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MODULARITY OF GENERATING SERIES OF DIVISORS
ON UNITARY SHIMURA VARIETIES

by
Jan H. Bruinier, Benjamin Howard, Stephen S. Kudla; Michael Rapoport
& Tonghai Yang

Abstract. — We form generating series, valued in the Chow group and the arithmetic
Chow group, of special divisors on the compactified integral model of a Shimura vari-
ety associated to a unitary group of signature (n — 1,1), and prove their modularity.
The main ingredient in the proof is the calculation of vertical components appearing
in the divisor of a Borcherds product on the integral model.

Résumé (Modularité des séries génératrices de diviseurs sur les variétés de Shimura unitaires)

Nous formons des séries génératrices, a valeurs-dans le groupe de Chow et dans le
groupe de Chow arithmétique, formées des diviseurs spéciaux sur le modéle intégral
compact d’une variété de Shimura associée & un groupe unitaire de signature (n—1, 1),
et prouvons leur modularité. L’ingrédient principal de la preuve est le calcul des
composantes verticales apparaissantes dans le diviseur d’un produit de Borcherds sur
le modéle intégral.

1. Introduction

The goal of this paper is‘to prove the modularity of a generating series of special
divisors on the compactified integral model of a Shimura variety associated to a uni-
tary group of signature (n —<1,1). The special divisors in question were first studied
on the open Shimura variety in [33, 34], and then on the toroidal compactification
in [24].

This generating series is an arithmetic analogue of the classical theta kernel used
to lift modular -forms from U(2) and U(n). In a similar vein, our modular generating
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8 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

series can be used to define a lift from classical cuspidal modular forms of weight n
to the codimension one Chow group of the unitary Shimura variety.

1.1. Statement of the main result. — Fix a quadratic imaginary field & C C of odd

discriminant disc(k) = —D. We are concerned with the arithmetic of a certain unitary’

Shimura variety, whose definition depends on the choices of k-hermitian spaces Wy

and W of signature (1,0) and (n—1, 1), respectively, where n > 3. We assume that W}

and W each admit an Og-lattice that is self-dual with respect to the hermitian form.
Attached to this data is a reductive algebraic group

(1.1.1) G C GU(W,) x GU(W)

over Q, defined as the subgroup on which the unitary similitude characters are equal,
and a compact open subgroup K C G(Ay) depending on the above choice of self-dual
lattices. As explained in § 2, there is an associated hermitian symmetric domain D,
and a Deligne-Mumford stack Sh(G,D) over k whose complex points are identified
with the orbifold quotient

Sh(G,D)(C) = G(Q\D x G(Af)/K.

This is the unitary Shimura variety of the title.

The stack Sh(G,D) can be interpreted as a moduli space of pairs (A, A) in which
Ag is an elliptic curve with complex multiplication by O, and A is a principally po-
larized abelian scheme of dimension n endowed with an Og-action. The pair (A, A) is
required to satisfy some additional conditions, which need not concern us in the in-
troduction.

Using the moduli interpretation, one can construct an integral model of Sh(G,D)
over O. In fact, following work of Pappas and Krimer, we explain in § 2.3 that there
are two natural integral models related by a morphism Sk;n — Spap. Each integral
model has a canonical toroidal compactification whose boundary is a disjoint union
of smooth Cartier divisors, and the above morphism extends uniquely to a morphism

(1.1.2) Skra = Shap

of compactifications.

Each compactified integral model has its own desirable and undesirable properties.
For example, S, is regular, while 8¢, is not. On the other hand, every vertical (i.e.,
supported in nonzero-characteristic) Weil divisor on Sl*,ap has nonempty intersection
with the boundary, while Sk, has certain exceptional divisors in characteristics p | D
that do not meet the boundary. An essential part of our method is to pass back and
forth between these two models in order to exploit the best properties of each. For
simplicity, we will state our main results in terms of the regular model Sf,,.

In §2 we define a distinguished line bundle @ on Sk;., called the line bundle of
weight one modular forms, and a family of Cartier divisors Zk;,(m) indexed by inte-
gers m > 0. These special divisors were introduced in [33, 34|, and studied further in
[11, 23, 24]. For the purposes of the introduction, we note only that one should regard
the divisors as arising from embeddings of smaller unitary groups into G.
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MODULARITY OF UNITARY GENERATING SERIES 9

Denote by
1 * ~ D *
Ch(@ (SKra) = PIC(SKra) ®z Q
the Chow group of rational equivalence classes of divisors with Q coefficients. Each
special divisor Zk;,(m) can be extended to a divisor on the toroidal compactification

simply by taking its Zariski closure, denoted Zj; ,(m). The total special divisor is
defined as

(1.1.3) Ko (M) = Liera (M) + Brcra(m) € Chgy(Sicra)
where the boundary contribution is defined, as in (5.3.3), by

CBKra (m) = m

—5 D #{z € Lo: (x,x) = m} - Sia ().
(3]

n

The notation here is the following: The sum is over the equivalence classes of propen
cusp label representatives ® as defined in §3.1. These index the connected compo-
nents Sk, (®) C 8Sk,, of the boundary V. Inside the sum, (Lo, (.,.)) is a hermitian
Og-module of signature (n — 2,0), which depends on 9.

The line bundle of modular forms w admits a canonical extension to the toroidal
compactification, denoted the same way. For the sake of notational uniformity, we
extend (1.1.3) to m = 0 by setting

(1.1.4) 8 (0) = 0™ + Exc € Chj(Skra)-

Here Exc is the exceptional divisor of Theorem 2.3.4. It is a reduced effective divisor
supported in characteristics p | D, disjoint from the boundary of the compactification.
The following result appears in the text as Theorem 7.1.5.

Theorem A. — Let xx : (Z/DZ)*-— {%1} be the Dirichlet character determined
by k/Q. The formal generating series

> Zist(m) - g™ € Chy(Ska)lldl]
m>0

is modular of weight n, level T'o(D), and character xj in the following sense: fon
every Q-linear functional o : Chb(Sfﬁa) — C, the series

Y a(Zigh(m) - ¢™ € Cllg]
m>0

is the q-expansion of a classical modular form of the indicated weight, level, and char-
acter.

—~1
We can prove a stronger version of Theorem A. Denote by Chg(Sk,,) the Gillet-

o~

Soulé [20] arithmetic Chow group of rational equivalence classes of pairs Z = (£, Gr),
where Z is a divisor on Sj,, with rational coefficients, and Gr is a Green function

(1) After base change to C, each 8% 1o (®) decomposes into h connected components, where h is the
class number of k.
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10 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

for Z. We allow the Green function to have additional log-log singularities along the
boundary, as in the more general theory developed in [13]. See also [8, 24].

In §7.3 we use the theory of regularized theta lifts to construct Green functions
for the special divisors ;2% (m), and hence obtain arithmetic divisors

= —~1
torta(rn) € Ch(@ (Sfira)

for m > 0. We also endow the line bundle w with a metric, and the resulting metrized
line bundle @ defines a class

0t (0) = & " + (Bxc, — log(D)) € Chy (8,

ra

~

where the vertical divisor Exc has been endowed with the constant Green function
—log(D). The following result is Theorem 7.3.1 in the text.

Theorem B. — The formal generating series
~ ~ —~1
d(r) =Y Zisk(m) - ¢™ € Chy(Siya)[lg]]
m>0

is modular of weight n, level T'g(D), and character Xy, where modularity is understood
in the same sense as Theorem A.

Remark 1.1.1. — As this article was being revised for publication, Wei Zhang an-
nounced a proof of his arithmetic fundamental lemma, conjectured in [52]. Although
the statement is a purely local result concerning intersections of cycles on unitary
Rapoport-Zink spaces, Zhang’s proof uses global calculations on unitary Shimura va-
rieties, and makes essential use of the modularity result of Theorem B. See [53].

Remark 1.1.2. — Theorem B implies that the Q-span of the classes i%f("rta(m) is finite
dimensional. See Remark 7.1.2.

Remark 1.1.3. — There is a second method of constructing Green functions for the
special divisors, based on the methods of [36], which gives rise to a non-holomorphic
variant of ¢(7). It is a recent theorem of Ehlen-Sankaran [16] that Theorem B implies
the modularity of this non-holomorphic generating series. See § 7.4.

One motivation for the modularity result of Theorem B is that it allows one to
construct arithmetic theta lifts. If g(7) € S,(To(D), x%) is a classical scalar valued
cusp form, we may form the Petersson inner product

P e ~ —~1 %
8(9) < (4, g)per € Ohe(Sira)

as in [38]. One expects, as in [loc. cit.], that the arithmetic intersection pairing of (g)
against other cycle classes should be related to derivatives of L-functions, providing
generalizations of the Gross-Zagier and Gross-Kohnen-Zagier theorems. Specific in-
stances in which this expectation is fulfilled can be deduced from [11, 23, 24]. This
will be explained in the companion paper [10].
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MODULARITY OF UNITARY GENERATING SERIES 11

As this paper is rather long, we explain in the next two subsections the main ideas
that go into the proof of Theorem A. The proof of Theorem B is exactly the same,
but one must keep track of Green functions.

1.2. Sketch of the proof, part I: the generic fiber. — In this subsection we sketch the
proof of modularity only in the generic fiber. That is, the modularity of

(1.2.1) D (m) sk ¢™ € Chy(Sicrasn)all-
m>0
The key to the proof is the study of Borcherds products [4,5].
A Borcherds product is a meromorphic modular form on an orthogonal Shimura
variety, whose construction depends on a choice of weakly holomorphic input form,
typically of negative weight. In our case the input form is any

(1.2.2) ) =Y cm)g™ € My%(Dyx ),
m>>—0o0
where the superscripts ! and oo indicate that the weakly holomorphic form f(7) of]
weight 2 — n and level T'g(D) is allowed to have a pole at the cusp co, but must be
holomorphic at all other cusps. We assume also'that all ¢(m) € Z.
Our Shimura variety Sh(G,D) admits a natural map to an orthogonal Shimura
variety. Indeed, the k-vector space

V = Homy (Wy, W)

admits a natural hermitian form (., .Y of signature (n—1,1), induced by the hermitian
forms on Wy and W. The natural action of G on V determines an exact sequence

(1.2.3) 1 — Resg/9Gyy = G = U(V) — 1

of reductive groups over Q.

We may also view V as a Q-vector space endowed with the quadratic form
Q(z) = (z, z) of signature (2n.— 2,2), and so obtain a homomorphism G — SO(V).
This induces a map from Sh(G,D) to the Shimura variety associated with the
group SO(V).

After possibly replacing f by a nonzero integer multiple, Borcherds constructs a
meromorphic modular form on the orthogonal Shimura variety, which can be pulled
back to a meromorphic‘modular form on Sh(G,D)(C). The result is a meromorphic
section 1 (f) of w*, where the weight

(1.2.4) k=> v -c(0)€Z
r|D

is the integer defined in §5.3. The constant v, = ler Yp is a 4*® root of unity (with
7 = 1) and ¢,(0) is the constant term of f at the cusp

ooy = % € To(D)\P*(Q),

in the sense of Definition 4.1.1.
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12 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

Initially, ¥(f) is characterized by specifying —log||¢(f)||, where || - || is the Pe-
tersson norm on w®. In particular, ¥ (f) is only defined up to rescaling by a complex
number of absolute value 1 on each connected component of Sh(G,D)(C). We prove
that, after a suitable rescaling, ¥ (f) is the analytification of a rational section of the
line bundle ©* on Sh(G, D). In other words, the Borcherds product is algebraic and
defined over the reflex field k. This allows us to view 1 (f) as a rational section of w”
both on the integral model Sk.,, and on its toroidal compactification.

We compute the divisor of ¥(f) on the generic fiber of the toroidal compactification

S and find

*
Kra/k’

(1.2.5) div(p () e = D e(—m) - ik (m) k.

m>0

The calculation of the divisor on the interior Sk, k- follows immediately from the
corresponding calculations of Borcherds on the orthogonal Shimura variety. The mul-
tiplicities of the boundary components are computed using the results of [32], which
describe the structure of the Fourier-Jacobi expansions of 1(f) along the various
boundary components.

