex multiplication by Ok, and A is a principally po-
larized abelian scheme of dimension n endowed with an Ok-action. The pair (A0, A) is
required to satisfy some additional conditions, which need not concern us in the in-
troduction.

Using the moduli interpretation, one can construct an integral model of Sh(G,D)
over Ok. In fact, following work of Pappas and Krämer, we explain in § 2.3 that there
are two natural integral models related by a morphism SKra → SPap. Each integral
model has a canonical toroidal compactification whose boundary is a disjoint union
of smooth Cartier divisors, and the above morphism extends uniquely to a morphism

(1.1.2) S∗Kra → S∗Pap

of compactifications.
Each compactified integral model has its own desirable and undesirable properties.

For example, S∗Kra is regular, while S∗Pap is not. On the other hand, every vertical (i.e.,
supported in nonzero characteristic) Weil divisor on S∗Pap has nonempty intersection
with the boundary, while S∗Kra has certain exceptional divisors in characteristics p | D
that do not meet the boundary. An essential part of our method is to pass back and
forth between these two models in order to exploit the best properties of each. For
simplicity, we will state our main results in terms of the regular model S∗Kra.

In § 2 we define a distinguished line bundle ω on SKra, called the line bundle of
weight one modular forms, and a family of Cartier divisors ZKra(m) indexed by inte-
gers m > 0. These special divisors were introduced in [33, 34], and studied further in
[11, 23, 24]. For the purposes of the introduction, we note only that one should regard
the divisors as arising from embeddings of smaller unitary groups into G.
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MODULARITY OF UNITARY GENERATING SERIES 9

Denote by
Ch1

Q(S∗Kra) ∼= Pic(S∗Kra)⊗Z Q
the Chow group of rational equivalence classes of divisors with Q coefficients. Each
special divisor ZKra(m) can be extended to a divisor on the toroidal compactification
simply by taking its Zariski closure, denoted Z∗Kra(m). The total special divisor is
defined as

(1.1.3) Z tot
Kra(m) = Z∗Kra(m) +BKra(m) ∈ Ch1

Q(S∗Kra)

where the boundary contribution is defined, as in (5.3.3), by

BKra(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ).

The notation here is the following: The sum is over the equivalence classes of proper
cusp label representatives Φ as defined in § 3.1. These index the connected compo-
nents S∗Kra(Φ) ⊂ ∂S∗Kra of the boundary (1). Inside the sum, (L0, 〈., .〉) is a hermitian
Ok-module of signature (n− 2, 0), which depends on Φ.

The line bundle of modular forms ω admits a canonical extension to the toroidal
compactification, denoted the same way. For the sake of notational uniformity, we
extend (1.1.3) to m = 0 by setting

(1.1.4) Z tot
Kra(0) = ω

−1 + Exc ∈ Ch1
Q(S∗Kra).

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective divisor
supported in characteristics p | D, disjoint from the boundary of the compactification.
The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let χk : (Z/DZ)× → {±1} be the Dirichlet character determined
by k/Q. The formal generating series∑

m≥0

Z tot
Kra(m) · qm ∈ Ch1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk in the following sense: for
every Q-linear functional α : Ch1

Q(S∗Kra)→ C, the series∑
m≥0

α(Z tot
Kra(m)) · qm ∈ C[[q]]

is the q-expansion of a classical modular form of the indicated weight, level, and char-
acter.

We can prove a stronger version of Theorem A. Denote by Ĉh
1

Q(S∗Kra) the Gillet-
Soulé [20] arithmetic Chow group of rational equivalence classes of pairs Ẑ = (Z ,Gr),
where Z is a divisor on S∗Kra with rational coefficients, and Gr is a Green function

(1) After base change to C, each S∗Kra(Φ) decomposes into h connected components, where h is the
class number of k.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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for Z . We allow the Green function to have additional log-log singularities along the
boundary, as in the more general theory developed in [13]. See also [8, 24].

In § 7.3 we use the theory of regularized theta lifts to construct Green functions
for the special divisors Z tot

Kra(m), and hence obtain arithmetic divisors

Ẑ tot
Kra(m) ∈ Ĉh

1

Q(S∗Kra)

for m > 0. We also endow the line bundle ω with a metric, and the resulting metrized
line bundle ω̂ defines a class

Ẑ tot
Kra(0) = ω̂

−1 + (Exc,− log(D)) ∈ Ĉh
1

Q(S∗Kra),

where the vertical divisor Exc has been endowed with the constant Green function
− log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series

φ̂(τ) =
∑
m≥0

Ẑ tot
Kra(m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]]

is modular of weight n, level Γ0(D), and character χnk, where modularity is understood
in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei Zhang an-
nounced a proof of his arithmetic fundamental lemma, conjectured in [52]. Although
the statement is a purely local result concerning intersections of cycles on unitary
Rapoport-Zink spaces, Zhang’s proof uses global calculations on unitary Shimura va-
rieties, and makes essential use of the modularity result of Theorem B. See [53].

Remark 1.1.2. — Theorem B implies that the Q-span of the classes Ẑ tot
Kra(m) is finite

dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions for the
special divisors, based on the methods of [36], which gives rise to a non-holomorphic
variant of φ̂(τ). It is a recent theorem of Ehlen-Sankaran [16] that Theorem B implies
the modularity of this non-holomorphic generating series. See § 7.4.

One motivation for the modularity result of Theorem B is that it allows one to
construct arithmetic theta lifts. If g(τ) ∈ Sn(Γ0(D), χnk) is a classical scalar valued
cusp form, we may form the Petersson inner product

θ̂(g)
def
= 〈φ̂, g〉Pet ∈ Ĉh

1

C(S∗Kra)

as in [38]. One expects, as in [loc. cit.], that the arithmetic intersection pairing of θ̂(g)
against other cycle classes should be related to derivatives of L-functions, providing
generalizations of the Gross-Zagier and Gross-Kohnen-Zagier theorems. Specific in-
stances in which this expectation is fulfilled can be deduced from [11, 23, 24]. This
will be explained in the companion paper [10].
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MODULARITY OF UNITARY GENERATING SERIES 11

As this paper is rather long, we explain in the next two subsections the main ideas
that go into the proof of Theorem A. The proof of Theorem B is exactly the same,
but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection we sketch the
proof of modularity only in the generic fiber. That is, the modularity of

(1.2.1)
∑
m≥0

Z tot
Kra(m)/k · qm ∈ Ch1

Q(S∗Kra/k)[[q]].

The key to the proof is the study of Borcherds products [4, 5].
A Borcherds product is a meromorphic modular form on an orthogonal Shimura

variety, whose construction depends on a choice of weakly holomorphic input form,
typically of negative weight. In our case the input form is any

(1.2.2) f(τ) =
∑

m�−∞
c(m)qm ∈M !,∞

2−n(D,χn−2
k ),

where the superscripts ! and ∞ indicate that the weakly holomorphic form f(τ) of
weight 2 − n and level Γ0(D) is allowed to have a pole at the cusp ∞, but must be
holomorphic at all other cusps. We assume also that all c(m) ∈ Z.

Our Shimura variety Sh(G,D) admits a natural map to an orthogonal Shimura
variety. Indeed, the k-vector space

V = Homk(W0,W )

admits a natural hermitian form 〈., .〉 of signature (n−1, 1), induced by the hermitian
forms on W0 and W . The natural action of G on V determines an exact sequence

(1.2.3) 1→ Resk/QGm → G→ U(V )→ 1

of reductive groups over Q.
We may also view V as a Q-vector space endowed with the quadratic form

Q(x) = 〈x, x〉 of signature (2n − 2, 2), and so obtain a homomorphism G → SO(V ).
This induces a map from Sh(G,D) to the Shimura variety associated with the
group SO(V ).

After possibly replacing f by a nonzero integer multiple, Borcherds constructs a
meromorphic modular form on the orthogonal Shimura variety, which can be pulled
back to a meromorphic modular form on Sh(G,D)(C). The result is a meromorphic
section ψ(f) of ω

k, where the weight

(1.2.4) k =
∑
r|D

γr · cr(0) ∈ Z

is the integer defined in § 5.3. The constant γr =
∏
p|r γp is a 4th root of unity (with

γ1 = 1) and cr(0) is the constant term of f at the cusp

∞r =
r

D
∈ Γ0(D)\P1(Q),

in the sense of Definition 4.1.1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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Initially, ψ(f) is characterized by specifying − log ‖ψ(f)‖, where ‖ · ‖ is the Pe-
tersson norm on ω

k. In particular, ψ(f) is only defined up to rescaling by a complex
number of absolute value 1 on each connected component of Sh(G,D)(C). We prove
that, after a suitable rescaling, ψ(f) is the analytification of a rational section of the
line bundle ω

k on Sh(G,D). In other words, the Borcherds product is algebraic and
defined over the reflex field k. This allows us to view ψ(f) as a rational section of ω

k

both on the integral model SKra, and on its toroidal compactification.
We compute the divisor of ψ(f) on the generic fiber of the toroidal compactification

S∗Kra/k, and find

(1.2.5) div(ψ(f))/k =
∑
m>0

c(−m) ·Z tot
Kra(m)/k.

The calculation of the divisor on the interior SKra/k follows immediately from the
corresponding calculations of Borcherds on the orthogonal Shimura variety. The mul-
tiplicities of the boundary components are computed using the results of [32], which
describe the structure of the Fourier-Jacobi expansions of ψ(f) along the various
boundary components.

The equality of divisors (1.2.5) implies the relation

k · ω =
∑
m>0

c(−m) ·Z tot
Kra(m)/k

in the Chow group Ch1
Q(S∗Kra/k). The cusp ∞1 = 1/D is Γ0(D)-equivalent to the

usual cusp at ∞, and so c1(0) = c(0). Substituting the expression (1.2.4) for k into
the left hand side and using (1.1.4) therefore yields the relation

(1.2.6)
∑
r|D
r>1

γrcr(0) · ω =
∑
m≥0

c(−m) ·Z tot
Kra(m)/k

in Ch1
Q(S∗Kra/k). In § 4.2 we construct for each r | D an Eisenstein series

Er(τ) =
∑
m≥0

er(m) · qm ∈Mn(D,χnk),

which, by a simple residue calculation, satisfies

cr(0) = −
∑
m>0

c(−m)er(m).

Substituting this expression into (1.2.6) yields

(1.2.7) 0 =
∑
m≥0

c(−m) ·
(
Z tot

Kra(m)/k +
∑
r|D
r>1

γrer(m) · ω
)
,

where we have also used the relation er(0) = 0 for r > 1.

ASTÉRISQUE 421
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MODULARITY OF UNITARY GENERATING SERIES 13

We now invoke a variant of the modularity criterion of [5], which is our Theo-
rem 4.2.3: if a formal q-expansion∑

m≥0

d(m)qm ∈ C[[q]]

satisfies 0 =
∑
m≥0 c(−m)d(m) for every input form (1.2.2), then it must be the

q-expansion of a modular form of weight n, level Γ0(D), and character χnk. It follows
immediately from this and (1.2.7) that the formal q-expansion∑

m≥0

(
Z tot

Kra(m)/k +
∑
r|D
r>1

γrer(m) · ω
)
· qm

is modular in the sense of Theorem A. Rewriting this as∑
m≥0

Z tot
Kra(m)/k · qm +

∑
r|D
r>1

γrEr(τ) · ω

and using the modularity of each Eisenstein series Er(τ), we deduce that (1.2.1) is
modular.

1.3. Sketch of the proof, part II: vertical components. — In order to extend the argu-
ments of § 1.2 to prove Theorem A, it is clear that one should attempt to compute
the divisor of the Borcherds product ψ(f) on the integral model S∗Kra and hope for
an expression similar to (1.2.5). Indeed, the bulk of this paper is devoted to precisely
this problem.

The subtlety is that both div(ψ(f)) and Z tot
Kra(m) will turn out to have vertical

components supported in characteristics dividing D. Even worse, in these bad char-
acteristics the components of the exceptional divisor Exc ⊂ S∗Kra do not intersect the
boundary, and so the multiplicities of these components in the divisor of ψ(f) cannot
be detected by examining its Fourier-Jacobi expansion.

This is where the second integral model S∗Pap plays an essential role. The morphism
(1.1.2) sits in a cartesian diagram

Exc //

��

S∗Kra

��

Sing // S∗Pap,

where the singular locus Sing ⊂ S∗Pap is the reduced closed substack of points at
which the structure morphism S∗Pap → Spec(Ok) is not smooth. It is 0-dimensional
and supported in characteristics dividing D. The right vertical arrow restricts to an
isomorphism

(1.3.1) S∗Kra \ Exc ∼= S∗Pap \ Sing.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0
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For each connected component s ∈ π0(Sing) the fiber

Excs = Exc×S∗Pap
s

is a smooth, irreducible, vertical Cartier divisor on S∗Kra, and Exc =
⊔
s Excs.

As the Ok-stack S∗Pap is proper and normal with normal fibers, every irreducible
vertical divisor on it is the reduction, modulo some prime of Ok, of an entire connected
(= irreducible) component. From this it follows that every vertical divisor meets the
boundary. Thus one could hope to use (1.3.1) to view ψ(f) as a rational section
on S∗Pap, compute its divisor there by examining Fourier-Jacobi expansions, and then
pull that calculation back to S∗Kra.

This is essentially what we do, but there is an added complication. The line bun-
dle ω on (1.3.1) does not extend to S∗Pap, and similarly the divisor Z∗Kra(m) on (1.3.1)
cannot be extended across the singular locus to a Cartier divisor on S∗Pap. However,
if you square the line bundle and the divisors, they have much better behavior. This
is the content of the following result, which is an amalgamation of Theorems 2.4.3,
2.5.3, 2.6.3, and 3.7.1 of the text.

Theorem C. — There is a unique line bundle ΩPap on S∗Pap whose restriction to
(1.3.1) is isomorphic to ω

2. Denoting by ΩKra its pullback to S∗Kra, there is an iso-
morphism

ω
2 ∼= ΩKra ⊗O(Exc).

Similarly, there is a unique Cartier divisor Ytot
Pap(m) on S∗Pap whose restriction to

(1.3.1) is equal to 2Z tot
Kra(m). Its pullback Ytot

Kra(m) to S∗Kra satisfies

2Z tot
Kra(m) = Ytot

Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.

Here Ls is a positive definite self-dual hermitian lattice of rank n associated to the
singular point s, and 〈., .〉 is its hermitian form.

Setting Ytot
Pap(0) = Ω

−1
Pap, we obtain a formal generating series∑
m≥0

Ytot
Pap(m) · qm ∈ Ch1

Q(S∗Pap)[[q]],

whose pullback via S∗Kra → S∗Pap is twice the generating series of Theorem A, up to
an error term coming from the exceptional divisors. More precisely, Theorem C shows
that the pullback is

2
∑
m≥0

Z tot
Kra(m) · qm −

∑
s∈π0(Sing)

ϑs(τ) · Excs ∈ Ch1
Q(S∗Kra)[[q]],

where each ϑs(τ) is the classical theta function whose coefficients count points in the
positive definite hermitian lattice Ls.

Over (1.3.1) we have ω
2k ∼= Ω

k
Pap, which allows us to view ψ(f)2 as a rational

section of the line bundle Ω
k
Pap on S∗Pap. We examine its Fourier-Jacobi expansions

along the boundary components and are able to compute its divisor completely (it

ASTÉRISQUE 421
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MODULARITY OF UNITARY GENERATING SERIES 15

happens to include nontrivial vertical components). We then pull this calculation back
to S∗Kra, and find that ψ(f), when viewed as a rational section of ω

k, has divisor

div(ψ(f)) =
∑
m>0

c(−m) ·Z tot
Kra(m) +

∑
r|D

γrcr(0) ·
(Exc

2
+
∑
p|r

S∗Kra/Fp

)
−
∑
m>0

c(−m)

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

− k · div(δ),

where δ ∈ Ok is a square root of −D, p ⊂ Ok is the unique prime above p | D, and
S∗Kra/Fp is the mod p fiber of S∗Kra, viewed as a divisor. This is stated in the text as
Theorem 5.3.3. Passing to the generic fiber recovers (1.2.5), as it must.

As in the argument leading to (1.2.7), this implies the relation

0 =
∑
m≥0

c(−m) ·

(
Z tot

Kra(m)− 1

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

)

+
∑
m≥0

c(−m) ·
∑
r|D
r>1

γrer(m)

(
ω− Exc

2
−
∑
p|r

S∗Kra/Fp

)

in the Chow group of S∗Kra, and the modularity criterion implies that

∑
m≥0

Z tot
Kra(m) · qm − 1

2

∑
s∈π0(Sing)

ϑs(τ) ·Excs +
∑
r|D
r>1

γrEr(τ) ·

(
ω− Exc

2
−
∑
p|r

S∗Kra/Fp

)

is a modular form. As each theta series ϑs(τ) and Eisenstein series Er(τ) is modular,
so is

∑
Z tot

Kra(m) · qm. This completes the outline of the proof of Theorem A.

1.4. The structure of the paper. — We now briefly describe the contents of the various
sections of the paper.

In § 2 we introduce the unitary Shimura variety associated to the group G of (1.1.1),
and explain its realization as a moduli space of pairs (A0, A) of abelian varieties
with extra structure. We then review the integral models constructed by Pappas and
Krämer, and the singular and exceptional loci of these models. These are related by
a cartesian diagram

Exc //

��

SKra

��

Sing // SPap,

where the vertical arrow on the right is an isomorphism outside of the 0-dimensional
singular locus Sing. We also define the line bundle of modular forms ω on SKra.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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The first main result of § 2 is Theorem 2.4.3, which asserts the existence of a line
bundle ΩPap on SPap restricting to ω

2 over

SKra \ Exc ∼= SPap \ Sing.

We then define the Cartier divisor ZKra(m) on SKra and prove Theorem 2.5.3,
which asserts the existence of a Cartier divisor YPap(m) on SPap whose restriction
to SPap \ Sing coincides with 2ZKra(m). Up to error terms supported on the excep-
tional locus Exc, the pullbacks of ΩPap and YPap(m) to SKra are therefore equal
to ω

2 and 2ZKra(m), respectively. The error terms are computed in Theorem 2.6.3,
which is the analogue of Theorem C for the noncompactified Shimura varieties.

In § 3 we describe the canonical toroidal compactifications S∗Kra → S∗Pap, and the
structure of their formal completions along the boundary. In § 3.1 and § 3.2 we in-
troduce the cusp labels Φ that index the boundary components, and their associated
mixed Shimura varieties. In § 3.3 we construct smooth integral models CΦ of these
mixed Shimura varieties, following the general recipes of the theory of arithmetic
toroidal compactification, as moduli spaces of 1-motives. In § 3.4 we give a second
moduli interpretation of these integral models. This is one of the key technical steps
in our work, and allows us to compare Fourier-Jacobi expansions on our unitary
Shimura varieties to Fourier-Jacobi expansions on orthogonal Shimura varieties. See
the remarks at the beginning of § 3 for further discussion. In § 3.5 and § 3.6 we con-
struct the line bundle of modular forms and the special divisors on the mixed Shimura
varieties CΦ. Theorem 3.7.1 describes the canonical toroidal compactifications S∗Kra

and S∗Pap and their properties. In § 3.8 we describe the Fourier-Jacobi expansions of
sections of ω

k on S∗Kra in algebraic language, and in § 3.9 we explain how to express
these Fourier-Jacobi coefficients in classical complex analytic coordinates.

In the short § 4 we introduce the weakly holomorphic modular forms that will be
used as inputs for the construction of Borcherds products. We also state in Theo-
rem 4.2.3 a variant of the modularity criterion of Borcherds.

In § 5 we consider the unitary Borcherds products associated to weakly holomorphic
forms

(1.4.1) f ∈M !,∞
2−n(D,χn−2

k ).

Ultimately, the integrality properties of the unitary Borcherds products will be de-
duced from an analysis of their Fourier-Jacobi expansions. These expansions involve
certain products of Jacobi theta functions, and so, in § 5 we review facts about the
arithmetic theory of Jacobi forms. For us, Jacobi forms will be sections of a suitable
line bundle Jk,m on the universal elliptic curve living over the moduli stack (over Z)
of all elliptic curves. The key point is to have a precise description of the divisor of
the canonical section

Θ24 ∈ H0(E,J0,12)

of Proposition 5.1.4. In § 5.2 we prove Borcherds quadratic identity, allowing us to
relate J0,1 to a certain line bundle (determined by a Borcherds product) on the
boundary component BΦ associated to a cusp label Φ.
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MODULARITY OF UNITARY GENERATING SERIES 17

After these technical preliminaries, we come to the statements of our main re-
sults about unitary Borcherds products. Theorem 5.3.1 asserts that, for each weakly
holomorphic form (1.4.1) satisfying integrality conditions on the Fourier coefficients
c(m) with m ≤ 0, there is a rational section ψ(f) of the line bundle ω

k on S∗Kra

with explicit divisor on the generic fiber and prescribed zeros and poles along each
boundary component. Moreover, for each cusp label Φ, the leading Fourier-Jacobi
coefficient of ψ(f) has an expression as a product of three factors, two of which, P vert

Φ

and P hor
Φ , are constructed in terms of Θ24. Theorem 5.3.3 gives the precise divisor

of ψ(f) on S∗Kra, and Theorem 5.3.4 gives an analogous formula on S∗Pap. An essential
ingredient in the calculation of these divisors is the calculation of the divisors of the
factors P vert

Φ and P hor
Φ , which is done in § 5.4.

In § 6 we prove the main results stated in § 5.3. In § 6.1 we construct a vector valued
form f̃ from (1.4.1), and give expressions for its Fourier coefficients in terms of those
of f . The vector valued form f̃ defines a Borcherds product ψ̃(f) on the symmetric
space D̃ for the orthogonal group of the quadratic space (V,Q) and, in § 6.2, we define
the unitary Borcherds product ψ(f) as its pullback to D. In § 6.3 we determine the
analytic Fourier-Jacobi expansion of ψ(f) at the cusp Φ by pulling back the product
formula for ψ̃(f) computed in [32] along a one-dimensional boundary component
of D̃. In § 6.4 we show that the unitary Borcherds product constructed analytically
arises from a rational section of ω

k and that, after rescaling by a constant of absolute
value 1, this section is defined over k. This is Proposition 6.4.4. In § 6.5 we complete
the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In § 7 we use the calculation of the divisors of Borcherds products to prove the
modularity results discussed in detail earlier in the introduction.

In § 8 we provide some supplementary technical calculations.

1.5. The case n = 2. — Throughout the introduction we have assumed that n ≥ 3,
but one could ask if similar results hold for n = 2. This seems to be a delicate question.

The assumption that n ≥ 3 guarantees that W contains an isotropic k-line, which
implies that Sh(G,D) has no compact (meaning proper over k) components. When
n = 2 the Shimura variety Sh(G,D) is essentially a union of classical modular curves
(if W contains an isotropic k-line) or of compact quaternionic Shimura curves (if
W contains no isotropic k-line).

When n = 2 one could still construct Borcherds products on Sh(G,D) as pull-
backs from orthogonal Shimura varies, and use the results of [26] to prove that they
are defined over the reflex field k. Analyzing their divisors on the integral models
SKra → SPap seems quite difficult. The compact case falls well outside the reach
of our arguments, which rely in an essential way on the anaysis of Fourier-Jacobi
expansions near the boundary of a toroidal compactification.

However, even in the noncompact n = 2 case there are some technical issues that
we do not know how to resolve. Foremost among these is that when n = 2 the
reduction of SPap at a prime of Ok above D is not normal, and so (as in the familiar
case of modular curves) the reduction of an irreducible component need not remain
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18 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

irreducible. This causes the proof of Proposition 6.5.2 to break down in a serious
way. In essence, we do not know how to exclude the possibility that constants κΦ

appearing in Proposition 6.4.1 contribute some nontrivial error term to the divisor of
the Borcherds product.

In § 2 and § 3 we assume n ≥ 2, but from § 5 onwards we restrict to n ≥ 3 (the
integer n plays no role in the short § 4).

1.6. Thanks. — The results of this paper are the outcome of a long term project,
begun initially in Bonn in June of 2013, and supported in a crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

1.7. Notation. — Throughout the paper, k ⊂ C is a quadratic imaginary field of odd
discriminant disc(k) = −D. Denote by δ =

√
−D ∈ k the unique choice of square

root with Im(δ) > 0, and by d = δOk the different of Ok.
Fix a π ∈ Ok satisfying Ok = Z + Zπ. If S is any Ok-scheme, define

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS

εS = π ⊗ 1− 1⊗ iS(π) ∈ Ok ⊗Z OS ,

where iS : Ok → OS is the structure map. The ideal sheaves generated by these sec-
tions are independent of the choice of π, and sit in exact sequences of free OS-modules

0→ (εS)→ Ok ⊗Z OS
α⊗x 7→iS(α)x−−−−−−−−→ OS → 0

and
0→ (εS)→ Ok ⊗Z OS

α⊗x 7→iS(α)x−−−−−−−−→ OS → 0.

It is easy to see that εS · εS = 0, and that the images of (εS) and (εS) under

Ok ⊗Z OS
α⊗x 7→iS(α)x−−−−−−−−→ OS

Ok ⊗Z OS
α⊗x 7→iS(α)x−−−−−−−−→ OS ,

respectively, are both equal to the sub-sheaf dOS . This defines isomorphisms
of OS-modules

(1.7.1) (εS) ∼= dOS ∼= (εS).

If N is an Ok ⊗Z OS-module then N/εSN is the maximal quotient of N on which
Ok acts through the structure morphism iS : Ok → OS , and N/εSN is the maximal
quotient on which Ok acts through the complex conjugate of the structure morphism.
If D ∈ O×S then more is true: there is a decomposition

(1.7.2) N = εSN ⊕ εSN,
and the summands are the maximal submodules on which Ok acts through the struc-
ture morphism and its conjugate, respectively. From this discussion it is clear that
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MODULARITY OF UNITARY GENERATING SERIES 19

one should regard εS and εS as integral substitutes for the orthogonal idempotents
in k ⊗Q C ∼= C × C. The Ok-scheme S will usually be clear from context, and we
abbreviate εS and εS to ε and ε.

Let kab ⊂ C be the maximal abelian extension of k in C, and let

art : k×\k̂× → Gal(kab/k)

be the Artin map of class field theory, normalized as in [43, § 11]. As usual,
S = ResC/RGm is Deligne’s torus.

For a prime p ≤ ∞ we write (a, b)p for the Hilbert symbol of a, b ∈ Q×p . Recall that
the invariant of a hermitian space V over kp = k ⊗Q Qp is defined by

invp(V ) = (detV,−D)p,(1.7.3)

where detV is the determinant of the matrix of the hermitian form with respect to
a kp-basis. If p < ∞ then V is determined up to isomorphism by its kp-rank and
invariant. If p = ∞ then V is determined up to isomorphism by its signature (r, s),
and its invariant is inv∞(V ) = (−1)s.

The term stack always means Deligne-Mumford stack.

2. Unitary Shimura varieties

In this section we define a unitary Shimura variety Sh(G,D) over our quadratic
imaginary field k ⊂ C and describe its moduli interpretation. We then recall the
work of Pappas and Krämer, which provides us with two integral models related by
a surjection SKra → SPap. This surjection becomes an isomorphism after restriction
to Ok[1/D]. We define a line bundle of weight one modular forms ω and a family of
Cartier divisors ZKra(m), m > 0, on SKra,

The line bundle ω and the divisors ZKra(m) do not descend to SPap, and the main
original material in § 2 is the construction of suitable substitutes on SPap. These sub-
stitutes consist of a line bundle ΩPap that agrees with ω

2 after restricting to Ok[1/D],
and Cartier divisors YPap(m) that agree with 2ZKra(m) after restricting to Ok[1/D].

2.1. The Shimura variety. — Let W0 and W be k-vector spaces endowed with her-
mitian forms H0 and H of signatures (1, 0) and (n − 1, 1), respectively. We always
assume that n ≥ 2. Abbreviate

W (R) = W ⊗Q R, W (C) = W ⊗Q C, W (Af ) = W ⊗Q Af ,

and similarly for W0. In particular, W0(R) and W (R) are hermitian spaces over
C = k ⊗Q R.

We assume the existence of Ok-lattices a0 ⊂W0 and a ⊂W , self-dual with respect
to the hermitian forms H0 and H. As the inverse of δ =

√
−D ∈ k generates the

inverse different of k/Q, this is equivalent to self-duality with respect to the symplectic
forms

(2.1.1) ψ0(w,w′) = Trk/QH0(δ−1w,w′), ψ(w,w′) = Trk/QH(δ−1w,w′).
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This data will remain fixed throughout the paper.
As in (1.1.1), let G ⊂ GU(W0) × GU(W ) be the subgroup of pairs for which

the similitude factors are equal. We denote by ν : G → Gm the common similitude
character, and note that ν(G(R)) ⊂ R>0.

Let D(W0) = {y0} be a one-point set, and define

(2.1.2) D(W ) = {negative definite C-planes y ⊂W (R)},

so that G(R) acts on the connected hermitian domain

D = D(W0)×D(W ).

The lattices a0 and a determine a maximal compact open subgroup

(2.1.3) K =
{
g ∈ G(Af ) : gâ0 = â0 and gâ = â

}
⊂ G(Af ),

and the orbifold quotient

Sh(G,D)(C) = G(Q)\D×G(Af )/K

is the space of complex points of a smooth k-stack of dimension n − 1, denoted
Sh(G,D).

The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism

(2.1.4) Homk(W0,W )
x 7→x∨−−−−→ Homk(W,W0),

characterized by ψ(xw0, w) = ψ0(w0, x
∨w). The k-vector space

V = Homk(W0,W )

carries a hermitian form of signature (n− 1, 1) defined by

(2.1.5) 〈x1, x2〉 = x∨2 ◦ x1 ∈ Endk(W0) ∼= k.

The group G acts on V in a natural way, defining an exact sequence (1.2.3).
The hermitian form on V induces a quadratic form Q(x) = 〈x, x〉, with associated

Q-bilinear form

(2.1.6) [x, y] = Trk/Q〈x, y〉.

In particular, we obtain a representation G→ SO(V ).

Proposition 2.1.1. — The stack Sh(G,D)/C has 21−o(D)h2 connected components,
where h is the class number of k and o(D) is the number of prime divisors of D.

Proof. — Each g ∈ G(Af ) determines Ok-lattices

ga0 = W0 ∩ gâ0, ga = W ∩ gâ.

The hermitian forms H0 and H need not be Ok-valued on these lattices. However, if
rat(ν(g)) denotes the unique positive rational number such that

ν(g)

rat(ν(g))
∈ Ẑ×,
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MODULARITY OF UNITARY GENERATING SERIES 21

then the rescaled hermitian forms rat(ν(g))−1H0 and rat(ν(g))−1H make ga0 and ga
into self-dual hermitian lattices.

As D is connected, the components of Sh(G,D)/C are in bijection with the
set G(Q)\G(Af )/K. The function g 7→ (ga0, ga) establishes a bijection from
G(Q)\G(Af )/K to the set of isometry classes of pairs of self-dual hermitian Ok-lat-
tices (a′0, a

′) of signatures (1, 0) and (n − 1, 1), respectively, for which the self-dual
hermitian lattice HomOk

(a′0, a
′) lies in the same genus as HomOk

(a0, a) ⊂ V .
Using the fact that SU(V ) satisfies strong approximation, one can show that there

are exactly 21−o(D)h isometry classes in the genus of HomOk
(a0, a), and each isometry

class arises from exactly h isometry classes of pairs (a′0, a
′).

It will be useful at times to have other interpretations of the hermitian domain D.
The following remarks provide alternate points of view. Recalling the idempotents
ε, ε ∈ k ⊗Q C of § 1.7, define isomorphisms of real vector spaces

(2.1.7) prε : W (R) ∼= εW (C), prε : W (R) ∼= εW (C)

as, respectively, the compositions

W (R) ↪→W (C) = εW (C)⊕ εW (C)
proj.−−−→ εW (C)

W (R) ↪→W (C) = εW (C)⊕ εW (C)
proj.−−−→ εW (C).

Remark 2.1.2. — Each pair z = (y0, y) ∈ D determines a line prε(y) ⊂ W (C), and
hence a line

z = HomC(W0(C)/εW0(C), prε(y)) ⊂ εV (C).

This construction identifies

D ∼=
{
z ∈ εV (C) : [z, z] < 0

}
/C× ⊂ P(εV (C))

as an open subset of projective space.

Remark 2.1.3. — Define a Hodge structure

F 1W0(C) = 0, F 0W0(C) = εW0(C), F−1W0(C) = W0(C)

on W0(C), and identify the unique point y0 ∈ D(W0) with the corresponding mor-
phism S→ GU(W0)R. Every y ∈ D(W ) defines a Hodge structure

F 1W (C) = 0, F 0W (C) = prε(y)⊕ prε(y
⊥), F−1W (C) = W (C)

on W (C). If we identify y ∈ D(W ) with the corresponding morphism S→ GU(W )R,
then for any point z = (y0, y) ∈ D the product morphism

y0 × y : S→ GU(W0)R ×GU(W )R

takes values in GR. This realizes D ⊂ Hom(S, GR) as a G(R)-conjugacy class.
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Remark 2.1.4. — In fact, the discussion above shows that Sh(G,D) admits a map to
the Shimura variety defined the group U(V ) together with the homomorphism

hGross : S→ U(V )(R), z 7→ diag(1, . . . , 1, z̄/z).