The equality of divisors (1.2.5) implies the relation

k-o= Z c(=m) - L& (m) e

m>0

in the Chow group Ché(S’f{m/k). The cusp ooy = 1/D is I'y(D)-equivalent to the
usual cusp at oo, and so ¢;(0) = ¢(0). Substituting the expression (1.2.4) for k into
the left hand side and using (1.1.4) therefore yields the relation

(1.26) S een(0)-w= 3 e(-m) - Lk (m) e

r|D m>0

r>1
in Ch@(&fﬁa /k)- In §4.2 we construct for each r | D an Eisenstein series

Ex(1) =) ex(m)-q™ € My(D,x}k),
m>0
which, by a simple residue calculation, satisfies
er(0) = = ) e(—m)e(m).
m>0

Substituting this expression into (1.2.6) yields
(1.2.7) 0= c(—m) (L&h(m)x + Y wen(m) - 0),

m>0 r|D

r>1

where we have also used the relation e,.(0) = 0 for r > 1.
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MODULARITY OF UNITARY GENERATING SERIES 13

We now invoke a variant of the modularity criterion of [5], which is our Theo-
rem 4.2.3: if a formal g-expansion

> d(m)g™ € C[[q]]

m>0

satisfies 0 = > -, c(—m)d(m) for every input form (1.2.2), then it must be the
g-expansion of a modular form of weight n, level I'g(D), and character x}. It follows
immediately from this and (1.2.7) that the formal g-expansion

> (i m)+ Y wen(m) - @) g™

m2>0 r|D
r>1

is modular in the sense of Theorem A. Rewriting this-as

> L) g™+ Y wE (1) @
m>0 r|D
r>1
and using the modularity of each Eisenstein series E,.(7), we deduce that (1.2.1) is
modular.

1.3. Sketch of the proof, part II: vertical components. — In order to extend the argu-
ments of § 1.2 to prove Theorem A, it is clear that one should attempt to compute
the divisor of the Borcherds product 2(f) on the integral model Sk,, and hope for
an expression similar to (1.2.5). Indeed, the bulk of this paper is devoted to precisely
this problem.

The subtlety is that both div(#(f)) and Zf2% (m) will turn out to have vertical
components supported in characteristics dividing D. Even worse, in these bad char-
acteristics the components of the exceptional divisor Exc C S, do not intersect the
boundary, and so the multiplicities of these components in the divisor of 1 (f) cannot
be detected by examining its Fourier-Jacobi expansion.

This is where the second integral model S plays an essential role. The morphism
(1.1.2) sits in a cartesian diagram

*
Pap

*
Exc —— Sk,

|

Sing —— Sp,p»

Pap 1S the reduced closed substack of points at

which the structure morphism S;ap — Spec(Og) is not smooth. It is 0-dimensional
and supported in characteristics dividing D. The right vertical arrow restricts to an
isomorphism

where the singular locus Sing C S

(1.3.1) Skra \ Exc = 8, \ Sing.
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14 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

For each connected component s € 7 (Sing) the fiber
Excs = Exc XSt

is a smooth, irreducible, vertical Cartier divisor on Sk,,, and Exc = | |, Exc;.

As the Op-stack SPap is proper and normal with normal fibers, every irreducible
vertical divisor on it is the reduction, modulo some prime of Oy, of an entire connected
(= irreducible) component. From this it follows that every vertical divisor meets the
boundary. Thus one could hope to use (1.3.1) to view (f)-as a rational section
on SPap, compute its divisor there by examining Fourier-Jacobi expansions, and then
pull that calculation back to Sj,.,.

This is essentially what we do, but there is an added complication. The line bun-
dle w on (1.3.1) does not extend to Sp,,,, and similarly the divisor <, (m) on (1.3.1)
cannot be extended across the singular locus to a Cartier divisor on 81*>ap~ However,
if you square the line bundle and the divisors, they have much better behavior. This
is the content of the following result, which is an amalgamation of Theorems 2.4.3,
2.5.3, 2.6.3, and 3.7.1 of the text.

Theorem C. — There is a unique line bundle Qpa, on Sh,. whose restriction to

Pap
(1.3.1) is isomorphic to w?. Denoting by Qxra its pullback to Sy, there is an iso-
morphism

2 = QKra ® O(EXC)

Similarly, there is a umque Cartier divisor YKL (m) on 8}‘,&10 whose restriction to

Pap
(1.3.1) is equal to 2Zf8 (m). Its pullback Yt (m) to Sk, satisfies
2Z1, (m) = &(m) S #lee Ly (o,2) = m) Bxe,.
semo(Sing)

Here Lg is a positive definite self-dual hermitian lattice of rank n associated to the
singular point s, and (.,.) is its hermitian form.

Setting Yir (0) = anlp, we obtain a formal generating series
Z C\gtl;joafp q € Ch@( I*Dap)[[q]]a
m>0

whose pullback via Si,, — SPap is twice the generating series of Theorem A, up to
an error term coming from the exceptional divisors. More precisely, Theorem C shows
that the pullback is

2) Zgh(m)-q" = ) 0s(7)- Excs € Chy(Siya)llall,
m>0 s€mo(Sing)

where each ¥4(7) is the classical theta function whose coefficients count points in the
positive definite hermitian lattice L.

Over (1.3.1) we have w?f = Qlkgap, which allows us to view (f)? as a rational
section of the line bundle Qpap on Sp,,. We examine its Fourier-Jacobi expansions
along the boundary components and are able to compute its divisor completely (it
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MODULARITY OF UNITARY GENERATING SERIES 15

happens to include nontrivial vertical components). We then pull this calculation back
to Sk.., and find that 1 (f), when viewed as a rational section of w®, has divisor

Aiv((f) = 3 elm) - Zigh(m) + 3 70r(0) - (o + 3 S, )

m>0 r|D p|r
c(=m)
—Z 5 Z #{x € Ly : (x,x) = m} - Exc;
m>0 s€mo(Sing)
— k- div(9),

where § € Oy is a square root of —D, p C Oy is the unique prime above p | D, and
Sk /v, is the mod p fiber of Sk, viewed as a divisor. This is stated in the text as
Theorem 5.3.3. Passing to the generic fiber recovers (1.2.5), as it must.

As in the argument leading to (1.2.7), this implies-the relation

0= Z e(—m) - ( w2t (m) — é Z #{x e Ls: (x,z) =m}- Excs>

m>0 s€mo(Sing)
Exc "
-3 com) S (0 55 S, )
m>0 r|D plr
r>1

in the Chow group of S,., and the modularity criterion implies that

Z mrta(m) q" - Z Js(7) - Exes + Z Yr By (T) - ("’ - % - ZS;(ra/Fp>
plr

m>0 s€mo(Sing) r|D
r>1

N | =

is a modular form. As each theta series ¥;(7) and Eisenstein series F,(7) is modular,
so is > Zf2t (m) - ¢™. This completes the outline of the proof of Theorem A.

1.4. The structure of the paper..— We now briefly describe the contents of the various
sections of the paper.

In § 2 we introduce the unitary Shimura variety associated to the group G of (1.1.1),
and explain its realization as a moduli space of pairs (Ag, A) of abelian varieties
with extra structure. We-then review the integral models constructed by Pappas and
Kramer, and the singular and exceptional loci of these models. These are related by
a cartesian diagram

Exc —— Skra

|

Sing —— Spap,

where the vertical arrow on the right is an isomorphism outside of the 0-dimensional
singular locus Sing. We also define the line bundle of modular forms w on Sk;a.
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16 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

The first main result of § 2 is Theorem 2.4.3, which asserts the existence of a line
bundle Qp,;, on Sp,;, restricting to w? over

Skra \ Exc 2 Sp,p \ Sing.

We then define the Cartier divisor Zxra(m) on Sk;n and prove Theorem 2.5.3,
which asserts the existence of a Cartier divisor Cypap(m) on Spap whose restriction
to Spap \ Sing coincides with 2Zx,,(m). Up to error terms supported on the excep-
tional locus Exc, the pullbacks of Qpap and Ypap(m) to Skra are therefore equal
to w? and 2Lk (m), respectively. The error terms are computed in Theorem 2.6.3,
which is the analogue of Theorem C for the noncompactified Shimura varieties.

In §3 we describe the canonical toroidal compactifications S, — Sp,,, and the
structure of their formal completions along the boundary. In §3.1 and §3.2 we in-
troduce the cusp labels ® that index the boundary components, and their associated
mixed Shimura varieties. In §3.3 we construct smooth integral models Cg of these
mixed Shimura varieties, following the general recipes of the theory of arithmetic
toroidal compactification, as moduli spaces of 1-motives. In §3.4 we give a second
moduli interpretation of these integral models. This is one of the key technical steps
in our work, and allows us to compare Fourier-Jacobi expansions on our unitary
Shimura varieties to Fourier-Jacobi expansions-on orthogonal Shimura varieties. See
the remarks at the beginning of § 3 for further discussion. In §3.5 and § 3.6 we con-
struct the line bundle of modular forms and the special divisors on the mixed Shimura
varieties Cp. Theorem 3.7.1 describes the canonical toroidal compactifications S,
and S;ap and their properties. In § 3.8 we describe the Fourier-Jacobi expansions of]
sections of w* on Sk, in algebraiclanguage, and in §3.9 we explain how to express
these Fourier-Jacobi coefficients in classical complex analytic coordinates.

In the short §4 we introduce the weakly holomorphic modular forms that will be
used as inputs for the construction of Borcherds products. We also state in Theo-
rem 4.2.3 a variant of the modularity criterion of Borcherds.

In § 5 we consider the unitary Borcherds products associated to weakly holomorphic
forms

(1.4.1) fe My™ (D, x?2).

n

Ultimately, the integrality properties of the unitary Borcherds products will be de-
duced from an analysis of their Fourier-Jacobi expansions. These expansions involve
certain products of Jacobi theta functions, and so, in §5 we review facts about the
arithmetic theory of Jacobi forms. For us, Jacobi forms will be sections of a suitable
line bundle Jx . on the universal elliptic curve living over the moduli stack (over Z)
of all elliptic curves. The key point is to have a precise description of the divisor of
the canonical section
0% € H°(&,J0.12)

of Proposition 5.1.4. In §5.2 we prove Borcherds quadratic identity, allowing us to
relate o1 to a certain line bundle (determined by a Borcherds product) on the
boundary component Bg associated to a cusp label ®.
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MODULARITY OF UNITARY GENERATING SERIES 17

After these technical preliminaries, we come to the statements of our main re-
sults about unitary Borcherds products. Theorem 5.3.1 asserts that, for each weakly
holomorphic form (1.4.1) satisfying integrality conditions on the Fourier coefficients
c(m) with m < 0, there is a rational section 1 (f) of the line bundle w* on Sk,
with explicit divisor on the generic fiber and prescribed zeros and poles along each
boundary component. Moreover, for each cusp label ®, the leading Fourier-Jacobi
coefficient of 9 (f) has an expression as a product of three factors, two of which, Pyt
and P£°r, are constructed in terms of ©2*. Theorem 5.3.3 gives the precise divisor
of ¥(f) on S,,, and Theorem 5.3.4 gives an analogous formula.on S, . An essential
ingredient in the calculation of these divisors is the calculation of the divisors of the
factors Pyt and P2, which is done in §5.4.

In § 6 we prove the main results stated in § 5.3. In § 6.1 we construct a vector valued
form f from (1.4.1), and give expressions for its Fourier coefficients in terms of those
of f. The vector valued form f defines a Borcherds product 'J;( f) on the symmetric
space D for the orthogonal group of the quadratic space (V, @) and, in § 6.2, we define
the unitary Borcherds product 4 (f) as its pullback to D. In §6.3 we determine the
analytic Fourier-Jacobi expansion of ¥ (f) at the cusp'® by pulling back the product
formula for 1/;( f) computed in [32] along a one-dimensional boundary component
of D. In §6.4 we show that the unitary Borcherds product constructed analytically
arises from a rational section of w* and that; after rescaling by a constant of absolute
value 1, this section is defined over k. This is.Proposition 6.4.4. In §6.5 we complete
the proofs of Theorems 5.3.1, 5.3.3, and 5.3.4.

In §7 we use the calculation of the divisors of Borcherds products to prove the
modularity results discussed in detail earlier in the introduction.

In §8 we provide some supplementary technical calculations.

1.5. The case n = 2. — Throughout the introduction we have assumed that n > 3,
but one could ask if similar results hold for n = 2. This seems to be a delicate question.

The assumption that n > 3-guarantees that W contains an isotropic k-line, which
implies that Sh(G, D) has no compact (meaning proper over k) components. When
n = 2 the Shimura variety 'Sh(G, D) is essentially a union of classical modular curves
(if W contains an isotropic.k-line) or of compact quaternionic Shimura curves (if
W contains no isotropic k-line).

When n = 2 one could still construct Borcherds products on Sh(G,D) as pull-
backs from orthogonal Shimura varies, and use the results of [26] to prove that they
are defined over the reflex field k. Analyzing their divisors on the integral models
Skra — Spap seems quite difficult. The compact case falls well outside the reach
of our arguments, which rely in an essential way on the anaysis of Fourier-Jacobi
expansions near the boundary of a toroidal compactification.

However, even in the noncompact n = 2 case there are some technical issues that
we do not know how to resolve. Foremost among these is that when n = 2 the
reduction of Sp,p at a prime of Oy above D is not normal, and so (as in the familiar
case of modular curves) the reduction of an irreducible component need not remain
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18 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

irreducible. This causes the proof of Proposition 6.5.2 to break down in a serious
way. In essence, we do not know how to exclude the possibility that constants kg
appearing in Proposition 6.4.1 contribute some nontrivial error term to the divisor of|
the Borcherds product.

In §2 and §3 we assume n > 2, but from §5 onwards we restrict to n > 3 (the
integer n plays no role in the short §4).

1.6. Thanks. — The results of this paper are the outcome of a long term project,
begun initially in Bonn in June of 2013, and supported in a _crucial way by three
weeklong meetings at AIM, in Palo Alto (May of 2014) and San Jose (November of
2015 and 2016), as part of their AIM SQuaRE’s program. The opportunity to spend
these periods of intensely focused efforts on the problems involved was essential. We
would like to thank the University of Bonn and AIM for their support.

1.7. Notation. — Throughout the paper, k C C is a quadratic imaginary field of odd
discriminant disc(k) = —D. Denote by § = v/—D € k the unique choice of square
root with Im(é) > 0, and by 0 = §Oj the different of O.
Fix a m € Oy, satisfying Oy = Z + Zrw. If S is any Og-scheme, define
es=mR1-1Qis5(7)€ O, ®z Os
Es=T®1-1®1s(T) € O, ®z Os,
where ig : O — Og is the structure map. The ideal sheaves generated by these sec-
tions are independent of the choice of 7, and sit in exact sequences of free © g-modules

a®z—is(a

0—>(Es)—>@k®zes )z OS_’O

and
aQz—ig(a)x
atatndiilieh et aniN

0_’(53)_’91‘:@2@5 9g — 0.
It is easy to see that eg - £¢ = 0, and that the images of (¢g) and (£5) under

Ok ®z OS a®z—ig(a)z @S

Ok ®z @S a®z—ig(a)x @S’

respectively, are both ‘equal to the sub-sheaf 90g. This defines isomorphisms
of ©g-modules

(1.7.1) (es) 2005 = (2g).

If N is an 1Oy ®7 Og-module then N/ggN is the maximal quotient of N on which
Oy acts through the structure morphism ig : Op — Og, and N/egN is the maximal
quotient on which @y acts through the complex conjugate of the structure morphism.
If D € OF then more is true: there is a decomposition
(172) N =egN ®EgN,

and the summands are the maximal submodules on which O, acts through the struc-
ture morphism and its conjugate, respectively. From this discussion it is clear that
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one should regard g and £g as integral substitutes for the orthogonal idempotents
in k ®y C =2 C x C. The O-scheme S will usually be clear from context, and we
abbreviate eg and £g to € and &.

Let k*® C C be the maximal abelian extension of k in C, and let

art : k*\k* — Gal(k*/k)

be the Artin map of class field theory, normalized as in [43; §11]. As usual,
S = Resc/rGyy, is Deligne’s torus.

For a prime p < oo we write (a, b),, for the Hilbert symbol of a,b € Q. Recall that
the invariant of a hermitian space V over k, = k ®q Q,, is'defined by

(1.7.3) inv,(V) = (det V,—D),,

where det V' is the determinant of the matrix of the hermitian form with respect to
a kp-basis. If p < oo then V is determined up to isomorphism by its k,-rank and
invariant. If p = oo then V is determined up to isomorphism by its signature (r,s),
and its invariant is inve, (V) = (=1)°.

The term stack always means Deligne-Mumford stack.

2. Unitary Shimura varieties

In this section we define a unitary Shimura variety Sh(G,D) over our quadratic
imaginary field k& C C and describe its moduli interpretation. We then recall the
work of Pappas and Kramer, which provides us with two integral models related by
a surjection Skya — Spap. This surjection becomes an isomorphism after restriction
to Og[1/D]. We define a line bundle of weight one modular forms w and a family of]
Cartier divisors Zx.a(m), m > 0, on Skya,

The line bundle w and the divisors <k a(m) do not descend to Spap, and the main
original material in § 2 is the construction of suitable substitutes on Spap,. These sub-
stitutes consist of a line bundle Qp,,, that agrees with w? after restricting to Og[1/D],
and Cartier divisors UYpap(m) that agree with 2k, (m) after restricting to Ok[1/D].

2.1. The Shimura variety. — Let Wy and W be k-vector spaces endowed with her-
mitian forms Hy and H of signatures (1,0) and (n — 1, 1), respectively. We always
assume that n > 2. Abbreviate

W(R) =W®gR, W(C)=WeqC, W(Ar) =W QqgAy,
and similarly for Wy. In particular, Wy(R) and W (R) are hermitian spaces over
C=k®qR.
We assume the existence of Op-lattices ag C Wy and a C W, self-dual with respect
to the hermitian forms Hy and H. As the inverse of § = v/ —D € k generates the

inverse different of k/Q), this is equivalent to self-duality with respect to the symplectic
forms

(2.1.1) Po(w,w') = Trg o Ho (6™ w,w'),  Y(w,w') = Trg0H (6w, w').
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This data will remain fixed throughout the paper.

As in (1.1.1), let G € GU(Wp) x GU(W) be the subgroup of pairs for which
the similitude factors are equal. We denote by v : G — (G, the common similitude
character, and note that v(G(R)) C R>0.

Let D(Wy) = {yo} be a one-point set, and define

(2.1.2) D(W) = {negative definite C-planes y C W (R)},
so that G(R) acts on the connected hermitian domain
D =DWy) x D(W).

The lattices ag and a determine a maximal compact open subgroup
(2.1.3) K ={g€G(Ay):gdy=T1p and ga =8} C G(Ay),
and the orbifold quotient

Sh(G, D)(C) = G(Q\D x G(Af)/K
is the space of complex points of a smooth k-stack of dimension n — 1, denoted
Sh(G, D).

The symplectic forms (2.1.1) determine a k-conjugate-linear isomorphism
(2.1.4) Howg (Wo, W) 22 Homy (W, W),
characterized by v (zwg,w) = o(wg, z¥w). The k-vector space
V = Homg (W, W)

carries a hermitian form of signature (n.— 1,1) defined by
(2.1.5) (w1, 22)= 25 0 71 € Endx (W) = k.

The group G acts on V in a natural way, defining an exact sequence (1.2.3).
The hermitian form on V induces a quadratic form Q(z) = (z, z), with associated
Q-bilinear form

In particular, we obtain a representation G — SO(V).

Proposition 2.1.1. — The stack Sh(G,D),c has 21=o(D)p2  copnected components,
where h is the class-number of k and o(D) is the number of prime divisors of D.

Proof. — Each g € G(Ay) determines O-lattices
gag = WynNgag, ga=WnNga.

The hermitian forms Hy and H need not be Og-valued on these lattices. However, if
rat(v(g)) denotes the unique positive rational number such that

Z/(g) 7 X
rat(ug)) =
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then the rescaled hermitian forms rat(v(g))~'Hy and rat(v(g))~!H make gag and ga
into self-dual hermitian lattices.

As D is connected, the components of Sh(G,D),c are in bijection with the
set G(Q)\G(Ay)/K. The function g — (gap,ga) establishes a bijection from
G(Q)\G(Ay)/K to the set of isometry classes of pairs of self-dual hermitian O-lat-
tices (ag,a’) of signatures (1,0) and (n — 1, 1), respectively, for which the self-dual
hermitian lattice Homg, (af, a’) lies in the same genus as Homg, (ag,a) C V.

Using the fact that SU(V') satisfies strong approximation, one.can'show that there
are exactly 2'~°(P)h isometry classes in the genus of Homg . (ag;a), and each isometry
class arises from exactly h isometry classes of pairs (aj, a’). O

It will be useful at times to have other interpretations of the hermitian domain D.
The following remarks provide alternate points of view. Recalling the idempotents
€,€ € k®qg C of §1.7, define isomorphisms of real vector spaces

(2.1.7) pr. : W(R) 2 W (C), pr.: W(R) =W (C)
as, respectively, the compositions
W (R) — W (C) = eW(C) @ eW (C) 225 ew (C)
W (R) — W (C) = W (C) ®EW(C) 22, zW/(C).

Remark 2.1.2. — Each pair z = (yo,y) € D determines a line pr (y) € W(C), and
hence a line

z = Homc(Wo(C) /W0 (C), pr.(y)) C eV (C).
This construction identifies
D{ze€eV(C):[z72] < 0}/(CX C P(eV(C))
as an open subset of projective space.
Remark 2.1.3. — Define a Hodge structure
F'Wy(C) =0, F'W,(C) =Wy (C), F~'Wy(C) = Wy(C)

on Wy(C), and identify the unique point yg € D(Wy) with the corresponding mor-
phism S — GU(Wy)g: Every y € D(W) defines a Hodge structure

F'W(C) =0, F'W(C) =pr.(y) ®prz(y"), F 'W(C)=W(C)

on W (C). If we identify y € D(W) with the corresponding morphism S — GU(W)g,
then for any point z = (yo,y) € D the product morphism

Yo Xy :S — GU(Wo)r x GU(W)r

takes values in Gg. This realizes D C Hom(S, Gg) as a G(R)-conjugacy class.
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Remark 2.1.4. — 1In fact, the discussion above shows that Sh(G,D) admits a map to
the Shimura variety defined the group U(V') together with the homomorphism

hGross : S — U(V)(R), z — diag(1,...,1,2/2).

Here we have chosen a basis for V(R) for which the hermitian form has matrix
diag(1l,—1,—1). Note that, for analogous choices of bases for Wy(R) and W (R), the
corresponding map is

h:S— GR), z — (2) x diag(z,..., 2, Z);

which, under composition with the homomorphism G(R) = U(V)(R), gives hGross-
The existence of this map provides an answer to a question posed by Gross: how
can one explicitly relate the Shimura variety defined by the unitary group U(V), as
opposed to the Shimura variety defined by the similitude group GU(V), to a moduli
space of abelian varieties? Our answer is that Gross’s unitary Shimura variety is a
quotient of our Sh(G, D), whose interpretation as a moduli space is explained in the
next section.

2.2. Moduli interpretation. — We wish to interpret-Sh(G,D) as a moduli space of
pairs of abelian varieties with additional structure. First, we recall some generalities
on abelian schemes.