Here we have chosen a basis for V (R) for which the hermitian form has matrix
diag(1n−1,−1). Note that, for analogous choices of bases for W0(R) and W (R), the
corresponding map is

h : S→ G(R), z 7→ (z)× diag(z, . . . , z, z̄),

which, under composition with the homomorphism G(R) → U(V )(R), gives hGross.
The existence of this map provides an answer to a question posed by Gross: how
can one explicitly relate the Shimura variety defined by the unitary group U(V ), as
opposed to the Shimura variety defined by the similitude group GU(V ), to a moduli
space of abelian varieties? Our answer is that Gross’s unitary Shimura variety is a
quotient of our Sh(G,D), whose interpretation as a moduli space is explained in the
next section.

2.2. Moduli interpretation. — We wish to interpret Sh(G,D) as a moduli space of
pairs of abelian varieties with additional structure. First, we recall some generalities
on abelian schemes.

For an abelian scheme π : A→ S over an arbitrary base S, define the first relative
de Rham cohomology sheaf H1

dR(A) = R1π∗Ω
•
A/S as the relative hypercohomology of

the de Rham complex Ω•A/S . The relative de Rham homology

HdR
1 (A) = Hom(H1

dR(A),OS)

is a locally free OS-module of rank 2 · dim(A), sitting in an exact sequence

0→ F 0HdR
1 (A)→ HdR

1 (A)→ Lie(A)→ 0.

Any polarization of A induces an OS-valued alternating pairing on HdR
1 (A), which in

turn induces a pairing

(2.2.1) F 0HdR
1 (A)⊗ Lie(A)→ OS .

If the polarization is principal then both pairings are perfect. When S = Spec(C),
Betti homology satisfies H1(A(C),C) ∼= HdR

1 (A), and

A(C) ∼= H1(A(C),Z)\HdR
1 (A)/F 0HdR

1 (A).

For any pair of nonnegative integers (s, t), define an algebraic stackM(s,t) over k as
follows: for any k-scheme S let M(s,t)(S) be the groupoid of triples (A, ι, ψ) in which

— A→ S is an abelian scheme of relative dimension s+ t,
— ι : Ok → End(A) is an action such that the locally free summands

Lie(A) = εLie(A)⊕ εLie(A)

of (1.7.2) have OS-ranks s and t, respectively,
— ψ : A→ A∨ is a principal polarization, such that the induced Rosati involution †

on End0(A) satisfies ι(α)† = ι(α) for all α ∈ Ok.
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We usually omit ι and ψ from the notation, and just write A ∈M(s,t)(S).

Proposition 2.2.1. — The Shimura variety Sh(G,D) is isomorphic to an open and
closed substack

(2.2.2) Sh(G,D) ⊂M(1,0) ×kM(n−1,1).

More precisely, Sh(G,D)(S) classifies, for any k-scheme S, pairs

(2.2.3) (A0, A) ∈M(1,0)(S)×M(n−1,1)(S)

for which there exists, at every geometric point s→ S, an isomorphism of hermitian
Ok,`-modules

(2.2.4) HomOk
(T`A0,s, T`As) ∼= HomOk

(a0, a)⊗ Z`

for every prime `. Here the hermitian form on the right hand side of (2.2.4) is the
restriction of the hermitian form (2.1.5) on Homk(W0,W )⊗Q`. The hermitian form
on the left hand side is defined similarly, replacing the symplectic forms (2.1.1) on W0

and W with the Weil pairings on the Tate modules T`A0,s and T`As.

Proof. — As this is routine, we only describe the open and closed immersion on
complex points. Fix a point

(z, g) ∈ Sh(G,D)(C).

The component g determines Ok-lattices ga0 ⊂ W0 and ga ⊂ W , which are self-dual
with respect to the symplectic forms

rat(ν(g))−1ψ0 and rat(ν(g))−1ψ

of (2.1.1), rescaled as in the proof of Proposition 2.1.1.
By Remark 2.1.3 the point z ∈ D determines Hodge structures on W0 and W , and

in this way (z, g) determines principally polarized complex abelian varieties

A0(C) = ga0\W0(C)/F 0(W0)

A(C) = ga\W (C)/F 0(W ),

with actions of Ok. One can easily check that the pair (A0, A) determines a complex
point of M(1,0) ×kM(n−1,1), and this construction defines (2.2.2) on complex points.

The following lemma will be needed in § 2.3 for the construction of integral models
for Sh(G,D).

Lemma 2.2.2. — Fix a k-scheme S, a geometric point s→ S, a prime p, and a point
(2.2.3). If the relation (2.2.4) holds for all ` 6= p, then it also holds for ` = p.

Proof. — As the stack Sh(G,D) is of finite type over k, we may assume that
s = Spec(C). The polarizations on A0 and A induce symplectic forms on the first
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homology groups H1(A0,s(C),Z) and H1(As(C),Z), and the construction (2.1.5)
makes

LBe(A0,s, As) = HomOk

(
H1(A0,s(C),Z), H1(As(C),Z)

)
into a self-dual hermitian Ok-lattice of signature (n− 1, 1), satisfying

LBe(A0,s, As)⊗Z Z` ∼= HomOk
(T`A0,s, T`As)

for all primes `.
If the relation (2.2.4) holds for all primes ` 6= p, then LBe(A0,s, As) ⊗ Q and

Homk(W0,W ) are isomorphic as k-hermitian spaces everywhere locally except at p,
and so they are isomorphic at p as well. In particular, for every ` (including ` = p)
both sides of (2.2.4) are isomorphic to self-dual lattices in the hermitian space
Homk(W0,W ) ⊗Q Q`. By the results of Jacobowitz [27] all self-dual lattices in this
local hermitian space are isomorphic (2), and so (2.2.4) holds for all `.

Remark 2.2.3. — For any positive integer m define

K(m) = ker
(
K → AutOk

(â0/mâ0)×AutOk
(â/mâ)

)
.

For a k-scheme S, a K(m)-structure on (A0, A) ∈ Sh(G,D)(S) is a triple (α0, α, ζ)
in which ζ : µm ∼= Z/mZ is an isomorphism of S-group schemes, and

α0 : A0[m] ∼= â0/mâ0, α : A[m] ∼= â/mâ

are Ok-linear isomorphisms identifying the Weil pairings on A0[m] and A[m] with
the Z/mZ-valued symplectic forms on â0/mâ0 and â/mâ deduced from the pairings
(2.1.1). The Shimura variety G(Q)\D×G(Af )/K(m) admits a canonical model over k,
parametrizing K(m)-structures on points of Sh(G,D).

2.3. Integral models. — In this subsection we describe two integral models
of Sh(G,D) over Ok, related by a morphism SKra → SPap.

The first step is to construct an integral model of the moduli space M(1,0). More
generally, we will construct an integral model of M(s,0) for any s > 0. Define an
Ok-stackM(s,0) as the moduli space of triples (A, ι, ψ) over Ok-schemes S such that

— A→ S is an abelian scheme of relative dimension s,
— ι : Ok → End(A) is an action such εLie(A) = 0, or, equivalently, such that the

induced action of Ok on the OS-module Lie(A) is through the structure map
iS : Ok → OS ,

— ψ : A → A∨ is a principal polarization whose Rosati involution satisfies
ι(α)† = ι(α) for all α ∈ Ok.

The stackM(s,0) is smooth of relative dimension 0 over Ok by [24, Proposition 2.1.2],
and its generic fiber is the stack M(s,0) defined earlier.

Remark 2.3.1. — The stack M(n−2,0) will play an important role in § 3. In the de-
generate case n = 2, we interpret this as M(0,0) = Spec(Ok). The universal abelian
scheme over it should be understood as the 0 group scheme.

(2) This uses our standing hypothesis that D is odd.
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The question of integral models for M(n−1,1) is more subtle, but well-understood
after work of Pappas and Krämer. The first integral model was defined by Pappas
[45]. Let

MPap
(n−1,1) → Spec(Ok)

be the stack whose functor of points assigns to an Ok-scheme S the groupoid of triples
(A, ι, ψ) in which

— A→ S is an abelian scheme of relative dimension n,
— ι : Ok → End(A) is an action satisfying the determinant condition

det(T − ι(α) | Lie(A)) = (T − α)n−1(T − α) ∈ OS [T ]

for all α ∈ Ok,
— ψ : A → A∨ is a principal polarization whose Rosati involution satisfies

ι(α)† = ι(α) for all α ∈ Ok,
— viewing the elements εS and εS of § 1.7 as endomorphisms of Lie(A), the induced

endomorphisms ∧n
εS :

∧n
Lie(A)→

∧n
Lie(A)∧2

εS :
∧2

Lie(A)→
∧2

Lie(A)

are trivial (Pappas’s wedge condition).
It is clear that the generic fiber ofMPap

(n−1,1) is isomorphic to the moduli spaceM(n−1,1)

defined earlier. Denote by
Sing(n−1,1) ⊂M

Pap
(n−1,1)

the singular locus: the reduced substack of points at which the structure morphism
to Ok is not smooth.

Theorem 2.3.2 (Pappas). — The stack MPap
(n−1,1) is flat over Ok of relative dimen-

sion n− 1, and is Cohen-Macaulay and normal. Moreover:

1. For any prime p ⊂ Ok, the reductionMPap
(n−1,1)/Fp is Cohen-Macaulay. If n > 2

the reduction is geometrically normal.

2. The singular locus is a 0-dimensional stack, finite over Ok and supported in
characteristics dividing D. It is the reduced substack underlying the closed sub-
stack defined by δ · Lie(A) = 0.

Proof. — When n > 2 all of this is proved in [45] using the theory of local models,
and it is straightforward to check that the arguments carry over (3) to the case n = 2.
The only change is that if p ⊂ Ok lies above p | D, the stack MPap

(1,1)/Ok,p
is étale

locally isomorphic to
Spec(Ok,p[x, y]/(xy − p)),

(3) When n = 2, the Ok-stack M
Pap
(n−1,1)

admits a canonical descent to Z, and Pappas analyzes
the structure of this descent. The descent is regular, but the regularity is destroyed by base change
to Ok.
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whose special fiber is not normal.

The stack MPap
(n−1,1) is not regular, but has a natural resolution of singularities.

This leads us to our second integral model of M(n−1,1). As in the work of Krämer
[31], define

MKra
(n−1,1) → Spec(Ok)

to be the stack whose functor of points assigns to an Ok-scheme S the groupoid of
quadruples (A, ι, ψ,FA) in which

— A→ S is an abelian scheme of relative dimension n,
— ι : Ok → End(A) is an action of Ok,
— ψ : A→ A∨ is a principal polarization satisfying ι(α)† = ι(α) for all α ∈ Ok,
— FA ⊂ Lie(A) is an Ok-stable OS-module local direct summand of rank n− 1

satisfying Krämer’s condition : Ok acts on FA via the structure map Ok → OS ,
and acts on the line bundle Lie(A)/FA via the complex conjugate of the struc-
ture map.

There is a proper morphism

(2.3.1) MKra
(n−1,1) →MPap

(n−1,1)

defined by forgetting the subsheaf FA, and we define the exceptional locus

(2.3.2) Exc(n−1,1) ⊂MKra
(n−1,1)

by the Cartesian diagram

Exc(n−1,1)
//

��

MKra
(n−1,1)

��

Sing(n−1,1)
//MPap

(n−1,1).

Theorem 2.3.3 (Krämer). — The Ok-stack MKra
(n−1,1) is regular and flat with reduced

fibers, and satisfies the following properties:

1. The exceptional locus (2.3.2) is a disjoint union of smooth Cartier divisors.
Its fiber over a geometric point s→ Sing(n−1,1) is isomorphic to the projective
space Pn−1 over k(s).

2. The morphism (2.3.1) is proper and surjective, and restricts to an isomorphism

MKra
(n−1,1) \ Exc(n−1,1)

∼= MPap
(n−1,1) \ Sing(n−1,1).

For an Ok-scheme S, the inverse of this isomorphism endows

A ∈
(
MPap

(n−1,1) \ Sing(n−1,1)

)
(S)

with the subsheaf FA = ker
(
ε : Lie(A)→ Lie(A)

)
.
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Proof. — When n > 2 all of this is proved in [31] using the theory of local models,
and it is straightforward to check that nearly everything (4) carries over to the case
n = 2. In particular, if n = 2 and p ⊂ Ok lies above p | D, the same arguments used
in [loc. cit.] show that MKra

(1,1)/Ok,p
is étale locally isomorphic to the regular scheme

Spec(Ok,p[x, y]/(xy − π)),

for any uniformizer π ∈ Ok,p.

Recalling (2.2.2), we define our first integral model

SPap ⊂M(1,0) ×MPap
(n−1,1)

as the Zariski closure of Sh(G,D) in the fiber product on the right, which, like all fiber
products below, is taken over over Spec(Ok). Using Lemma 2.2.2, one can show that
it is characterized as the open and closed substack whose functor of points assigns to
any Ok-scheme S the groupoid of pairs

(A0, A) ∈M(1,0)(S)×MPap
(n−1,1)(S)

such that, at any geometric point s → S, the relation (2.2.4) holds for all primes
` 6= char(k(s)).

Our second integral model of Sh(G,D) is defined as the cartesian product

SKra
//

��

M(1,0) ×MKra
(n−1,1)

��

SPap
//M(1,0) ×MPap

(n−1,1).

The singular locus Sing ⊂ SPap and exceptional locus Exc ⊂ SKra are defined by the
cartesian squares

Exc //

��

SKra

��

Sing //

��

SPap

��

M(1,0) × Sing(n−1,1)
//M(1,0) ×MPap

(n−1,1).

(4) When n > 2, the statement of [31, Theorem 4.4] asserts that the special fiber of the local model
of MKra

(n−1,1)
is the union of two smooth and geometrically irreducible varieties of dimension n− 1,

whose intersection is smooth and geometrically irreducible of dimension n − 2. When n = 2, the
structure of the local model is slightly different: its geometric special fiber is a union X1∪X2∪X3 of
three irreducible varieties, each isomorphic to P1, intersecting in such a way that X1∩X2 and X2∩X3

are distinct reduced points. The difference between the two cases occurs because the scheme Q
defined in the proof of [31, Theorem 4.4], which parametrizes isotropic lines in a quadratic space of
dimension n over a finite field, is geometrically irreducible only when n > 2.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

28 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

Both loci are proper over Ok, and supported in characteristics dividing D.

Theorem 2.3.4 (Pappas, Krämer). — The Ok-stack SKra is regular and flat with
reduced fibers. The Ok-stack SPap is Cohen-Macaulay and normal, with Cohen-
Macaulay fibers. Furthermore:

1. If n > 2, the geometric fibers of SPap are normal.

2. The exceptional locus Exc ⊂ SKra is a disjoint union of smooth Cartier divi-
sors. The singular locus Sing ⊂ SPap is a reduced closed stack of dimension 0,
supported in characteristics dividing D.

3. The fiber of Exc over a geometric point s→ Sing is isomorphic to the projective
space Pn−1 over k(s).

4. The morphism SKra → SPap is surjective, and restricts to an isomorphism

(2.3.3) SKra \ Exc ∼= SPap \ Sing.

For an Ok-scheme S, the inverse of this isomorphism endows

(A0, A) ∈
(
SPap \ Sing

)
(S)

with the subsheaf FA = ker
(
ε : Lie(A)→ Lie(A)

)
.

Proof. — All of this follows from Theorems 2.3.2 and 2.3.3, along with the fact
that M(1,0) → Spec(Ok) is finite étale.

Remark 2.3.5. — Let (A0, A) be the universal pair over SPap. The vector bundle
HdR

1 (A0) is locally free of rank one over Ok⊗ZOSPap
and, by definition of the moduli

problem defining SPap, its quotient Lie(A0) is annihilated by ε. From this it is not
hard to see that

F 0HdR
1 (A0) = εHdR

1 (A0).

2.4. The line bundle of modular forms. — We now construct a line bundle of modular
forms ω on SKra, and consider the subtle question of whether or not it descends
to SPap. The short answer is that it doesn’t, but a more complete answer can be
found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.3, every point z ∈ D determines Hodge structures on W0 and
W of weight −1, and hence a Hodge structure of weight 0 on V = Homk(W0,W ).
Consider the holomorphic line bundle ω

an on D whose fiber at z is the complex line
ω

an
z = F 1V (C) determined by this Hodge structure.

Remark 2.4.1. — It is useful to interpret ω
an in the notation of Remark 2.1.2. The

fiber of ω
an at z = (y0, y) is the line

(2.4.1) ω
an
z = HomC(W0(C)/εW0(C), prε(y)) ⊂ εV (C),

and hence ω
an is simply the restriction of the tautological bundle via the inclusion

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C× ⊂ P(εV (C)).
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There is a natural action of G(R) on the total space of ωan, lifting the natural action
on D, and so ω

an descends to a line bundle on the complex orbifold Sh(G,D)(C).
This descent is algebraic, has a canonical model over the reflex field, and extends in
a natural way to the integral model SKra, as we now explain.

Let (A0, A) be the universal object over SKra, let FA ⊂ Lie(A) be the universal
subsheaf of Krämer’s moduli problem, and let

F⊥A ⊂ F 0HdR
1 (A)

be the orthogonal to FA under the pairing (2.2.1). It is a rank one OSKra
-module local

direct summand on which Ok acts through the structure morphism Ok → OSKra
.

Define the line bundle of weight one modular forms on SKra by

ω = Hom(Lie(A0),F⊥A ),

or, equivalently, ω
−1 = Lie(A0)⊗ Lie(A)/FA.

Proposition 2.4.2. — The line bundle ω on SKra just defined restricts to the already
defined ω

an in the complex fiber. Moreover, on the complement of the exceptional locus
Exc ⊂ SKra we have

ω = Hom(Lie(A0), εF 0HdR
1 (A)).

Proof. — The equality F⊥A = εF 0HdR
1 (A) on the complement of Exc follows from the

characterization
FA = ker(ε : Lie(A)→ Lie(A))

of Theorem 2.3.4, and all of the claims follow easily from this and examination of the
proof of Proposition 2.2.1.

The line bundle ω does not descend to SPap, but it is closely related to another
line bundle that does. This is the content of the following theorem, whose proof will
occupy the remainder of § 2.4. The result will be strengthened in Theorem 2.6.3.

Theorem 2.4.3. — There is a unique line bundle ΩPap on SPap whose restriction to
the nonsingular locus (2.3.3) is isomorphic to ω

2. We denote by ΩKra its pullback via
SKra → SPap.

Proof. — Let (A0, A) be the universal object over SPap, and recall the short exact
sequence

0→ F 0HdR
1 (A)→ HdR

1 (A)
q−→ Lie(A)→ 0

of vector bundles on SPap. As HdR
1 (A) is a locally free Ok⊗ZOSPap

-module of rank n,
the quotient HdR

1 (A)/εHdR
1 (A) is a rank n vector bundle.

Define a line bundle

PPap = Hom
(∧n

HdR
1 (A)/εHdR

1 (A),
∧n

Lie(A)
)

on SPap, and denote by PKra its pullback via SKra → SPap. Let

ψ : HdR
1 (A)⊗HdR

1 (A)→ OSPap
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be the alternating pairing induced by the principal polarization on A. If a and b are
local sections of HdR

1 (A), define a local section Pa⊗b of PPap by

Pa⊗b(e1 ∧ · · · ∧ en) =
n∑
k=1

(−1)k+1 · ψ(εa, ek) · q(εb) ∧ q(e1) ∧ · · · ∧ q(en)︸ ︷︷ ︸
omit q(ek)

.

Remark 2.4.4. — To see that Pa⊗b is well-defined, one must check that modifying
any ek by a section of εHdR

1 (A) leaves the right hand side unchanged. This is an easy
consequence of the vanishing of∧2

ε :
∧2

Lie(A)→
∧2

Lie(A)

imposed in the moduli problem defining SPap.

Lemma 2.4.5. — The morphism

(2.4.2) P : HdR
1 (A)⊗HdR

1 (A)→ PPap

defined by a⊗ b 7→ Pa⊗b factors through a morphism

P : Lie(A)⊗ Lie(A)→ PPap.

After pullback to SKra there is a further factorization

(2.4.3) P : Lie(A)/FA ⊗ Lie(A)/FA → PKra,

and this map becomes an isomorphism after restriction to SKra \ Exc .

Proof. — Let a and b be local sections of HdR
1 (A).

Assume first that a is contained in F 0HdR
1 (A). As F 0HdR

1 (A) is isotropic under
the pairing ψ, Pa⊗b factors through a map∧n

Lie(A)/εLie(A)→
∧n

Lie(A).

In the generic fiber of SPap, the sheaf Lie(A)/εLie(A) is a vector bundle of rank n−1.
This proves that Pa⊗b is trivial over the generic fiber. As Pa⊗b is a morphism of vector
bundles on a flat Ok-stack, we deduce that Pa⊗b = 0 identically on SPap.

If instead b is contained in F 0HdR
1 (A) then q(εb) = 0, and again Pa⊗b = 0. These

calculations prove that P factors through Lie(A)⊗ Lie(A).
Now pullback to SKra. We need to check that Pa⊗b vanishes if either of a or b lies

in FA. Once again it suffices to check this in the generic fiber, where it is clear from

(2.4.4) FA = ker(ε : Lie(A)→ Lie(A)).

Over SKra we now have a factorization (2.4.3), and it only remains to check that
its restriction to (2.3.3) is an isomorphism. For this, it suffices to verify that (2.4.3)
is surjective on the fiber at any geometric point

s = Spec(F)→ SKra \ Exc.
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First suppose that char(F) is prime to D. In this case ε, ε ∈ Ok ⊗Z F are (up
to scaling by F×) orthogonal idempotents, FAs = εLie(As), and we may choose an
Ok ⊗Z F-basis e1, . . . , en ∈ HdR

1 (As) in such a way that

εe1, εe2, . . . , εen ∈ F 0HdR
1 (As)

and
q(εe1), q(εe2), . . . , q(εen) ∈ Lie(As)

are F-bases. This implies that

Pe1⊗e1(e1 ∧ · · · ∧ en) = ψ(εe1, εe1) · q(εe1) ∧ q(εe2) ∧ · · · ∧ q(εen) 6= 0,

and so
Pe1⊗e1 ∈ Hom

(∧n
HdR

1 (As)/εH
dR
1 (As),

∧n
Lie(As)

)
is a generator. Thus P is surjective in the fiber at z.

Now suppose that char(F) divides D. In this case there is an isomorphism

F[x]/(x2)
x 7→ε=ε−−−−−→ Ok ⊗Z F.

By Theorem 2.3.4 the relation (2.4.4) holds in an étale neighborhood of s, and it
follows that we may choose an Ok ⊗Z F-basis e1, . . . , en ∈ HdR

1 (As) in such a way
that

e2, εe2, εe3, . . . , εen ∈ F 0HdR
1 (As)

and
q(e1), q(εe1), q(e3) . . . , q(en) ∈ Lie(As)

are F-bases. This implies that

Pe1⊗e1(e1 ∧ · · · ∧ en) = ψ(εe1, e2) · q(εe1) ∧ q(e1) ∧ q(e3) ∧ · · · ∧ q(en) 6= 0,

and so, as above, P is surjective in the fiber at z.

We now complete the proof of Theorem 2.4.3. To prove the existence part of the
claim, we define ΩPap by

Ω
−1
Pap = Lie(A0)⊗2 ⊗PPap,

and let ΩKra be its pullback via SKra → SPap. Tensoring both sides of (2.4.3) with
Lie(A0)⊗2 defines a morphism

ω
−2 → Ω

−1
Kra,

whose restriction to SKra \ Exc is an isomorphism. In particular ω
2 and ΩPap are

isomorphic over (2.3.3).
The uniqueness of ΩPap is clear: as Sing ⊂ SPap is a codimension ≥ 2 closed

substack of a normal stack, any line bundle on the complement of Sing admits at
most one extension to all of SPap.
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2.5. Special divisors. — Suppose S is a connected Ok-scheme, and

(A0, A) ∈ SPap(S).

Imitating the construction of (2.1.5), there is a positive definite hermitian form
on HomOk

(A0, A) defined by

(2.5.1) 〈x1, x2〉 = x∨2 ◦ x1 ∈ EndOk
(A0) ∼= Ok,

where
HomOk

(A0, A)
x 7→x∨−−−−→ HomOk

(A,A0)

is the Ok-conjugate-linear isomorphism induced by the principal polarizations on A0

and A.
For any positive m ∈ Z, define the Ok-stack ZPap(m) as the moduli stack assigning

to a connected Ok-scheme S the groupoid of triples (A0, A, x), where
— (A0, A) ∈ SPap(S),
— x ∈ HomOk

(A0, A) satisfies 〈x, x〉 = m.
Define a stack ZKra(m) in exactly the same way, but replacing SPap by SKra. Thus
we obtain a cartesian diagram

ZKra(m) //

��

SKra

��

ZPap(m) // SPap,

in which the horizontal arrows are relatively representable, finite, and unramified.
Each ZKra(m) is, étale locally on SKra, a disjoint union of Cartier divisors. More

precisely, around any geometric point of SKra one can find an étale neighborhood U
with the property that the morphism ZKra(m)U → U restricts to a closed immersion
on every connected component Z ⊂ ZKra(m)U , and Z ⊂ U is defined locally by
one equation; this is [24, Proposition 3.2.3], but a cleaner argument (working on the
Rapoport-Zink space corresponding to SKra) can be found in [25, Proposition 4.3].
Summing over all connected components Z allows us to view ZKra(m)U as a Cartier
divisor on U , and gluing as U varies over an étale cover defines a Cartier divisor
on SKra, which we again denote by ZKra(m).

Remark 2.5.1. — It follows from (2.3.3) and the paragraph above that ZPap(m) is
locally defined by one equation away from the singular locus, and so defines a Cartier
divisor on SPap \ Sing. This Cartier divisor does not extend to all of SPap.

Remark 2.5.2. — We can make the specal divisors more explicit in the complex fiber,
as in [34, Proposition 3.5] or [23, § 3.8]. Recall from § 2.1 that the Q-vector space
V = Homk(W0,W ) carries a quadratic form. Using the description

D ∼=
{
z ∈ εV (C) : [z, z] < 0

}
/C× ⊂ P(εV (C))

of Remark 2.1.2, every x ∈ V with Q(x) > 0 determines an analytic divisor

D(x) = {z ∈ D : [z, x] = 0}.
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A choice of g ∈ G(Af ) determines a connected component

(G(Q) ∩ gKg−1)\D z 7→(z,g)−−−−−→ G(Q)\D×G(Af )/K ∼= SKra(C),

and if we set
L = HomOk

(ga0, ga) ⊂ V
the restriction of ZKra(m)(C)→ SKra(C) to this component is

(G(Q) ∩ gKg−1)\
⊔
x∈L

Q(x)=m

D(x)→ (G(Q) ∩ gKg−1)\D.

The following theorem, whose proof will occupy the remainder of § 2.5, shows
that ZKra(m) is closely related to another Cartier divisor on SKra that descends
to SPap. This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.3. — For every m > 0 there is a unique Cartier divisor YPap(m) on SPap

whose restriction to SPap \ Sing agrees with 2ZPap(m). In particular its pullback
YKra(m) via SKra → SPap agrees with 2ZKra(m) over SKra \ Exc.

Proof. — The map ZPap(m) → SPap is finite, unramified, and relatively repre-
sentable. It follows that every geometric point of SPap admits an étale neighborhood
U → SPap such that U is a scheme, and the morphism

ZPap(m)U → U

restricts to a closed immersion on every connected component

Z ⊂ ZPap(m)U .

We will construct a Cartier divisor on any such U , and then glue them together as U
varies over an étale cover to obtain the divisor YPap(m).

Fix Z as above, let I ⊂ OU be its ideal sheaf, and let Z ′ be the closed subscheme
of U defined by the ideal sheaf I2. Thus we have closed immersions

Z ⊂ Z ′ ⊂ U,

the first of which is a square-zero thickening.
By the very definition of ZPap(m), along Z there is a universal Ok-linear map

x : A0Z → AZ . This map does not extend to a map A0Z′ → AZ′ , however, by
deformation theory [40, Chapter 2.1.6] the induced Ok-linear morphism of vector
bundles

x : HdR
1 (A0Z)→ HdR

1 (AZ)

admits a canonical extension to

(2.5.2) x′ : HdR
1 (A0Z′)→ HdR

1 (AZ′).

Recalling the morphism (2.4.2), define Y ⊂ Z ′ as the largest closed subscheme over
which the composition

(2.5.3) HdR
1 (A0Z′)⊗HdR

1 (A0Z′)
x′⊗x′−−−−→ HdR

1 (AZ′)⊗HdR
1 (AZ′)

P−→ PPap|Z′
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vanishes.

Lemma 2.5.4. — If U → SPap factors through SPap \ Sing, then Y = Z ′.

Proof. — Lemma 2.4.5 provides us with a commutative diagram

HdR
1 (A0Z′)

⊗2 x′⊗x′
//

(2.5.3)
,,

HdR
1 (AZ′)

⊗2 q⊗q
//
(
Lie(AZ′)/FAZ′

)⊗2

∼=
��

PPap|Z′ ,

where
FAZ′ = ker(ε : Lie(AZ′)→ Lie(AZ′))

as in Theorem 2.3.4.
By deformation theory, Z ⊂ Z ′ is characterized as the largest closed subscheme

over which (2.5.2) respects the Hodge filtrations. Using Remark 2.3.5, it is easily seen
that Z ⊂ Z ′ can also be characterized as the largest closed subscheme over which

H1(A0Z′)
q◦x′−−−→ Lie(AZ′)/FAZ′

vanishes identically. As Z ⊂ Z ′ is a square zero thickening, it follows first that the
horizontal composition in the above diagram vanishes identically, and then that (2.5.3)
vanishes identically. In other words Y = Z ′.

Lemma 2.5.5. — The closed subscheme Y ⊂ U is defined locally by one equation.

Proof. — Fix a closed point y ∈ Y of characteristic p, let OU,y be the local ring of U
at y, and let m ⊂ OU,y be the maximal ideal. For a fixed k > 0, let

U = Spec(OU,y/m
k) ⊂ U

be the k-th order infinitesimal neighborhood of y in U . The point of passing to
the infinitesimal neighborhood is that p is nilpotent in OU , and so we may apply
Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

��

Z // Z ′ // U.

Applying the fiber product ×UU throughout the diagram, we obtain closed immer-
sions

Y

��

Z // Z ′ // U
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of Artinian schemes. As k is arbitrary, it suffices to prove that Y ⊂ U is defined by
one equation.

First suppose that p - D. In this case U → U → SPap factors through the nonsingu-
lar locus (2.3.3). It follows from Remark 2.5.1 that Z ⊂ U is defined by one equation,
and Z ′ is defined by the square of that equation. By Lemma 2.5.4, Y ⊂ U is also
defined by one equation.

For the remainder of the proof we assume that p | D. In particular p > 2. Consider
the closed subscheme Z ′′ ↪→ U with ideal sheaf I3, so that we have closed immersions
Z ⊂ Z ′ ⊂ Z ′′ ⊂ U. Taking the fiber product with U , the above diagram extends to

Y

��

Z // Z ′ // Z ′′ // U .

As p > 2, the cube zero thickening Z ⊂ Z ′′ admits divided powers extending the
trivial divided powers on Z ⊂ Z ′. Therefore, by Grothendieck-Messing theory, the
restriction of (2.5.2) to

x′ : HdR
1 (A0Z′)→ HdR

1 (AZ′)

admits a canonical extension to

x′′ : HdR
1 (A0Z′′)→ HdR

1 (AZ′′).

Define Y ′ ⊂ Z ′′ as the largest closed subscheme over which

(2.5.4) HdR
1 (A0Z′′)⊗HdR

1 (A0Z′′)
x′′⊗x′′−−−−→ HdR

1 (AZ′′)⊗HdR
1 (AZ′′)

P−→ PPap|Z′′
vanishes identically, so that there are closed immersions

Y

��

// Y ′

��

Z // Z ′ // Z ′′ // U .

We pause the proof of Lemma 2.5.5 for a sub-lemma.

Lemma 2.5.6. — We have Y = Y ′.

Proof. — As in the proof of Lemma 2.5.4, we may characterize Z ⊂ Z ′′ as the
largest closed subscheme along which x′′ respects the Hodge filtrations. Equivalently,
by Remark 2.3.5, Z ⊂ Z ′′ is the largest closed subscheme over which the composition

HdR
1 (A0Z′′)

x′′◦ε−−−→ HdR
1 (AZ′′)

q−→ Lie(AZ′′)

vanishes identically. This implies that Z ′ ⊂ Z ′′ is the largest closed subscheme over
which

(2.5.5) HdR
1 (A0Z′′)

⊗2 (x′′◦ε)⊗2

−−−−−−→ HdR
1 (AZ′′)

⊗2 q⊗2

−−→ Lie(AZ′′)
⊗2

vanishes identically.
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It follows directly from the definitions that Y = Y ′ ∩ Z ′, and hence it suffices to
show that Y ′ ⊂ Z ′. In other words, it suffices to show that the vanishing of (2.5.4)
implies the vanishing of (2.5.5).