For an abelian scheme 7 : A — S over an-arbitrary base S, define the first relative
de Rham cohomology sheaf Hig(A) = RIW*QZ/S as the relative hypercohomology of
the de Rham complex QA/S. The relative de Rham homology

Hi"(A) = Hom(Hir(A), Os)
is a locally free ©g-module of rank 2-dim(A), sitting in an exact sequence
0— FOHfR(A) = H?R(A) — Lie(A) — 0.
Any polarization of A induces an Og-valued alternating pairing on H{®(A), which in
turn induces a pairing
(2.2.1) FOHMR(A) ® Lie(A) — Og.
If the polarization is principal then both pairings are perfect. When S = Spec(C),
Betti homology satisfies Hy (A(C),C) = H{R(A), and
A(C) = Hy(A(C), Z)\H{ *(A)/F H{ ™ (4).
For any pair of nonnegative integers (s, t), define an algebraic stack M, ;) over k as
follows: for any k-scheme S let M, ;) (S) be the groupoid of triples (A, ¢,v) in which
— A — S'is an abelian scheme of relative dimension s + ¢,
— 1: O — End(A) is an action such that the locally free summands
Lie(A) = eLie(A) @ gLie(A)

of (1.7.2) have Og-ranks s and ¢, respectively,
— 1) : A — AV is a principal polarization, such that the induced Rosati involution
on End’(A) satisfies v(a)f = u(@) for all a € O.

ASTERISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 23

We usually omit ¢ and 1 from the notation, and just write A € M, ;(S).

Proposition 2.2.1. — The Shimura variety Sh(G,D) is isomorphic to an open and
closed substack

(2.2.2) Sh(G,CD) - M(LO) Xk M(nfl,l)-
More precisely, Sh(G,D)(S) classifies, for any k-scheme S, pairs
(2.2.3) (Ag,A) € M(l,O)(S) X M(nfl,l)(s)

for which there exists, at every geometric point s — S, an isomorphism of hermitian
Ok ¢-modules

(2.2.4) HOIII@,c (TEAO,sv TgAS) = Hom@k(ao, a) V)

for every prime £. Here the hermitian form on the right hand side of (2.2.4) is the
restriction of the hermitian form (2.1.5) on Homg(Wy, W) ® Q. The hermitian form
on the left hand side is defined similarly, replacing the symplectic forms (2.1.1) on Wy
and W with the Weil pairings on the Tate modules TpAg s and Ty As.

Proof. — As this is routine, we only describe the open and closed immersion on
complex points. Fix a point

(2,9) € Sh(G, D)(C).

The component g determines Og-lattices gag C Wy and ga C W, which are self-dual
with respect to the symplectic forms

rat(v(g)) "o vand  rat(v(g)) 'y

of (2.1.1), rescaled as in the proof of Proposition 2.1.1.
By Remark 2.1.3 the point 2-€ D determines Hodge structures on Wy and W, and
in this way (z, g) determines principally polarized complex abelian varieties

Ay(C) = gag\Wo(C)/F°(Wy)
A(C) = ga\W(C)/F*(W),

with actions of Of. One can easily check that the pair (Ag, A) determines a complex
point of M ¢y Xx Mn<1,1), and this construction defines (2.2.2) on complex points.
O

The following lemma will be needed in § 2.3 for the construction of integral models

for Sh(G, D).

Lemma 2.2.2. — Fix a k-scheme S, a geometric point s — S, a prime p, and a point
(2.2.3). If the relation (2.2.4) holds for all £ # p, then it also holds for £ = p.

Proof. — As the stack Sh(G,D) is of finite type over k, we may assume that
s = Spec(C). The polarizations on Ay and A induce symplectic forms on the first
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homology groups H;(Aos(C),Z) and H;(As(C),Z), and the construction (2.1.5)
makes
LBe (AO,s, As) = Hom@k (Hl (AO,S((C)a Z)a Hl (As ((C)a Z))
into a self-dual hermitian Og-lattice of signature (n — 1,1), satisfying
Lpe(Ag s, As) ®z Zp = Homg, (TyAg, s, TeAs)

for all primes /.

If the relation (2.2.4) holds for all primes ¢ # p, then Lge(Ags, As) ® Q and
Homy, (Wy, W) are isomorphic as k-hermitian spaces everywhere locally except at p,
and so they are isomorphic at p as well. In particular, for'every ¢ (including ¢ = p)
both sides of (2.2.4) are isomorphic to self-dual lattices in the hermitian space
Homyg (Wo, W) ®g Q¢. By the results of Jacobowitz [27] all self-dual lattices in this
local hermitian space are isomorphic (®, and so (2.2.4) holds for all £. O

Remark 2.2.3. — For any positive integer m define
K(m) = ker(K — Autg, (do/mto) x Autg, (a/ma)).

For a k-scheme S, a K(m)-structure on (Ag, A) € Sh(G,D)(S) is a triple (ao,, ()
in which ¢ : pi, = Z/mZ is an isomorphism of S-group schemes, and

ag : Ag[m] 2 dy/miay, ra:Alm]Xa/ma

are Op-linear isomorphisms identifying the Weil pairings on Ag[m] and A[m] with
the Z/mZ-valued symplectic forms on-dy/mag and @/ma deduced from the pairings
(2.1.1). The Shimura variety G(Q)\'Dx G(Af)/K (m) admits a canonical model over k,
parametrizing K (m)-structures on points-of Sh(G, D).

2.3. Integral models. — In this subsection we describe two integral models
of Sh(G, D) over Oy, related by a morphism Sk — Spap-

The first step is to construct an integral model of the moduli space M, o). More
generally, we will construct an integral model of M) for any s > 0. Define an
Or-stack M, o) as the moduli space of triples (A, ¢,1) over Og-schemes S such that

— A — S is an abelian scheme of relative dimension s,

— 1: O — End(A) is-an action such gLie(A) = 0, or, equivalently, such that the
induced action of O on the Og-module Lie(A) is through the structure map
is: Or — Og,

— 1 : A — AYiis a principal polarization whose Rosati involution satisfies
(o)t = (@) forall a € O.

The stack N, gy is smooth of relative dimension 0 over Oy by [24, Proposition 2.1.2],
and its generic fiber is the stack M, ¢y defined earlier.

Remark 2.3.1. — The stack M, _5,) will play an important role in §3. In the de-
generate case n = 2, we interpret this as M 0) = Spec(Og). The universal abelian
scheme over it should be understood as the 0 group scheme.

(2) This uses our standing hypothesis that D is odd.
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The question of integral models for M(,_; 1) is more subtle, but well-understood
after work of Pappas and Krdmer. The first integral model was defined by Pappas
[45]. Let

IMF?P . — Spec(Og)

(n—1,1)
be the stack whose functor of points assigns to an Og-scheme S the groupoid of triples
(A, ,v) in which
— A — S is an abelian scheme of relative dimension n,
— 1: O — End(A) is an action satisfying the determinant condition

det(T — 1(a) | Lie(A)) = (T — a)" YT — @) € Og[T]

for all a € Oy,

— 1 : A — AV is a principal polarization whose Rosati involution satisfies
t(a)t = (@) for all a € O,

— viewing the elements eg and g of § 1.7 as endomorphisms of Lie(A), the induced
endomorphisms

N es: \" Lie(4) — A\ Lie(4)
/\2 g /\2 Lie(A) — /\2 Lie(A)

are trivial (Pappas’s wedge condition).

It is clear that the generic fiber of M. is isomorphic to the moduli space M, (n—1,1)

(n—1,1)
defined earlier. Denote by
Pap
(n—1,1)

the singular locus: the reduced substack of points at which the structure morphism
to O is not smooth.

Sing(n_lyl) cm

Theorem 2.3.2 (Pappas). — The stack C}’)’Lfap is flat over Oy of relative dimen-

sion n — 1, and is Cohen-Macaulay and nor;;nltﬁ.) Moreover:
1. For any prime p C Oy, the reduction CWLE?ELU/F‘D is Cohen-Macaulay. If n > 2
the reduction is geometrically normal.
2. The singular locus is a 0-dimensional stack, finite over Oy and supported in

characteristics dividing D. It is the reduced substack underlying the closed sub-
stack defined by 'é - Lie(A) = 0.

Proof. — When n > 2-all of this is proved in [45] using the theory of local models,
and it is straightforward to check that the arguments carry over ® to the case n = 2.

The only change is that if p C O lies above p | D, the stack C}’ﬂ,zaf)/ok s étale
locally isomorphie to

Spec(Ok s [2,y]/(zy — p)),
(3 When n = 2, the Og-stack MF>P admits a canonical descent to Z, and Pappas analyzes

(n—1,1)
the structure of this descent. The descent is regular, but the regularity is destroyed by base change
to Ok-
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whose special fiber is not normal. O

The stack CYTL 1 1 is not regular, but has a natural resolution of singularities.
This leads us to our second integral model of M(,_1 ). As in the work of Krédmer
[31], define

C}’n,gffl’l) — Spec(Og)
to be the stack whose functor of points assigns to an Og-scheme S the groupoid of|
quadruples (4, t,1,F4) in which

— A — S is an abelian scheme of relative dimension n,

— 1: O — End(A) is an action of O,

— ¢ : A— AV is a principal polarization satisfying t(a)’ = 1(@) for all a € O,

— Fa C Lie(A) is an Op-stable Og-module local direct summand of rank n — 1

satisfying Krdmer’s condition: Oy acts on F4 via the structure map Oy — g,
and acts on the line bundle Lie(A)/F 4 via the complex conjugate of the struc-
ture map.

There is a proper morphism

Kr P
(2.3.1) Crn(nﬁl’l) CWL napl 1)
defined by forgetting the subsheaf 4, and we define the exceptional locus
(2.3.2) Excin-1,1) C M2 )
by the Cartesian diagram

EXC(n 1,1) N Crn./(n 1,1)

l |

Sing(nfl,l) E— CWLE?ELD .

Theorem 2.3.3 (Kramer). — The Oy-stack mﬁ‘fl’l) is reqular and flat with reduced
fibers, and satisfies the following properties:

1. The exceptional locus (2.3.2) is a disjoint union of smooth Cartier divisors.
Its fiber over a-geometric point s — Sing(nfl,l) is isomorphic to the projective
space P~ overk(s).

2. The morphism (2.3.1) is proper and surjective, and restricts to an isomorphism
T ~ Pa, :
C}'n%;fl’l) \EXC(n—l,l) = Cm(ni)]_’l) \ Slng(nfl)l).
For an Og-scheme S, the inverse of this isomorphism endows
Pap
AE (CWL ~1,1) \Slng(n 11))(5)

with the subsheaf F4 = ker (g : Lie(A) — Lie(A)).
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Proof. — When n > 2 all of this is proved in [31] using the theory of local models,
and it is straightforward to check that nearly everything () carries over to the case
n = 2. In particular, if n = 2 and p C Oy lies above p | D, the same arguments used
in [loc. cit.] show that C)’?’L(Klri‘) /O is étale locally isomorphic to the regular scheme

Spec(O,plz, yl/(zy — 7)),

for any uniformizer 7 € O . O

Recalling (2.2.2), we define our first integral model
Spap - %(1,0) X ‘Tngf_pl’l)

as the Zariski closure of Sh(G, D) in the fiber product on the right, which, like all fiber
products below, is taken over over Spec(Og). Using Lemma 2.2.2, one can show that
it is characterized as the open and closed substack whose functor of points assigns to
any Og-scheme S the groupoid of pairs

(AO,A)GC}’TL(lo)(S)xC}?’L(n 11)( )

such that, at any geometric point s — S, the relation (2.2.4) holds for all primes

¢ # char(k(s)).
Our second integral model of Sh(G, D) is defined as the cartesian product

SKra*}mlo)Xq’nn 1,1)

|

SPap%mlo) XCWL

(n— 11)

The singular locus Sing C Spap and ezceptional locus Exc C Sk.a are defined by the
cartesian squares

Exc SKra
Sing Spap

| |

M0y % Sing(,,_1,1) —— M1 0y ¥ Cm“(n 1,1)°

() When n > 2, the statement of [31, Theorem 4.4] asserts that the special fiber of the local model
of ‘m(n 11
whose intersection is smooth and geometrically irreducible of dimension n — 2. When n = 2, the
structure of the local model is slightly different: its geometric special fiber is a union X; U X2 U X3 of
three irreducible varieties, each isomorphic to P!, intersecting in such a way that X; N X2 and X2NX3
are distinct reduced points. The difference between the two cases occurs because the scheme Q
defined in the proof of [31, Theorem 4.4], which parametrizes isotropic lines in a quadratic space of|
dimension n over a finite field, is geometrically irreducible only when n > 2.

is the union of two smooth and geometrically irreducible varieties of dimension n — 1,
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Both loci are proper over O, and supported in characteristics dividing D.

Theorem 2.3.4 (Pappas, Kramer). — The Opg-stack Sk.. 15 regular and flat with
reduced fibers. The Op-stack Spap is Cohen-Macaulay and normal, with Cohen-
Macaulay fibers. Furthermore:

1. If n > 2, the geometric fibers of Spap are normal.

2. The exceptional locus Exc C Sk 45 a disjoint union of smooth Cartier divi-
sors. The singular locus Sing C Spap is a reduced closed stack of dimension 0,
supported in characteristics dividing D.

3. The fiber of Exc over a geometric point s — Sing is isomorphic to the projective
space P"~1 over k(s).
4. The morphism Skra — Spap s surjective, and restricts to an isomorphism
(2.3.3) Skra \ Exc 2 Spyp, \ Sing.
For an Og-scheme S, the inverse of this isomorphism endows
(Ao, A) € (Spap \ Sing)(S)
with the subsheaf F4 = ker (g : Lie(4) — Lie(A)).

Proof. — All of this follows from Theorems 2.3.2 and 2.3.3, along with the fact
that M 1,0) — Spec(Op) is finite étale. O

Remark 2.3.5. — Let (Ao, A) be the universal pair over Sp,p. The vector bundle
H{R(Ay) is locally free of rank one over Oy, ®7 Osp,, and, by definition of the moduli
problem defining Spap, its quotient Lie(Ap) is annihilated by €. From this it is not
hard to see that

FOHIR(Ay) = eHIR(Ap).

2.4. The line bundle of modular forms. — We now construct a line bundle of modular
forms w on Skra, and consider-the subtle question of whether or not it descends
to Spap. The short answer-is that it doesn’t, but a more complete answer can be
found in Theorems 2.4.3 and 2.6.3.

By Remark 2.1.3, every point z € D determines Hodge structures on Wy and
W of weight —1, and hence a Hodge structure of weight 0 on V' = Homg (W, W).
Consider the holomorphic line bundle w®" on D whose fiber at z is the complex line
w2 = F1V(C).determined by this Hodge structure.

Remark 2.4.1. — 1t is useful to interpret w?" in the notation of Remark 2.1.2. The
fiber of w®" at z = (yo,y) is the line

(2.4.1) w2" = Hom¢ (Wy(C)/eEWy(C), pr.(y)) C eV(C),
and hence w®" is simply the restriction of the tautological bundle via the inclusion

D = {weeV(C):[w,w] <0}/C* CPEV(C)).
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There is a natural action of G(R) on the total space of w®", lifting the natural action
on D, and so w*" descends to a line bundle on the complex orbifold Sh(G,D)(C).
This descent is algebraic, has a canonical model over the reflex field, and extends in
a natural way to the integral model Sk;a, as we now explain.

Let (Ao, A) be the universal object over Skya, let F4 C Lie(A) be the universal
subsheaf of Kramer’s moduli problem, and let

Fx C FOH{R(4)

be the orthogonal to 4 under the pairing (2.2.1). It is a rank one Og, _-module local
direct summand on which O acts through the structure morphism O — Og, .
Define the line bundle of weight one modular forms on Sk, by

o = Hom(Lie(Ao), F %),
or, equivalently, w~! = Lie(4g) ® Lie(A)/Fa.
Proposition 2.4.2. — The line bundle w on Sk, just defined restricts to the already
defined w®" in the complex fiber. Moreover, on the complement of the exceptional locus

Exc C Skra we have
o = Hom(Lie(Ay), e F*H{R(A)).

Proof. — The equality F4 = eF"H{®(A) on the complement of Exc follows from the
characterization

Fa = ker(g: Lie(A) — Lie(A))
of Theorem 2.3.4, and all of the claims follow easily from this and examination of the
proof of Proposition 2.2.1. O

The line bundle w does not descend to Spap, but it is closely related to another
line bundle that does. This is the content of the following theorem, whose proof will
occupy the remainder of §2.4. The result will be strengthened in Theorem 2.6.3.

Theorem 2.4.3. — There is a unique line bundle Qp,, on Spap whose restriction to
the nonsingular locus (2.3.3) is isomorphic to w?. We denote by Q.. its pullback via
SKra i SPap'

Proof. — Let (Ao, A) be the universal object over Spap, and recall the short exact
sequence

0= FOHIR(A) - HIR(A) L Lie(4) — 0
of vector bundles on Sp,,. As HiR(A) is a locally free O @, @gpap—module of rank n,

the quotient H{R(A)/zH{R(A) is a rank n vector bundle.
Define a line bundle

Prap = Hom ( \" HiR(4)/zH{R(4), \" Lie(4))
on Spap, and denote by Pk, its pullback via Skra — Spap. Let

W Hi™(A) @ Hi™(4) = O,
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be the alternating pairing induced by the principal polarization on A. If a and b are
local sections of H{R(A), define a local section P,gp of Ppayp by

n

Pagp(er A+ Nen) = (1) - (za, ex) - q(gb) Agler) A+ Aglen) .
k=1

omit g(ex)

Remark 2.4.4. — To see that P,gp is well-defined, one must check that modifying
any ey by a section of ZH{F(A) leaves the right hand side unchanged. This is an easy
consequence of the vanishing of

2 2 2
N\ & /\ Lie(4) > /" Lie(4)
imposed in the moduli problem defining Spap.

Lemma 2.4.5. — The morphism
(2.4.2) P: HR(A) @ HI®(A) = Ppap
defined by a @ b — P,gy factors through a morphism
P : Lie(A) ® Lie(A) — Ppap.
After pullback to Sk, there is a further factorization
(2.4.3) P :Lie(A)/Fa® Lie(A)/Fa — Pkra,
and this map becomes an isomorphism-after restriction to Skra \ Exc .
Proof. — Let a and b be local sections of H{F(A).
Assume first that a is contained in FOH{R(A). As FOHIR(A) is isotropic under
the pairing ¢, P,gp factors through a map
A" Lie(4) /eLie(4) — )\ Lie(4).

In the generic fiber of Spap, the sheaf Lie(A)/zLie(A) is a vector bundle of rank n— 1.
This proves that P,gp is trivial over the generic fiber. As P, gy is a morphism of vector
bundles on a flat O-stack, we deduce that P,g, = 0 identically on Spap.

If instead b is contained in FOH{®(A) then ¢(gb) = 0, and again P,g;, = 0. These
calculations prove that P factors through Lie(A) ® Lie(A).

Now pullback to Sk;a. We need to check that P,gp vanishes if either of a or b lies
in 4. Once again it-suffices to check this in the generic fiber, where it is clear from

(2.4.4) Fa = ker(z : Lie(4) — Lie(A4)).

Over Sk, we now have a factorization (2.4.3), and it only remains to check that
its restriction to (2.3.3) is an isomorphism. For this, it suffices to verify that (2.4.3)
is surjective on the fiber at any geometric point

s = Spec(IF) — Skra \ Exc.
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First suppose that char(F) is prime to D. In this case €, € O Q7 F are (up
to scaling by F*) orthogonal idempotents, F4, = eLie(A;), and we may choose an
Ok ®z F-basis ey, ..., e, € HI®(A,) in such a way that

€eq1,€€a,...,86, € FOHfR(AS)
and
q(ge1),q(eeq),...,q(ce,) € Lie(As)
are [F-bases. This implies that
P€1®€1 (61 ARERRA en) = 1/)(?617 561) : Q(gel) A Q(Ee2) TARBRYA Q(‘Een) 7é 0>

and so
P.,ge, € Hom( \" Hi®(A,)/eH{R(A,), \ Lie(4,))

is a generator. Thus P is surjective in the fiber at z.
Now suppose that char(F) divides D. In this case there is an isomorphism

Flz]/(2?) 225=5 O @7 F.

By Theorem 2.3.4 the relation (2.4.4) holds in.an étale neighborhood of s, and it

follows that we may choose an Oy ®z F-basis e1,...,e, € H{®(A,) in such a way
that

€o,E€9,E€3,...,E€, € FOHfR(AS)
and

q(e1),q(ee1),q(es) - .., q(en) € Lie(As)
are [F-bases. This implies that
Peige, (1 N Nen) =p(cer, e2) - g(eer) Agler) Agles) A+ Ag(en) #0,
and so, as above, P is surjective in the fiber at z. O

We now complete the proof of Theorem 2.4.3. To prove the existence part of the
claim, we define Qp,, by

Qp,, = Lie(49)®? ® Ppa,
and let Q.. be its pullback via Skra — Spap. Tensoring both sides of (2.4.3) with
Lie(Ag)®? defines a morphism
0% = Qi
whose restriction to Sky, \ Exc is an isomorphism. In particular w? and Qp,, are
isomorphic over (2.3.3).
The uniqueness of Qp,, is clear: as Sing C Spyp is a codimension > 2 closed

substack of a normal stack, any line bundle on the complement of Sing admits at
most one extension to all of Sp,p. ]
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2.5. Special divisors. — Suppose S is a connected Og-scheme, and
(Ao, A) € Spap(9).

Imitating the construction of (2.1.5), there is a positive definite hermitian form
on Homg, (A, A) defined by

(2.5.1) <.231,£L‘2) = x;/ oxy € End@k(AO) = Ok,

where

\2
r—x

Homg, (Ag, A) —— Homyg, (4, Ao)

is the Og-conjugate-linear isomorphism induced by the principal polarizations on A
and A.

For any positive m € Z, define the O-stack Zpap(m). as the moduli stack assigning
to a connected Og-scheme S the groupoid of triples (4, A, x), where

— (Ao, A) € SPaP(S)v

— z € Homg, (Ao, A) satisfies (z,z) =m.
Define a stack Zkra(m) in exactly the same way, but replacing SPap by Skra. Thus
we obtain a cartesian diagram

o(zKra (m) —8kra

|~

‘zPap (m) — 8Pap7

in which the horizontal arrows are relatively representable, finite, and unramified.

Each Zxra(m) is, étale locally on Skra;y a disjoint union of Cartier divisors. More
precisely, around any geometric point of Sk., one can find an étale neighborhood U
with the property that the morphism Zx.(m)y — U restricts to a closed immersion
on every connected component Z C Zka(m)y, and Z C U is defined locally by
one equation; this is [24, Proposition 3.2.3], but a cleaner argument (working on the
Rapoport-Zink space corresponding to Sk;s) can be found in [25, Proposition 4.3].
Summing over all connected components Z allows us to view Zxra(m)y as a Cartier
divisor on U, and gluing as-U varies over an étale cover defines a Cartier divisor
on Skra, which we again denote by Zkra(m).

Remark 2.5.1. — 1t follows from (2.3.3) and the paragraph above that Zp,p(m) is
locally defined by one equation away from the singular locus, and so defines a Cartier
divisor on Spayp, \ Sing. This Cartier divisor does not extend to all of Spay.