For local sections a and b of H1(AZ′′), define

Qa⊗b : F 0HdR
1 (AZ′′)⊗

∧n−1
Lie(AZ′′)→

∧n
Lie(AZ′′)

by
Qa⊗b(e1 ⊗ q(e2) ∧ · · · ∧ q(en)) = ψ(a, e1) · q(b) ∧ q(e2) ∧ · · · ∧ q(en).

It is clear that Qa⊗b depends only on the images of a and b in Lie(AZ′′), and that
this construction defines an isomorphism

(2.5.6) Lie(AZ′′)
⊗2 Q−→ Hom

(
F 0HdR

1 (AZ′′)⊗
∧n−1

Lie(AZ′′),
∧n

Lie(AZ′′)
)
.

It is related to the map

Lie(AZ′′)
⊗2 P−→ Hom

(∧n
HdR

1 (AZ′′)/εH
dR
1 (AZ′′),

∧n
Lie(AZ′′)

)
of Lemma 2.4.5 by

Pa⊗b(e1 ∧ · · · ∧ en) = Qεa⊗εb(e1 ⊗ q(e2) ∧ · · · ∧ q(en))

for any local section e1 ⊗ e2 ⊗ · · · ⊗ en of

F 0HdR
1 (AZ′′)⊗HdR

1 (AZ′′)⊗ · · · ⊗HdR
1 (AZ′′).

Putting everything together, if (2.5.4) vanishes, then Px′′(a0)⊗x′′(b0) = 0 for all local
sections a0 and b0 of HdR

1 (A0Z′′). Therefore

Qx′′(εa0)⊗x′′(εb0) = 0

for all local sections a0 and b0, which implies, as (2.5.6) is an isomorphism, that (2.5.5)
vanishes. This proves that Y ′ ⊂ Z ′, and hence Y = Y ′.

Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing defines
Y ′ ⊂ Z ′′, factors through a morphism of line bundles

HdR
1 (A0Z′′)/εH

dR
1 (A0Z′′)⊗HdR

1 (A0Z′′)/εH
dR
1 (A0Z′′)→ PPap|Z′′ ,

and hence Y = Y ′ is defined inside of Z ′′ locally by one equation. In other words,
if we denote by I ⊂ OU and J ⊂ OU the ideal sheaves of Z ⊂ U and Y ⊂ U ,
respectively, then I3 is the ideal sheaf of Z ′′ ⊂ U , and

J = (f) + I
3

for some f ∈ OU . But Y ⊂ Z ′ implies that I2 ⊂ J, and hence I3 ⊂ IJ. It follows
that the image of f under the composition

J/I
3 → J/IJ→ J/mJ

is an OU -module generator, and J is principal by Nakayama’s lemma.
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At last we can complete the proof of Theorem 2.5.3. For each connected component
Z ⊂ ZPap(m)U we have now defined a closed subscheme Y ⊂ Z ′. By Lemma 2.5.5 it
is an effective Cartier divisor, and summing these Cartier divisors as Z varies over all
connected components yields an effective Cartier divisor YPap(m)U on U . Letting U
vary over an étale cover and applying étale descent defines an effective Cartier divisor
YPap(m) on SPap.

The Cartier divisor YPap(m) just defined agrees with 2ZPap(m) on SPap \ Sing.
This is clear from Lemma 2.5.4 and the definition of YPap(m). The uniqueness claim
follows from the normality of SPap, exactly as in the proof of Theorem 2.4.3.

2.6. Pullbacks of Cartier divisors. — After Theorem 2.4.3 we have two line bundles
ΩKra and ω

2 on SKra, which agree over the complement of the exceptional locus Exc.
We wish to pin down more precisely the relation between them.

Similarly, after Theorem 2.5.3 we have Cartier divisors YKra(m) and 2ZKra(m).
These agree on the complement of Exc, and again we wish to pin down more precisely
the relation between them.

Denote by π0(Sing) the set of connected components of the singular locus Sing ⊂
SPap. For each s ∈ π0(Sing) there is a corresponding irreducible effective Cartier
divisor

Excs = Exc×SPap
s ↪→ SKra

supported in a single characteristic dividing D. These satisfy

Exc =
⊔

s∈π0(Sing)

Excs.

Remark 2.6.1. — As Sing is a reduced 0-dimensional stack of finite type over Ok/d,
each s ∈ π0(Sing) can be realized as the stack quotient

s ∼= Gs\Spec(Fs)

for a finite field Fs of characteristic p | D acted on by a finite group Gs.

Fix a geometric point Spec(F)→ s, and set p = char(F). By mild abuse of notation
this geometric point will again be denoted simply by s. It determines a pair

(2.6.1) (A0,s, As) ∈ SPap(F),

and hence a positive definite hermitian Ok-module

Ls = HomOk
(A0,s, As)

as in (2.5.1). This hermitian lattice depends only on s ∈ π0(Sing), not on the choice
of geometric point above it.

Proposition 2.6.2. — For each s ∈ π0(Sing) the abelian varieties A0s and As are su-
persingular, and there is an Ok-linear isomorphism of p-divisible groups

(2.6.2) As[p
∞] ∼= A0s[p

∞]× · · · × A0s[p
∞]︸ ︷︷ ︸

n times
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identifying the polarization on the left with the product polarization on the right. More-
over, the hermitian Ok-module Ls is self-dual of rank n.

Proof. — Certainly A0s is supersingular, as p is ramified in Ok ⊂ End(A0s).
Denote by p ⊂ Ok be the unique prime above p. Let W = W (F) be the Witt ring

of F, and let Fr ∈ Aut(W ) be the unique continuous lift of the p-power Frobenius
on F. Let D(W ) denote the covariant Dieudonné module of As, endowed with its
operators F and V satisfying FV = p = V F . The Dieudonné module is free of rank n
over Ok ⊗Z W , and the short exact sequence

0→ F 0HdR
1 (As)→ HdR

1 (As)→ Lie(As)→ 0

of F-modules is identified with

0→ V D(W )/pD(W )→ D(W )/pD(W )→ D(W )/V D(W )→ 0.

As D is odd, the element δ ∈ Ok fixed in § 1.7 satisfies ordp(δ) = 1. This implies
that

δ · D(W ) = V D(W ).

Indeed, by Theorem 2.3.2 the Lie algebra Lie(As) is annihilated by δ, and hence
δ · D(W ) ⊂ V D(W ). Equality holds as

dimF
(
D(W )/δ · D(W )

)
= n = dimF

(
D(W )/V D(W )

)
.

Denote by N ⊂ D(W ) the set of fixed points of the Fr-semilinear bijection

V −1 ◦ δ : D(W )→ D(W ).

It is a free Ok,p-module of rank n endowed with an isomorphism

D(W ) ∼= N ⊗Zp W

identifying V = δ ⊗ Fr−1. Moreover, the alternating form ψ on D(W ) induced by the
polarization on As has the form

ψ(n1 ⊗ w1, n2 ⊗ w2) = w1w2 · Trk/Q

(
h(n1, n2)

δ

)
for a perfect hermitian pairing h : N × N → Ok,p. By diagonalizing this hermitian
form, we obtain an orthogonal decomposition of N into rank one hermitian Ok,p-mod-
ules, and tensoring this decomposition with W yields a decomoposition of D(W ) as
a direct sum of principally polarized Dieudonné modules, each of height 2 and slope
1/2. This corresponds to a decomposition (2.6.2) on the level of p-divisible groups.

In particular, As is supersingular, and hence is isogenous to n copies of A0s. Using
the Noether-Skolem theorem, this isogeny may be chosen to be Ok-linear. It follows
first that Ls has Ok-rank n, and then that the natural map

Ls ⊗Z Zq ∼= HomOk
(A0s[q

∞], As[q
∞])

is an isomorphism of hermitian Ok,q-modules for every rational prime q. It is easy to
see, using (2.6.2) when q = p, that the hermitian module on the right is self-dual, and
hence the same is true for Ls ⊗Z Zq.

ASTÉRISQUE 421



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

MODULARITY OF UNITARY GENERATING SERIES 39

The remainder of § 2.6 is devoted to proving the following result.

Theorem 2.6.3. — There is an isomorphism

ω
2 ∼= ΩKra ⊗O(Exc)

of line bundles on SKra, as well as an equality

2ZKra(m) = YKra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

of Cartier divisors.

Proof. — Recall from the proof of Theorem 2.4.3 the morphism

ω
−2

Ω
−1
Kra

Lie(A0)⊗2 ⊗ (Lie(A)/FA))⊗2
(2.4.3)

// Lie(A0)⊗2 ⊗PKra,

whose restriction to SKra \ Exc is an isomorphism. If we view this morphism as a
global section

(2.6.3) σ ∈ H0(SKra,ω
2 ⊗Ω

−1
Kra),

then

(2.6.4) div(σ) =
∑

s∈π0(Sing)

`s(0) · Excs

for some integers `s(0) ≥ 0, and hence

(2.6.5) ω
2 ⊗Ω

−1
Kra
∼=

⊗
s∈π0(Sing)

O(Excs)
⊗`s(0).

We must show that each `s(0) = 1.
Similarly, suppose m > 0. It follows from Theorem 2.5.3 that

(2.6.6) 2ZKra(m) = YKra(m) +
∑

s∈π0(Sing)

`s(m) · Excs

for some integers `s(m). Moreover, it is clear from the construction of YKra(m)

that 2ZKra(m)−YKra(m) is effective, and so `s(m) ≥ 0. We must show that

`s(m) = #{x ∈ Ls : 〈x, x〉 = m}.

Fix s ∈ π0(Sing), and let Spec(F) → s, p = char(F), and (A0s, As) ∈ SPap(F) be
as in (2.6.1). Let W = W (F) be the Witt ring of F, and set W = Ok ⊗Z W . It is a
complete discrete valuation ring of absolute ramification degree 2. Fix a uniformizer
$ ∈W. As p is odd, the quotient map

W→W/$W = F

admits canonical divided powers.
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Denote by D0 and D the Grothendieck-Messing crystals of A0s and As, respectively.
Evaluation of the crystals (5) along the divided power thickening W → F yields free
Ok⊗ZW-modules D0(W) and D(W) endowed with alternatingW-bilinear forms ψ0

and ψ, and Ok-linear isomorphisms

D0(W)/$D0(W) ∼= D0(F) ∼= HdR
1 (A0s)

and
D(W)/$D(W) ∼= D(F) ∼= HdR

1 (As).

The W -modules D0(W ) and D(W ) are canonically identified with the covariant
Dieudonné modules of A0s and As, respectively. The operators F and V on these
Dieudonné modules induce operators, denoted the same way, on

D0(W) ∼= D0(W )⊗W W, D(W) ∼= D(W )⊗W W.

For any elements y1, . . . , yk in an Ok ⊗Z W-module, let 〈y1, . . . , yk〉 be the
Ok ⊗Z W-submodule generated by them. Recall from § 1.7 the elements

ε, ε ∈ Ok ⊗Z W.

Lemma 2.6.4. — There is an Ok ⊗Z W-basis e0 ∈ D0(W) such that

F D0(W)
def
= 〈εe0〉 ⊂ D0(W)

is a totally isotropic W-module direct summand lifting the Hodge filtration on D0(F),
and such that V e0 = δe0.

Similarly, there is an Ok ⊗Z W-basis e1, . . . , en ∈ D(W) such that

F D(W)
def
= 〈εe1, εe2, . . . , εen〉 ⊂ D(W)

is a totally isotropic W-module direct summand lifting the Hodge filtration on D(F).
This basis may be chosen so that V ek+1 = δek, where the indices are understood
in Z/nZ, and also so that

ψ
(
〈ei〉, 〈ej〉

)
=

{
W if i = j,

0 otherwise.

Proof. — As in the proof of Proposition 2.6.2, we may identify

D0(W ) ∼= N0 ⊗Zp W

for some free Ok,p-module N0 of rank 1, in such a way that V = δ⊗Fr−1, and the al-
ternating form on D0(W ) arises as the W -bilinear extension of an alternating form ψ0

on N0. Any Ok,p-generator e0 ∈ N0 determines a generator of the Ok,p ⊗Zp W-mod-
ule

D0(W) ∼= N0 ⊗Zp W,

(5) If p = 3, the divided powers on W → F are not nilpotent, and so we cannot evaluate the
usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2 implies that the
p-divisible groups of A0s and As are formal, and Zink’s theory of displays [54] can be used as a
substitute.

ASTÉRISQUE 421



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

MODULARITY OF UNITARY GENERATING SERIES 41

which, using Remark 2.3.5 has the desired properties.
Now set N = N0 ⊕ · · · ⊕ N0 (n copies), so that, by Proposition 2.6.2, there is an

isomorphism
D(W ) ∼= N ⊗Zp W

identifying V = δ ⊗ Fr−1, and the alternating bilinear form on D(W ) arises from an
alternating form ψ on N . Let Zpn ⊂W be the ring of integers in the unique unramified
degree n extension of Qp, and fix an action

ι : Zpn → EndOk,p
(N)

in such a way that ψ(ι(α)x, y) = ψ(x, ι(α)y) for all α ∈ Zpn .
There is an induced decomposition

D(W ) ∼=
⊕

k∈Z/nZ

D(W )k,

where
D(W )k = {e ∈ D(W ) : ∀α ∈ Zpn , ι(α) · e = Frk(α) · e}

is free of rank one over Ok ⊗Z W . Now pick any Zpn -module generator e ∈ N , view
it as an element of D(W ), and let ek ∈ D(W )k be its projection to the kth summand.
This gives an Ok⊗ZW -basis e1, . . . , en ∈ D(W ), which determines an Ok⊗ZW-basis
of D(W) with the required properties.

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of the Hodge
filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) (Ã0s, Ãs) ∈ SPap(W)

of the pair (A0s, As). These come with canonical identifications

HdR
1 (Ã0s) ∼= D0(W), HdR

1 (Ãs) ∼= D(W),

under which the Hodge filtrations correspond to the filtrations chosen in Lemma 2.6.4.
In particular, the Lie algebra of Ãs is

Lie(Ãs) ∼= D(W)/F D(W) = 〈e1, e2, . . . , en〉/〈εe1, εe2, . . . , εen〉.

The W-module direct summand

FÃs = 〈e2, . . . , en〉/〈εe2, . . . , εen〉

satisfies Krämer’s condition (§ 2.3), and so determines a lift of (2.6.7) to

(Ã0s, Ãs) ∈ SKra(W).

To summarize: starting from a geometric point Spec(F) → s, we have used
Lemma 2.6.4 to construct a commutative diagram

(2.6.8) Spec(F)

��

// Excs

��

// s

��

Spec(W) // SKra
// SPap.
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Lemma 2.6.5. — The pullback of the map (2.4.3) via Spec(W)→ SKra vanishes iden-
tically along the closed subscheme Spec(W/$W), but not along Spec(W/$2W).

Proof. — The W-submodule of

(2.6.9) Lie(Ãs) ∼= D(W)/〈εe1, εe2, . . . , εen〉

generated by e1 is Ok-stable. The action of Ok ⊗Z W on this W-line is via

Ok ⊗Z W
α⊗x 7→iW(α)x−−−−−−−−−→W

(where iW : Ok →W is the inclusion), and this map sends ε to a uniformizer of W;
see § 1.7. Thus the quotient map q : D(W)→ Lie(Ãs) satisfies q(εe1) = $q(e1) up to
multiplication by an element of W×. It follows that

Pe1⊗e1(e1 ∧ · · · ∧ en) = $ · ψ(εe1, e1) · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

up to scaling by W×.
We claim that ψ(εe1, e1) ∈ W×. Indeed, as q(e1) generates a W-module direct

summand of (2.6.9), there is some

x ∈ F D(W) = 〈εe1, εe2, . . . , εen〉 ⊂ D(W),

such that ψ(x, e1) ∈ W×. We chose our basis in Lemma 2.6.4 in such a way
that ψ(εei, e1) = 0 for i > 1. It follows that ψ(εe1, e1) is a unit, and hence the same
is true for ψ(εe1, e1) = ψ(e1, εe1) = −ψ(εe1, e1).

We have now proved that

Pe1⊗e1(e1 ∧ · · · ∧ en) = $ · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

up to scaling by W×, from which it follows that

Pe1⊗e1(e1 ∧ · · · ∧ en) ∈
∧n

Lie(Ãs)

is divisible by $, but not by $2.
The quotient

HdR
1 (Ãs)/εH

dR
1 (Ãs) ∼= D(W)/〈εe1, . . . , εen〉

is generated as a W-module by e1, . . . , en. From the calculation of the previous para-
graph, it now follows that Pe1⊗e1 ∈ PKra|Spec(W) is divisible by $ but not by $2.
The quotient

Lie(Ãs)/FÃs
∼= D(W)/〈εe1, e2, . . . , en〉

is generated as a W-module by the image of e1, and we at last deduce that

P ∈ Hom
(
(Lie(A)/FA)⊗2,PKra

)
|Spec(W)

is divisible by $ but not by $2.
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Recall the global section σ of (2.6.3). It follows immediately from Lemma 2.6.5
that its pullback via Spec(W)→ SKra has divisor Spec(W/$W), and hence

Spec(W)×SKra
div(σ) = Spec(W/$W).

Comparison with (2.6.4) proves both that `s(0) = 1, and that

(2.6.10) Spec(W)×SKra
Excs = Spec(W/$W).

Recalling (2.6.5), this completes the proof that

ω
2 ∼= ΩKra ⊗O(Exc).

It remains to prove the second claim of Theorem 2.6.3. Given any x ∈ Ls =
HomOk

(A0s, As), denote by k(x) the largest integer such that x lifts to a morphism

Ã0s ⊗WW/($k(x))→ Ãs ⊗WW/($k(x)).

Lemma 2.6.6. — As Cartier divisors on Spec(W), we have

ZKra(m)×SKra
Spec(W) =

∑
x∈Ls
〈x,x〉=m

Spec(W/$k(x)W).

Proof. — Each x ∈ Ls with 〈x, x〉 = m determines a geometric point

(2.6.11) (A0z, Az, x) ∈ ZKra(m)(F)

and surjective morphisms

OSKra,x

yy ##

OZKra(m),x W,

where OZKra(m),x is the étale local ring at (2.6.11), OSKra,x is the étale local ring at
the point below it, and the arrow on the right is induced by the map Spec(W)→ SKra

of (2.6.8). There is an induced isomorphism of W-schemes

OZKra(m),x ⊗OSKra,x
W ∼= W/($k(x))

and the claim follows by summing over x.

Lemma 2.6.7. — As Cartier divisors on Spec(W), we have

YKra(m)×SKra
Spec(W) =

∑
x∈Ls
〈x,x〉=m

Spec(W/$2k(x)−1W).

Proof. — Each x ∈ Ls = HomOk
(A0s, As) with 〈x, x〉 = m induces a morphism of

crystals D0 → D, and hence a map

D0(W)
x−→ D(W)
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respecting the F and V operators. By Grothendieck-Messing deformation theory, the
integer k(x) is characterized as the largest integer such that the composition

F 0HdR
1 (Ã0s)

⊂
// HdR

1 (Ã0s)
x // HdR

1 (Ãs)
q

// Lie(Ãs)

εD0(W)
⊂

// D0(W)
x // D(W) // D(W)

〈εe1,εe2,...,εen〉

vanishes modulo $k(x). In other words the composition

HdR
1 (Ã0s)

x◦ε−−→ HdR
1 (Ãs)

q−→ Lie(Ãs)

vanishes modulo $k(x), but not modulo $k(x)+1.
Using the bases of Lemma 2.6.4, we expand

x(e0) = a1e1 + · · ·+ anen

with a1, . . . , an ∈ Ok ⊗Z W. The condition that x respects V implies that a1 = · · · = an.
Let us call this common value a, so that

q(x(εe0)) = ε · q(ae1 + · · ·+ aen) = aε · q(e1)

in Lie(Ãs). By the previous paragraph, this element is divisible by $k(x) but not
by $k(x)+1, and so

(2.6.12) q(aεe1) = $k(x)q(e1)

up to scaling by W×.
On the other hand, the submodule of Lie(Ãs) generated by q(e1) is isomorphic

to (Ok ⊗Z W)/〈ε〉 ∼= W, and ε acts on this quotient by a uniformizer in W. Thus

(2.6.13) εq(e1) = $q(e1)

up to scaling by W×.
Combining (2.6.12) and (2.6.13) shows that, up to scaling by W×,

aε = $k(x)−1ε

in the quotient (Ok ⊗Z W)/〈ε〉. By the injectivity of the quotient map
〈ε〉 → (Ok ⊗Z W)/〈ε〉, this same equality holds in 〈ε〉 ⊂ Ok ⊗Z W. Using this
and (2.6.12), we compute

Px(e0)⊗x(e0)(e1 ∧ · · · ∧ en) = ψ(aεe1, e1) · q(aεe1) ∧ q(e2) ∧ · · · ∧ q(en)

= $2k(x)−1 · ψ(εe1, e1) · q(e1) ∧ q(e2) ∧ · · · ∧ q(en)

= $2k(x)−1 · q(e1) ∧ q(e2) ∧ · · · ∧ q(en),

up to scaling by W×. Here, as in the proof of Lemma 2.6.5, we have used
ψ(εe1, e1) ∈W×.
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This calculation shows that the composition

HdR
1 (Ã0s)

⊗2 x⊗x
// HdR

1 (Ãs)
⊗2 P // P|Spec(W)

vanishes modulo $2k(x)−1, but not modulo $2k(x), and the remainder of the proof
is the same as that of Lemma 2.6.6: comparing with the definition of YKra(m), see
especially (2.5.3), shows that

OYKra(m),x ⊗OSKra,x
W ∼= W/($2k(x)−1),

and summing over all x proves the claim.

Combining Lemmas 2.6.6 and 2.6.7 shows that

Spec(W)×SKra

(
2ZKra(m)−YKra(m)

)
=

∑
x∈Ls
〈x,x〉=m

Spec(W/$W)

as Cartier divisors on Spec(W). We know from (2.6.10) that

Spec(W)×SKra
Exct =

{
Spec(W/$W) if t = s,

0 if t 6= s

and comparison with (2.6.6) shows that

`s(m) = #{x ∈ Ls : 〈x, x〉 = m},

completing the proof of Theorem 2.6.3.

3. Toroidal compactification

In this section we describe canonical toroidal compactifications

SKra
//

��

S∗Kra

��

SPap
// S∗Pap

and the structure of their formal completions along the boundary. Using this descrip-
tion, we define Fourier-Jacobi expansions of modular forms.

The existence of toroidal compactifications with reasonable properties is not a
new result. In fact the proof of Theorem 3.7.1, which asserts the existence of good
compactifications of SPap and SKra, simply refers to [24]. Of course [loc. cit.] is itself
a very modest addition to the established literature [17, 40, 41, 49]. Because of this,
the reader is perhaps owed a few words of explanation as to why § 3 is so long.

It is well-known that the boundary charts used to construct toroidal compactifica-
tions of PEL-type Shimura varieties are themselves moduli spaces of 1-motives (or,
what is nearly the same thing, degeneration data in the sense of [17]). This moduli
interpretation is explained in § 3.3.
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It is a special feature of our particular Shimura variety Sh(G,D) that the bound-
ary charts have a second, very different, moduli interpretation. This second moduli
interpretation is explained in § 3.4. In some sense, the main result of § 3 is not Theo-
rem 3.7.1 at all, but rather Proposition 3.4.4, which proves the equivalence of the two
moduli problems.

The point is that our goal is to eventually study the integrality and rationality
properties of Fourier-Jacobi expansions of Borcherds products on the integral models
of Sh(G,D). A complex analytic description of these Fourier-Jacobi expansions can be
deduced from [32], but it is not a priori clear how to deduce integrality and rationality
properties from these purely complex analytic formulas.

To do so, we will exploit the fact that the formulas of [32] express the Fourier-Jacobi
coefficients in terms of the classical Jacobi theta function. The Jacobi theta function
can be viewed as a section of a line bundle on the universal elliptic curve fibered over
the modular curve, and when interpreted in this way it has known integrality and
rationality properties (this is explained in § 5.1).

By converting the moduli interpretation of the boundary charts from 1-motives to
an interpretation that makes explicit reference to the universal elliptic curve and the
line bundles that live over it, the integrality and rationality properties of the Fourier-
Jacobi coefficients can be deduced, ultimately, from those of the classical Jacobi theta
function.

3.1. Cusp label representatives. — Recall that W0 and W are k-hermitian spaces of
signatures (1, 0) and (n− 1, 1), respectively, with n ≥ 2. Tautologically, the subgroup

G ⊂ GU(W0)×GU(W )

acts on both W0 and W . If J ⊂W is an isotropic k-line, its stabilizer P = StabG(J)

in G is a parabolic subgroup. This establishes a bijection between isotropic k-lines
inW and proper parabolic subgroups of G. If n > 2 then such isotropic k-lines always
exist.

Definition 3.1.1. — A cusp label representative for (G,D) is a pair Φ = (P, g) in which
g ∈ G(Af ) and P ⊂ G is a parabolic subgroup. If P = StabG(J) for an isotropic k-line
J ⊂W , we call Φ a proper cusp label representative. If P = G we call Φ an improper
cusp label representative.

For each cusp label representative Φ = (P, g) there is a distinguished normal sub-
group QΦ C P . If P = G we simply take QΦ = G. If P = StabG(J) for an isotropic
k-line J ⊂W then, following the recipe of [47, § 4.7], we define QΦ as the fiber product

(3.1.1) QΦ
νΦ //

��

Resk/QGm

a 7→(a,Nm(a),a,id)

��

P // GU(W0)×GL(J)×GU(J⊥/J)×GL(W/J⊥).
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The morphism G → GU(W ) restricts to an injection QΦ ↪→ GU(W ), as the action
of QΦ on J⊥/J determines its action on W0.

Let K ⊂ G(Af ) be the compact open subgroup (2.1.3). Any cusp label represen-
tative Φ = (P, g) determines compact open subgroups

KΦ = gKg−1 ∩QΦ(Af ), K̃Φ = gKg−1 ∩ P (Af ),

and a finite group

(3.1.2) ∆Φ =
(
P (Q) ∩QΦ(Af )K̃Φ

)
/QΦ(Q).

Definition 3.1.2. — Two cusp label representatives Φ = (P, g) and Φ′ = (P ′, g′) are
K-equivalent if there exist γ ∈ G(Q), h ∈ QΦ(Af ), and k ∈ K such that

(P ′, g′) = (γPγ−1, γhgk).

One may easily verify that this is an equivalence relation. Obviously, there is a unique
K-equivalence class of improper cusp label representatives.

From now through § 3.6, we fix a proper cusp label representative Φ = (P, g),
with P ⊂ G the stabilizer of an isotropic k-line J ⊂ W . There is an induced weight
filtration wtiW ⊂W defined by

0 ⊂ J ⊂ J⊥ ⊂ W

wt−3W ⊂ wt−2W ⊂ wt−1W ⊂ wt0W

and an induced weight filtration on V = Homk(W0,W ) defined by

Homk(W0, 0) ⊂ Homk(W0, J) ⊂ Homk(W0, J
⊥) ⊂ Homk(W0,W )

wt−2V ⊂ wt−1V ⊂ wt0V ⊂ wt1V .

It is easy to see that wt−1V is an isotropic k-line, whose orthogonal with respect to
(2.1.5) is wt0V . Denote by griW = wtiW/wti−1W the graded pieces, and similarly
for V .

The Ok-lattice ga ⊂W determines an Ok-lattice

gri(ga) =
(
ga ∩ wtiW

)
/
(
ga ∩ wti−1W

)
⊂ griW.

The middle graded piece gr−1(ga) is endowed with a positive definite self-dual hermi-
tian form, inherited from the self-dual hermitian form on ga appearing in the proof
of Proposition 2.1.1. The outer graded pieces

(3.1.3) m = gr−2(ga), n = gr0(ga)
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are projective rank one Ok-modules (6), endowed with a perfect Z-bilinear pairing
m⊗Z n→ Z inherited from the perfect symplectic form on ga appearing in the proof
of Proposition 2.2.1.

Remark 3.1.3. — The isometry class of ga as a hermitian lattice is determined by the
isomorphism classes of m and n as Ok-modules and the isometry class of gr−1(ga) as
a hermitian lattice. This follows from the proof of [24, Proposition 2.6.3], which shows
that one can find a splitting (7)

ga ∼= gr−2(ga)⊕ gr−1(ga)⊕ gr0(ga),

in such a way that the outer summands are totally isotropic, and each is orthogonal
to the middle summand.

Exactly as in (2.1.4), there is a k-conjugate linear isomorphism

Homk(W0, gr−1W )
x 7→x∨−−−−→ Homk(gr−1W,W0).

If we define

L0 = HomOk
(ga0, gr−1(ga))(3.1.4)

Λ0 = HomOk
(gr−1(ga), ga0),

then x 7→ x∨ restricts to an Ok-conjugate linear isomorphism L0
∼= Λ0. These are,

in a natural way, positive definite self-dual hermitian lattices. For x1, x2 ∈ L0 the
hermitian form on L0 is defined, as in (2.1.5), by

〈x1, x2〉 = x∨1 ◦ x2 ∈ EndOk
(ga0) ∼= Ok,

while the hermitian form on Λ0 is defined by

〈x∨2 , x∨1 〉 = 〈x1, x2〉.

Lemma 3.1.4. — Two proper cusp label representatives Φ and Φ′ are K-equivalent if
and only if Λ0

∼= Λ′0 as hermitian Ok-modules and n ∼= n′ as Ok-modules. Moreover,
the finite group (3.1.2) satisfies

(3.1.5) ∆Φ
∼= U(Λ0)×GLOk

(n).

Proof. — The first claim is an elementary exercise, left to the reader. For the second
claim we only define the isomorphism (3.1.5), and again leave the details to the reader.
The group P (Q) acts on both W0 and W , preserving their weight filtrations, and so
acts on both the hermitian space Homk(gr−1W,W0) and the k-vector space gr0W .
The subgroup P (Q) ∩QΦ(Af )K̃Φ preserves the lattices

Λ0 ⊂ Homk(gr−1W,W0)

and n ⊂ gr0W , inducing (3.1.5).

(6) In fact m ∼= n as Ok-modules, but identifying them can only lead to confusion.
(7) This uses our standing assumption that k has odd discriminant.
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3.2. Mixed Shimura varieties. — The subgroup QΦ(R) ⊂ G(R) acts on

DΦ(W ) = {k-stable R-planes y ⊂W (R) : W (R) = J⊥(R)⊕ y},

and so also acts on
DΦ = D(W0)×DΦ(W ).

The hermitian domain of (2.1.2) satisifies D(W ) ⊂ DΦ(W ), and hence there is a
canonical QΦ(R)-equivariant inclusion D ⊂ DΦ.

The mixed Shimura variety

(3.2.1) Sh(QΦ,DΦ)(C) = QΦ(Q)\DΦ ×QΦ(Af )/KΦ

admits a canonical model Sh(QΦ,DΦ) over k by the general results of [47]. By rewrit-
ing the double quotient as

Sh(QΦ,DΦ)(C) ∼= QΦ(Q)\DΦ ×QΦ(Af )K̃Φ/K̃Φ,

we see that (3.2.1) admits an action of the finite group ∆Φ of (3.1.2), induced by
the action of P (Q) ∩ QΦ(Af )K̃Φ on both factors of DΦ × QΦ(Af )K̃Φ. This action
descends to an action on the canonical model.

Proposition 3.2.1. — The morphism νΦ of (3.1.1) induces a surjection

Sh(QΦ,DΦ)(C)
(z,h) 7→νΦ(h)−−−−−−−−→ k×\k̂×/Ô×k

with connected fibers. This map is ∆Φ-equivariant, where ∆Φ acts trivially on the
target. In particular, the number of connected components of (3.2.1) is equal to the
class number of k, and the same is true of its orbifold quotient by the action of ∆Φ.

Proof. — The space DΦ is connected, and the kernel of νΦ : QΦ → Resk/QGm is
unipotent (so satisfies strong approximation). Therefore

π0

(
Sh(QΦ,DΦ)(C)

) ∼= QΦ(Q)\QΦ(Af )/KΦ
∼= k×\k̂×/νΦ(KΦ),

and an easy calculation shows that νΦ(KΦ) = Ô×k .

It will be useful to have other interpretations of DΦ.

Remark 3.2.2. — Any point y ∈ DΦ(W ) determines a mixed Hodge structure on W
whose weight filtration wtiW ⊂ W was defined above, and whose Hodge filtration is
defined exactly as in Remark 2.1.3. As in [46, p. 64] or [47, Proposition 1.2] there is an
induced bigrading W (C) =

⊕
W (p,q), and this bigrading is induced by a morphism

SC → GU(W )C taking values in the stabilizer of J(C). The product of this morphism
with the morphism SC → GU(W0)C of Remark 2.1.3 defines a map z : SC → QΦC,
and this realizes DΦ ⊂ Hom(SC, QΦC).

Remark 3.2.3. — Imitating the construction of Remark 2.1.2 identifies

DΦ
∼=
{
w ∈ εV (C) : V (C) = wt0V (C)⊕ Cw ⊕ Cw

}
/C× ⊂ P(εV (C))

as an open subset of projective space.
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3.3. The first moduli interpretation. — Using the pair (Λ0, n) defined in § 3.1, we now
construct a smooth integral model of the mixed Shimura variety (3.2.1). Following
the general recipes of the theory of arithmetic toroidal compactifications, as in [17,
24, 42, 40], this integral model will be defined as the top layer of a tower of morphisms

CΦ → BΦ →AΦ → Spec(Ok),

smooth of relative dimensions 1, n− 2, and 0, respectively.
Recall from § 2.3 the smooth Ok-stack

M(1,0) ×Ok
M(n−2,0) → Spec(Ok)

of relative dimension 0 parametrizing certain pairs (A0, B) of polarized abelian
schemes over S with Ok-actions. The étale sheaf HomOk

(B,A0) on S is locally
constant; this is a consequence of [11, Theorem 5.1].

Define AΦ as the moduli space of triples (A0, B, %) over Ok-schemes S, in which
(A0, B) is an S-point of M(1,0) ×Ok

M(n−2,0), and

% : Λ0
∼= HomOk

(B,A0)

is an isomorphism of étale sheaves of hermitian Ok-modules.
Define BΦ as the moduli space of quadruples (A0, B, %, c) over Ok-schemes S, in

which (A0, B, %) is an S-point of AΦ, and c : n→ B is an Ok-linear homomorphism
of group schemes over S. In other words, if (A0, B, %) is the universal object overAΦ,
then

BΦ = HomOk
(n, B).

Suppose we fix µ, ν ∈ n. For any scheme U and any morphism U → BΦ, there is
a corresponding quadruple (A0, B, %, c) over U . Evaluating the morphism of U -group
schemes c : n → B at µ and ν determines U -points c(µ), c(ν) ∈ B(U), and hence
determines a morphism of U -schemes

U
c(µ)×c(ν)−−−−−−→ B ×B ∼= B ×B∨.

Denote by L (µ, ν)U the pullback of the Poincaré bundle via this morphism. As U
varies, these line bundles are obtained as the pullback of a single line bundle L (µ, ν)
on BΦ.

It follows from standard bilinearity properties of the Poincaré bundle that L (µ, ν)
depends, up to canonical isomorphism, only on the image of µ⊗ ν in

SymΦ = Sym2
Z(n)/

〈
(xµ)⊗ ν − µ⊗ (xν) : x ∈ Ok, µ, ν ∈ n

〉
.

Thus we may associate to every χ ∈ SymΦ a line bundle L (χ) on BΦ, and there are
canonical isomorphisms

L (χ)⊗ L (χ′) ∼= L (χ+ χ′).

Our assumption that D is odd implies that SymΦ is a free Z-module of rank one.
Moreover, there is positive cone in SymΦ ⊗Z R uniquely determined by the condition
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µ⊗µ ≥ 0 for all µ ∈ n. Thus all of the line bundles L (χ) are powers of the distinguished
line bundle

(3.3.1) LΦ = L (χ0)

determined by the unique positive generator χ0 ∈ SymΦ.
At last, define BΦ-stacks

CΦ = Iso(LΦ,OBΦ
), C∗Φ = Hom(LΦ,OBΦ

).

In other words, C∗Φ is the total space of the line bundle L−1
Φ , and CΦ is the complement

of the zero section BΦ ↪→ C∗Φ. In slightly fancier language,

CΦ = SpecBΦ

(⊕
`∈Z

L `
Φ

)
, C∗Φ = SpecBΦ

(⊕
`≥0

L `
Φ

)
,

and the zero section BΦ ↪→ C∗Φ is defined by the ideal sheaf
⊕

`>0 L
`
Φ.

Remark 3.3.1. — When n = 2 the situation is a bit degenerate. In this case

BΦ = AΦ = M(1,0),

LΦ is the trivial bundle, and CΦ → BΦ is the trivial Gm-torsor.

Remark 3.3.2. — Using the isomorphism of Lemma 3.1.4, the group ∆Φ acts on BΦ

via
(u, t) • (A0, B, %, c) = (A0, B, % ◦ u−1, c ◦ t−1),

for (u, t) ∈ U(Λ0) × GLOk
(n). The line bundle LΦ is invariant under ∆Φ, and hence

the action of ∆Φ lifts to both CΦ and C∗Φ.

Proposition 3.3.3. — There is a ∆Φ-equivariant isomorphism

Sh(QΦ,DΦ) ∼= CΦ/k.

Proof. — This is a special case of the general fact that mixed Shimura varieties
appearing at the boundary of PEL Shimura varieties are themselves moduli spaces
of 1-motives endowed with polarizations, endomorphisms, and level structure. The
core of this is Deligne’s theorem [14, § 10] that the category of 1-motives over C is
equivalent to the category of integral mixed Hodge structures of types (−1,−1),
(−1, 0), (0,−1), (0, 0). See [42], where this is explained for Siegel modular varieties,
and also [12]. A good introduction to 1-motives is [2].

To make this a bit more explicit in our case, denote by XΦ theOk-stack whose func-
tor of points assigns to an Ok-scheme S the groupoid XΦ(S) of principally polarized
1-motives A consisting of diagrams

n

��

0 // m⊗Z Gm // B // B // 0
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in which B ∈M(n−2,0)(S), B is an extension of B by the rank two torus m⊗Z Gm in
the category of group schemes with Ok-action, and the arrows are morphisms of fppf
sheaves of Ok-modules.

To explain what it means to have a principal polarization of such a 1-motive A, set
m∨ = Hom(m,Z) and n∨ = Hom(n,Z), and recall from [14, § 10] that A has a dual
1-motive A∨ consisting of a diagram

m∨

��

0 // n∨ ⊗Z Gm // B∨ // B∨ // 0.

A principal polarization is an Ok-linear isomorphism B ∼= B∨ compatible with the
given polarization B ∼= B∨, and with the isomorphisms m ∼= n∨ and n ∼= m∨ deter-
mined by the perfect pairing m⊗Z n→ Z defined after (3.1.3).

Using the “description plus symétrique” of 1-motives [14, (10.2.12)], the Ok-stack CΦ

defined above can be identified with the moduli space whose S-points are triples
(A0, A, %) in which

— (A0, A) ∈M(1,0)(S)×XΦ(S),
— % : Λ0

∼= HomOk
(B,A0) is an isomorphism of étale sheaves of hermitian

Ok-modules, where B ∈M(n−2,0)(S) is the abelian scheme part of A.
To verify that Sh(QΦ,DΦ) has the same functor of points, one uses Remark 3.2.2

to interpret Sh(QΦ,DΦ)(C) as a moduli space of mixed Hodge structures on W0

and W , and uses the theorem of Deligne cited above to interpret these mixed Hodge
structures as 1-motives. This defines an isomorphism Sh(QΦ,DΦ)(C) ∼= CΦ(C). The
proof that it descends to the reflex field is identical to the proof for Siegel mixed
Shimura varieties [42].

We remark in passing that any triple (A0, A, %) as above automatically satisfies
(2.2.4) for every prime `. Indeed, both sides of (2.2.4) are now endowed with weight
filtrations, analogous to the weight filtration on Homk(W0,W ) defined in § 3.1. The
isomorphism % induces an isomorphism (as hermitian Ok,`-lattices) between the gr0

pieces on either side. The gr−1 and gr1 pieces have no structure other then projective
Ok,`-modules of rank 1, so are isomorphic. These isomorphisms of graded pieces imply
the existence of an isomorphism (2.2.4), exactly as in Remark 3.1.3.

3.4. The second moduli interpretation. — In order to make explicit calculations, it
will be useful to interpret the moduli spaces

CΦ → BΦ →AΦ → Spec(Ok)

in a different way.
Suppose E → S is an elliptic curve over any base scheme, and denote by PE the

Poincaré bundle on
E ×S E ∼= E ×S E∨.
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If U is any S-scheme and a, b ∈ E(U), we obtain an OU -module PE(a, b) by pulling
back the Poincare bundle via

U
(a,b)−−−→ E ×S E ∼= E ×S E∨.

The notation is intended to remind the reader of the bilinearity properties of the
Poincaré bundle, as expressed by canonical OU -module isomorphisms

PE(a+ b, c) ∼= PE(a, c)⊗PE(b, c)(3.4.1)

PE(a, b+ c) ∼= PE(a, b)⊗PE(a, c)

PE(a, b) ∼= PE(b, a),

along with PE(e, b) ∼= OU ∼= PE(a, e). Here e ∈ E(U) is the zero section.
Let E →M(1,0) be the universal elliptic curve with complex multiplication by Ok.

Its Poincaré bundle satisfies, for all α ∈ Ok, the additional relation PE(αa, b) ∼=
PE(a, αb).

Recall the positive definite self-dual hermitian lattice L0 of (3.1.4). Using Serre’s
tensor construction, we define an abelian scheme

(3.4.2) E ⊗ L0 = E ⊗Ok
L0

over M(1,0). As explained in detail in [1], the principal polarization on E and the
hermitian form on L0 can be combined to define a principal polarization on E ⊗ L0,
and we denote by PE⊗L0 the Poincaré bundle on

(E ⊗ L0)×M(1,0)
(E ⊗ L0) ∼= (E ⊗ L0)×M(1,0)

(E ⊗ L0)∨.

The Poincaré bundle PE⊗L0
can be expressed in terms of PE . If U is a scheme, a

morphism
U → (E ⊗ L0)×M(1,0)

(E ⊗ L0)

is given by a pair of U -valued points

c =
∑

si ⊗ xi ∈ E(U)⊗ L0, c′ =
∑

s′j ⊗ x′j ∈ E(U)⊗ L0,

and the pullback of PE⊗L0 to U is

PE⊗L0
(c, c′) =

⊗
i,j

PE(〈xi, x′j〉si, s′j).

Define QE⊗L0
to be the line bundle on E ⊗ L0 whose restriction to the U -valued

point c =
∑
si ⊗ xi is

(3.4.3) QE⊗L0
(c) =

⊗
i<j

PE(〈xi, xj〉si, sj)⊗
⊗
i

PE(γ〈xi, xi〉si, si),

where

γ =
1 + δ

2
∈ Ok.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

54 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

It is related to PE⊗L0 by canonical isomorphisms

PE⊗L0
(a, b) ∼= QE⊗L0

(a+ b)⊗ QE⊗L0
(a)−1 ⊗ QE⊗L0

(b)−1(3.4.4)

PE⊗L0
(a, a) ∼= QE⊗L0

(a)⊗2.

for all U -valued points a, b ∈ E(U)⊗ L0.

Remark 3.4.1. — As in the constructions of [40, § 1.3.2] or [44, § 6.2], the line bundle
QE⊗L0

determines a morphism E⊗L0 → (E⊗L0)∨. The relations (3.4.4) amount to
saying that this morphism is the principal polarization constructed in [1].

Remark 3.4.2. — The line bundle PE⊗L0(δa, a) is canonically trivial. This follows by
comparing

PE⊗L0
(γa, a)⊗2 ∼= PE⊗L0

(a, a)⊗PE⊗L0
(δa, a)

with
PE⊗L0(γa, a)⊗2 ∼= PE⊗L0(γa, a)⊗PE⊗L0(γa, a) ∼= PE⊗L0(a, a).

Remark 3.4.3. — In the slightly degenerate case of n = 2, E ⊗L0 is the trivial group
scheme over M(1,0), and PE⊗L0

is the trivial bundle on M(1,0).

Proposition 3.4.4. — As above, let E → M(1,0) be the universal object. There are
canonical isomorphisms

CΦ
//

∼=
��

BΦ
//

∼=
��

AΦ

∼=
��

Iso(QE⊗L0
,OE⊗L0

) // E ⊗ L0
//M(1,0),

and the middle vertical arrow identifies LΦ
∼= QE⊗L0

.

Proof. — Define a morphismAΦ →M(1,0) by sending a triple (A0, B, %) to the CM
elliptic curve

(3.4.5) E = HomOk
(n, A0).

To show that this map is an isomorphism we will construct the inverse.
If S is any Ok-scheme and E ∈M(1,0)(S), we may define (A0, B, %) ∈AΦ(S) by

setting
A0 = E ⊗Ok

n, B = HomOk
(Λ0, A0),

and taking for % : Λ0
∼= HomOk

(B,A0) the tautological isomorphism. The principal
polarization on B is defined using the Ok-linear isomorphism

A0 ⊗Ok
L0

a⊗x 7→〈 . ,x∨〉a−−−−−−−−−→ HomOk
(Λ0, A0)

and the principal polarization on A0 ⊗Ok
L0 constructed in [1], exactly as in the

discussion following (3.4.2). The construction E 7→ (A0, B, %) is inverse to the above
morphism AΦ →M(1,0).
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Now identifyAΦ
∼= M(1,0) using the above isomorphism, and denote by (A0, B, %)

and E the universal objects on the source and target. They are related by canonical
isomorphisms

(3.4.6) BΦ = HomOk
(n, B)

HomOk
(n⊗Ok

Λ0, A0)

∼=
44

∼=
**

HomOk
(Λ0, E).

Combining this with the Ok-linear isomorphism

E ⊗ L0
a⊗x 7→〈 . ,x∨〉a−−−−−−−−−→ HomOk

(Λ0, E)

defines BΦ
∼= E⊗L0. All that remains is to prove that this isomorphism identifies LΦ

with QE⊗L0
, which amounts to carefully keeping track of the relations between the

three Poincaré bundles PB , PE , and PA0 .
Any fractional ideal b ⊂ k admits a unique positive definite self-dual hermitian

form, given explicitly by 〈b1, b2〉 = b1b2/N(b). It follows that any rank one projec-
tive Ok-module admits a unique positive definite self-dual hermitian form. For the
Ok-module HomOk

(n,Ok), this hermitian form is

〈`1, `2〉 = `1(µ)`2(ν) + `1(ν)`2(µ),

where µ⊗ ν = χ0 ∈ SymΦ is the positive generator appearing in (3.3.1).
The relation (3.4.5) implies a relation between the line bundles PE and PA0

. If
U is any AΦ-scheme and we are given points

s, s′ ∈ E(U) = HomOk
(n, A0U )

of the form s = `(·)a and s′ = `′(·)a′ with `, `′ ∈ HomOk
(n,Ok) and a, a′ ∈ A0(U),

then

PE(s, s′) ∼= PA0

(
〈`, `′〉a, a′

)
PE(γs, s) ∼= PA0

(
`(µ)a, `(ν)a

)
.

Similarly, the isomorphism B ∼= HomOk
(Λ0, A0) implies a relation between PB and

PA0 . If U is an S-scheme, a morphism U → B ×AΦ
B is given by a pair of points

b, b′ ∈ B(U) = HomOk
(Λ0, A0U )

of the form b = 〈., λ〉a and b′ = 〈., λ′〉a′ with λ, λ′ ∈ Λ0 and a, a′ ∈ A0(U). The
pullback of PB to U is the line bundle

PB(b, b′) = PA0
(a, 〈λ, λ′〉a′).
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Using the isomorphisms (3.4.6), a point c ∈ BΦ(U) admits three different interpre-
tations. In one of them, c has the form

c =
∑

`i(·)〈., λi〉ai ∈ HomOk
(n⊗Ok

Λ, A0U ).

By setting

bi = 〈., λi〉ai ∈ HomOk
(Λ0, A0U ) = B(U)

si = `i(·)ai ∈ HomOk
(n, A0U ) = E(U),

we find the other two interpretations

c =
∑

`i(·)bi ∈ HomOk
(n, BU )

c =
∑
〈., λi〉si ∈ HomOk

(Λ0, EU ).

The above relations between PB , PE , and PA0
imply

PB(c(µ), c(ν)) ∼=
⊗
i,j

PB(`i(µ)bi, `j(ν)bj)

∼=
⊗
i,j

PA0
(`i(µ)ai, 〈λi, λj〉`j(ν)aj)

∼=
⊗
i<j

PA0
(〈`i, `j〉ai, 〈λi, λj〉aj)⊗

⊗
i

PA0
(`i(µ)ai, `i(ν)〈λi, λi〉ai)

∼=
⊗
i<j

PE(si, 〈λi, λj〉sj)⊗
⊗
i

PE(γsi, 〈λi, λi〉si).

Now write λi = x∨i with xi ∈ L0, and use the relation

PE(si, 〈λi, λj〉sj) = PE(〈λj , λi〉si, sj) = PE(〈xi, xj〉si, sj)

to obtain an isomorphism PB(c(µ), c(ν)) ∼= QE⊗L0
(c). The line bundle on the left

is precisely the pullback of LΦ via c, and letting c vary we obtain an isomorphism
LΦ
∼= QE⊗L0

.

3.5. The line bundle of modular forms. — We now define a line bundle of weight
one modular forms on our mixed Shimura variety, analogous to the one on the pure
Shimura variety defined in § 2.4.

The holomorphic line bundle ω
an onD defined in § 2.4 admits a canonical extension

to
DΦ = D(W0)×DΦ(W ),

which we denote by ω
an
Φ . Indeed, recalling that D(W0) = {y0} is a one-point set,

an element z ∈ DΦ is represented by a pair (y0, y) in which y is a k-stable R-plane
in W (R) such that W (R) = J⊥(R)⊕ y. The fiber of ω

an
Φ at z is the line

HomC(W0(C)/εW0(C), prε(y)) ⊂ εV (C),

exactly as in Remark 2.1.2 and (2.4.1).
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If we embed DΦ into projective space over εV (C) as in Remark 3.2.3, then ω
an
Φ is

simply the restriction of the tautological bundle. There is an obvious action of QΦ(R)
on the total space of ω

an
Φ , lifting the natural action on DΦ, and so ω

an
Φ determines a

holomorphic line bundle on the complex orbifold Sh(QΦ,DΦ)(C).
As in § 2.4, the holomorphic line bundle ω

an
Φ is algebraic and descends to the canon-

ical model Sh(QΦ,DΦ). In fact, it admits a canonical extension to the integral model
CΦ, as we now explain.

Recalling the Ok-modules m and n of (3.1.3), define rank two vector bundles onAΦ

by

M = m⊗Z OAΦ
, N = n⊗Z OAΦ

.

Each is locally free of rank one over Ok ⊗Z OAΦ
, and the perfect pairing between m

and n defined after (3.1.3) induces a perfect bilinear pairing M ⊗N → OAΦ
. Using

the almost idempotents ε, ε ∈ Ok ⊗Z OAΦ
of § 1.7, there is an induced isomorphism

of line bundles

(M/εM)⊗ (εN) ∼= OAΦ
.

Recalling that AΦ carries over it a universal triple (A0, B, %), in which A0 is an
elliptic curve with Ok-action, we now define a line bundle on AΦ by

ωΦ = Hom(Lie(A0), εN),

or, equivalently,

ω
−1
Φ = Lie(A0)⊗OAΦ

M/εM.

Denote in the same way its pullback to any step in the tower

C∗Φ → BΦ →AΦ.

The above definition of ωΦ is a bit unmotivated, and so we explain why ωΦ is
analogous to the line bundle ω on SKra defined in § 2.4. Recall from the proof of
Proposition 3.3.3 that CΦ carries over it a universal 1-motive A. This 1-motive has
a de Rham realization HdR

1 (A), defined as the Lie algebra of the universal vector
extension of A, as in [14, (10.1.7)]. It is a rank 2n-vector bundle on CΦ, locally free
of rank n over Ok ⊗Z OCΦ

, and sits in a diagram of vector bundles

0

��

0

��

F 0HdR
1 (B)

��

M

��

0 // F 0HdR
1 (A) //

��

HdR
1 (A) // Lie(A) //

��

0

N

��

Lie(B)

��

0 0,
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with exact rows and columns. The polarization on A induces a perfect symplectic
form on HdR

1 (A). This induces a perfect pairing

(3.5.1) F 0HdR
1 (A)⊗ Lie(A)→ OCΦ

as in (2.2.1), which is compatible (in the obvious sense) with the pairings

F 0HdR
1 (B)⊗ Lie(B)→ OCΦ

and N⊗M→ OCΦ
that we already have.

The signature condition on B implies that εF 0HdR
1 (B) = 0 and εLie(B) = 0. Using

this, and arguing as in [24, Lemma 2.3.6], it is not difficult to see that

FA = ker(ε : Lie(A)→ Lie(A))

is the unique codimension one local direct summand of Lie(A) satisfying Kramer’s
condition as in § 2.3, and that its orthogonal under the pairing (3.5.1) is F⊥A =
εF 0HdR

1 (A). Moreover, the natural maps

M/εM→ Lie(A)/FA, F⊥A → εN

are isomorphisms. These latter isomorphisms allow us to identify

ωΦ = Hom(Lie(A0),F⊥A ), ω
−1
Φ = Lie(A0)⊗ Lie(A)/FA

in perfect analogy with § 2.4.

Proposition 3.5.1. — The isomorphism

CΦ(C) ∼= Sh(QΦ,DΦ)(C)

of Proposition 3.3.3 identifies the analytification of ωΦ with the already defined ω
an
Φ .

Moreover, the isomorphism AΦ
∼= M(1,0) of Proposition 3.4.4 identifies

ωΦ
∼= d · Lie(E)−1 ⊂ Lie(E)−1

where d = δOk is the different of Ok, and E →M(1,0) is the universal elliptic curve
with CM by Ok.

Proof. — Any point z = (y0, y) ∈ DΦ determines, by Remarks 2.1.3 and 3.2.2, a pure
Hodge structure on W0 and a mixed Hodge structure on W , these induce a mixed
Hodge structure on V = Homk(W0,W ), and the fiber of ω

an
Φ at z is

ω
an
Φ,z = F 1V (C) = HomC(W0(C)/εW0(C), εF 0W (C)).

On the other hand, we have just seen that

ωΦ = Hom(Lie(A0),F⊥A ) = Hom(Lie(A0), εF 0HdR
1 (A)).

With these identifications, the proof of the first claim amounts to carefully tracing
through the construction of the isomorphism of Proposition 3.3.3.

For the second claim, the isomorphism A0
∼= E ⊗Ok

n induces a canonical isomor-
phism

Lie(A0) ∼= Lie(E)⊗Ok
n ∼= Lie(E)⊗N/εN,
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where we have used the fact that n⊗Ok
OAΦ

= N/εN is the largest quotient of N on
which Ok acts via the structure morphism Ok → OAΦ

. Thus

ωΦ = Hom(Lie(A), εN)

∼= Hom(Lie(E)⊗N/εN, εN)

∼= Lie(E)−1 ⊗OAΦ
Hom(N/εN, εN).

Now recall the ideal sheaf (ε) ⊂ Ok ⊗Z OAΦ
of § 1.7. There are canonical isomor-

phisms of line bundles

dOAΦ
∼= (ε) ∼= Hom(N/εN, εN),

where the first is (1.7.1) and the second is the tautological isomorphism sending ε to
the multiplication-by-ε map N/εN→ εN. These constructions determine the desired
isomorphism

ωΦ
∼= Lie(E)−1 ⊗OAΦ

dOAΦ
.

3.6. Special divisors. — LetY0(D) be the moduli stack over Ok parametrizing cyclic
D-isogenies of elliptic curves over Ok-schemes, and let E→ E′ be the universal object.
See [28, Chapter 3] for the definitions.

Let (A0, B, %, c) be the universal object over BΦ. Recalling the Ok-conjugate linear
isomorphism L0

∼= Λ0 defined after (3.1.4), each x ∈ L0 defines a morphism

n
c−→ B

%(x∨)−−−→ A0

of sheaves of Ok-modules on BΦ. Define ZΦ(x) ⊂ BΦ as the largest closed substack
over which this morphism is trivial. We will see in a moment that this closed substack
is defined locally by one equation. For any m > 0 define a stack over BΦ by

(3.6.1) ZΦ(m) =
⊔
x∈L0

〈x,x〉=m

ZΦ(x).

We also view ZΦ(m) as a divisor on BΦ, and denote in the same way the pullback of
this divisor via C∗Φ → BΦ.

Remark 3.6.1. — In the slightly degenerate case n = 2 we have L0 = 0, and every
special divisor ZΦ(m) is empty.

We will now reformulate the definition of ZΦ(x) in terms of the moduli problem
of § 3.4. Recalling the isomorphisms of Proposition 3.4.4, every x ∈ L0 determines a
commutative diagram

BΦ

∼= //

��

E ⊗ L0

〈.,x〉
//

��

E //

��

E

��

AΦ

∼= //M(1,0) M(1,0)
// Y0(D),
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where M(1,0) →Y0(D) sends E to the cyclic D-isogeny

E → E ⊗Ok
d−1,

and the rightmost square is cartesian. The upper and lower horizontal compositions
are denoted jx and j, giving the diagram

(3.6.2) BΦ
jx

//

��

E

��

AΦ
j
// Y0(D).

Proposition 3.6.2. — For any nonzero x ∈ L0, the closed substack ZΦ(x) ⊂ BΦ is
equal to the pullback of the zero section along jx. It is an effective Cartier divisor, flat
over AΦ. In particular, as AΦ is flat over Ok, so is each divisor ZΦ(x).

Proof. — Recall the isomorphisms

E ∼= HomOk
(n, A0), B ∼= HomOk

(Λ0, A0)

from the proof of Proposition 3.4.4. If we identify A0 ⊗Ok
L0
∼= B using

A0 ⊗Ok
L0

a⊗x 7→〈.,x∨〉a−−−−−−−−−→ HomOk
(Λ0, A0) ∼= B,

we obtain a commutative diagram of AΦ-stacks

E ⊗Ok
L0

//

〈.,x〉
��

HomOk
(n, A0 ⊗Ok

L0) // HomOk
(n, B) = BΦ

%(x∨)

��

E // HomOk
(n, A0),

in which all horizontal arrows are isomorphisms. The first claim follows immediately.
The remaining claims now follow from the cartesian diagram

ZΦ(x) //

��

M(1,0)

e

��

BΦ

∼= // E ⊗ L0

〈.,x〉
// E.

The zero section e : M(1,0) ↪→ E is locally defined by a single nonzero equation [28,
Lemma 1.2.2], and so the same is true of its pullback ZΦ(x) ↪→ BΦ. Composition
along the bottom row is flat by [44, Lemma 6.12], and hence so is the top horizontal
arrow.

Remark 3.6.3. — For those who prefer the language of 1-motives: As in the proof of
Proposition 3.3.3, there is a universal triple (A0, A, %) over CΦ in which A0 is an elliptic
curve with Ok-action and A is a principally polarized 1-motive with Ok-action. The
functor of points of ZΦ(m) assigns to any scheme S → CΦ the set

ZΦ(m)(S) = {x ∈ HomOk
(A0,S , AS) : 〈x, x〉 = m},
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where the positive definite hermitian form 〈., .〉 is defined as in (2.5.1). Thus our
special divisors are the exact analogues of the special divisors on SKra defined in § 2.5.

3.7. The toroidal compactification. — We describe the canonical toroidal compactifi-
cation of the integral models SKra → SPap of § 2.3.

Theorem 3.7.1. — Let S� denote either SKra or SPap. There is a canonical toroidal
compactification S� ↪→ S∗�, flat over Ok of relative dimension n − 1. It admits a
stratification

S∗� =
⊔
Φ

S∗�(Φ)

as a disjoint union of locally closed substacks, indexed by the K-equivalence classes of
cusp label representatives (defined in § 3.1).

1. The Ok-stack S∗Kra is regular.

2. The Ok-stack S∗Pap is Cohen-Macaulay and normal, with Cohen-Macaulay
fibers. If n > 2 its fibers are geometrically normal.

3. The open dense substack S� ⊂ S∗� is the stratum indexed by the unique equiv-
alence class of improper cusp label representatives. Its complement

∂S∗� =
⊔

Φ proper

S∗�(Φ)

is a smooth divisor, flat over Ok.

4. For each proper Φ the stratum S∗�(Φ) is closed. All components of S∗�(Φ)/C are
defined over the Hilbert class field kHilb, and they are permuted simply transi-
tively by Gal(kHilb/k). Moreover, there is a canonical identification of Ok-stacks

∆Φ\BΦ

��

S∗�(Φ)

��

∆Φ\C∗Φ S∗�

such that the two stacks in the bottom row become isomorphic after completion
along their common closed substack in the top row. In other words, there is a
canonical isomorphism of formal stacks

(3.7.1) ∆Φ\(C∗Φ)∧BΦ

∼= (S∗�)∧S∗�(Φ).

The morphism SKra → SPap extends uniquely to a stratum preserving morphism
of toroidal compactifications. This extension restricts to an isomorphism

(3.7.2) S∗Kra \ Exc ∼= S∗Pap \ Sing,

compatible with (3.7.1) for any proper Φ.
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The line bundle ω on SKra defined in § 2.4 admits a unique extension (denoted
the same way) to the toroidal compactification in such a way that (3.7.1) iden-
tifies it with the line bundle ωΦ on C∗Φ. A similar statement holds for ΩKra, and
these two extensions are related by

ω
2 ∼= ΩKra ⊗O(Exc).

The line bundle ΩPap on SPap defined in § 2.4 admits a unique extension (de-
noted the same way) to the toroidal compactification, in such a way that (3.7.1)
identifies it with ω

2
Φ.

For any m > 0, define Z∗Kra(m) as the Zariski closure of ZKra(m) in S∗Kra. The
isomorphism (3.7.1) identifies it with the Cartier divisor ZΦ(m) on C∗Φ.

For any m > 0, define Y∗Pap(m) as the Zariski closure of YPap(m) in S∗Pap.
The isomorphism (3.7.1) identifies it with 2ZΦ(m). Moreover, the pullback
of Y∗Pap(m) to S∗Kra, denoted Y

∗
Kra(m), satisfies

2Z∗Kra(m) = Y∗Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.

Proof. — Briefly, in [24, § 2] one finds the construction of a canonical toroidal com-
pactification

M�
(n−1,1) ↪→M�,∗

(n−1,1).

Using the open and closed immersion

S� ↪→M(1,0) ×M�
(n−1,1),

the toroidal compactification S∗� is defined as the Zariski closure of S�
in M(1,0) ×M�,∗

(n−1,1). All of the claims follow by examination of the construc-
tion of the compactification, along with Theorem 2.6.3.

Remark 3.7.2. — If W is anisotropic, so that (G,D) has no proper cusp label repre-
sentatives, the only new information in the theorem is that SPap and SKra are already
proper over Ok, so that

SPap = S∗Pap, SKra = S∗Kra.

Corollary 3.7.3. — Assume that n > 2. The Cartier divisor Y∗Pap(m) on S∗Pap is
Ok-flat, as is the restriction of Z∗Kra(m) to S∗Kra \ Exc.

Proof. — Fix a prime p ⊂ Ok, and let Fp be its residue field. To prove the first
claim, it suffices to show that the support of the Cartier divisor Y∗Pap(m) contains no
irreducible components of the reduction S∗Pap/Fp .

By way of contradiction, suppose Ep ⊂ S∗Pap/Fp is an irreducible component con-
tained in Y∗Pap(m), and let E ⊂ S∗Pap be the connected component containing it.
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Properness of S∗Pap over Ok,p implies that the reduction E/Fp is connected [18, Corol-
lary 8.2.18]. The reduction E/Fp is normal by Theorem 3.7.1 and our assumption
that n > 2, and hence is irreducible. Thus

Ep = E/Fp .

Our assumption that n > 2 also guarantees that W contains a nonzero isotropic
vector, from which it follows that the boundary

∂C = C ∩ ∂S∗Pap

is nonempty (one can check this in the complex fiber).
Proposition 3.6.2 implies that ZΦ(m) is Ok-flat for every proper cusp label rep-

resentative Φ, and so it follows from Theorem 3.7.1 that Y∗Pap(m) is Ok-flat when
restricted to some étale neighborhood U → C of ∂C. On the other hand, the closed
immersion

U/Fp
∼= Cp ×S∗Pap

U →Y∗Pap(m)×S∗Pap
U

shows that the divisor Y∗Pap(m)|U → U contains the special fiber U/Fp , so is not
Ok-flat. This contradiction completes the proof that Y∗Pap(m) is flat.

As the isomorphism (3.7.2) identifies Y∗Pap(m) with 2Z∗Kra(m), it follows that the
restriction of Z∗Kra(m) to the complement of Exc is also flat.

3.8. Fourier-Jacobi expansions. — We now define Fourier-Jacobi expansions of sec-
tions of the line bundle ω

k of weight k modular forms on S∗Kra.
Fix a proper cusp label representative Φ = (P, g). Suppose ψ is a rational function

on S∗Kra, regular on an open neighborhood of the closed stratum S∗Kra(Φ). Using the
isomorphism (3.7.1) we obtain a formal function, again denoted ψ, on the formal
completion

(C∗Φ)∧BΦ
= Spf

BΦ

(∏
`≥0

L `
Φ

)
.