Remark 2.5.2. — We can make the specal divisors more explicit in the complex fiber,
as in [34, Proposition 3.5] or [23, §3.8]. Recall from §2.1 that the Q-vector space
V = Homy (Wy, W) carries a quadratic form. Using the description

D{ze€eV(C):[z7] <0}/C* C P(eV(C))
of Remark 2.1.2, every = € V with Q(z) > 0 determines an analytic divisor
D(x)={2€D: |z 2] =0}
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A choice of g € G(Ay) determines a connected component

(G(Q) N gKg™ND =22 GQ\D x G(hg)/K = Sra(C),
and if we set
L = Homg, (gagp,ga) CV
the restriction of Zkya(m)(C) — Skra(C) to this component is
(G@ngKg ™\ || D)~ (GQ NgKg=)\D.

zEL
Q(z)=m

The following theorem, whose proof will occupy the remainder of §2.5, shows
that Zxra(m) is closely related to another Cartier divisor on Sk, that descends
to SPap- This result will be strengthened in Theorem 2.6.3.

Theorem 2.5.3. — For every m > 0 there is a unique Cartier divisor Cypap(m) on Spap
whose restriction to Spap \ Sing agrees with 2ZLpap(m). In particular its pullback
Yxra(m) via Skra — Spap agrees with 2Lk a(m) over Skra \ Exc.

Proof. — The map Zpap(m) — Spap is finite, unramified, and relatively repre-
sentable. It follows that every geometric point of Spa,, admits an étale neighborhood
U — Spap such that U is a scheme, and the morphism

zPap (m)y = U

restricts to a closed immersion on every connected component

Z-C zpap(m)U.

We will construct a Cartier divisor-on.any such U, and then glue them together as U
varies over an étale cover to obtain the divisor Yp,p(m).

Fix Z as above, let J C Oy be its ideal sheaf, and let Z’ be the closed subscheme
of U defined by the ideal sheaf J2. Thus we have closed immersions

ZcZ cU,

the first of which is a square-zero thickening.

By the very definition of Zpap(m), along Z there is a universal Og-linear map
x : Agz — Az. This map does not extend to a map Agz — Az, however, by
deformation theory [40, Chapter 2.1.6] the induced Og-linear morphism of vector
bundles

z: H®(Agy) — HE(Ay)

admits a canonical extension to
(2.5.2) ' HR(Agz) — HR(Az).

Recalling the morphism (2.4.2), define Y C Z’ as the largest closed subscheme over
which the composition

(2.53)  H{™(Agz) ® H{®(Agz) Z55 HR(Az) © HI®(Az) T Prap),,
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vanishes.
Lemma 2.5.4. — If U — Spap factors through Spap \ Sing, then Y = Z'.

Proof. — Lemma 2.4.5 provides us with a commutative diagram

H{R(Agz)®2 — =2 HIR(A,)®2 — "% (Lie(A)/Fa,,)®

(2.5.3) jg

CPPap|Z,7

2

where
Fa, =ker(g: Lie(Az) — Lie(Az))
as in Theorem 2.3.4.
By deformation theory, Z C Z’ is characterized as the largest closed subscheme
over which (2.5.2) respects the Hodge filtrations. Using Remark 2.3.5, it is easily seen
that Z C Z' can also be characterized as the largest closed subscheme over which

gox’

Hl(AOZ’) — Lie(AZ/)/(C}NAZ,

vanishes identically. As Z C Z’ is a square zero thickening, it follows first that the
horizontal composition in the above diagram vanishes identically, and then that (2.5.3)
vanishes identically. In other words Y = Z'. O

Lemma 2.5.5. — The closed subschemeY. C U is defined locally by one equation.

Proof. — Fix a closed point y € Y of characteristic p, let Oy, be the local ring of U
at y, and let m C Oy, be the maximal ideal. For a fixed k > 0, let

U = Spec(9y,,/m*) Cc U

be the k-th order infinitesimal neighborhood of y in U. The point of passing to
the infinitesimal neighborhood-is that p is nilpotent in Oy, and so we may apply
Grothendieck-Messing deformation theory.

By construction we have closed immersions

Y

|

Z——7 ——U.

Applying the fiber product xyU throughout the diagram, we obtain closed immer-
sions

Y

|

Z— 7 — U
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of Artinian schemes. As k is arbitrary, it suffices to prove that Y C U is defined by
one equation.

First suppose that p { D. In this case U — U — Sp,p, factors through the nonsingu-
lar locus (2.3.3). It follows from Remark 2.5.1 that Z C U is defined by one equation,
and Z' is defined by the square of that equation. By Lemma 2.5.4, Y C U is also
defined by one equation.

For the remainder of the proof we assume that p | D. In particular p > 2. Consider
the closed subscheme Z” — U with ideal sheaf I3, so that we have closed immersions
7 C Z' C Z" C U. Taking the fiber product with U, the above diagram extends to

Y

|

Z zZ' zZ" U.
As p > 2, the cube zero thickening Z C Z" admits divided powers extending the

trivial divided powers on Z C Z’. Therefore, by Grothendieck-Messing theory, the
restriction of (2.5.2) to

ZL'/ : HldR(AOZ/) — HldR(AZ/)
admits a canonical extension to
.’IZI/ M H{iR(AOZ//) — HldR(AZ//),
Define Y’ C Z"” as the largest closed subscheme over which
(254) H?R(AOZ//) ® H?R(AOZN) ﬂ) H?R(AZ//) ® H?R(AZ//) i) CPPap|Z,,

vanishes identically, so that there are closed immersions

Y —Y'
Z Z' zZ" U.

We pause the proof of Lemma 2.5.5 for a sub-lemma.
Lemma 2.5.6. — We haveY =Y.

Proof. — As in the proof of Lemma 2.5.4, we may characterize Z C Z" as the
largest closed subscheme along which z” respects the Hodge filtrations. Equivalently,
by Remark 2.3.5, Z C Z" is the largest closed subscheme over which the composition

H®(Agz0) 225 HR (A1) L Lie(Azn)

vanishes identically. This implies that Z’ C Z” is the largest closed subscheme over
which

RN ©2
(2.5.5) HIR (47182 00 gIR(A,5,)82 T, Lio(Agn)®?

vanishes identically.
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It follows directly from the definitions that Y = Y’ N Z’, and hence it suffices to
show that Y’ C Z’. In other words, it suffices to show that the vanishing of (2.5.4)
implies the vanishing of (2.5.5).

For local sections a and b of Hy(Az~), define

Qa@b FOH?R(AZ// ® /\ L1e AZ” /\" Lie(AZ//)
by
Qagb(e1 ® q(e2) A+ Nglen)) = P(a, e1) - q(b) A glez) A= N g(en).

It is clear that Q.g» depends only on the images of a and b in Lie(Az~), and that
this construction defines an isomorphism

(256)  Lie(Az)®* % Hom(FOH{™(Az)® \" ie(Az), \" Lie(421)).
It is related to the map

Lle(AZu)®2 — Hom(/\ H{®(Agn) [eH{®(Agzr) /\ Lie Azn))
of Lemma 2.4.5 by

Pagi(er A+ Aen) = Qeagzp(er @ gle2) A+ A glen))
for any local section e; ® ea ® - - - ® e, of

FOH?R(AZ//) [ H?R(AZ//) R ® HflR(AZ“)-

Putting everything together, if (2.5.4) vanishes, then P,/ (q0)g2(5,) = 0 for all local
sections ag and by of H{®(Agz). Therefore
Qut' (Fag)®a (gbo) = 0
for all local sections ag and by, which implies, as (2.5.6) is an isomorphism, that (2.5.5)

vanishes. This proves that Y’ C Z’, and hence Y =Y. O

Returning to the proof of Lemma 2.5.5, the map (2.5.4), whose vanishing defines
Y' C Z", factors through a morphism of line bundles

H{™(Aozn)/eHy " (Aozr) ® Hi " (Aoz)/eHi ™ (Aozr) = Prap| ,,,»
and hence Y = Y’ is defined inside of Z" locally by one equation. In other words,
if we denote by  C Oy and J C Oy the ideal sheaves of Z C U and Y C U,
respectively, then I° is the ideal sheaf of Z” C U, and
3
J=(+9

for some f € Oy. But Y C Z’ implies that 9° C ¢/, and hence g% Jd. It follows
that the image of f under the composition

J/9° - J/99 — J/mJ

is an Oy-module generator, and J is principal by Nakayama’s lemma. ]
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At last we can complete the proof of Theorem 2.5.3. For each connected component
Z C Lpap(m)y we have now defined a closed subscheme Y C Z'. By Lemma 2.5.5 it
is an effective Cartier divisor, and summing these Cartier divisors as Z varies over all
connected components yields an effective Cartier divisor Ypap(m)y on U. Letting U
vary over an étale cover and applying étale descent defines an effective Cartier divisor
Ypap(m) on Spap.

The Cartier divisor Ypap(m) just defined agrees with 2Zp,p(m) on Sp,p \ Sing.
This is clear from Lemma 2.5.4 and the definition of Yp,p(m). The uniqueness claim
follows from the normality of Sp,p, exactly as in the proof of Theorem 2.4.3. O

2.6. Pullbacks of Cartier divisors. — After Theorem 2.4.3 we have two line bundles
Qx:a and w? on Skya, which agree over the complement of the exceptional locus Exc.
We wish to pin down more precisely the relation between them.

Similarly, after Theorem 2.5.3 we have Cartier divisors Ykya(m) and 2Zkra(m).
These agree on the complement of Exc, and again we wish'to pin down more precisely
the relation between them.

Denote by 7o (Sing) the set of connected components of the singular locus Sing C
Spap. For each s € mo(Sing) there is a corresponding irreducible effective Cartier
divisor

Exc, = Exc Xg,, 5§ Skra

supported in a single characteristic dividing D. These satisfy

Exc = |_| Exc;.

s€m (Sing)

Remark 2.6.1. — As Sing is a reduced 0-dimensional stack of finite type over O /0,
each s € m(Sing) can be realized as the stack quotient

s & Gs\Spec(Fs)
for a finite field Fy of characteristic p | D acted on by a finite group Gs.

Fix a geometric point Spec(IF) — s, and set p = char(IF). By mild abuse of notation
this geometric point will again be denoted simply by s. It determines a pair

(2.6.1) (Ag,s, As) € Spap(F),
and hence a positive definite hermitian Og-module
L; =Homg, (Aog,s, As)

as in (2.5.1). This hermitian lattice depends only on s € my(Sing), not on the choice
of geometric point above it.

Proposition 2.6.2. — For each s € m(Sing) the abelian varieties Ags and As are su-
persingular, and there is an Oy-linear isomorphism of p-divisible groups
(2.6.2) As[p™] =2 Aps[p™] X -+ X Ags[p™]

n-times
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identifying the polarization on the left with the product polarization on the right. More-
over, the hermitian Oy-module L is self-dual of rank n.

Proof. — Certainly Ay, is supersingular, as p is ramified in O C End(4gs).

Denote by p C O be the unique prime above p. Let W = W (F) be the Witt ring
of F, and let Fr € Aut(W) be the unique continuous lift of the p-power Frobenius
on F. Let D(W) denote the covariant Dieudonné module of Aj, endowed with its
operators F' and V satisfying F'V = p = V F. The Dieudonné module is free of rank n
over O, ®z W, and the short exact sequence

0 — FOH{R(A,) —» HIR(A,) — Lie(4,).— 0
of F-modules is identified with
0— VDW)/pD(W) — D(W)/pD(W) — D(W)/VD(W) — 0.
As D is odd, the element § € Oy fixed in §1.7 satisfies ord,(4) = 1. This implies
that
§-D(W) =VD(W):
Indeed, by Theorem 2.3.2 the Lie algebra Lie(Ag) is annihilated by §, and hence
0 -D(W) c VD(W). Equality holds as
dimg (D(W)/6 - D(W)) = n = dimp(D(W)/VD(W)).
Denote by N C D(WW) the set of fixed points of the Fr-semilinear bijection
V=ios:D(W) — D(W).
It is a free O y-module of rank n endowed with an isomorphism
]D(W) =N ®Zp w

identifying V = 6 ® Fr~'. Moreover, the alternating form 1) on D(W) induced by the
polarization on A, has the form

1)

for a perfect hermitian pairing h : N x N — O ,. By diagonalizing this hermitian
form, we obtain an orthogonal decomposition of N into rank one hermitian O ,-mod-
ules, and tensoring this decomposition with W yields a decomoposition of D(W) as
a direct sum of principally polarized Dieudonné modules, each of height 2 and slope
1/2. This corresponds to a decomposition (2.6.2) on the level of p-divisible groups.