Tautologically, there is a formal Fourier-Jacobi expansion

(3.8.1) ψ =
∑
`≥0

FJ`(ψ) · q`

with coefficients FJ`(ψ) ∈ H0(BΦ,L `
Φ). In the same way, any rational section ψ

of ω
k on S∗Kra, regular on an open neighborhood of S∗Kra(Φ), admits a Fourier-Jacobi

expansion (3.8.1), but now with coefficients

FJ`(ψ) ∈ H0(BΦ,ω
k
Φ ⊗ L `

Φ).

Remark 3.8.1. — Let π : C∗Φ → BΦ be the natural map. The formal symbol q can
be understood as follows. As C∗Φ is the total space of the line bundle L−1

Φ , there is a
tautological section

q ∈ H0(C∗Φ, π
∗L−1

Φ ),

whose divisor is the zero section BΦ ↪→ C∗Φ. Any FJ` ∈ H0(BΦ,L `
Φ) pulls back to a

section of π∗L `
Φ, and so defines a function FJ` · q` on C∗Φ.
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3.9. Explicit coordinates. — Once again, let Φ = (P, g) be a proper cusp label repre-
sentative. The algebraic theory of § 3.8 realizes the Fourier-Jacobi coefficients of

(3.9.1) ψ ∈ H0(S∗Kra,ω
k)

as sections of line bundles on the stack

BΦ
∼= E ⊗ L0.

Here E →M(1,0) is the universal CM elliptic curve, the tensor product is over Ok,
and we are using the isomorphism of Proposition 3.4.4. Our goal is to relate this to
the classical analytic theory of Fourier-Jacobi expansions by choosing explicit complex
coordinates, so as to identify each coefficient FJ`(ψ) with a holomorphic function on
a complex vector space satisfying a particular transformation law.

The point of this discussion is to allow us, eventually, to show that the Fourier-
Jacobi coefficients of Borcherds products, expressed in the classical way as holomor-
phic functions satisfying certain transformation laws, have algebraic meaning. More
precisely, the following discussion will be used to deduce the algebraic statement of
Proposition 6.4.1 from the analytic statement of Proposition 6.3.1.

Consider the commutative diagram

Sh(QΦ,DΦ)(C)
∼= //

��

CΦ(C) // BΦ(C) // AΦ(C)

∼=
��

k×\k̂×/Ô×k
a 7→E(a)

//M(1,0)(C).

Here the isomorphisms are those of Propositions 3.3.3 and 3.4.4, and the vertical
arrow on the left is the surjection of Proposition 3.2.1. The bottom horizontal arrow
is defined as the unique function making the diagram commute. It is a bijection,
and is given explicitly by the following recipe: recalling the Ok-module n of (3.1.3),
each a ∈ k̂× determines a projective Ok-module

b = a ·HomOk
(n, ga0)

of rank one, and the elliptic curve E(a) has complex points

(3.9.2) E(a)(C) = b\(b⊗Ok
C).

For each a ∈ k̂× there is a cartesian diagram

E(a) ⊗ L0
//

��

E ⊗ L0

��

Spec(C)
E(a)

//M(1,0).

Now suppose we have a section ψ as in (3.9.1). Using the isomorphismsBΦ
∼= E⊗L0

and ωΦ
∼= d · Lie(E)−1 of Propositions 3.4.4 and 3.5.1, we view its Fourier-Jacobi
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coefficients
FJ`(ψ) ∈ H0(BΦ,ω

k
Φ ⊗ L `

Φ)

as sections
FJ`(ψ) ∈ H0

(
E ⊗ L0, d

k · Lie(E)−k ⊗ Q `
E⊗L0

)
,

which we pull back along the top map in the above diagram to obtain a section

(3.9.3) FJ
(a)
` (ψ) ∈ H0

(
E(a) ⊗ L0,Lie(E(a))−k ⊗ Q `

E(a)⊗L0

)
.

Remark 3.9.1. — Recalling that d = δOk is the different of k, we are using the inclu-
sion dk ⊂ k ⊂ C to identify

dk · Lie(E(a))−k ∼= Lie(E(a))−k.

In particular, this isomorphism is not multiplication by δ−k.

The explicit coordinates we will use to express (3.9.3) as a holomorphic function
arise from a choice of Witt decomposition of the hermitian space V = Homk(W0,W ).
The following lemma will allow us to choose this decomposition in a particularly nice
way.

Lemma 3.9.2. — The homomorphism νΦ of (3.1.1) admits a section

QΦ νΦ

// Resk/QGm.

s

uu

This section may be chosen so that s(Ô×k ) ⊂ KΦ, and such a choice determines a
decomposition

(3.9.4)
⊔

a∈k×\k̂×/Ô×k

(QΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ
∼= Sh(QΦ,DΦ)(C),

where the isomorphism is z 7→ (z, s(a)) on the copy of DΦ indexed by a.

Proof. — Fix an isomorphism of hermitian Ok-modules

ga0 ⊕ ga ∼= ga0 ⊕ gr−2(ga)⊕ gr−1(ga)⊕ gr0(ga)

as in Remark 3.1.3. After tensoring with Q, we let k× act on the right hand side
by a 7→ (a,Nm(a), a, 1). This defines a morphism k× → G(Q), which, using (3.1.1),
is easily seen to take values in the subgroup QΦ(Q). This defines the desired section
s, and the decomposition (3.9.4) is immediate from Proposition 3.2.1.

Fix a section s as in Lemma 3.9.2. Recall from § 3.1 the weight filtration wtiV ⊂ V
whose graded pieces

gr−1V = Homk(W0, gr−2W )

gr0V = Homk(W0, gr−1W )

gr1V = Homk(W0, gr0W )
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have k-dimensions 1, n − 2, and 1, respectively. Recalling (3.1.1), which describes
the action of QΦ on the graded pieces of V , the section s determines a splitting
V = V−1 ⊕ V0 ⊕ V1 of the weight filtration by

V−1 = {v ∈ V : ∀ a ∈ k×, s(a)v = av}
V0 = {v ∈ V : ∀ a ∈ k×, s(a)v = v}
V1 = {v ∈ V : ∀ a ∈ k×, s(a)v = a−1v}.

The summands V−1 and V1 are isotropic k-lines, and V0 is the orthogonal complement
of V−1 + V1 with respect to the hermitian form on V . In particular, the restriction of
the hermitian form to V0 ⊂ V is positive definite.

Fix an a ∈ k̂× and define an Ok-lattice

L = HomOk
(s(a)ga0, s(a)ga) ⊂ V.

Using the assumption s(Ô×k ) ⊂ KΦ, we obtain a decomposition

L = L−1 ⊕ L0 ⊕ L1

with Li = L∩Vi. The images of the lattices Li in the graded pieces griV are given by

L−1 = a ·HomOk
(ga0, gr−2(ga))

L0 = HomOk
(ga0, gr−1(ga))

L1 = a−1 ·HomOk
(ga0, gr0(ga)).

In particular, L0 is independent of a and agrees with (3.1.4).
Choose a Z-basis e−1, f−1 ∈ L−1, and let e1, f1 ∈ d−1L1 be the dual basis with

respect to the (perfect) Z-bilinear pairing

[ . , . ] : L−1 × d−1L1 → Z,

obtained by restricting (2.1.6). This basis may be chosen so that

(3.9.5)
L−1 = Ze−1 + Zf−1 d−1L−1 = Ze−1 +D−1Zf−1,

L1 = Ze1 +DZf1 d−1L1 = Ze1 + Zf1.

As εV1(C) ⊂ V1(C) is a line, there is a unique τ ∈ C satisfying

(3.9.6) τe1 + f1 ∈ εV1(C).

After possibly replacing both e1 and e−1 by their negatives, we may assume
that Im(τ) > 0.

Proposition 3.9.3. — The Z-lattice b = Zτ + Z is contained in k, and is a fractional
Ok-ideal. The elliptic curve

(3.9.7) E(a)(C) = b\C

is isomorphic to (3.9.2), and there is an Ok-linear isomorphism of complex abelian
varieties

(3.9.8) E(a)(C)⊗ L0
∼= bL0\V0(R).
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Under this isomorphism the inverse of the line bundle (3.4.3) has the form

(3.9.9) Q −1
E(a)(C)⊗L0

∼= bL0\(V0(R)× C),

where the action of y0 ∈ bL0 on V0(R)× C is

y0 · (w0, q) =
(
w0 + εy0, q · eπi

〈y0,y0〉
N(b) e−π

〈w0,y0〉
Im(τ)

−π 〈y0,y0〉
2Im(τ)

)
.

Proof. — Consider the Q-linear map

(3.9.10) V−1
αe−1+βf−1 7→ατ+β−−−−−−−−−−−−→ C.

Its C-linear extension V−1(C)→ C kills the vector e−1 − τ f−1 ∈ εV−1(C), and hence
factors through an isomorphism V−1(C)/εV−1(C) ∼= C. This implies that (3.9.10) is
k-conjugate linear. As this map identifies L−1

∼= b, we find that the Z-lattice b ⊂ C
is Ok-stable. From 1 ∈ b we then deduce that b ⊂ k, and is a fractional Ok-ideal.
Moreover, we have just shown that

(3.9.11) L−1
αe−1+βf−1 7→ατ+β−−−−−−−−−−−−→ b

is an Ok-conjugate linear isomorphism.
Exactly as in (2.1.4), the self-dual hermitian forms on ga0 and ga induce an

Ok-conjugate-linear isomorphism

HomOk
(ga0, gr−2(ga)) ∼= HomOk

(gr0(ga), ga0),

and hence determine an Ok-conjugate-linear isomorphism

L−1 = a ·HomOk
(ga0, gr−2(ga))

∼= a ·HomOk
(gr0(ga), ga0)

= a ·HomOk
(n, ga0).

The composition

a ·HomOk
(n, ga0) ∼= L−1

(3.9.11)−−−−−→ b
is an Ok-linear isomorphism, which identifies the fractional ideal b with the projective
Ok-module used in the definition of (3.9.2). In particular it identifies the elliptic curves
(3.9.2) and (3.9.7), and also identifies

E(a)(C)⊗ L0 = (b\C)⊗ L0
∼= (b⊗ L0)\(C⊗ L0).

Here, and throughout the remainder of the proof, all tensor products are over Ok.
Identifying C⊗ L0

∼= V0(R) proves (3.9.8).
It remains to explain the isomorphism (3.9.9). First consider the Poincaré bundle

on the product
E(a)(C)× E(a)(C) ∼= (b× b)\(C× C).

Using classical formulas, the space of this line bundle can be identified with the
quotient

PE(a)(C) = (b× b)\(C× C× C),
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where the action is given by

(b1, b2) · (z1, z2, q) =
(
z1 + b1, z2 + b2, q · eπHτ (z1,b2)+πHτ (z2,b1)+πHτ (b1,b2)

)
,

and we have set Hτ (w, z) = wz/Im(τ) for complex numbers w and z.
Directly from the definition, the line bundle (3.4.3) on

E(a)(C)⊗ L0
∼= (b⊗ L0)\(C⊗ L0)

is given by
QE(a)(C)⊗L0

∼= (b⊗ L0)\
(
(C⊗ L0)× C

)
,

where the action of b ⊗ L0 on (C ⊗ L0) × C is given as follows: Choose any set
x1, . . . , xn ∈ L0 of Ok-module generators, and extend the Ok-hermitian form on L0

to a C-hermitian form on C⊗ L0. If

y0 =
∑
i

bi ⊗ xi ∈ b⊗ L0

and
w0 =

∑
i

zi ⊗ xi ∈ C⊗ L0

then
y0 · (w0, q) = (w0 + y0, q · eπX+πY ),

where the factors X and Y are

X =
∑
i<j

(
Hτ (〈xi, xj〉zi, bj) +Hτ (zj , 〈xi, xj〉bi) +Hτ (〈xi, xj〉bi, bj)

)
=

1

Im(τ)

∑
i6=j

〈zi ⊗ xi, bj ⊗ xj〉+
1

Im(τ)

∑
i<j

〈bi ⊗ xi, bj ⊗ xj〉

and, recalling γ = (1 + δ)/2,

Y =
∑
i

(
Hτ (γ〈xi, xi〉zi, bi) +Hτ (zi, γ〈xi, xi〉bi) +Hτ (γ〈xi, xi〉bi, bi)

)
=

1

Im(τ)

∑
i

〈zi ⊗ xi, bi ⊗ xi〉+
1

Im(τ)

∑
i

γ〈bi ⊗ xi, bi ⊗ xi〉.

For elements y1, y2 ∈ b⊗ L0, we abbreviate

α(y1, y1) =
〈y1, y2〉
δN(b)

− 〈y2, y1〉
δN(b)

∈ Z.

Using 2iIm(τ) = δN(b), some elementary calculations show that

πX + πY − π〈w0, y0〉
Im(τ)

=
2πi

δN(b)

∑
i<j

〈bi ⊗ xi, bj ⊗ xj〉+
2πi

δN(b)

∑
i

〈γbi ⊗ xi, bi ⊗ xi〉
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=
π

2Im(τ)

∑
i,j

〈bi ⊗ xi, bj ⊗ xj〉 −
πi

N(b)

∑
i,j

〈bi ⊗ xi, bj ⊗ xj〉

+2πi
∑
i<j

α(γbi ⊗ xi, bj ⊗ xj) +
2πi

N(b)

∑
i

〈bi ⊗ xi, bi ⊗ xi〉.

All terms in the final line lie in 2πiZ, and so

eπX+πY = e
π〈w0,y0〉

Im(τ) e
π〈y0,y0〉
2Im(τ) e−

πi〈y0,y0〉
N(b) .

The relation (3.9.9) follows immediately.

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly as func-
tions on V0(R) satisfying certain transformation laws. Suppose we start with a global
section

(3.9.12) ψ ∈ H0
(
S∗Kra/C,ω

k
)
.

For each a ∈ k̂× and ` ≥ 0 we have the algebraically defined Fourier-Jacobi coefficient

(3.9.13) FJ
(a)
` (ψ) ∈ H0

(
E(a) ⊗ L0,Q

`
E(a)⊗L0

)
of (3.9.3), where we have trivialized Lie(E(a)) using (3.9.7). The isomorphism (3.9.9)
now identifies (3.9.13) with a function on V0(R) satisfying the transformation law

(3.9.14) FJ
(a)
` (ψ)(w0 + y0) = FJ

(a)
` (ψ)(w0) · eiπ`

〈y0,y0〉
N(b) eπ`

〈w0,y0〉
Im(τ)

+π`
〈y0,y0〉
2Im(τ)

for all y0 ∈ bL0.

Remark 3.9.4. — If we use the isomorphism prε : V0(R) ∼= εV0(C) of (2.1.7) to view
(3.9.13) as a function of w0 ∈ εV0(C), the transformation law can be expressed in
terms of the C-bilinear form [., .] as

FJ
(a)
` (ψ)(w0 + prε(y0)) = FJ

(a)
` (ψ)(w0) · eiπ`

Q(y0)

N(b) eπ`
[w0,y0]

Im(τ)
+π`

Q(y0)

2Im(τ)

for all y0 ∈ bL0. This uses the (slightly confusing) commutativity of

V0(R)
prε //

〈.,y0〉
��

εV0(C)
⊂
// V0(C)

[.,y0]

��

k ⊗Q R C.

In order to give another interpretation of our explicit coordinates, let NΦ ⊂ QΦ be
the unipotent radical, and let UΦ ⊂ NΦ be its center. The unipotent radical may
be characterized as the kernel of the morphism νΦ of (3.1.1), or, equivalently, as the
largest subgroup acting trivially on all graded pieces griV .
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Proposition 3.9.5. — There is a commutative diagram

(3.9.15) (UΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ

z 7→(w0,q)
//

��

εV0(C)× C×

��

(NΦ(Q) ∩ s(a)KΦs(a)−1)\DΦ
// bL0\(εV0(C)× C×),

in which the horizontal arrows are holomorphic isomorphisms, and the action of bL0

on
εV0(C)× C× ∼= V0(R)× C×

is the same as in Proposition 3.9.3.

Proof. — Recall from Remark 3.2.3 the isomorphism

DΦ
∼=
{
w ∈ εV (C) : εV (C) = εV−1(C)⊕ εV0(C)⊕ Cw

}
/C×.

As εV (C) is totally isotropic with respect to [., .], a simple calculation shows that
every line w ∈ DΦ has a unique representative of the form

−ξ(e−1 − τ f−1) + w0 + (τe1 + f1) ∈ εV−1(C)⊕ εV0(C)⊕ εV1(C)

with ξ ∈ C and w0 ∈ εV0(C) = V0(R). These coordinates define an isomorphism of
complex manifolds

(3.9.16) DΦ
w 7→(w0,ξ)−−−−−−→ εV0(C)× C.

The action of G on V restricts to a faithful action of NΦ, allowing us to express
elements of NΦ(Q) as matrices

n(φ, φ∗, u) =

1 φ∗ u+ 1
2φ
∗ ◦ φ

1 φ

1

 ∈ NΦ(Q)

for maps

φ ∈ Homk(V1, V0), φ∗ ∈ Homk(V0, V−1), u ∈ Homk(V1, V−1)

satisfying the relations

0 = 〈φ(x1), y0〉+ 〈x1, φ
∗(y0)〉

0 = 〈u(x1), y1〉+ 〈x1, u(y1)〉

for xi, yi ∈ Vi. The subgroup UΦ(Q) is defined by φ = 0 = φ∗.
The group UΦ(Q)∩s(a)KΦs(a)−1 is cyclic, and generated by the element n(0, 0, u)

defined by

u(x1) =
〈x1, a〉

[L−1 : Oka]
· δa

for any a ∈ L−1. In terms of the bilinear form, this can be rewritten as

u(x1) = −[x1, f−1]e−1 + [x1, e−1]f−1.
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In the coordinates of (3.9.16), the action of n(0, 0, u) on DΦ becomes

(w0, ξ) 7→ (w0, ξ + 1),

and setting q = e2πiξ defines the top horizontal isomorphism in (3.9.15).
Let V −1 = V−1 with its conjugate action of k. There are group isomorphisms

(3.9.17) NΦ(Q)/UΦ(Q) ∼= V −1 ⊗k V0
∼= V0.

The first sends
n(φ, φ∗, u) 7→ y−1 ⊗ y0,

where y−1 and y0 are defined by the relation φ(x1) = 〈x1, y−1〉 · y0, and the second
sends

(αe−1 + βf−1)⊗ y0 7→ (ατ + β)y0.

Compare with (3.9.11).
A slightly tedious calculation shows that (3.9.17) identifies

(NΦ(Q) ∩ s(a)KΦs(a)−1)/(UΦ(Q) ∩ s(a)KΦs(a)−1) ∼= bL0,

defining the bottom horizontal arrow in (3.9.15), and that the resulting action of bL0

on εV0(C)×C× agrees with the one defined in Proposition 3.9.3. We leave this to the
reader.

Any section (3.9.12) may now be pulled back via

(NΦ(Q) ∩ s(a)KΦs(a)−1)\D z 7→(z,s(a)g)−−−−−−−−→ Sh(G,D)(C)

to define a holomorphic section of (ωan)k, the kth power of the tautological bundle on

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C×.

The tautological bundle admits a natural NΦ(R)-equivariant trivialization: any line
w ∈ D must satisfy [w, f−1] 6= 0, yielding an isomorphism

[ . , f−1] : ω
an ∼= OD.

This trivialization allows us to identify ψ with a holomorphic function on D ⊂ DΦ,
which then has an analytic Fourier-Jacobi expansion

(3.9.18) ψ =
∑
`

FJ
(a)
` (ψ)(w0) · q`

defined using the coordinates of Proposition 3.9.5. The fact that the coefficients here
agree with (3.9.13) is a special case of the main results of [39], which compare algebraic
and analytic Fourier-Jacobi coefficients on general PEL-type Shimura varieties.

4. Classical modular forms

Throughout § 4 we let D be any odd squarefree positive integer, and abbreviate
Γ = Γ0(D). Let k be any positive integer.
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4.1. Weakly holomorphic forms. — The positive divisors of D are in bijection with
the cusps of the complex modular curve X0(D)(C), by sending r | D to

∞r =
r

D
∈ Γ\P1(Q).

Note that r = 1 corresponds to the usual cusp at infinity, and so we sometimes
abbreviate ∞ =∞1.

Fix a positive divisor r | D, set s = D/r and choose

Rr =

(
α β

sγ rδ

)
∈ Γ0(s)

with α, β, γ, δ ∈ Z. The corresponding Aktin-Lehner operator is defined by the matrix

Wr =

(
rα β

Dγ rδ

)
= Rr

(
r

1

)
.

The matrix Wr normalizes Γ, and so acts on the cusps of X0(D)(C). This action
satisfies Wr · ∞ =∞r.

Let χ be a quadratic Dirichlet character modulo D, and let

χ = χr · χs

be the unique factorization as a product of quadratic Dirichlet characters χr and χs
modulo r and s, respectively. Write

Mk(D,χ) ⊂M !
k(D,χ)

for the spaces of holomorphic modular forms and weakly holomorphic modular forms
of weight k, level Γ, and character χ. We assume that χ(−1) = (−1)k, since otherwise
M !
k(D,χ) = 0.
Denote by GL+

2 (R) ⊂ GL2(R) the subgroup of elements with positive determinant.
It acts on functions on the upper half plane by the usual weight k slash operator

(f |k γ)(τ) = det(γ)k/2(cτ + d)−kf(γτ), γ =

(
a b

c d

)
∈ GL+

2 (R),

and f 7→ f |k Wr defines an endomorphism of M !
k(D,χ) satisfying

f |k W 2
r = χr(−1)χs(r) · f.

In particular, Wr is an involution when χ is trivial.
Any weakly holomorphic modular form

f(τ) =
∑

m�−∞
c(m) · qm ∈M !

k(D,χ)

determines another weakly holomorphic modular form

χr(β)χs(α) · (f |k Wr) ∈M !
k(D,χ),
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which is easily seen to be independent of the choice of parameters α, β, γ, δ in the
definition of Wr. This second modular form has a q-expansion at ∞, denoted

(4.1.1) χr(β)χs(α) · (f |k Wr) =
∑

m�−∞
cr(m) · qm.

Definition 4.1.1. — We call (4.1.1) the q-expansion of f at ∞r. Of special interest is
cr(0), the constant term of f at ∞r.

Remark 4.1.2. — If χ is nontrivial, the coefficients of (4.1.1) need not lie in the sub-
field of C generated by the Fourier coefficients of f .

4.2. Eisenstein series and the modularity criterion. — Fix an integer k ≥ 2. Denote by

M !,∞
2−k(D,χ) ⊂M !

2−k(D,χ)

the subspace of weakly holomorphic forms that are holomorphic outside the cusp ∞,
and by

M∞k (D,χ) ⊂Mk(D,χ)

the subspace of holomorphic modular forms that vanish at all cusps different from ∞.
If k > 2 there is a decomposition

M∞k (D,χ) = CE ⊕ Sk(D,χ),

where E is the Eisenstein series

E =
∑

γ∈Γ∞\Γ

χ(d) · (1 |k γ) ∈Mk(D,χ).

Here Γ∞ ⊂ Γ is the stabilizer of ∞ ∈ P1(Q), and γ =
(
a b
c d

)
∈ Γ.

We also define the (normalized) Eisenstein series for the cusp ∞r by

Er = χr(−β)χs(αr) · (E |k Wr) ∈Mk(D,χ).

It is independent of the choice of the parameters in Wr, and we denote by

Er(τ) =
∑
m≥0

er(m) · qm

its q-expansion at ∞.

Remark 4.2.1. — Our notation for the q-expansion of Er is slightly at odds with
(4.1.1), as the q-expansion of E at∞r is not

∑
er(m)qm. Instead, the q-expansion of E

at ∞r is χr(−1)χs(r)
∑
er(m)qm, while the q-expansion of Er at ∞r is

∑
e1(m)qm.

In any case, what matters most is that

constant term of Er at ∞s =

{
1 if s = r,
0 otherwise.

The constant terms of weakly holomorphic modular forms in M !,∞
2−k(D,χ) can be

computed using the above Eisenstein series.
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Proposition 4.2.2. — Assume k > 2. Suppose r | D and

f(τ) =
∑

m�−∞
c(m) · qm ∈M !,∞

2−k(D,χ).

The constant term of f at the cusp ∞r, in the sense of Definition 4.1.1, satisfies

cr(0) +
∑
m>0

c(−m)er(m) = 0.

Proof. — The meromorphic differential form f(τ)Er(τ) dτ on X0(D)(C) is holomor-
phic away from the cusps ∞ and ∞r. Summing its residues at these cusps gives the
desired equality.

Theorem 4.2.3 (Modularity criterion). — Suppose k ≥ 2. For a formal power series

(4.2.1)
∑
m≥0

d(m)qm ∈ C[[q]],

the following are equivalent.

1. The relation
∑
m≥0 c(−m)d(m) = 0 holds for every weakly holomorphic form∑

m�−∞
c(m) · qm ∈M !,∞

2−k(D,χ).

2. The formal power series (4.2.1) is the q-expansion of a modular form
in M∞k (D,χ).

Proof. — As we assume k ≥ 2, that the map sending a weakly holomorphic modular
form f to its principal part at ∞ identifies

M !,∞
2−k(D,χ) ⊂ C[q−1].

On the other hand, the map sending a holomorphic modular form to its q-expansion
identifies

M∞k (D,χ) ⊂ C[[q]].

A slight variant of the modularity criterion of [5, Theorem 3.1] shows that each sub-
space is the exact annihilator of the other under the bilinear pairing C[q−1]⊗ C[[q]] −→ C
sending P ⊗ g to the constant term of P · g. The claim follows.

5. Unitary Borcherds products

The goal of § 5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which assert the existence
of Borcherds products on S∗Kra and S∗Pap having prescribed divisors and prescribed
leading Fourier-Jacobi coefficients. These theorems are the technical core of this work,
and their proofs will occupy all of § 6.

We assume n ≥ 3 throughout § 5.

ASTÉRISQUE 421



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

MODULARITY OF UNITARY GENERATING SERIES 75

5.1. Jacobi forms. — In this section we recall some of the rudiments of the arithmetic
theory of Jacobi forms. A more systematic treatment can be found in the work of
Kramer [29, 30].

Let Y be the moduli stack over Z classifying elliptic curves, and let π : E→Y be
the universal elliptic curve. Abbreviate Γ = SL2(Z), and let H be the complex upper
half-plane. The groups Γ and Z2 each act on H× C by(

a b

c d

)
· (τ, z) =

(
aτ + b

cτ + d
,

z

cτ + d

)
,

[
α

β

]
· (τ, z) = (τ, z + ατ + β) ,

and this defines an action of the semi-direct product Γ∗ = Γ n Z2. We identify the
commutative diagrams (of complex orbifolds)

(5.1.1) Γ\(H× C)

�� %%

Lie(E(C))

exp

�� %%

Γ∗\(H× C) // Γ\H E(C) // Y(C)

by sending (τ, z) ∈ H× C to the vector z in the Lie algebra of C/(Zτ + Z).
Define a line bundle O(e) on E as the inverse ideal sheaf of the zero section

e : Y→ E. The Lie algebra Lie(E) is (by definition) e∗O(e), and ωY = Lie(E)−1 is
the usual line bundle of weight one modular forms on Y (see Remark 5.1.3 below).
In particular, the line bundle

Q = O(e)⊗ π∗ωY
on E is canonically trivialized along the zero section. By the constructions of [40,
§ 1.3.2] and [44, § 6.2], this line bundle induces a homomorphism

(5.1.2) E→ E∨,

which is none other than the unique principal polarization of E (one can verify this
fiber-by-fiber over geometric points of Y, reducing the claim to standard properties
of elliptic curves over fields). Denote by P the pullback of the Poincaré bundle via

E×Y E ∼= E×Y E∨.

For a scheme U and points a, b ∈ E(U), denote by Q (a) the pullback of Q via
a : U → E, and by P(a, b) the pullback of P via (a, b) : U → E ×Y E. There are
canonical isomorphisms

P(a, b) ∼= Q (a+ b)⊗ Q (a)−1 ⊗ Q (b)−1

and
P(a, a) ∼= Q (a)⊗ Q (a).

Given the way that (5.1.2) is constructed from Q , the first isomorphism is essentially
a tautology. The second is a consequence of the isomorphisms

Q (2a) ∼= Q (a)⊗3 ⊗ Q (−a) ∼= Q (a)⊗4,
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which follow from the theorem of the cube [17, Theorem I.1.3] and the invariance
of Q under pullback by [−1] : E→ E, respectively.

Definition 5.1.1. — The diagonal restriction

J0,1 = (diag)∗P ∼= Q 2

is the line bundle of Jacobi forms of weight 0 and index 1 on E. More generally,

Jk,m = Jm0,1 ⊗ π∗ωkY
is the line bundle of Jacobi forms of weight k and index m on E.

The isomorphism of the following proposition is presumably well-known. We in-
clude the proof in order to make explicit the normalization of the isomorphism (see
Remark 5.1.3 below, for example).

Proposition 5.1.2. — Let p : H×C→ E(C) be the quotient map. The holomorphic line
bundle Jan

k,m on E(C) is isomorphic to the holomorphic line bundle whose sections over
an open set U ⊂ E(C) are holomorphic functions F (τ, z) on p−1(U ) satisfying the
transformation laws

F

(
aτ + b

cτ + d
,

z

cτ + d

)
= F (τ, z) · (cτ + d)k · e2πimcz2/(cτ+d)

and

(5.1.3) F (τ, z + ατ + β) = F (τ, z) · e−2πim(α2τ+2αz).

Proof. — Let Jk,m be the holomorphic line bundle on E(C) defined by the above
transformation laws.

By identifying the diagrams (5.1.1), a function f , defined on a Γ-invariant open
subset of H and satisfying the transformation law

f

(
aτ + b

cτ + d

)
= f(τ) · (cτ + d)−1

of a weight −1 modular form, defines a section τ 7→ (τ, f(τ)) of the line bundle

Γ\(H× C) ∼= Lie(E(C)) ∼= (ωan
Y )−1

on Γ\H. This determines an isomorphism J1,0
∼= Jan

1,0. It now suffices to construct an
isomorphism J0,1

∼= Jan
0,1, and then take tensor products.

Fix τ ∈ H, set Eτ = C/(Zτ + Z), and restrict both Jan
0,1 and J0,1 to line bundles

on Eτ ⊂ E(C). The imaginary part of the hermitian form

Hτ (z1, z2) =
z1z2

Im(τ)

on C restricts to a Riemann form on Zτ +Z. Using classical formulas for the Poincaré
bundle on complex abelian varieties, as found in the proof of [3, Theorem 2.5.1], the
restriction of Jan

0,1 to the fiber Eτ is isomorphic to the holomorphic line bundle deter-
mined by the Appell-Humbert data 2Hτ and the trivial character Zτ + Z→ C×. The
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sections of this holomorphic line bundle are, by definition, holomorphic functions gτ
on C satisfying the transformation law

gτ (z + `) = gτ (z) · e2πHτ (z,`)+πHτ (`,`)

for all ` ∈ Zτ + Z. If we set

F (τ, z) = gτ (z) · e−πHτ (z,z),

this transformation law becomes (5.1.3).
The above shows that Jan

0,1 and J0,1 are isomorphic when restricted to the fiber
over any point of Y(C), but such an isomorphism is only determined up to scaling
by C×. To pin down the scalars, and to get an isomorphism over the total space, use
the fact that both Jan

0,1 and J0,1 come (by construction) with canonical trivializations
along the zero section. By the Seesaw Theorem [3, Appendix A], there is a unique
isomorphism Jan

0,1
∼= J0,1 compatible with these trivializations.

Remark 5.1.3. — The proof of Proposition 5.1.2 identifies a classical modular form
f(τ) =

∑
c(m)qm of weight k and level Γ with a holomorphic section of (ωan

Y )k,
again denoted f , satisfying an additional growth condition at the cusp. Under our
identification, the q-expansion principle takes the following form: if R ⊂ C is any
subring, then f is the analytification of a global section f ∈ H0(Y/R,ω

k
Y/R) if and

only if c(m) ∈ (2πi)kR for all m.

For τ ∈ H and z ∈ C, we denote by

ϑ1(τ, z) =
∑
n∈Z

eπi(n+ 1
2 )

2
τ+2πi(n+ 1

2 )(z− 1
2 )

the classical Jacobi theta function, and by

η(τ) = eπiτ/12
∞∏
n=1

(1− e2nπiτ )

Dedekind’s eta function. Set

Θ(τ, z)
def
= i

ϑ1(τ, z)

η(τ)
= q1/12(ζ1/2 − ζ−1/2)

∞∏
n=1

(1− ζqn)(1− ζ−1qn),

where q = e2πiτ and ζ = e2πiz.

Proposition 5.1.4. — The Jacobi form Θ24 defines a global section

Θ24 ∈ H0(E,J0,12)

with divisor 24e, while (2πiη2)12 determines a nowhere vanishing section

(2πiη2)12 ∈ H0(Y,ω12
Y ).
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Proof. — It is a classical fact that (2πiη2)12 is a nowhere vanishing modular form of
weight 12. Noting Remark 5.1.3, the q-expansion principle shows that it descends to
a section on Y/Q, and thus may be viewed as a rational section on Y. Another appli-
cation of the q-expansion principle shows that its divisor has no vertical components.
Thus its divisor is trivial.

Classical formulas show that Θ24 defines a holomorphic section of Jan
0,12 with divi-

sor 24e, and so the problem is to show that Θ24 is defined over Q, and extends to a
section on the integral model with the stated divisor. One could presumably deduce
this from the q-expansion principle for Jacobi forms as in [29, 30]. We instead borrow
an argument from [51, § 1.2], which requires only the more elementary q-expansion
principle for functions on E.

Let d be any positive integer. The bilinear relations (3.4.1) imply that the line
bundle Jd

2

0,1 ⊗ [d]∗J−1
0,1 on E is canonically trivial, and so

θ24
d = Θ24d2

⊗ [d]∗Θ−24

defines a meromorphic function on E(C). The crucial point is that θ24
d is actually a

rational function defined over Q, and extends to a rational function on the integral
model E with divisor

(5.1.4) div(θ24
d ) = 24

(
d2E[1]− E[d]

)
.

As in [51, p. 387], this follows by computing the divisor first in the complex fiber,
then using the explicit formula

θ24
d (τ, z) = q2(d2−1)ζ−12d(d−1)

∏
n≥0

(1− qnζ)d
2

1− qnζd
∏
n>0

(1− qnζ−1)d
2

1− qnζ−d

24

and the q-expansion principle on E to see that the divisor has no vertical components.
The line bundle ω

12
Y is trivial, and hence there are isomorphisms

J0,12
∼= Q 24 ∼= O(e)24 ⊗ π∗ω12

Y
∼= O(e)24.

Thus there is some Θ̃24 ∈ H0(E,J0,12) with divisor 24e, and the rational function

θ̃24
d = Θ̃24d2

⊗ [d]∗Θ̃−24

on E also has divisor (5.1.4).
Consider the meromorphic function ρ = Θ24/Θ̃24 on E(C). By computing the

divisor in the complex fiber, we see that ρ is a nowhere vanishing holomorphic function,
and hence is constant. But this implies that

ρd
2−1 = θ24

d /θ̃
24
d .

By what was said above, the right hand side is (the analytification of) a nowhere
vanishing function on E. This implies that ρd

2−1 = ±1, and the only way this can
hold for all d > 1 is if ρ = ±1.
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Now consider the tower of stacks

Y1(D)→Y0(D)→Y

over Spec(Z) parametrizing elliptic curves with Drinfeld Γ1(D)-level structure,
Γ0(D)-level structure, and no level structure, respectively. See [28, Chapter 3] or [15]
for the definitions. We denote by E the universal elliptic curve over any one of these
bases, and view the line bundle of Jacobi forms J0,12 as a line bundle on any one
of the three universal elliptic curves. Similarly, we view the Jacobi forms Θ24 and
(2πiη2)12 of Proposition 5.1.4 as being defined over any one of these bases.

The following lemma will be needed in § 5.3.

Lemma 5.1.5. — Let Q : Y1(D)→ E be the universal D-torsion point. For any r | D
the line bundle

(5.1.5)
⊗

b∈Z/DZ
b6=0
rb=0

(bQ)∗J0,12

on Y1(D) is canonically trivial, and its section

F 24
r =

⊗
b∈Z/DZ
b6=0
rb=0

(bQ)∗Θ24

admits a canonical descent, denoted the same way, to a section of the trivial bundle
on Y0(D).

Proof. — If x1, . . . , xr are integers representing the r-torsion subgroup of Z/DZ, then
6
∑
x2
i ≡ 0 (mod D). The bilinear relations (3.4.1) therefore provide a canonical

isomorphism⊗
b∈Z/DZ
b6=0
rb=0

P(bQ, bQ)⊗12 ∼=
⊗

b∈Z/DZ
b6=0
rb=0

P(Q, 12b2Q) ∼= P(Q, e) ∼= OY1(D)

of line bundles on Y1(D). This is the desired trivialization of (5.1.5). The section F 24
r

is obviously invariant under the action of the diamond operators on Y1(D), and so
descends to Y0(D).

5.2. Borcherds’ quadratic identity. — For the remainder of § 5 we denote by
χk : (Z/DZ)× → {±1} the Dirichlet character determined by the extension k/Q,
abbreviate

(5.2.1) χ = χn−2
k ,

and fix a weakly holomorphic form

(5.2.2) f(τ) =
∑

m�−∞
c(m)qm ∈M !,∞

2−n(D,χ)

with c(m) ∈ Z for all m ≤ 0.
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For a proper cusp label representative Φ as in Definition 3.1.1, recall the self-dual
hermitian Ok-lattice L0 of signature (n−2, 0) defined by (3.1.4). The hermitian form
on L0 determines a quadratic form Q(x) = 〈x, x〉, with associated Z-bilinear form
[x1, x2] = Trk/Q〈x1, x2〉 of signature (2n− 4, 0).

The modularity criterion of Theorem 4.2.3 implies the following identity of
quadratic forms on L0 ⊗ R.

Proposition 5.2.1 (Borcherds’ quadratic identity). — For all u ∈ L0 ⊗ R,∑
x∈L0

c(−Q(x)) · [u, x]2 =
[u, u]

2n− 4

∑
x∈L0

c(−Q(x)) · [x, x].

Proof. — The homogeneous polynomial

P (u, v) = [u, v]2 − [u, u] · [v, v]

2n− 4

on L0 ⊗R is harmonic in both variables u and v. For any fixed u ∈ L0 ⊗R there is a
corresponding theta series

θ(τ, u, P ) =
∑
x∈L0

P (u, x) · qQ(x) ∈ Sn(D,χ).

The modularity criterion of Theorem 4.2.3 therefore shows that∑
m>0

c(−m)
∑
x∈L0

Q(x)=m

(
[u, x]2 − [u, u] · [x, x]

2n− 4

)
= 0

for all u ∈ L0 ⊗ R. This implies the assertion.

Recall from (3.6.2) that every x ∈ L0 determines a diagram

(5.2.3) BΦ
jx

//

��

E

��

AΦ
j
// Y0(D),

where, changing notation slightly from § 5.1, Y0(D) is now the open modular curve
over Ok. Recall also that BΦ carries a distinguished line bundle LΦ defined by
(3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1). We will use Borcherds’
quadratic identity to relate the line bundle LΦ to the line bundle J0,1 of Jacobi forms
on E.

Proposition 5.2.2. — The rational number

(5.2.4) multΦ(f) =
∑
m>0

m · c(−m)

n− 2
·#{x ∈ L0 : Q(x) = m}
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lies in Z, and there is a canonical isomorphism

L 2·multΦ(f)
Φ

∼=
⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)
0,1

of line bundles on BΦ.

Proof. — Proposition 5.2.1 implies the equality of hermitian forms∑
x∈L0

c(−Q(x)) · 〈u, x〉 · 〈x, v〉 =
〈u, v〉
2n− 4

∑
x∈L0

c(−Q(x)) · [x, x]

= 〈u, v〉 ·multΦ(f)

for all u, v ∈ L0. As L0 is self-dual, we may choose u and v so that 〈u, v〉 = 1, and
the integrality of multΦ(f) follows from the integrality of c(−m).

Set E = E ×Y0(D) AΦ, and use Proposition 3.4.4 to identify BΦ
∼= E ⊗ L0. The

pullback of the line bundle⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
⊗c(−m)
0,1

∼=
⊗
x∈L0

j∗xJ
⊗c(−Q(x))
0,1

via any T -valued point a =
∑
ti ⊗ yi ∈ E(T )⊗ L0 is, in the notation of § 3.4,⊗

x∈L0

PE
(∑

i

〈yi, x〉ti,
∑
j

〈yj , x〉tj
)⊗c(−Q(x))∼=

⊗
i,j

⊗
x∈L0

PE
(
c(−Q(x))·〈yi, x〉·〈x, yj〉·ti, tj

)
∼=
⊗
i,j

PE
(
〈yi, yj〉 · ti, tj

)⊗multΦ(f)

∼= PE⊗L0
(a, a)⊗multΦ(f)

∼= QE⊗L0
(a)⊗2·multΦ(f).

This, along with the isomorphism QE⊗L0
∼= LΦ of Proposition 3.4.4, proves that

L 2·multΦ(f)
Φ

∼= Q 2·multΦ(f)
E⊗L0

∼=
⊗
m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)
0,1 .

5.3. The unitary Borcherds product. — We now state our main results on Borcherds
products.

For a prime p dividing D define

(5.3.1) γp = ε−np · (D, p)np · invp(Vp) ∈ {±1,±i},

where invp(Vp) is the invariant of Vp = Homk(W0,W )⊗Q Qp in the sense of (1.7.3),
and

εp =

{
1 if p ≡ 1 (mod 4)

i if p ≡ 3 (mod 4).
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It is equal to the local Weil index of the Weil representation of SL2(Zp) on
SLp ⊂ S(Vp), where Vp is viewed as a quadratic space as in (2.1.6). This is explained
in more detail in § 8.1. For any r dividing D we define

(5.3.2) γr =
∏
p|r

γp.

Let cr(0) denote the constant term of f at the cusp ∞r, as in Definition 4.1.1, and
define

k =
∑
r|D

γr · cr(0).

We will see later in Corollary 6.1.4 that all γr · cr(0) ∈ Q.
For every m > 0 define a divisor

(5.3.3) BKra(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ)

with rational coefficients on S∗Kra. Here the sum is over all K-equivalence classes of
proper cusp label representatives Φ in the sense of § 3.2, L0 is the hermitianOk-module
of signature (n − 2, 0) defined by (3.1.4), and S∗Kra(Φ) is the boundary divisor of
Theorem 3.7.1. It follows immediately from the definition (5.2.4) that∑

m>0

c(−m) ·BKra(m) =
∑
Φ

multΦ(f) · S∗Kra(Φ).

For m > 0 define the total special divisor

Z tot
Kra(m) = Z∗Kra(m) +BKra(m),

where Z∗Kra(m) is the special divisor defined on the open Shimura variety in § 2.5, and
extended to the toroidal compactification in Theorem 3.7.1.

The following theorems assert the existence of Borcherds products on S∗Kra and
S∗Pap having prescribed divisors and prescribed leading Fourier-Jacobi coefficients.
Their proofs will occupy all of § 6.

Theorem 5.3.1. — After possibly replacing the form f of (5.2.2) by a positive integer
multiple, there is a rational section ψ(f) of the line bundle ω

k on S∗Kra with the
following properties.

1. In the generic fiber, the divisor of ψ(f) is

div(ψ(f))/k =
∑
m>0

c(−m) ·Z tot
Kra(m)/k.

2. For every proper cusp label representative Φ, the Fourier-Jacobi expansion
of ψ(f), in the sense of (3.8.1), along the boundary divisor

∆Φ\BΦ
∼= S∗Kra(Φ)

has the form
ψ(f) = qmultΦ(f)

∑
`≥0

ψ` · q`,
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where ψ` is a rational section of ω
k
Φ ⊗ L

multΦ(f)+`
Φ over BΦ.

3. For any Φ as above, the leading coefficient ψ0 admits a factorization

ψ0 = P ηΦ ⊗ P
hor
Φ ⊗ P vert

Φ ,

where the three terms on the right are defined as follows.

(a) Proposition 3.5.1 provides us with an isomorphism

d−1
ωΦ
∼= j∗ωY

of line bundles on AΦ, where j : AΦ →Y0(D) is the morphism of (5.2.3),
and ωY = Lie(E)−1 is the pullback via Y0(D) → Y of the line bundle
of weight one modular forms. Pulling back the modular form (2πiη2)12 of
Proposition 5.1.4 defines a nowhere vanishing section

j∗(2πiη2)k ∈ H0(AΦ, d
−k

ω
k
Φ).

Using the canonical inclusion ωΦ ⊂ d−1
ωΦ, define

P ηΦ = j∗(2πiη2)k,

but viewed as a rational section of ω
k
Φ over AΦ. Denote in the same way its

pullback to BΦ.
(b) Recalling the function

F 24
r =

⊗
b∈Z/DZ
b6=0
rb=0

(bQ)∗Θ24

on Y0(D) of Lemma 5.1.5, define a rational function

P vert
Φ =

⊗
r|D
r>1

j∗F γrcr(0)
r

on AΦ, and again pull back to BΦ.
(c) Using Proposition 5.2.2, define a rational section

P hor
Φ =

⊗
m>0

⊗
x∈L0

〈x,x〉=m

j∗xΘc(−m)

of the line bundle LmultΦ(f)
Φ on BΦ.

These properties determine ψ(f) uniquely.

Remark 5.3.2. — In replacing f by a positive integer multiple, we are tacitly assuming
that the constants γrcr(0) and c(−m) are integer multiples of 24 for all r | D and all
m > 0. This is necessary in order to guarantee k ∈ 12Z, and to make sense of the
three factors (2πiη2

Φ)k, P hor
Φ , and P vert

Φ .

In fact, we can strengthen Theorem 5.3.1 by computing precisely the divisor of ψ(f)
on the integral model S∗Kra.
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Theorem 5.3.3. — The rational section ψ(f) of ω
k has divisor

div(ψ(f)) =
∑
m>0

c(−m) ·Z tot
Kra(m)

+ k ·
(

Exc

2
− div(δ)

)
+
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)

2

∑
s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs,

where p ⊂ Ok is the unique prime above p, Ls is the self-dual Hermitian Ok-lattice
defined in § 2.6, and Excs ⊂ Exc is the fiber over the component s ∈ π0(Sing). Recall
that δ =

√
−D ∈ k.

It is possible to give a statement analogous to Theorem 5.3.3 for the integral
model S∗Pap. To do this we first define, exactly as in (5.3.3), a Cartier divisor

Ytot
Pap(m) = Y∗Pap(m) + 2BPap(m)

with rational coefficients on S∗Pap. Here Y∗Pap(m) is the Cartier divisor of Theo-
rem § 3.7.1, and

BPap(m) =
m

n− 2

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Pap(Φ).

It is clear from Theorem 3.7.1 that

(5.3.4) 2 ·Z tot
Kra(m) = Ytot

Kra(m) +
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs,

where Ytot
Kra(m) denotes the pullback of Ytot

Pap(m) via S∗Kra → S∗Pap.
The isomorphism

ω
2 ∼= ΩKra ⊗O(Exc)

of Theorem 3.7.1 identifies ω
2k ∼= Ω

k
Kra in the generic fiber of S∗Kra, allowing us to

view ψ(f)2 as a rational section of Ω
k
Kra. As S∗Kra → S∗Pap is an isomorphism in

the generic fiber, this section descends to a rational section of the line bundle Ω
k
Pap

on S∗Pap.

Theorem 5.3.4. — When viewed as a rational section of Ω
k
Pap, the Borcherds prod-

uct ψ(f)2 has divisor

div(ψ(f)2) =
∑
m>0

c(−m) ·Ytot
Pap(m)− 2k · div(δ) + 2

∑
r|D

γrcr(0)
∑
p|r

S∗Pap/Fp .

These three theorems will be proved simultaneously in § 6. Briefly, we will map our
unitary Shimura variety Sh(G,D) to an orthogonal Shimura variety, where a mero-
morphic Borcherds product is already known to exist. If we pull back this Borcherds
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product to Sh(G,D)(C), the leading coefficient in its analytic Fourier-Jacobi expan-
sion is known from [32], up to multiplication by some unknown constants of absolute
value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic language, we
will deduce the existence of a Borcherds product ψ(f) satisfying all of the properties
stated in Theorem 5.3.1, up to some unknown constants in the leading Fourier-Jacobi
coefficient. These unknown constants are the κΦ’s appearing in Proposition 6.4.1. We
then rescale the Borcherds product to make many κΦ = 1 simultaneously.

After such a rescaling, the divisor of ψ(f)2 on S∗Pap can be computed from the
Fourier-Jacobi expansions, and agrees with the divisor written in Theorem 5.3.4.
Pulling back that divisor calculation via S∗Kra → S∗Pap, and using Theorem 2.6.3,
yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all κΦ are roots of unity. Thus,
after replacing f by a multiple, which replaces ψ(f) by a power, we can force all
κΦ = 1, completing the proofs.

5.4. A divisor calculation at the boundary. — Let Φ be a proper cusp label repre-
sentative for (G,D). The following proposition is a key ingredient in the proofs of
Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. — The rational sections P ηΦ, P
hor
Φ , and P vert

Φ of the line bundles ω
k
Φ,

LmultΦ(f)
Φ , and OBΦ

, respectively, have divisors

div(P ηΦ) = −k · div(δ)

div(P hor
Φ ) =

∑
m>0

c(−m)ZΦ(m)

div(P vert
Φ ) =

∑
r|D

γrcr(0)
∑
p|r

BΦ/Fp .

In particular, the divisor of P hor
Φ is purely horizontal (Proposition 3.6.2), while the

divisors of P ηΦ and P vert
Φ are purely vertical.

Proof. — By Proposition 5.1.4 the section

j∗(2πiη2)k ∈ H0(AΦ, d
−k

ω
k
Φ) ∼= H0(Y0(D),ωkY)

has trivial divisor. When we use the inclusion ωΦ ⊂ d−1
ωΦ to view it instead as a

rational section P ηΦ of ω
k
Φ, its divisor becomes div(δ−k). This proves the first equality.

To prove the remaining two equalities, let E → Y0(D) be the universal elliptic
curve, and denote by e : Y0(D) → E the 0-section. It is an effective Cartier divisor
on E.

Directly from the definition of P hor
Φ we have the equality

div(P hor
Φ ) =

∑
m>0

c(−m)

24

∑
x∈L0

〈x,x〉=m

div(j∗xΘ24).
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Combining Proposition 5.1.4 with (3.6.1) shows that∑
x∈L0

〈x,x〉=m

div(j∗xΘ24) =
∑
x∈L0

〈x,x〉=m

24j∗x(e) =
∑
x∈L0

〈x,x〉=m

24ZΦ(x) = 24ZΦ(m),

and the first equality follows immediately.
Recall the morphism j : AΦ → Y0(D) of § 3.6. For the second equality it suffices

to prove that the function F 24
r on Y0(D) defined in Lemma 5.1.5 satisfies

(5.4.1) div(j∗F 24
r ) = 24

∑
p|r

AΦ/Fp .

Let C ⊂ E be the universal cyclic subgroup scheme of order D. For each s | D
denote by C[s] ⊂ C the s-torsion subgroup, and by C[s]× ⊂ C[s] the closed subscheme
of generators. This is defined as follows. Noting that

C[s] =
∏
p|s

C[p],

we define

C[s]× =
∏
p|s

C[p]×,

where C[p]× denotes the closed subscheme of generators of C[p] as in [21, § 3.3]. Note
that C[p]× coincides with the subscheme of points of exact order p Z (see [21, Re-
mark 3.3.2]) which allows the comparison with the formulation of the moduli problem
in [28, Chapter 3]. Here and in the sequel, we are using [21, § 3.3] as a convenient
summary of Oort-Tate theory (see also [19]) and of facts from [28] and [15].

There is an equality of Cartier divisors

1

24
div(F 24

r ) =
(
C[r]− e

)
×E,eY0(D) =

∑
s|r
s6=1

(
C[s]× ×E,eY0(D)

)

on Y0(D). Indeed, one can check this after pullback to Y1(D), where it is clear from
Proposition 5.1.4, which asserts that the divisor of the section Θ24 appearing in the
definition of F 24

r is equal to 24e. If s is divisible by two distinct primes then(
C[s]× ×E,eY0(D)

)
= 0,

and hence

div(F 24
r ) = 24

∑
p|r

(
C[p]× ×E,eY0(D)

)
.

Now pull back this equality of Cartier divisors by j. Recall that j is defined as the
composition

AΦ
∼= M(1,0)

i−→Y0(D),
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where the isomorphism is the one provided by Proposition 3.4.4, and the arrow la-
beled i endows the universal CM elliptic curve E →M(1,0) with its cyclic subgroup
scheme E[δ]. Thus

(5.4.2) i∗div(F 24
r ) = 24

∑
p|r

(
E[p]× ×E,eM(1,0)

)
,

where p denotes the unique prime ideal in Ok over p.
Fix a geometric point z : Spec(Falg

p ) → M(1,0), and view z also as a geometric
point of E or E using

M(1,0)
e−→ E

i−→ E.

Let OE,z and OE,z denote the completed étale local rings of E and E at z.
There is an isomorphism

OE,z ∼= W [[X,Y, Z]]/(XY − wp)

for some uniformizer wp in the Witt ring W = W (Falg
p ). Compare with [21, The-

orem 3.3.1]. Under this isomorphism the 0-section of E is defined by the equation
Z = 0, and the divisor C[p]× is defined by Zp−1 −X = 0. Moreover, noting that the
completed étale local ring of M(1,0) at z can be identified with Ok ⊗W , the natural
map OE,z → OE,z is identified with the quotient map

W [[X,Y, Z]]/(XY − wp)→W [[X,Y, Z]]/(XY − wp, X − uY )

for some u ∈W×.
Under these identifications, the closed immersion

E[p]× ×E,eM(1,0) ↪→M(1,0)

corresponds, on the level of completed local rings, to the quotient map

OM(1,0),z W [[X,Y, Z]]/(XY − wp, X − uY, Z)

��

Falg
p W [[X,Y, Z]]/(XY − wp, X − uY, Z, Zp−1 −X).

This implies that
E[p]× ×E,eM(1,0) = M(1,0)/Falg

p
.

The equality (5.4.1) is clear from this and (5.4.2).

6. Calculation of the Borcherds product divisor

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. We assume throughout
that n ≥ 3.

Throughout § 6 we keep f as in (5.2.2), and again assume that c(−m) ∈ Z for all
m ≥ 0. Recall that V = Homk(W0,W ) is endowed with the hermitian form 〈x, y〉 of
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(2.1.5), as well as the Q-bilinear form [x, y] of (2.1.6). The associated quadratic form
is

Q(x) = 〈x, x〉 =
[x, x]

2
.

6.1. Vector-valued modular forms. — Let L ⊂ V be any Ok-lattice, self-dual with
respect to the hermitian form. The dual lattice of L with respect to the bilinear
form [., .] is L′ = d−1L.

Let ω be the restriction to SL2(Z) of the Weil representation of SL2(Q̂) (associ-
ated with the standard additive character of A/Q) on the Schwartz-Bruhat functions
on L ⊗Z Af . The restriction of ω to SL2(Z) preserves the subspace SL = C[L′/L] of
Schwartz-Bruhat functions that are supported on L̂′ and invariant under translations
by L̂. We obtain a representation

ωL : SL2(Z)→ Aut(SL).

For µ ∈ L′/L, we denote by φµ ∈ SL the characteristic function of µ.

Remark 6.1.1. — The conjugate representation ωL on SL, defined by

ωL(γ)(φ) = ωL(γ)(φ)

for φ ∈ SL, is the representation denoted ρL in [4, 7, 9].

Recall the scalar valued modular form

f(τ) =
∑

m�−∞
c(m) · qm ∈M !,∞

2−n(D,χ)

of (5.2.2), and continue to assume that c(m) ∈ Z for all m ≤ 0. We will convert f into
a C[L′/L]-valued modular form f̃ , to be used as input for Borcherds’ construction of
meromorphic modular forms on orthogonal Shimura varieties. The restriction of ωL
to Γ0(D) acts on the line C · φ0 via the character χ = χn−2

k , and hence the induced
function

f̃(τ) =
∑

γ∈Γ0(D)\SL2(Z)

(f |2−n γ)(τ) · ωL(γ)−1φ0(6.1.1)

is an SL-valued weakly holomorphic modular form for SL2(Z) of weight 2 − n with
representation ωL. Its Fourier expansion is denoted

(6.1.2) f̃(τ) =
∑

m�−∞
c̃(m) · qm,

and we denote by c̃(m,µ) the value of c̃(m) ∈ SL at a coset µ ∈ L′/L.
For any r | D let γr ∈ {±1,±i} be as in (5.3.2), and let cr(m) be the mth Fourier

coefficient of f at the cusp ∞r as in (4.1.1). For any µ ∈ L′/L define rµ | D by

(6.1.3) rµ =
∏
µp 6=0

p,

where µp ∈ L′p/Lp is the p-component of µ.
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Proposition 6.1.2. — For all m ∈ Q the coefficients c̃(m) ∈ SL satisfy

c̃(m,µ) =

{∑
rµ|r|D γr · cr(mr) if m ≡ −Q(µ) (mod Z),

0 otherwise.

Moreover, for m < 0 we have

c̃(m,µ) =

{
c(m) if µ = 0,
0 if µ 6= 0,

and the constant term of f̃ is given by

c̃(0, µ) =
∑
rµ|r|D

γr · cr(0).

Proof. — The first formula is a special case of results of Scheithauer [50, Section 5].
For the reader’s benefit we provide a direct proof in § 8.2.

The formula for the m = 0 coefficient is immediate from the general formula. So is
the formula for m < 0, using the fact that the singularities of f are supported at the
cusp at ∞.

Remark 6.1.3. — The first formula of Proposition 6.1.2 actually also holds for f in
the larger space M !

2−n(D,χ).

Corollary 6.1.4. — The coefficients c(m) and c̃(m) satisfy the following:

1. The c(m) are rational for all m.

2. The c̃(m,µ) are rational for all m and µ, and are integral if m < 0.

3. For all r | D we have γr · cr(0) ∈ Q. In particular

c̃(0, 0) =
∑
r|D

γr · cr(0) ∈ Q.

Proof. — For the first claim, fix any σ ∈ Aut(C/Q). The form fσ − f ∈ M !,∞
2−n is

holomorphic at all cusps other than∞, and vanishes at the cusp∞ by the assumption
that as c(m) ∈ Z for m ≤ 0. Hence fσ − f is a holomorphic modular form of weight
2− n < 0, and therefore vanishes identically. It follows that c(m) ∈ Q for all m.

Now consider the second claim. In view of the Proposition 6.1.2 the coeffi-
cients c̃(m,µ) of f̃ with m < 0 are integers. Hence, for any σ ∈ Aut(C/Q), the
function f̃σ− f̃ is a holomorphic modular form of weight 2−n < 0, which is therefore
identically 0. Therefore f̃ has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the constant
term of f̃ given in Proposition 6.1.2.
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6.2. Construction of the Borcherds product. — We now construct the Borcherds prod-
uct ψ(f) of Theorem 5.3.1 as the pullback of a Borcherds product on the orthogonal
Shimura variety defined by the quadratic space (V,Q). Useful references here include
[4, 7, 37, 22].

After Corollary 6.1.4 we may replace f by a positive integer multiple in order to
assume that c(−m) ∈ 24Z for all m ≥ 0, and that γrcr(0) ∈ 24Z for all r | D. In
particular the rational number

k = c̃(0, 0)

of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2.
Define a hermitian domain

(6.2.1) D̃ = {w ∈ V (C) : [w,w] = 0, [w,w] < 0}/C×.

Let ω̃
an be the tautological bundle on D̃, whose fiber at w is the line Cw ⊂ V (C).

The group of real points of SO(V ) acts on (6.2.1), and this action lifts to an action
on ω̃

an.
As in Remark 2.1.2, any point z ∈ D determines a line Cw ⊂ εV (C). This con-

struction defines a closed immersion

(6.2.2) D ↪→ D̃,

under which ω̃
an pulls back to the line bundle ω

an of § 2.4. The hermitian domain D̃
has two connected components. Let D̃+ ⊂ D̃ be the connected component contain-
ing D.

For a fixed g ∈ G(Af ), we apply the constructions of § 6.1 to the input form f and
the self-dual hermitian Ok-lattice

L = HomOk
(ga0, ga) ⊂ V.

The result is a vector-valued modular form f̃ of weight 2 − n and representation
ωL : SL2(Z)→ SL. The form f̃ determines a Borcherds product Ψ(f̃) on D̃+; see [4,
Theorem 13.3] and Theorem 7.2.4. For us it is more convenient to use the rescaled
Borcherds product

(6.2.3) ψ̃g(f) = (2πi)c̃(0,0)Ψ(2f̃)

determined by 2f̃ . It is a meromorphic section of (ω̃an)k.
The subgroup SO(L)+ ⊂ SO(L) of elements preserving the component D̃+ acts

on ψ̃g(f) through a finite order character [6]. Replacing f by mf has the effect
of replacing ψ̃g(f) by ψ̃g(f)m, and so after replacing f by a multiple we assume
that ψ̃g(f) is invariant under this action.

Denote by ψg(f) the pullback of ψ̃g(f) via the map

(G(Q) ∩ gKg−1)\D→ SO(L)+\D̃+

induced by (6.2.2). It is a meromorphic section of (ωan)k on the connected component

(G(Q) ∩ gKg−1)\D z 7→(z,g)−−−−−→ Sh(G,D)(C).
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By repeating the construction for all g ∈ G(Q)\G(Af )/K, we obtain a meromorphic
section ψ(f) of the line bundle (ωan)k on

Sh(G,D)(C) ∼= SKra(C).

After rescaling on every connected component by a complex constant of absolute
value 1, this will be the section whose existence is asserted in Theorem 5.3.1.

Proposition 6.2.1. — The divisor of ψ(f) is

div(ψ(f)) =
∑
m>0

c(−m) ·ZKra(m)(C).

Proof. — The divisor of ψ̃g(f) on D̃+ was computed by Borcherds in terms of the
Fourier coefficients c̃(−m) of f̃ , and from this it is easy to obtain a formula for the
divisor of ψg(f) on D. See [7, Theorem 3.22] and [22, Theorem 8.1] for the details.
The claim therefore follows by using Proposition 6.1.2 to rewrite this formula in terms
of the c(−m), and comparing with the explicit description of ZKra(m)(C) stated in
Remark 2.5.2.

6.3. Analytic Fourier-Jacobi coefficients. — We return to the notation of § 3.9. Thus
Φ = (P, g) is a proper cusp label representative for (G,D), we have chosen

s : Resk/QGm → QΦ

as in Lemma 3.9.2, and have fixed a ∈ k̂×. This data determines a lattice

L = HomOk
(s(a)ga0, s(a)ga),

and Witt decompositions

V = V−1 ⊕ V0 ⊕ V1, L = L−1 ⊕ L0 ⊕ L1.

Choose bases e−1, f−1 ∈ L−1 and e1, f1 ∈ L1 as in § 3.9.
Imitating the construction of (3.9.16) yields a commutative diagram

D
(6.2.2)

//

w 7→(w0,ξ)

��

D̃+

w 7→(τ,w0,ξ)

��

εV0(C)× C // H× V0(C)× C

in which the vertical arrows are open immersions, and the horizontal arrows are closed
immersions. The vertical arrow on the right is defined as follows: Any w ∈ D̃ pairs
nontrivially with the isotropic vector f−1, and so may be scaled so that [w, f−1] = 1.
This allows us to identify

D̃ = {w ∈ V (C) : [w,w] = 0, [w,w] < 0, [w, f−1] = 1}.

Using this model, any w ∈ D̃+ has the form

w = −ξe−1 + (τξ −Q(w0))f−1 + w0 + τe1 + f1
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with τ ∈ H, w0 ∈ V0(C), and ξ ∈ C. The bottom horizontal arrow is (w0, ξ) 7→ (τ, w0, ξ),
where τ is determined by the relation (3.9.6).

The construction above singles out a nowhere vanishing section of ω̃
an, whose value

at an isotropic line Cw is the unique vector in that line with [w, f−1] = 1. As in the
discussion leading to (3.9.18), we obtain a trivialization

[ . , f−1] : ω̃
an ∼= OD̃+ .

Now consider the Borcherds product ψ̃s(a)g(f) on D̃+ determined by the lattice L
above (that is, replace g by s(a)g throughout § 6.2). It is a meromorphic section
of (ω̃an)k, and we use the trivialization above to identify it with a meromorphic
function. In a neighborhood of the rational boundary component associated to the
isotropic plane V−1 ⊂ V , this meromorphic function has a product expansion.

Proposition 6.3.1 ([32]). — There are positive constants A and B with the following
property: For all points w ∈ D̃+ satisfying

Im(ξ)− Q(Im(w0))

Im(τ)
> A Im(τ) +

B

Im(τ)
,

there is a factorization

ψ̃s(a)g(f) = κ · (2πi)k · η2k(τ) · e2πiIξ · P0(τ) · P1(τ, w0) · P2(τ, w0, ξ)

in which κ ∈ C× has absolute value 1, η is the Dedekind η-function, and

I =
1

12

∑
b∈Z/DZ

c̃

(
0,− b

D
f−1

)
− 2

∑
m>0

∑
x∈L0

c(−m) · σ1(m−Q(x)).

The factors P0 and P1 are defined by

P0(τ) =
∏

b∈Z/DZ
b6=0

Θ

(
τ,
b

D

)c̃(0, bD f−1)

and

P1(τ, w0) =
∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, [w0, x]

)c(−m)
.

The remaining factor is

P2(τ, w0, ξ) =
∏

x∈δ−1L0
a∈Z

b∈Z/DZ
c∈Z>0

(
1− e2πicξe2πiaτe2πib/De−2πi[x,w0]

)2·c̃(ac−Q(x),µ)

,

where µ = −ae−1 − b
D f−1 + x+ ce1 ∈ δ−1L/L.
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Proof. — This is just a restatement of [32, Corollary 2.3], with some simplifications
arising from the fact that the vector-valued form f̃ used to define the Borcherds
product is induced from a scalar-valued form via (6.1.1).