In particular; A, is supersingular, and hence is isogenous to n copies of Ags. Using
the Noether-Skolem theorem, this isogeny may be chosen to be Og-linear. It follows
first that L, has ©O-rank n, and then that the natural map

Ly ®7 Zq = Homg, (Aos[q™], As[¢>])

h(ni,n
P(n1 ® wi,nge ® wz) = wiws - Trg g <(12)>

is an isomorphism of hermitian Oy, ,-modules for every rational prime g¢. It is easy to
see, using (2.6.2) when g = p, that the hermitian module on the right is self-dual, and
hence the same is true for Ly ®z Zg. O
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The remainder of §2.6 is devoted to proving the following result.

Theorem 2.6.3. — There is an isomorphism
w? 22 Qi. ® O(Exc)
of line bundles on SKra, as well as an equality

2Zxkra(m) = Yxra(m) + Z #{zx e L, : {z,z) =m} - Exc,

s€mo(Sing)

of Cartier divisors.

Proof. — Recall from the proof of Theorem 2.4.3 the morphism

Lie(A40)®? ® (Lie(A)/F4))®?

-1
QKra

(2.4.3)

Lie(A0)®2 [ CPKra,

whose restriction to Sk, \ Exc is an isomorphism. If we view this morphism as a
global section

(2.6.3) 0 € H(Skra, 0* @ Q5L.),

then

(2.6.4) div(e) = /3 £,(0) - Exc,
s€mo(Sing)

for some integers ¢,(0) > 0, and hence
(2.6.5) W= Q) O(Exc,)®-O.
s€mo(Sing)

We must show that each £5(0) = 1.
Similarly, suppose m > 0. It follows from Theorem 2.5.3 that

(2.6.6) 2Zxra(m) = Yxra(m) + Z £s(m) - Exc;
s€mo(Sing)

for some integers Ls(m). Moreover, it is clear from the construction of Ykya(m)
that 2Zkra(m) — Ykra(m) is effective, and so £s(m) > 0. We must show that

s(m) =#{x € Ly : (z,z) = m}.

Fix s € my(Sing); and let Spec(F) — s, p = char(F), and (Ags, As) € Spap(F) be
as in (2.6.1). Let W = W (F) be the Witt ring of F, and set W = O @z W. It is a
complete discrete valuation ring of absolute ramification degree 2. Fix a uniformizer
w € W. As p is odd, the quotient map

W - W/ oW =TF

admits canonical divided powers.
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Denote by Dy and D the Grothendieck-Messing crystals of Ags and A, respectively.
Evaluation of the crystals ® along the divided power thickening W — F yields free
Ok ®7z W-modules Dg (W) and D(W) endowed with alternating W-bilinear forms
and 1), and O-linear isomorphisms

Do(W)/@Do(W) = Do(F) = Hi™(Aos)
and
D(W)/wD(W) = D(F) = HIF(A,).
The W-modules Dg(W) and D(W) are canonically identified with the covariant

Dieudonné modules of Ags; and Ag, respectively. The operators. F' and V on these
Dieudonné modules induce operators, denoted the same way, on

Do(W) = Do(W) @w W, D(W)==DW) @w W.
For any elements yi,...,y; in an Op ®z W-module, let (yi,...,yx) be the
Ok ®z W-submodule generated by them. Recall from §1.7 the elements
£, € O @z W.
Lemma 2.6.4. — There is an O ®z W-basis eq € Do(W) such that
FDp(W) = (zeq) & Do (W)

is a totally isotropic W-module direct summand lifting the Hodge filtration on Dq(FF),
and such that Veg = deg.
Similarly, there is an Oy ®z W-basis e1, ..., e, € D(W) such that

FD(W) ¥ (eey, zes, ..., zen) € DAW)

is a totally isotropic W-module direct summand lifting the Hodge filtration on D(FF).
This basis may be chosen so that Very1 = der, where the indices are understood
in Z/nZ, and also so that

(e (e5)) = {Cw vi=g

0 otherwise.

Proof. — As in the proof of Proposition 2.6.2, we may identify
Do(W) = No ®z, W

for some free O ,-module Ny of rank 1, in such a way that V =60® Fr~!, and the al-
ternating form on Dg(W) arises as the W-bilinear extension of an alternating form g
on Ny. Any @k,p—generator eg € Ny determines a generator of the Ok,p ®z, W-mod-
ule

Do(W) = No ®z, W,

(5) If p = 3, the divided powers on W — F are not nilpotent, and so we cannot evaluate the
usual Grothendieck-Messing crystals on this thickening. However, Proposition 2.6.2 implies that the
p-divisible groups of Ags and As are formal, and Zink’s theory of displays [54] can be used as a
substitute.

ASTERISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 41

which, using Remark 2.3.5 has the desired properties.
Now set N = No @ --- @ Ny (n copies), so that, by Proposition 2.6.2, there is an
isomorphism
D(W) =N ®z, W
identifying V = 6 ® Fr™!, and the alternating bilinear form on D(W) arises from an
alternating form + on N. Let Z,» C W be the ring of integers in the unique unramified
degree n extension of Q,, and fix an action

t: Zpn — Endg, ,(N)

in such a way that ¥ (v(a)z,y) = ¥(z, (a)y) for all & € Zpyn.
There is an induced decomposition
DW)= @ DW),
kEZ/nZ
where
D(W)i = {e € D(W) : Vo € Zpn, 1(a) - e = FrF(a) - e}

is free of rank one over Oy ®7 W. Now pick any Zpn-module generator e € N, view
it as an element of D(W), and let e, € D(W);, be its projection to the k*" summand.
This gives an O ®7 W-basis ey, ..., e, € D(W), which determines an O ®7 W-basis
of D(W) with the required properties. O

By the Serre-Tate theorem and Grothendieck-Messing theory, the lifts of the Hodge
filtrations specified in Lemma 2.6.4 determine a lift

(2.6.7) (AOSa As) € SPap(Cw)
of the pair (Ags, As). These come with canonical identifications
H?R(AOS) = DO((U))a HiiR(‘Zis) = D(q,()),

under which the Hodge filtrations correspond to the filtrations chosen in Lemma 2.6.4.
In particular, the Lie algebra of A, is

Lie(4,) 2 D(W)/FD(W) = (eq, eq,...,en)/{ce1,Eea, ... Eep).
The W-module direct summand
Fi, =(e2,...,en)/(Eea,...,Een)
satisfies Krdmer’s condition (§2.3), and so determines a lift of (2.6.7) to

(AOS7 As) € SKra(CL())‘

To summarize: starting from a geometric point Spec(F) — s, we have used
Lemma 2.6.4 to construct a commutative diagram

(2.6.8) Spec(TF) Exc; Js/
Spec(W) Skra Spap-
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Lemma 2.6.5. — The pullback of the map (2.4.3) via Spec(W) — Sk;a vanishes iden-
tically along the closed subscheme Spec(W/wW), but not along Spec(W /w?W).

Proof. — The W-submodule of

(2.6.9) Lie(4s) 2 D(W)/(ce1,eea, ..., Een)

generated by e; is Og-stable. The action of O ®z W on this W-line is via

@k ®ZCL() a®z—iq (@)z W

(where iq : O — W is the inclusion), and this map sends £ to a uniformizer of ‘W;
see § 1.7. Thus the quotient map ¢ : D(W) — Lie(A,) satisfies q(Ze1) = wq(e1) up to
multiplication by an element of W?X. It follows that

P, ge, (61 A= Ney) =w-P(Eer,er) - gler) Ngle2) A+ Aglen)

up to scaling by W*.
We claim that 1(ge1,e;) € W*. Indeed, as q(e;) generates a W-module direct
summand of (2.6.9), there is some

z € FD(W) = (ee1,8e2,+..,€en) C D(W),

such that ¥(z,e;) € W>. We chose our basis in Lemma 2.6.4 in such a way
that ¢ (Ze;, e1) = 0 for ¢ > 1. It follows that ¢ (ceq, e1) is a unit, and hence the same

is true for 1 (Ze1,e1) = P(e1,ee1) = =(eeq, e1).
‘We have now proved that

Peige,(e1 N+ Ney) =w - qler) Aglez) A+ Aglen)

up to scaling by WX, from which it follows that
Pogey(er Ao+ New) € [\ Lie(4y)

is divisible by w, but not by w?.
The quotient

HI®(A) eHER(A,) = D(W)/ e, . . ., Een)

is generated as a ‘W-module by ey, ..., e,. From the calculation of the previous para-
graph, it now follows that P, ge, € CPKraISpec((L{)) is divisible by w but not by w?.
The quotient

Lie(4,)/F 5. = D(W)/(eer, 3, - -, en)

is generated as a W-module by the image of e;, and we at last deduce that

Pec Hom((Lie(A)/?A)(@Q, (PKra) |Spec(Qu)

is divisible by w but not by w?. O
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Recall the global section o of (2.6.3). It follows immediately from Lemma 2.6.5
that its pullback via Spec(W) — Skra has divisor Spec(W/wW), and hence

Spec(W) xg,,. div(c) = Spec(W/wW).
Comparison with (2.6.4) proves both that £,(0) = 1, and that
(2.6.10) Spec(W) xg,,. Excs = Spec(W/wW).
Recalling (2.6.5), this completes the proof that
0?22 Q. ® O(Exc).

It remains to prove the second claim of Theorem 2.6.3. Given any z € L, =
Homg, (Aos, As), denote by k(z) the largest integer such that z lifts to a morphism

Aoy ®40 W/ (@ @) = A, @qp WY ().
Lemma 2.6.6. — As Cartier divisors on Spec(W), we have
Lxra(m) X, Spec(W) = Z SpeC(CU)/wk(m)Cw)_

zEL
(z,x)=m
Proof. — Each x € L with (x,z) = m determines a geometric point

(2.6.11) (Aoz, Az, 7) € Lira(m)(F)

and surjective morphisms

OSKravz

=\,

@zKra(m):

where Oz, (m) is the étale local ring at (2.6.11), Og, . . is the étale local ring at
the point below it, and the arrow on the right is induced by the map Spec(W) — Skra
of (2.6.8). There is an induced isomorphism of W-schemes

Orn(m)x @0y, W= W/ (")

and the claim follows by summing over zx. O

Lemma 2.6.7. — As Cartier divisors on Spec(W), we have
Yxira(m) Xsy,, Spec(W) = Z Spec(W/w?*@=1qu).

z€L
(z,z)=m

Proof. — Each ¢ € L, = Homg, (Ags, As) with (z,z) = m induces a morphism of
crystals Dy — D, and hence a map

Do (W) = D(W)
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respecting the F' and V operators. By Grothendieck-Messing deformation theory, the
integer k(z) is characterized as the largest integer such that the composition

FOH{R(Ags) ——— H{R(Aos) —2— H{R(4;) —— Lie(4,)

z

E]D)O (CU‘)) - DO (sel,?e(g,...,éen>

vanishes modulo w*(®). In other words the composition
HR(Ap,) 25 HIR(A,) L Lie(4,)

vanishes modulo @**), but not modulo w*®)+1,
Using the bases of Lemma 2.6.4, we expand

z(eg) = arer + -+ aneyn

with a1,...,a, € O, ®z W. The condition that x respects V implies that a; = --- = a,.
Let us call this common value a, so that

q(z(Eeog)) =€ - qlaey + -+ + ae,) = ag - q(e1)

in Lie(A,). By the previous paragraph, this element is divisible by @**) but not
by @@+ and so