A more detailed description of how these expressions arise from the general formulas
in [32] is given in the appendix.

If we pull back the formula for the Borcherds product ψ̃s(a)g(f) found in Propo-
sition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for the Borcherds
product ψs(a)g(f) on the connected component

(G(Q) ∩ s(a)gKg−1s(a)−1)\D z 7→(z,s(a)g)−−−−−−−−→ Sh(G,D)(C),

from which we can read off the leading analytic Fourier-Jacobi coefficient.

Corollary 6.3.2. — The analytic Fourier-Jacobi expansion of ψ(f), in the sense of
(3.9.18), has the form

ψs(a)g(f) =
∑
`≥I

FJ
(a)
` (ψ(f))(w0) · q`,

where I is the integer of Proposition 6.3.1. The leading coefficient FJ
(a)
I (ψ(f)), viewed

as a function on V0(R) as in the discussion leading to (3.9.14), is given by

(6.3.1) FJ
(a)
I (ψ(f))(w0) = κ · (2πi)k · η(τ)2k · P0(τ) · P1(τ, w0),

where τ ∈ H is determined by (3.9.6),

P0(τ) =
∏
r|D

∏
b∈Z/DZ
b6=0
rb=0

Θ

(
τ,
b

D

)γrcr(0)

and
P1(τ, w0) =

∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, 〈w0, x〉

)c(−m)
.

The constant κ ∈ C, which depends on both Φ and a, has absolute value 1.

Proof. — Using Proposition 6.3.1, the pullback of ψ̃s(a)g(f) via (6.2.2) factors as a
product

ψs(a)g(f) = κ · (2πi)k · η2k(τ) · e2πiξI · P0(τ)P1(τ, w0)P2(τ, w0, ξ),

where ξ ∈ C× and w0 ∈ V (R) ∼= εV (C). The parameter τ ∈ H is now fixed, determined
by (3.9.6). The equality∏

b∈Z/DZ
b6=0

Θ

(
τ,
b

D

)c̃(0, bD f−1)

=
∏
r|D

∏
b∈Z/DZ
b6=0
rb=0

Θ

(
τ,
b

D

)γrcr(0)
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follows from Proposition 6.1.2, and allows us to rewrite P0 in the stated form. To
rewrite the factor P1 in terms of 〈., .〉 instead of [., .], use the commutative diagram of
Remark 3.9.4. Finally, as Im(ξ)→∞, so q = e2πiξ → 0, the factor P2 converges to 1.
This P2 does not contribute to the leading Fourier-Jacobi coefficient.

Proposition 6.3.3. — The integer I defined in Proposition 6.3.1 is equal to the integer
multΦ(f) defined by (5.2.4), and the product (6.3.1) satisfies the transformation law
(3.9.14) with ` = multΦ(f).

Proof. — The Fourier-Jacobi coefficient FJ
(a)
I (ψ(f)) appearing on the left hand side

of (6.3.1) is, by definition, a section of the line bundle Q I
E(a)⊗L on E(a) ⊗ L. When

viewed as a function of the variable w0 ∈ V0(R) using our explicit coordinates, it
therefore satisfies the transformation law (3.9.14) with ` = I.

Now consider the right hand side of (6.3.1), and recall that τ is fixed, determined
by (3.9.6). In our explicit coordinates the function Θ(τ, 〈w0, x〉)24 of w0 ∈ V0(R) is
identified with a section of the line bundle j∗xJ0,12 on E(a) ⊗ L; this is clear from the
definition of jx in (3.6.2), and Proposition 5.1.4. Thus P1(τ, w0), and hence the entire
right hand side of (6.3.1), defines a section of the line bundle⊗

m>0

⊗
x∈L0

Q(x)=m

j∗xJ
c(−m)/2
0,1

∼= L 2·multΦ(f/2)
Φ

∼= Q multΦ(f)

E(a)⊗L ,

where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.4. This
implies that the right hand side of (6.3.1) satisfies the transformation law (3.9.14)
with ` = multΦ(f).

A function on V0(R) cannot satisfy the transformation law (3.9.14) for two different
values of `, and hence I = multΦ(f). Note that we are using here the standing
hypothesis n > 2; if n = 2 then V0(R) = 0, and the transformation law (3.9.14) is
vacuous.

For a more direct proof of the proposition, see § 8.4.

6.4. Algebraization and descent. — The following weak form of Theorem 5.3.1 shows
that ψ(f) is algebraic, and provides an algebraic interpretation of its leading Fourier-
Jacobi coefficients.

Proposition 6.4.1. — The meromorphic section ψ(f) is the analytification of a ratio-
nal section of the line bundle ω

k on SKra/C. This rational section satisfies the following
properties:

1. When viewed as a rational section over the toroidal compactification,

div(ψ(f)) =
∑
m>0

c(−m) ·Z∗Kra(m)/C +
∑
Φ

multΦ(f) · S∗Kra(Φ)/C.
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2. For every proper cusp label representative Φ, the Fourier-Jacobi expansion
of ψ(f) along S∗Kra(Φ)/C, in the sense of § 3.8, has the form

ψ(f) = qmultΦ(f)
∑
`≥0

ψ` · q`.

3. The leading coefficient ψ0, a rational section of ω
k
Φ ⊗ L

multΦ(f)
Φ over BΦ/C,

factors as
ψ0 = κΦ ⊗ P ηΦ ⊗ P

hor
Φ ⊗ P vert

Φ

for a unique section

κΦ ∈ H0(AΦ/C,O
×
AΦ/C).

This section satisfies |κΦ(z)| = 1 at every complex point z ∈AΦ(C). (The other
factors appearing on the right hand side were defined in Theorem 5.3.1.)

Proof. — Using Corollary 6.3.2 and Proposition 6.3.3, one sees that ψ(f) extends to
a meromorphic section of ω

k over the toroidal compactification S∗Kra(C), vanishing to
order I = multΦ(f) along the closed stratum

S∗Kra(Φ)/C ⊂ S∗Kra/C

indexed by a proper cusp label representative Φ.
The calculation of the divisor of ψ(f) over the open Shimura variety SKra(C) is

Proposition 6.2.1. The algebraicity claim now follows from GAGA (using the fact that
the divisor is already known to be algebraic), proving all parts of the first claim. The
second and third claims are just a translation of Corollary 6.3.2 into the algebraic
language of Theorem 5.3.1, using the explicit coordinates of § 3.9 and the change of
notation (2πiη2)k = P ηΦ, P0 = P vert

Φ and P1 = P hor
Φ .

We now prove that ψ(f), after minor rescaling, descends to k. This can be deduced
from the analogous statement about Borcherds products on orthogonal Shimura va-
rieties proved in [26], but in the unitary case there is a much more elementary proof.
This will require the following two lemmas.

Lemma 6.4.2. — The geometric components of Sh(G,D) are defined over the Hilbert
class field kHilb of k, and each such component has trivial stabilizer in Gal(kHilb/k).

Proof. — One could prove this using Deligne’s reciprocity law for connected com-
ponents of Shimura varieties [43, § 13], but it also follows easily from the theory of
toroidal compactification.

Our assumption that n > 2 guarantees that every connected component of S∗Kra/C
contains some connected component of the boundary. It is a part (8) of Theorem 3.7.1
that all such boundary components are defined over the Hilbert class field, and it

(8) This particular part of Theorem 3.7.1 follows from the reciprocity law for the boundary compo-
nents of MPap

(n−1,1)
proved in [24, Proposition 2.6.2].
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follows that the same is true for components of S∗Kra/C. The same is therefore true for
the components of the interior

SKra/C ∼= Sh(G,D)/C.

The claim about stabilizers follows from the open and closed immersion

Sh(G,D) ⊂M(1,0) ×kM(n−1,1)

of (2.2.2), along with the classical fact (from the theory of complex multiplication
of elliptic curves) that the geometric components of M(1,0) form a simply transitive
Gal(kHilb/k)-set.

The lemma allows us to choose a set of connected components

{Xi} ⊂ π0

(
Sh(G,D)/kHilb)

in such a way that

Sh(G,D)/kHilb =
⊔
i

⊔
σ∈Gal(kHilb/k)

σ(Xi).

For each index i, pick gi ∈ G(Af ) in such a way that Xi(C) is equal to the image of

(G(Q) ∩ giKg−1
i )\D z 7→(z,gi)−−−−−−→ Sh(G,D)(C).

Choose an isotropic k-line J ⊂ W , let P ⊂ G be its stabilizer, and define a proper
cusp label representative Φi = (P, gi). The above choices pick out one boundary
component on every component of the toroidal compactification, as the following
lemma demonstrates.

Lemma 6.4.3. — The natural maps ⊔
i S
∗
Kra(Φi) //

∼=

��

S∗Kra

��

⊔
iAΦi

⊔
iBΦi

88

&&

oo

⊔
i S
∗
Pap(Φi) // S∗Pap

induce bijections on connected components. The same is true after base change to k
or C.

Proof. — Let X∗i ⊂ S∗Pap(C) be the closure of Xi. By examining the complex an-
alytic construction of the toroidal compactification [24, 39, 47], one sees that some
component of the divisor S∗Pap(Φi)(C) lies on X∗i .
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Recall from Theorem 3.7.1 that the components of S∗Pap(Φi)(C) are defined
over kHilb, and that the action of Gal(kHilb/k) is simply transitive. It follows
immediately that

S∗Pap(Φi)(C) ⊂
⊔

σ∈Gal(kHilb/k)

σ(X∗i ),

and the inclusion induces a bijection on components. By Proposition 3.2.1 and the
isomorphism of Proposition 3.3.3, the quotient map

CΦ(C)→ ∆Φi\CΦi(C)

induces a bijection on connected components, and both maps CΦ → BΦ →AΦ have
geometrically connected fibers (the first is a Gm-torsor, and the second is an abelian
scheme). We deduce that all maps in

AΦi(C)← BΦi(C)→ ∆Φi\BΦi(C) ∼= S∗Kra(Φi)(C) ∼= S∗Pap(Φi)(C)

induce bijections on connected components.
The above proves the claim over C, and the claim over k follows formally from

this. The claim for integral models follows from the claim in the generic fiber, using
the fact that all integral models in question are normal and flat over Ok.

Proposition 6.4.4. — After possibly rescaling by a constant of absolute value 1 on every
connected component of S∗Kra/C, the Borcherds product ψ(f) is defined over k, and
the sections of Proposition 6.4.1 satisfy

κΦ ∈ H0(AΦ/k,O
×
AΦ/k

)

for all proper cusp label representatives Φ. Furthermore, we may arrange that κΦi = 1
for all i.

Proof. — Lemma 6.4.3 establishes a bijection between the connected components
of S∗Kra(C) and the finite set

⊔
iAΦi(C). On the component indexed by z ∈AΦi(C),

rescale ψ(f) by κΦi(z)
−1. For this rescaled ψ(f) we have κΦi = 1 for all i.

Suppose σ ∈ Aut(C/k). The first claim of Proposition 6.4.1 implies that the divisor
of ψ(f), when computed on the compactification S∗Kra/C, is defined over k. Therefore
σ(ψ(f))/ψ(f) has trivial divisor, and so is constant on every connected component.

By the third claim of Proposition 6.4.1, the leading coefficient in the Fourier-Jacobi
expansion of ψ(f) along the boundary stratum S∗Kra(Φi) is

ψ0 = P ηΦi ⊗ P
hor
Φi ⊗ P

vert
Φi ,

which is defined over k. From this it follows that σ(ψ(f))/ψ(f) is identically equal to 1
on every connected component of S∗Kra/C meeting this boundary stratum. Varying i
and using Lemma 6.4.3 shows that σ(ψ(f)) = ψ(f).

This proves that ψ(f) is defined over k, hence so are all of its Fourier-Jacobi
coefficients along all boundary strata S∗Kra(Φ). Appealing again to the calculation of
the leading Fourier-Jacobi coefficient of Proposition 6.4.1, we deduce finally that κΦ is
defined over k for all Φ.
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6.5. Calculation of the divisor, and completion of the proof. — The Borcherds product
ψ(f) on S∗Kra/k of Proposition 6.4.4 may be viewed as a rational section of ω

k on the
integral model S∗Kra.

Let Φ be any proper cusp label representative. Combining Propositions 6.4.1 and
6.4.4 shows that the leading Fourier-Jacobi coefficient of ψ(f) along the boundary
divisor S∗Kra(Φ) is

(6.5.1) ψ0 = κΦ ⊗ P ηΦ ⊗ P
hor
Φ ⊗ P vert

Φ .

Recall that this is a rational section of ω
k
Φ⊗L

multΦ(f)
Φ on BΦ. Here, by mild abuse of

notation, we are viewing κΦ as a rational function on AΦ, and denoting in the same
way its pullback to any step in the tower

C∗Φ
π−→ BΦ →AΦ.

Lemma 6.5.1. — Recall that π has a canonical section BΦ ↪→ C∗Φ, realizing BΦ as a
divisor on C∗Φ. If we use the isomorphism (3.7.1) to view ψ(f) as a rational section
of the line bundle ω

k
Φ on the formal completion (C∗Φ)∧BΦ

, its divisor satisfies

div(ψ(f)) = div(δ−kκΦ) + multΦ(f) ·BΦ

+
∑
m>0

c(−m)ZΦ(m) +
∑
r|D

γrcr(0)
∑
p|r

π∗(BΦ/Fp).

Proof. — The key step is to prove that the divisor of ψ(f) can be computed from
the divisor of its leading Fourier-Jacobi coefficient ψ0 by the formula

(6.5.2) div(ψ(f)) = π∗div(ψ0) + multΦ(f) ·BΦ.

Recalling the tautological section q with divisor BΦ from Remark 3.8.1, consider the
rational section

R = q−multΦ(f) ·ψ(f) =
∑
i≥0

ψi · qi

of ω
k
Φ ⊗ π∗L

multΦ(f)
Φ on the formal completion (C∗Φ)∧BΦ

.
We claim that div(R) = π∗∆ for some divisor ∆ onBΦ. Indeed, whatever div(R) is,

it may decomposed as a sum of horizontal and vertical components. We know from
Theorem 3.7.1 and Proposition 6.4.1 that the horizontal part is a linear combination
of the divisors ZΦ(m) on C∗Φ defined by (3.6.1); these divisors are, by construction,
pullbacks of divisors on BΦ. On the other hand, the morphism C∗Φ → BΦ is the total
space of a line bundle, and hence is smooth with connected fibers. Thus every vertical
divisor on C∗Φ, and in particular the vertical part of div(R), is the pullback of some
divisor on BΦ.

Denoting by i : BΦ ↪→ C∗Φ the zero section, we compute

∆ = i∗π∗∆ = i∗div(R) = div(i∗R) = div(ψ0).

Pulling back by π proves that div(R) = π∗div(ψ0), and (6.5.2) follows.
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We now compute the divisor of ψ0 on BΦ using (6.5.1). The divisors of P ηΦ, P
hor
Φ ,

and P vert
Φ were computed in Proposition 5.4.1, which shows that on BΦ we have the

equality

div(ψ0) = div(δ−kκΦ) +
∑
m>0

c(−m)ZΦ(m) +
∑
r|D

γrcr(0)
∑
p|r

BΦ/Fp .

Combining this with (6.5.2) completes the proof.

Proposition 6.5.2. — When viewed as a rational section of ω
k on S∗Kra, the Borcherds

product ψ(f) has divisor

div(ψ(f)) =
∑
m>0

c(−m) ·Z∗Kra(m) +
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−k) +
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp(6.5.3)

up to a linear combination of irreducible components of the exceptional divisor
Exc ⊂ S∗Kra. Moreover, each section κΦ of Proposition 6.4.4 has finite multiplicative
order, and extends to a section κΦ ∈ H0(AΦ,O

×
AΦ

).

Proof. — Recall from Lemma 6.4.3 that the natural maps⊔
iBΦi

//

��

⊔
i S
∗
Pap(Φi) // S∗Pap

⊔
iAΦi

induce bijections on connected components, as well as on connected components of
the generic fibers.

All stacks in the diagram are proper over Ok, and have normal fibers. (For S∗Pap

this follows from Theorem 3.7.1 and our assumption that n > 2. The other stacks
appearing in the diagram are smooth over Ok.) It follows from this and [18, Corol-
lary 8.2.18] that all arrows in the diagram induce bijections between the irreducible
(= connected) components modulo any prime p ⊂ Ok.

Deleting the (0-dimensional) singular locus Sing ⊂ S∗Pap does not change the irre-
ducible components of S∗Pap or its fibers, and so if we define

U
def
= S∗Pap \ Sing ∼= S∗Kra \ Exc,

then the natural maps ⊔
iBΦi

//

��

⊔
i S
∗
Pap(Φi) // U

⊔
iAΦi
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induce bijections on irreducible components, as well as on irreducible components
modulo any prime p ⊂ Ok.

Suppose Φ is any proper cusp label representative, and let UΦ ⊂U be the union
of all irreducible components that meet S∗Pap(Φ). If we interpret div(κΦ) as a divisor
on U using the bijection

{vertical divisors on AΦ} ∼= {vertical divisors on UΦ},

then the equality of divisors (6.5.3) holds after pullback to UΦ, up to the error term
div(κΦ). Indeed, this equality holds in the generic fiber of UΦ by Proposition 6.4.1,
and it holds over an open neighborhood of S∗Pap(Φ) by Lemma 6.5.1 and the isomor-
phism of formal completions (3.7.1). As the union of the generic fiber with this open
neighborhood is an open substack whose complement has codimension ≥ 2, the stated
equality holds over all of UΦ.

Letting Φ vary over the Φi and using κΦi = 1, we see from the paragraph above
that (6.5.3) holds over

⊔
iUΦi = U. With this in hand, we may reverse the argument

to see that the error term div(κΦ) vanishes for every Φ. It follows that κΦ extends to
a global section of O×

AΦ
.

It only remains to show that each κΦ has finite order. Choose a finite extension L/k
large enough that every elliptic curve over C with complex multiplication by Ok ad-
mits a model over L with everywhere good reduction. Choosing such models deter-
mines a faithfully flat morphism⊔

Spec(OL)→M(1,0)
∼= AΦ,

and the pullback of κΦ is represented by a tuple of units (x`) ∈
∏
O×L . Each x` has

absolute value 1 at every complex embedding of L (this follows from the final claim
of Proposition 6.4.1), and is therefore a root of unity. This implies that κΦ has finite
order.

Proof of Theorem 5.3.1. — Start with a weakly holomorphic form (5.2.2). As in § 6.2,
after possibly replacing f by a positive integer multiple, we obtain a Borcherds prod-
uct ψ(f). This is a meromorphic section of (ωan)k. By Proposition 6.4.1 it is algebraic,
and by Proposition 6.4.4 it may be rescaled by a constant of absolute value 1 on each
connected component in such a way that it descends to k.

Now view ψ(f) as a rational section of ω
k over S∗Kra. By Proposition 6.5.2 we may

replace f by a further positive integer multiple, and replace ψ(f) by a corresponding
tensor power, in order to make all κΦ = 1. Having trivialized the κΦ, the existence
part of Theorem 5.3.1 now follows from Proposition 6.4.1. For uniqueness, suppose
ψ′(f) also satisfies the conditions of that theorem. The quotient of the two Borcherds
products is a rational function with trivial divisor, which is therefore constant on
every connected component of S∗Kra(C). As the leading Fourier-Jacobi coefficients
of ψ′(f) and ψ(f) are equal along every boundary stratum, those constants are all
equal to 1.
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Proof of Theorem 5.3.4. — As in the statement of the theorem, we now view ψ(f)2

as a rational section of the line bundle Ω
k
Pap on S∗Pap. Combining Proposition 6.5.2

with the isomorphism

S∗Kra \ Exc ∼= S∗Pap \ Sing,

of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies

ω
2k ∼= Ω

k
Kra
∼= Ω

k
Pap,

we deduce the equality

div(ψ(f)2) =
∑
m>0

c(−m) ·Y∗Pap(m) + 2
∑
Φ

multΦ(f) · S∗Pap(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Pap/Fp(6.5.4)

of Cartier divisors on S∗Pap \Sing. As S∗Pap is normal and Sing lies in codimension ≥ 2,
this same equality must hold on the entirety of S∗Pap.

Proof of Theorem 5.3.3. — If we pull back via S∗Kra → S∗Pap and view ψ(f)2 as a
rational section of the line bundle

Ω
k
Kra
∼= ω

2k ⊗O(Exc)−k,

the equality (6.5.4) on S∗Pap pulls back to

div(ψ(f)2) =
∑
m>0

c(−m) ·Y∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp .

Theorem 2.6.3 allows us to rewrite this as

div(ψ(f)2) = 2
∑
m>0

c(−m) ·Z∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs.
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If we instead view ψ(f)2 as a rational section of ω
2k, this becomes

div(ψ(f)2) = 2
∑
m>0

c(−m) ·Z∗Kra(m) + 2
∑
Φ

multΦ(f) · S∗Kra(Φ)

+ div(δ−2k) + 2
∑
r|D

γrcr(0)
∑
p|r

S∗Kra/Fp

−
∑
m>0

c(−m)
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

+ k · Exc

as desired.

7. Modularity of the generating series

Now armed with the modularity criterion of Theorem 4.2.3 and the arithmetic
theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and 5.3.4, we prove
our main results: the modularity of generating series of divisors on the integral models
S∗Kra and S∗Pap of the unitary Shimura variety Sh(G,D). The strategy follows that of
[5], which proves modularity of the generating series of divisors on the complex fiber
of an orthogonal Shimura variety.

Throughout § 7 we assume n ≥ 3.

7.1. The modularity theorems. — Denote by

Ch1
Q(S∗Kra) ∼= Pic(S∗Kra)⊗Z Q

the Chow group of rational equivalence classes of Cartier divisors on S∗Kra with Q
coefficients, and similarly for S∗Pap. There is a natural pullback map

Ch1
Q(S∗Pap)→ Ch1

Q(S∗Kra).

Let χ = χnk be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. — If V is any Q-vector space, a formal q-expansion

(7.1.1)
∑
m≥0

d(m) · qm ∈ V [[q]]

is modular of level D, weight n, and character χ if for any Q-linear map α : V → C
the q-expansion ∑

m≥0

α(d(m)) · qm ∈ C[[q]]

is the q-expansion of an element of Mn(D,χ).

Remark 7.1.2. — If (7.1.1) is modular then its coefficients d(m) span a subspace of V
of dimension ≤ dimMn(D,χ). We leave the proof as an exercise for the reader.

We also define the notion of the constant term of (7.1.1) at a cusp ∞r, generalizing
Definition 4.1.1.
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Definition 7.1.3. — Suppose a formal q-expansion g ∈ V [[q]] is modular of level D,
weight n, and character χ. For any r | D, a vector v ∈ V (C) is said to be the constant
term of g at the cusp ∞r if, for every linear functional α : V (C) → C, α(v) is the
constant term of α(g) at the cusp ∞r in the sense of Definition 4.1.1.

For m > 0 we have defined in § 5.3 effective Cartier divisors

Ytot
Pap(m) ↪→ S∗Pap, Z tot

Kra(m) ↪→ S∗Kra

related by (5.3.4). We have defined in § 3.7 line bundles

ΩPap ∈ Pic(S∗Pap), ω ∈ Pic(S∗Kra)

extending the line bundles on the open integral models defined in § 2.4. For notational
uniformity, we define

Ytot
Pap(0) = Ω

−1
Pap, Z tot

Kra(0) = ω
−1 ⊗O(Exc).

Theorem 7.1.4. — The formal q-expansion∑
m≥0

Ytot
Pap(m) · qm ∈ Ch1

Q(S∗Pap)[[q]],

is a modular form of level D, weight n, and character χ. For any r | D, its constant
term at the cusp ∞r is

γr ·
(
Ytot

Pap(0) + 2
∑
p|r

S∗Pap/Fp

)
∈ Ch1

Q(S∗Pap)⊗Q C.

Here γr ∈ {±1,±i} is defined by (5.3.2), p ⊂ Ok is the unique prime above p | r, and
Fp is its residue field.

Proof. — Let f be a weakly holomorphic form as in (5.2.2), and assume again
that c(m) ∈ Z for all m ≤ 0. The space M !,∞

2−n(D,χ) is spanned by such forms. The
Borcherds product ψ(f) of Theorem 5.3.1 is a rational section of the line bundle

ω
k =

⊗
r|D

ω
γrcr(0),

on S∗Kra. If we view ψ(f)2 as a rational section of the line bundle

Ω
k
Pap
∼=
⊗
r|D

Ω
γrcr(0)
Pap

on S∗Pap, exactly as in Theorem 5.3.4, then

div(ψ(f)2) = −
∑
r|D

γrcr(0) ·Ytot
Pap(0)

holds in the Chow group of S∗Pap. Comparing this with the calculation of the divisor
of ψ(f)2 found in Theorem 5.3.4 shows that

(7.1.2) 0 =
∑
m≥0

c(−m) ·Ytot
Pap(m) +

∑
r|D
r>1

γrcr(0) · (Ytot
Pap(0) + 2Vr),
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where we abbreviate Vr =
∑
p|r S

∗
Pap/Fp .

For each r | D we have defined in § 4.2 an Eisenstein series

Er(τ) =
∑
m≥0

er(m) · qm ∈Mn(D,χ),

and Proposition 4.2.2 allows us to rewrite the above equality as

0 =
∑
m≥0

c(−m) ·
[
Ytot

Pap(m)−
∑
r|D
r>1

γrer(m) · (Ytot
Pap(0) + 2Vr)

]
.

Note that we have used er(0) = 0 for r > 1, a consequence of Remark 4.2.1.
The modularity criterion of Theorem 4.2.3 now shows that∑

m≥0

Ytot
Pap(m) · qm −

∑
r|D
r>1

γrEr · (Ytot
Pap(0) + 2Vr)

is a modular form of level D, weight n, and character χ, whose constant term vanishes
at every cusp different from ∞.

The theorem now follows from the modularity of each Er, together with the de-
scription of their constant terms found in Remark 4.2.1.

Theorem 7.1.5. — The formal q-expansion∑
m≥0

Z tot
Kra(m) · qm ∈ Ch1

Q(S∗Kra)[[q]],

is a modular form of level D, weight n, and character χ.

Proof. — Recall from Theorems 2.6.3 and 3.7.1 that pullback via S∗Kra → S∗Pap sends

Ytot
Pap(m) 7→ 2 ·Z tot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m} · Excs

for all m > 0. This relation also holds for m = 0, as those same theorems show that

Ytot
Pap(0) = Ω

−1
Pap 7→ ω

−2 ⊗O(Exc) = 2 ·Z tot
Kra(0)− Exc.

Pulling back the relation (7.1.2) shows that

0 =
∑
m≥0

c(−m) ·
(
Z tot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m}
2

· Excs

)
+
∑
r|D
r>1

γrcr(0) ·
(
Z tot

Kra(0)− 1

2
· Exc +Vr

)

in Ch1
Q(S∗Kra) for any input form (5.2.2), where we now abbreviate

Vr =
∑
p|r

S∗Kra/Fp .
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Using Proposition 4.2.2 we rewrite this as

0 =
∑
m≥0

c(−m) ·
(
Z tot

Kra(m)−
∑

s∈π0(Sing)

#{x ∈ Ls : 〈x, x〉 = m}
2

· Excs

)
−
∑
m≥0

c(−m)
∑
r|D
r>1

γrer(m)
(
Z tot

Kra(0)− 1

2
· Exc +Vr

)
,

where we have again used the fact that er(0) = 0 for r > 1.
The modularity criterion of Theorem 4.2.3 now implies the modularity of∑

m≥0

Z tot
Kra(m) · qm− 1

2

∑
s∈π0(Sing)

ϑs(τ) ·Excs−
∑
r|D
r>1

γrEr(τ) ·
(
Z tot

Kra(0)− 1

2
·Exc +Vr

)
.

The theorem follows from the modularity of the Eisenstein series Er(τ) and the theta
series

ϑs(τ) =
∑
x∈Ls

q〈x,x〉 ∈Mn(D,χ).

7.2. Green functions. — Here we construct Green functions for special divisors
on S∗Kra as regularized theta lifts of harmonic Maass forms.

Recall from Section 2 the isomorphism of complex orbifolds

SKra(C) ∼= Sh(G,D)(C) = G(Q)\D×G(Af )/K.

We use the uniformization on the right hand side and the regularized theta lift to
construct Green functions for the special divisors

Z tot
Kra(m) = Z∗Kra(m) +BKra(m)

on S∗Kra. The construction is a variant of the ones in [9] and [11], adapted to our
situation.

We now recall some of the basic notions of the theory of harmonic Maass forms,
as in [9, Section 3]. Let H∞2−n(D,χ) denote the space of harmonic Maass forms f of
weight 2− n for Γ0(D) with character χ such that

— f is bounded at all cusps of Γ0(D) different from the cusp ∞,
— f has polynomial growth at ∞, in sense that there is a

Pf =
∑
m<0

c+(m)qm ∈ C[q−1]

such that f − Pf is bounded as q goes to 0.
A harmonic Maass form f ∈ H∞2−n(D,χ) has a Fourier expansion of the form

f(τ) =
∑
m∈Z

m�−∞

c+(m)qm +
∑
m∈Z
m<0

c−(m) · Γ
(
n− 1, 4π|m| Im(τ)

)
· qm,(7.2.1)

where
Γ(s, x) =

∫ ∞
x

e−tts−1dt
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is the incomplete gamma function. The first summand on the right hand side of
(7.2.1) is denoted by f+ and is called the holomorphic part of f , the second summand
is denoted by f− and is called the non-holomorphic part.

If f ∈ H∞2−n(D,χ) then (6.1.1) defines an SL-valued harmonic Maass form
for SL2(Z) of weight 2− n with representation ωL. Proposition 6.1.2 extends to such
lifts of harmonic Maass forms, giving the same formulas for the coefficients c̃+(m,µ)

of the holomorphic part f̃+ of f̃ . In particular, if m < 0 we have

c̃+(m,µ) =

{
c+(m) if µ = 0,
0 if µ 6= 0,

(7.2.2)

and the constant term of f̃ is given by

c̃+(0, µ) =
∑
rµ|r|D

γr · c+r (0).

The formula of Proposition 4.2.2 for the contant terms c+r (0) of f at the other cusps
also extends.

As before, we consider the hermitian self-dual Ok-lattice L = HomOk
(a0, a) in

V = Homk(W0,W ). The dual lattice of L with respect to the bilinear form [., .] is
L′ = d−1L. Let

SL ⊂ S(V (Af ))

be the space of Schwartz-Bruhat functions that are supported on L̂′ and invariant
under translations by L̂.

Recall from Remark 2.1.2 that we may identify

D ∼= {w ∈ εV (C) : [w,w] < 0}/C×,

and also
D ∼= {negative definite k-stable R-planes z ⊂ V (R)}.

For any x ∈ V and z ∈ D, let xz be the orthogonal projection of x to the plane
z ⊂ V (R), and let xz⊥ be the orthogonal projection to z⊥.

For (τ, z, g) ∈ H×D×G(Af ) and ϕ ∈ SL, we define a theta function

θ(τ, z, g, ϕ) =
∑
x∈V

ϕ(g−1x) · ϕ∞(τ, z, x),

where the Schwartz function at ∞,

ϕ∞(τ, z, x) = v · e2πiQ(x
z⊥ )τ+2πiQ(xz)τ̄ ,

is the usual Gaussian involving the majorant associated to z. We may view θ as a
function H ×D × G(Af ) → S∨L . As a function in (z, g) it is invariant under the left
action of G(Q). Under the right action of K it satisfies the transformation law

θ(τ, z, gk, ϕ) = θ(τ, z, g, ωL(k)ϕ), k ∈ K,
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where ωL denotes the action of K on SL by the Weil representation and v = Im(τ).
In the variable τ ∈ H it transforms as a S∨L-valued modular form of weight n − 2
for SL2(Z).

Fix an f ∈ H∞2−n(D,χ) with Fourier expansion as in (7.2.1), and assume
that c+(m) ∈ Z for m ≤ 0. We associate to f the divisors

ZKra(f) =
∑
m>0

c+(−m) ·ZKra(m)

Z tot
Kra(f) =

∑
m>0

c+(−m) ·Z tot
Kra(m)

on SKra and S∗Kra, respectively. As the actions of SL2(Z) and K via the Weil represen-
tation commute, the associated SL-valued harmonic Maass form f̃ is invariant under
K. Hence the natural pairing SL × S∨L → C gives rise to a scalar valued function
(f̃(τ), θ(τ, z, g)) in the variables (τ, z, g) ∈ H ×D × G(Af ), which is invariant under
the right action of K and the left action of G(Q). Hence it descends to a function
on SL2(Z)\H× Sh(G,D)(C).

We define the regularized theta lift of f as

Θreg(z, g, f) =

∫ reg

SL2(Z)\H

(
f̃(τ), θ(τ, z, g)

) du dv
v2

.

Here the regularization of the integral is defined as in [4, 9, 11]. We extend the incom-
plete Gamma function

(7.2.3) Γ(0, t) =

∫ ∞
t

e−v
dv

v

to a function on R≥0 by setting

Γ̃(0, t) =

{
Γ(0, t) if t > 0,
0 if t = 0.

Theorem 7.2.1. — The regularized theta lift Θreg(z, g, f) defines a smooth function
on SKra(C) \ ZKra(f)(C). For g ∈ G(Af ) and z0 ∈ D, there exists a neighborhood
U ⊂ D of z0 such that

Θreg(z, g, f)−
∑
x∈gL
x⊥z0

c+(−〈x, x〉) · Γ̃
(
0, 4π|〈xz, xz〉|

)
is a smooth function on U .

Proof. — Note that the sum over x ∈ gL∩z⊥0 is finite. Since Sh(G,D)(C) decomposes
into a finite disjoint union of connected components of the form

(G(Q) ∩ gKg−1)\D,

where g ∈ G(Af ), it suffices to consider the restriction of Θreg(f) to these components.
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On such a component, Θreg(z, g, f) is the regularized theta lift considered in [11,
Section 4] of the vector valued form f̃ for the lattice

gL = gL̂ ∩ V = HomOk
(ga0, ga) ⊂ V,

and hence the assertion follows from (7.2.2) and [11, Theorem 4.1].

Remark 7.2.2. — Let ∆D denote the U(V )(R)-invariant Laplacian on D. There exists
a non-zero real constant c (which only depends on the normalization of ∆D and which
is independent of f), such that

∆DΘreg(z, g, f) = c · degZKra(f)(C)

on the complement of the divisor ZKra(f)(C).

Using the fact that
Γ(0, t) = − log(t) + Γ′(1) + o(t)

as t → 0, Theorem 7.2.1 implies that Θreg(f) is a (sub-harmonic) logarithmic Green
function for the divisor ZKra(f)(C) on the non-compactified Shimura variety SKra(C).
These properties, together with an integrability condition, characterize it uniquely up
to addition of a locally constant function [11, Theorem 4.6]. The following result
describes the behavior of Θreg(f) on the toroidal compactification.

Theorem 7.2.3. — On S∗Kra(C), the function Θreg(f) is a logarithmic Green func-
tion for the divisor Z tot

Kra(f)(C) with possible additional log-log singularities along the
boundary in the sense of [13].

Proof. — As in the proof of Theorem 7.2.1 we reduce this to showing that Θreg(f) has
the correct growth along the boundary of the connected components of S∗Kra(C). Then
it is a direct consequence of [11, Theorem 4.10] and [11, Corollary 4.12].

Recall that ω
an is the tautological bundle on

D ∼=
{
w ∈ εV (C) : [w,w] < 0

}
/C×.

We define the Petersson metric ‖ · ‖ on ω
an by

‖w‖2 = − [w,w]

4πeγ
,

where γ = −Γ′(1) denotes Euler’s constant. This choice of metric on ω
an induces a

metric on the line bundle ω on SKra(C) defined in § 2.4, which extends to a metric
over S∗Kra(C) with log-log singularities along the boundary [11, Proposition 6.3]. We
obtain a hermitian line bundle on S∗Kra, denoted

ω̂ = (ω, ‖ · ‖).

If f is actually weakly holomorphic, that is, if it belongs to M !,∞
2−n(D,χ), then

Θreg(f) is given by the logarithm of a Borcherds product. More precisely, we have
the following theorem, which follows immediately from [4, Theorem 13.3] and our
construction of ψ(f) as the pullback of a Borcherds product, renormalized by (6.2.3),
on an orthogonal Shimura variety.
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Theorem 7.2.4. — Let f ∈M !,∞
2−n(D,χ) be as in (5.2.2). The Borcherds product ψ(f)

of Theorem 5.3.1 satisfies

Θreg(f) = − log ‖ψ(f)‖2.

7.3. Generating series of arithmetic special divisors. — We can now define arithmetic
special divisors on S∗Kra, and prove a modularity result for the corresponding gen-
erating series in the codimension one arithmetic Chow group. This result extends
Theorem 7.1.5.

Recall our hypothesis that n > 2, and let m be a positive integer. As in [9, Propo-
sition 3.11], or using Poincaré series, it can be shown that there exists a unique
fm ∈ H∞2−n(D,χ) whose Fourier expansion at the cusp ∞ has the form

fm = q−m +O(1)

as q → 0. According to Theorem 7.2.3, its regularized theta lift Θreg(fm) is a loga-
rithmic Green function for Z tot

Kra(m).

Denote by Ĉh
1

Q(S∗Kra) the arithmetic Chow group [20] of rational equivalence classes
of arithmetic divisors with Q-coefficients. We allow the Green functions of our arith-
metic divisors to have possible additional log-log error terms along the boundary
of S∗Kra(C), as in the theory of [13]. For m > 0 define an arithmetic special divisor

Ẑ tot
Kra(m) = (Z tot

Kra(m),Θreg(fm)) ∈ Ĉh
1

Q(S∗Kra)

on S∗Kra, and for m = 0 set

Ẑ tot
Kra(0) = ω̂

−1 + (Exc,− log(D)) ∈ Ĉh
1

Q(S∗Kra).

In the theory of arithmetic Chow groups one usually works on a regular scheme
such as S∗Kra. However, the codimension one arithmetic Chow group of S∗Pap makes
perfect sense: one only needs to specify that it consists of rational equivalence classes
of Cartier divisors on S∗Pap endowed with a Green function.

With this in mind one can use the equality

Ytot
Pap(m)(C) = 2Z tot

Kra(m)(C)

in the complex fiber S∗Pap(C) = S∗Kra(C) to define arithmetic divisors

Ŷtot
Pap(m) = (Ytot

Pap(m), 2Θreg(fm)) ∈ Ĉh
1

Q(S∗Pap)

for m > 0. For m = 0 we define

Ŷtot
Pap(0) = Ω̂

−1
+ (0,−2 log(D)) ∈ Ĉh

1

Q(S∗Pap),

where the metric on Ω is induced from that on ω, again using Ω ∼= ω
2 in the complex

fiber.

Theorem 7.3.1. — The formal q-expansions

φ̂(τ) =
∑
m≥0

Ẑ tot
Kra(m) · qm ∈ Ĉh

1

Q(S∗Kra)[[q]](7.3.1)
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and ∑
m≥0

Ŷtot
Pap(m) · qm ∈ Ĉh

1

Q(S∗Pap)[[q]]

are modular forms of level D, weight n, and character χ.

Proof. — For any input form f ∈M !,∞
2−n(D,χ) as in (5.2.2), the relation in the Chow

group given by the Borcherds product ψ(f) is compatible with the Green functions,
in the sense that

− log ‖ψ(f)‖2 =
∑
m>0

c(−m) ·Θreg(fm).

Indeed, this directly follows from f =
∑
m>0 c(−m)fm and Theorem 7.2.4.

This observation allows us to simply repeat the argument of Theorems 7.1.4 and
7.1.5 on the level of arithmetic Chow groups. Viewing ψ(f)2 as a rational section of
the metrized line bundle Ω

k
Pap, the arithmetic divisor

d̂iv(ψ(f)2)
def
=
(
div(ψ(f)2),−2 log ‖ψ(f)‖2

)
∈ Ĉh

1

Q(S∗Pap)

satisfies both

(7.3.2) d̂iv(ψ(f)2) = Ω̂
k

Pap = −2k · (0, log(D))−
∑
r|D

γrcr(0) · Ŷtot
Pap(0)

and, recalling δ =
√
−D ∈ k,

d̂iv(ψ(f)2) =
∑
m>0

c(−m) · Ŷtot
Pap(m)− 2k · (div(δ), 0) + 2

∑
r|D

γrcr(0) · V̂r

=
∑
m>0

c(−m) · Ŷtot
Pap(m)− 2k · (0, log(D)) + 2

∑
r|D

γrcr(0) · V̂r,
(7.3.3)

where V̂r is the the vertical divisor Vr =
∑
p|r S

∗
Pap/Fp endowed with the trivial

Green function. Note that in the second equality we have used the relation

0 = d̂iv(δ) = (div(δ),− log |δ2|) = (div(δ), 0)− (0, log(D))

in the arithmetic Chow group. Combining (7.3.2) and (7.3.3), we deduce that

0 =
∑
m≥0

c(−m) · Ŷtot
Pap(m) +

∑
r|D
r>1

γrcr(0)
(
Ŷtot

Pap(0) + 2 · V̂r

)
.

With this relation in hand, both proofs go through verbatim.

7.4. Non-holomorphic generating series of special divisors. — In this subsection we
discuss a non-holomorphic variant of the generating series (7.3.1), which is obtained
by endowing the special divisors with other Green functions, namely with those con-
structed in [23, 24] following the method of [36]. By combining Theorem 7.3.1 with a
recent result of Ehlen and Sankaran [16], we show that the non-holomorphic generat-
ing series is also modular.
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For every m ∈ Z and v ∈ R>0 define a divisor

BKra(m, v) =
1

4πv

∑
Φ

#{x ∈ L0 : 〈x, x〉 = m} · S∗Kra(Φ)

with real coefficients on S∗Kra. Here the sum is over all K-equivalence classes of proper
cusp label representatives Φ in the sense of § 3.2, L0 is the hermitian Ok-module of
signature (n− 2, 0) defined by (3.1.4), and S∗Kra(Φ) is the boundary divisor of Theo-
rem 3.7.1. Note thatBKra(m, v) is trivial for allm < 0. We define classes in Ch1

R(S∗Kra),
depending on the parameter v, by

Z tot
Kra(m, v) =

Z
∗
Kra(m) +BKra(m, v) if m 6= 0

ω
−1 + Exc +BKra(0, v) if m = 0.

Following [23, 24, 36], Green functions for these divisors can be constructed as
follows. For x ∈ V (R) and z ∈ D we put

R(x, z) = −2Q(xz).

Recalling the incomplete Gamma function (7.2.3), for m ∈ Z and

(v, z, g) ∈ R>0 ×D×G(Af )

we define a Green function

Ξ(m, v, z, g) =
∑

x∈V \{0}
Q(x)=m

χL̂(g−1x) · Γ(0, 2πvR(x, z)),(7.4.1)

where χL̂ ∈ SL denotes the characteristic function of L̂. As a function of the variable
(z, g), (7.4.1) is invariant under the left action of G(Q) and under the right action
of K, and so descends to a function on R>0 × Sh(G,D)(C). It was proved in [24,
Theorem 3.4.7] that Ξ(m, v) is a logarithmic Green function for Z tot

Kra(m, v) when
m 6= 0. When m = 0 it is a logarithmic Green function for BKra(0, v).

Consequently, we obtain arithmetic special divisors in Ĉh
1

R(S∗Kra) depending on the
parameter v by putting

Ẑ tot
Kra(m, v) =

(Z tot
Kra(m, v),Ξ(m, v)) if m 6= 0

ω̂
−1 + (BKra(0, v),Ξ(0, v)) + (Exc,− log(Dv)) if m = 0.

Note that for m < 0 these divisors are supported in the archimedian fiber.

Theorem 7.4.1. — The formal q-expansion

φ̂non-hol(τ) =
∑
m∈Z

Ẑ tot
Kra(m, v) · qm ∈ Ĉh

1

R(S∗Kra)[[q]],

is a non-holomorphic modular form of level D, weight n, and character χ. Here
q = e2πiτ and v = Im(τ).
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Proof. — Theorem 4.13 of [16] states that the difference

(7.4.2) φ̂non-hol(τ)− φ̂(τ)

is a non-holomorphic modular form of level D, weight n, and character χ, valued
in Ĉh

1

C(S∗Kra). Hence the assertion follows from Theorem 7.3.1.

The meaning of modularity in Theorem 7.4.1 is to be understood as in [16, Defini-
tion 4.11]. In our situation it reduces to the statement that there is a smooth function
s(τ, z, g) on H× Sh(G,D)(C) with the following properties:

1. in (z, g) the function s(τ, z, g) has at worst log-log-singularities at the boundary
of Sh(G,D)(C) (in particular it is a Green function for the trivial divisor);

2. s(τ, z, g) transforms in τ as a non-holomorphic modular form of level D, weight
n, and character χ;

3. the difference φ̂non-hol(τ)− s(τ, z, g) belongs to the space

Mn(D,χ)⊗C Ĉh
1

C(S∗Kra)⊕ (Rn−2Mn−2(D,χ))⊗C Ĉh
1

C(S∗Kra),

where Rn−2 denotes the Maass raising operator as in Section 8.4.

8. Appendix: some technical calculations

We collect some technical arguments and calculations. Strictly speaking, none of
these are essential to the proofs in the body of the text. We explain the connection
between the fourth roots of unity γp defined by (5.3.1) and the local Weil indices ap-
pearing in the theory of the Weil representation, provide alternative proofs of Propo-
sitions 6.1.2 and 6.3.3, and explain in greater detail how Proposition 6.3.1 is deduced
from the formulas of [32].

8.1. Local Weil indices. — In this subsection, we explain how the quantity γp defined
in (5.3.1) is related to the local Weil representation.

Let L ⊂ V be as in § 6.1, and recall that SL = C[L′/L] is identified with a subspace
of S(V (Af )) by sending µ ∈ L′/L to the characteristic function φµ of µ+ L̂ ⊂ V (Af ).

As dimQ V = 2n and D is odd, the representation ωL of SL2(Z) on SL is the
pullback via

SL2(Z) −→
∏
p|D

SL2(Zp)

of the representation
ωL =

⊗
p|D

ωp,

where ωp = ωLp is the Weil representation of SL2(Zp) on SLp ⊂ S(Vp). These Weil
representations are defined using the standard global additive character ψ = ⊗pψp,
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which is trivial on Ẑ and on Q and whose restriction to R ⊂ A is given by ψ(x) =
exp(2πix). Recall that, for a ∈ Q×p and b ∈ Qp,

ωp(n(b))φ(x) = ψp(bQ(x)) · φ(x)

ωp(m(a))φ(x) = χnk,p(a) · |a|np · φ(ax)

ωp(w)φ(x) = γp

∫
Vp

ψp(−[x, y]) · φ(y) dy, w =
( −1

1

)
,

where γp = γp(L) is the Weil index of the quadratic space Vp with respect to ψp
and χk,p is the quadratic character of Q×p corresponding to kp. Note that dy is the
self-dual measure with respect to the pairing ψp([x, y]).

Lemma 8.1.1. — The Weil representation ωp satisfies the following properties.

1. When restricted to the subspace SLp ⊂ S(Vp), the action of γ ∈ SL2(Zp) depends
only on the image of γ in SL2(Fp).

2. The Weil index is given by

γp = ε−np · (D, p)np · invp(Vp)

where (a, b)p is the Hilbert symbol for Qp and invp(Vp) is the invariant of Vp in
the sense of (1.7.3).

Proof. — (i) It suffices to check this on the generators. We omit this.
(ii) We can choose an Ok,p-basis for Lp such that the matrix for the hermitian
form is diag(a1, . . . , an), with aj ∈ Z×p . The matrix for the bilinear form [x, y] =
TrKp/Qp(〈x, y〉) is then diag(2a1, . . . , 2an, 2Da1, . . . , 2Dan). Then, according to the
formula for βV in [35, p. 379], we have

γ−1
p = γQp(

1

2
· ψp ◦ V ) =

n∏
j=1

γQp(ajψp) · γQp(Dajψp),

where we note that, in the notation there, x(w) = 1, and j = j(w) = 1. Next by
Proposition A.11 of the appendix to [48], for any α ∈ Z×p , we have γQp(αψp) = 1 and

γQp(αpψp) =

(
−α
p

)
· εp = (−α, p)p · εp.

Here note that if η = αpψp, then the resulting character η̄ of Fp is given by

η̄(ā) = ψp(p
−1a) = e(−p−1a).

and γFp(η̄) =
(
−1
p

)
· εp. Thus

γp = ε−np · (−D/p, p)np · (det(V ), p)p,

as claimed.
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8.2. A direct proof of Proposition 6.1.2. — The proof of Proposition 6.1.2, which ex-
presses the Fourier coefficients of the vector valued form f̃ in terms of those of the
scalar valued form f ∈ M !

2−n(D,χ), appealed to the more general results of [50]. In
some respects, it is easier to prove Proposition 6.1.2 from scratch than it is to extract
it from [loc. cit.]. This is what we do here.

Recall that f̃ is defined from f by the induction procedure of (6.1.1), and that
the coefficients c̃(m,µ) in its Fourier expansion (6.1.2) are indexed by m ∈ Q and
µ ∈ L′/L. Recall that, for r | D, rs = D,

Wr =

(
rα β

Dγ rδ

)
= Rr

(
r

1

)
, Rr =

(
α β

sγ rδ

)
∈ Γ0(s).

Note that

(8.2.1) Γ0(D)\SL2(Z) = Γ0(D)\SL2(Z)/Γ(D) '
∏
p|D

Bp\SL2(Fp),

so this set has order
∏
p|D(p+ 1). A set of coset representatives is given by

⊔
r|D

c (mod r)

Rr

(
1 c

1

)
.

Now, using (4.1.1), we have(
f
∣∣
2−nRr

(
1 c

1

))
(τ) =

(
f
∣∣
2−nWr

(
r−1 r−1c

1

))
(τ)

= χr(β)χs(α)
∑

m�−∞
r
n
2−1cr(m) · e

2πim(τ+c)
r .(8.2.2)

On the other hand, the image of the inverse of our coset representative on the right
side of (8.2.1) has components

(
1 −c

1

)(
0 −β
−sγ α

)
if p | r(

1 −c
1

)(
rδ −β
0 α

)
if p | s.

Note that rαδ − sβγ = 1. Then, as elements of SL2(Fp), we have

(
1 −c

1

)(
β

β−1

)(
−1

1

)(
1 αβ

1

)
if p | r(

1 −c
1

)(
α−1

0 α

)(
1 −αβ

1

)
if p | s.
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The element on the second line just multiplies φ0,p by χp(α). For the element on the
first line, the factor on the right fixes φ0 and

ωp

((
−1

1

))
φ0 = γp p

−n2
∑

µ∈L′p/Lp

φµ.

Thus, the element on the first line carries φ0,p to

χp(β)γp p
−n2

∑
µ∈L′p/Lp

ψp(−cQ(µ))φµ.

Recall from (6.1.3) that for µ ∈ L′/L, rµ is the product of the primes p | D such
that µp 6= 0. Thus

(8.2.3) ωL

(
Rr

(
1 c

1

))−1

φ0 = χs(α)χr(β) γr r
−n2

∑
µ∈L′/L
rµ|r

e2πicQ(µ)φµ.

Taking the product of (8.2.2) and (8.2.3) and summing on c and on r, we obtain∑
r|D

γr · r−1
∑

c (mod r)

∑
µ∈L′/L
rµ|r

e2πicQ(µ)φµ
∑

m�−∞
cr(m)e

2πim(τ+c)
r

=
∑
r|D

γr
∑

µ∈L′/L
rµ|r

φµ
∑

m�−∞
m
r +Q(µ)∈Z

cr(m) q
m
r

=
∑
m∈Q

m�−∞

∑
µ∈L′/L

m+Q(µ)∈Z

∑
r

rµ|r|D

γrcr(mr)φµ q
m.

This gives the claimed general expression for c̃(m,µ) and completes the proof of
Proposition 6.1.2.

8.3. A more detailed proof of Proposition 6.3.1. — In this section, we explain in more
detail how to obtain the product formula of Proposition 6.3.1 from the general formula
given in [32].

For our weakly holomorphic SL-valued modular form f̃ of weight 2 − n, with
Fourier expansion given by (6.1.2), the corresponding meromorphic Borcherds product
Ψ(f̃) on D̃+ has a product formula [32, Corollary 2.3] in a neighborhood of the
1-dimensional boundary component associated to L−1. It is given as a product of 4
factors, labeled (a), (b), (c) and (d). We note that, in our present case, there is a
basic simplification in factor (b) due to the restriction on the support of the Fourier
coefficients of f̃ . More precisely, for m > 0, c̃(−m,µ) = 0 for µ /∈ L, and c̃(−m, 0) =
c(−m). In particular, if x ∈ L′ with [x, e−1] = [x, f−1] = 0, then Q(x) = Q(x0), where
x0 is the (L0)Q component of x. If x0 6= 0, then Q(x) > 0, and c̃(−Q(x), µ) = 0
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for µ /∈ L. The factors for Ψ(f̃) are then given by:
(a) ∏

x∈L′
[x,f−1]=0
[x,e−1]>0

mod L∩Q f−1

(
1− e−2πi[x,w]

)c̃(−Q(x),x)
.

(b)

P1(w0, τ1)
def
=

∏
x∈L0

[x,W0]>0

(
ϑ1(−[x,w], τ1)

η(τ1)

)c(−Q(x))

,

where W0 is a Weyl chamber in V0(R), as in [32, § 2].
(c)

P0(τ1)
def
=

∏
x∈d−1L−1/L−1

x 6=0

(
ϑ1(−[x,w], τ1)

η(τ1)
eπi[x,w]·[x,e1]

)c̃(0,x)/2

(d) and

κ η(τ1)c̃(0,0) qI02 ,

where κ is a scalar of absolute value 1, and

I0 = −
∑
m

∑
x∈L′∩(L−1)⊥

mod L−1

c̃(−m,x)σ1(m−Q(x)).

The factors given in Proposition 6.3.1 are for the form

ψ̃g(f)
def
= (2πi)c̃(0,0)Ψ(2f̃).

The quantity q2 in [32] is our e(ξ), and τ1 there is our τ .
Recall from (3.9.5) that d−1L−1 = Ze−1+D−1Zf−1, so that, in factor (c), the prod-

uct runs over vectors D−1b f−1, with b (mod D) nonzero. For these vectors [x, e1] = 0.
In the formula for I, x runs over vectors of the form

x = − b

D
f−1 + x0,

with x0 ∈ d−1L0. But, again, if x0 6= 0, Q(x) = Q(x0) > 0 and c̃(−Q(x), x) = 0 unless
b = 0, and so the sum in that term runs over x0 ∈ L0 x0 6= 0 and over − b

D f−1’s.
Thus the factors for ψ̃g(f) are given by:

(a) ∏
x∈L′

[x,f−1]=0
[x,e−1]>0

mod L∩Q f−1

(
1− e−2πi[x,w]

)2 c̃(−Q(x),x)
,

ASTÉRISQUE 421



Ép
re

uv
e S

M
F

Ju
ne

27
, 2

02
0

MODULARITY OF UNITARY GENERATING SERIES 117

(b)

P1(w0, τ1)
def
=

∏
x0∈L0
x0 6=0

(
ϑ1(−[x0, w], τ1)

η(τ1)

)c(−Q(x0))

,

(c)

P0(τ1)
def
=

∏
b∈Z/DZ
b6=0

(
ϑ1(−[x,w], τ1)

η(τ1)

)c̃(0, bD f−1)

,

(d) and, setting k = c̃(0, 0),
κ2 ( 2πi η2(τ))k q2I0

2 ,

where κ is a scalar of absolute value 1, and

I0 = −2
∑
m>0

∑
x0∈L0

c(−m)σ1(m−Q(x0)) +
1

12

∑
b∈Z/DZ

c̃(0,
b

D
f−1).

Here note that for ψ̃g(f) = (2πi)c̃(0,0)Ψ(2f̃) we have multiplied the previous expres-
sion by 2.

Finally recall

w = −ξe−1 + (τξ −Q(w0))f−1 + w0 + τe1 + f1.

If [x, f−1] = 0, then x has the form

x = −ae−1 −
b

D
f−1 + x0 + ce1,

so that
[x,w] = −c ξ + [x0, w0]− aτ − b

D
,

and
Q(x) = −ac+Q(x0).

Using these values, the formulas given in Proposition 6.3.1 follow immediately.

8.4. A direct proof of Proposition 6.3.3. — Here we give a direct proof of Proposi-
tion 6.3.3, which does not rely on Corollary 6.3.2. We begin by recalling some general
facts about derivatives of modular forms.

We let q ddq be the Ramanujan theta operator on q-series. Recall that the image
under q ddq of a holomorphic modular form g of weight k is in general not a modular
form. However, the function

D(g) = q
dg

dq
− k

12
gE2(8.4.1)

is a holomorphic modular form of weight k + 2 (see [11, § 4.2]). Here

E2(τ) = −24
∑
m≥0

σ1(m)qm
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denotes the non-modular Eisenstein series of weight 2 for SL2(Z). In particular
σ1(0) = − 1

24 . We extend σ1 to rational arguments by putting σ1(r) = 0 if r /∈ Z≥0.
If Rk = 2i ∂∂τ + k

v denotes the Maass raising operator, and

E∗2 (τ) = E2(τ)− 3

πv

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also have

D(g) = − 1

4π
Rk(g)− k

12
gE∗2 .

Proposition 8.4.1. — Let f ∈M !,∞
2−n(D,χ) as in (5.2.2). The integer

I =
1

12

∑
α∈d−1L−1/L−1

c̃(0, α)− 2
∑
m>0

c(−m)
∑
x∈L0

σ1(m−Q(x)).

defined in Proposition 6.3.1 is equal to the integer

multΦ(f) =
1

n− 2

∑
x∈L0

c(−Q(x))Q(x)

defined by (5.2.4).

Proof. — Consider the S∨L0
-valued theta function

Θ0(τ) =
∑
x∈L′0

qQ(x)χ∨x+L0
∈Mn−2(ω∨L0

).

Applying the above construction (8.4.1) to Θ0 we obtain an S∨L0
-valued modular form

D(Θ0) =
∑
x∈L′0

Q(x)qQ(x)χ∨x+L0
− n− 2

12
Θ0E2 ∈Mn(ω∨L0

)

of weight n. For its Fourier coefficients we have

D(Θ0) =
∑

ν∈L′0/L0

∑
m≥0

b(m, ν)qmχ∨ν

b(m, ν) =
∑

x∈ν+L0

Q(x)=m

Q(x) + 2(n− 2)
∑

x∈ν+L0

σ1(m−Q(x)).

As in [11, (4.8)], an SL-valued modular form F induces an SL0
-valued form FL0

. If
we denote by Fµ the components of F with respect to the standard basis (χµ) of SL,
we have

FL0,ν =
∑

α∈d−1L−1/L−1

Fν+α(8.4.2)

for ν ∈ L′0/L0.
Let f̃ ∈M !

2−n(ωL) be the SL-valued form corresponding to f , as in (6.1.1). Using
(8.4.2) we obtain

f̃L0
∈M !

2−n(ωL0
)
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with Fourier expansion

f̃L0
=
∑
ν,m

∑
α∈δ−1I/I

c̃(m, ν + α)qmχν+L0
.

We consider the natural pairing between the SL0 -valued modular form f̃L0 of weight
2− n and the S∨L0

-valued modular form D(Θ0) of weight n,

(f̃L0 , D(Θ0)) ∈M !
2(SL2(Z)).

By the residue theorem, the constant term of the q-expansion vanishes, and so∑
m≥0

∑
ν∈L′0/L0

α∈δ−1I/I

c̃(−m, ν + α)b(m, ν) = 0.(8.4.3)

We split this up in the sum overm > 0 and the contribution fromm = 0. Employing
Proposition 6.1.2, we obtain that the sum over m > 0 is equal to∑

m>0

c(−m)b(m, 0).

For the contribution of m = 0 we notice

b(0, ν) =

{
−n−2

12 , ν = 0 ∈ L′0/L0,

0, ν 6= 0.

Hence this part is equal to

−n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α).

Inserting the two contributions into (8.4.3), we obtain

0 =
∑
m>0

c(−m)b(m, 0)− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

=
∑
m>0

c(−m)

( ∑
x∈L0

Q(x)=m

Q(x) + 2(n− 2)
∑
x∈L0

σ1(m−Q(x))

)

− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

=
∑
x∈L0

c(−Q(x))Q(x) + 2(n− 2)
∑
m>0

c(−m)
∑
x∈L0

σ1(m−Q(x))

− n− 2

12

∑
α∈d−1L−1/L−1

c̃(0, α)

= (n− 2)multΦ(f)− (n− 2)I.

This concludes the proof of the proposition.
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Now we verify directly the other claim of Proposition 6.3.3: the function

P1(τ, w0) =
∏
m>0

∏
x∈L0

Q(x)=m

Θ
(
τ, 〈w0, x〉

)c(−m)

satisfies the transformation law (3.9.14) with respect to the translation action of bL0

on the variable w0.
First recall that, for a, b ∈ Z,

Θ(τ, z + aτ + b) = exp
(
− πia2τ − 2πiaz + πi(b− a)

)
·Θ(τ, z).

If we write α = aτ + b and τ = u+ iv, then

a =
Im(α)

v
=
α− ᾱ

2iv
, b = Re(α)− u

v
Im(α).

Thus
1

2
a2τ + az +

1

2
(a− b) =

1

4iv
(α− ᾱ)α+

1

2iv
(α− ᾱ)z +

1

2
(a− b− ab).

For z and w in C, write

R(z, w) = Rτ (z, w) = Bτ (z, w)−Hτ (z, w) =
1

v
z(w − w̄).

Then
1

4v
(α− ᾱ)α+

1

2v
(α− ᾱ)z =

1

2
R(z, α) +

1

4
R(α, α),

and we can write

Θ(τ, z + α) = exp(−πR(z, α)− π

2
R(α, α)) · exp(πi(a− b− ab))−1 Θ(τ, z).

We will consider the contribution of the 1
2 (a− b− ab) term separately.

For β ∈ V0, we have 〈w0 + β, x〉 = 〈w0, x〉 + 〈β, x〉. Suppose that for all x ∈ L0,
we have 〈β, x〉 = aτ + b for a and b in Z. Writing b = Z + Zτ , this is precisely the
condition that β ∈ bL0. Then we obtain a factor

exp

−π∑
m>0

∑
x∈L0

Q(x)=m

c(−m)

[
R
(
〈w0, x〉, 〈β, x〉

)
+
R
(
〈β, x〉, 〈β, x〉

)
2

] .

Expanding the sum and using the hermitian version of Borcherds’ quadratic identity
from the proof of Proposition 5.2.2, we have∑

x∈L0

c(−Q(x))

v

[
〈w0, x〉〈β, x〉 − 〈w0, x〉〈x, β〉+

〈β, x〉〈β, x〉
2

− 〈β, x〉〈x, β〉
2

]

= −1

v

(
〈w0, β〉+

1

2
〈β, β〉

)
· 1

2n− 4
·
∑
x∈L0

c(−Q(x)) [x, x]

= −1

v

(
〈w0, β〉+

1

2
〈β, β〉

)
·multΦ(f).
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Thus, using I = multΦ(f), we have a contribution of

exp
(π〈w0, β〉

v
+
π〈β, β〉

2v

)I
to the transformation law.

Next we consider the quantity

a− b− ab =
Im(α)

v
− Re(α)− u Im(α)

v
− Im(α)

v

(
Re(α)− u Im(α)

v

)
=
α− ᾱ

2iv
− (α+ ᾱ)

2
− u(α− ᾱ)

2iv
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)
.

This will contribute exp(−πiA), where A is defined as the sum∑
x 6=0

c(−Q(x))

[
α− ᾱ

2iv
− α+ ᾱ

2
− u(α− ᾱ)

2iv
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)]
,

where α = 〈β, x〉. Since x and −x both occur in the sum, the linear terms vanish and

A =
∑
x 6=0

c(−Q(x))

[
− α− ᾱ

2iv

(
(α+ ᾱ)

2
− u(α− ᾱ)

2iv

)]
.

Using the hermitian version of Borcherds quadratic identity, as in the proof of Propo-
sition 5.2.2, we obtain

A =
uI

2v2
· 〈β, β〉.

Thus we have

P1(τ, w0 + β) = P1(τ, w0) · exp
(π
v
〈w0, β〉+

π

2v
〈β, β〉

)I
· exp

(−2πiu〈β, β〉
4v2

)I
.

Finally, we recall the conjugate linear isomorphism L−1
∼= b of (3.9.11) defined

by e−1 7→ τ and f−1 7→ 1. As

d−1L−1 = Ze−1 +D−1Zf−1,

we have −δ−1τ = aτ +D−1b for some a, b ∈ Z, and hence

τ = −D−1b(a+ δ−1)−1.

This gives u/v = aD
1
2 . Also, using

δe−1 = −Dae−1 − b f−1,

we have
1

2
(1 + δ) e−1 =

1

2
(1−Da) e−1 −

1

2
b f−1 ∈ Ze−1 + Zf−1 = L−1.

Thus a is odd and b is even. Recall that N(b) = 2v/
√
D. Thus

u

4v2
=

aD
1
2

2N(b)D
1
2

,
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and, since 〈β, β〉 ∈ N(b), we have

exp
(
− 2πiu〈β, β〉

4v2

)
= exp

(
− πi〈β, β〉

N(b)

)
= ±1.

The transformation law is then

P1(τ, w0 + β) = exp
(π
v
〈w0, β〉+

π

2v
〈β, β〉 − iπ 〈β, β〉

N(b)

)I
· P1(τ, w0),

as claimed in Proposition 6.3.3.
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