(2.6.12) q(aZer) = @ g(e;)

up to scaling by WX*. )
On the other hand, the submodule of Lie(A;) generated by ¢(e;1) is isomorphic
to (O ®z W)/{e) =2 W, and £ acts.on this quotient by a uniformizer in W. Thus

(2.6.13) gq(e1) = wq(er)

up to scaling by WX.
Combining (2.6.12) and'(2.6.13) shows that, up to scaling by W*,
ot = wh@®1g
in the quotient (O ®z W)/(e). By the injectivity of the quotient map
(&) — (9k ®z W)/(e); this same equality holds in () C O ®z W. Using this
and (2.6.12), we compute
Preo)ou(eqy(er A -+ Nen) = (ager, e1) - q(aBer) A qlex) A--- A qlen)
= @™ @71 y(ger, 1) - gler) Agles) A Aglen)
= w7 g(er) Aglea) A+ Aglen),

up to scaling by W?X. Here, as in the proof of Lemma 2.6.5, we have used

¢(§61,€1) e Wx.
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This calculation shows that the composition
~ rQx = P
H?R(AOS)®2 H?R(AS)®2 CP|SpeC(Cw)
vanishes modulo @w?*®~1 but not modulo w?* () and the remainder of the proof]
is the same as that of Lemma 2.6.6: comparing with the definition of Ykra(m), see
especially (2.5.3), shows that

OYra(m),z ®0%, .. » W =W/ (w?*@-1),
and summing over all x proves the claim. O

Combining Lemmas 2.6.6 and 2.6.7 shows that
Spec(W) X s, (2%xra(m) = Yrea(m)) = 37 Spec(W/wW)

r€Lg
<$,m)=m

as Cartier divisors on Spec(W). We know from (2.6.10) that

{Spec(%/wcw) ift =s,
0

Spec(W) Xg,,. Exc; = s

and comparison with (2.6.6) shows that
Ls(m) =H#{x € Ly : {x,x) = m},
completing the proof of Theorem 2.6.3. O

3. Toroidal compactification
In this section we describe canonical toroidal compactifications

SKra ? Sik(ra

|

*
8Pap SPap

and the structure of their formal completions along the boundary. Using this descrip-
tion, we define Fourier-Jacobi expansions of modular forms.

The existence of toroidal compactifications with reasonable properties is not a
new result. In fact the proof of Theorem 3.7.1, which asserts the existence of good
compactifications of Sp,p, and Skya, simply refers to [24]. Of course [loc. cit.] is itself
a very modest addition to the established literature [17, 40, 41, 49]. Because of this,
the reader is perhaps owed a few words of explanation as to why § 3 is so long.

It is well-known that the boundary charts used to construct toroidal compactifica-
tions of PEL-type Shimura varieties are themselves moduli spaces of 1-motives (or,
what is nearly the same thing, degeneration data in the sense of [17]). This moduli
interpretation is explained in § 3.3.
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It is a special feature of our particular Shimura variety Sh(G,D) that the bound-
ary charts have a second, very different, moduli interpretation. This second moduli
interpretation is explained in § 3.4. In some sense, the main result of § 3 is not Theo-
rem 3.7.1 at all, but rather Proposition 3.4.4, which proves the equivalence of the two
moduli problems.

The point is that our goal is to eventually study the integrality and rationality
properties of Fourier-Jacobi expansions of Borcherds products on the integral models
of Sh(G, D). A complex analytic description of these Fourier-Jacobi expansions can be
deduced from [32], but it is not a priori clear how to deduce integrality and rationality
properties from these purely complex analytic formulas.

To do so, we will exploit the fact that the formulas of [32] express the Fourier-Jacobi
coefficients in terms of the classical Jacobi theta function. The Jacobi theta function
can be viewed as a section of a line bundle on the universal elliptic curve fibered over
the modular curve, and when interpreted in this way it has known integrality and
rationality properties (this is explained in §5.1).

By converting the moduli interpretation of the boundary charts from 1-motives to
an interpretation that makes explicit reference to the universal elliptic curve and the
line bundles that live over it, the integrality and rationality properties of the Fourier-
Jacobi coefficients can be deduced, ultimately, from those of the classical Jacobi theta
function.

3.1. Cusp label representatives. — Recall that Wy and W are k-hermitian spaces of|
signatures (1,0) and (n — 1, 1), respectively, with n > 2. Tautologically, the subgroup

G C GUW,) x GU(W)

acts on both Wy and W. If J C- W is an isotropic k-line, its stabilizer P = Stabg(J)
in G is a parabolic subgroup. This establishes a bijection between isotropic k-lines
in W and proper parabolic subgroups of G. If n > 2 then such isotropic k-lines always
exist.

Definition 3.1.1. — A cusp label representative for (G, D) is a pair ® = (P, g) in which
g € G(Ay) and P C G is a parabolic subgroup. If P = Stabg(J) for an isotropic k-line
J C W, we call ® a proper cusp label representative. If P = G we call ® an impropen
cusp label representative.

For each cusp label representative ® = (P, g) there is a distinguished normal sub-
group Qo < P. If P =G we simply take Q¢ = G. If P = Stabg(J) for an isotropic
k-line J C W then, following the recipe of [47, § 4.7], we define Q¢ as the fiber product

(3.1.1) Qs - Resy, /0Gm

J J/a»—»(a,Nm(a),a,id)

P—— GU(Wy) x GL(J) x GU(J/J) x GL(W/J4).
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The morphism G — GU(W) restricts to an injection Qg — GU(W), as the action
of Qs on J1/J determines its action on Wj.

Let K C G(Ay) be the compact open subgroup (2.1.3). Any cusp label represen-
tative & = (P, g) determines compact open subgroups

Ko =gKg ' NQa(As), Ko =gKg'NP(As),
and a finite group

(3.1.2) As = (P(Q) N Qa(Af)Ks)/Qa(Q).

Definition 3.1.2. — Two cusp label representatives ® = (P, g) and & = (P’,g’) are
K -equivalent if there exist v € G(Q), h € Qa(Ay), and k € K such that

(P',g') = (yPy~',vhgk).

One may easily verify that this is an equivalence relation. Obviously, there is a unique
K-equivalence class of improper cusp label representatives.

From now through §3.6, we fix a proper cusp label representative ® = (P,g),
with P C G the stabilizer of an isotropic k-line. J C W. There is an induced weight
filtration wt;W C W defined by

0 c J c J+ c %%

|

Wt},'g,W C Wt,QW C Wt,1W C WtQW

and an induced weight filtration on Vo= Homg (Wy, W) defined by

Homy (Wy,0) < Homg(Wo,J) ¢ Homg(Wo,Jt) < Homg(Wy, W)

|

wt_oV C wt_1V C wtoV C wt1 V.

It is easy to see that wt_1V is an isotropic k-line, whose orthogonal with respect to
(2.1.5) is wtoV. Denote by gr,W = wt;W/wt;_1W the graded pieces, and similarly
for V.

The Op-lattice’ga € W determines an Op-lattice

gr;(ga) = (ganwt;W)/(ganwt,_1 W) C gr,W.

The middle graded piece gr_, (ga) is endowed with a positive definite self-dual hermi-
tian form, inherited from the self-dual hermitian form on ga appearing in the proof
of Proposition 2.1.1. The outer graded pieces

(3.1.3) m=gr ,(ga), n=gry(ga)
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are projective rank one Op-modules (®), endowed with a perfect Z-bilinear pairing
m ®z n — Z inherited from the perfect symplectic form on ga appearing in the proof
of Proposition 2.2.1.

Remark 3.1.3. — The isometry class of ga as a hermitian lattice is determined by the
isomorphism classes of m and n as Og-modules and the isometry class.of gr_;(ga) as
a hermitian lattice. This follows from the proof of [24, Proposition2.6.3], which shows
that one can find a splitting (7

ga=gr_s(ga) ®gr_;(ga) ® gro(ga),

in such a way that the outer summands are totally isotropic, and each is orthogonal
to the middle summand.

Exactly as in (2.1.4), there is a k-conjugate linear isomorphism

Homg (Wo,gr_,; W) Limal Homg (gr_, W, Wy).
If we define
(3.1.4) Lo = Homg, (9ao, gr_1(ga))
Ao = Homo, (gr_(9a), gao),

then x — zV restricts to an Og-conjugate linear isomorphism Lg =2 Ag. These are,
in a natural way, positive definite self-dual hermitian lattices. For 1,22 € Ly the
hermitian form on Ly is defined, as in (2.1.5), by

(z1,72) = Y 0 o€ Endg, (gag) = O,
while the hermitian form on Aq is defined by
<(E¥,1}¥> = <ZL']_, $2>~

Lemma 3.1.4. — Two proper cusp label representatives ® and ®' are K -equivalent if
and only if Ao =2 A} as hermitian Ok-modules and n = n' as Og-modules. Moreover,
the finite group (3.1.2) satisfies

(3.1.5) Ag = U(Ag) x GLg, (n).

Proof. — The first claim is an elementary exercise, left to the reader. For the second
claim we only define the isomorphism (3.1.5), and again leave the details to the reader.
The group P(Q) acts.on both Wy and W, preserving their weight filtrations, and so

acts on both|the hermitian space Homg(gr_, W, W) and the k-vector space groW.
The subgroup-P(Q) N Qs (As)Kg preserves the lattices

Ay C Homk(gr_lW, W())
and n C gr,W, inducing (3.1.5). O

(6) In fact m = n as Op-modules, but identifying them can only lead to confusion.
() This uses our standing assumption that k has odd discriminant.
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3.2. Mixed Shimura varieties. — The subgroup Qs (R) C G(R) acts on
Dy (W) = {k-stable R-planes y C W(R) : W(R) = J*(R) @y},
and so also acts on
Do = D(Wy) x Da(W).
The hermitian domain of (2.1.2) satisifies D(W) C Dg(W), and hence there is a

canonical Q4 (R)-equivariant inclusion D C Ds.
The mixed Shimura variety

(3.2.1) Sh(Qe, D) (C) = Qa(Q)\Da x Qa(Af)/Ke

admits a canonical model Sh(Qg,Dg) over k by the general results of [47]. By rewrit-
ing the double quotient as

Sh(Qs,Ds)(C) 2 Qe (Q\Ds x Qo(Af)Ks/Ka,

we see that (3.2.1) admits an action of the finite group'Ag of (3.1.2), induced by
the action of P(Q) N Qa(As)Ke on both factors of Do x Qa(As)Ke. This action
descends to an action on the canonical model.

Proposition 3.2.1. — The morphism ve of (3.1.1)induces a surjection

Sh(Qa, D) (C) 2222, g\ 1§

with connected fibers. This map is Ag-equivariant, where Ag acts trivially on the
target. In particular, the number of connected components of (3.2.1) is equal to the
class number of k, and the same is true-of its orbifold quotient by the action of Ag.

Proof. — The space Dg is connected, and the kernel of vg : Qo — Resg oG, is
unipotent (so satisfies strong approximation). Therefore

70 (Sh(Qa, Ds)(0) = Qo (Q)\Qa(Ay)/Ka = k*\k* /ve(Ks),
and an easy calculation shows that ve(Kg) = o - O
It will be useful to have other interpretations of Dg.

Remark 3.2.2. — Any point y € Dg(W) determines a mixed Hodge structure on W'
whose weight filtration wt;W C W was defined above, and whose Hodge filtration is
defined exactly as in‘Remark 2.1.3. As in [46, p. 64] or [47, Proposition 1.2] there is an
induced bigrading W(C) = @ W®9  and this bigrading is induced by a morphism
S¢ — GU(W)¢ taking values in the stabilizer of J(C). The product of this morphism
with the morphism S¢ — GU(Wjy)c of Remark 2.1.3 defines a map z : S¢ — Qac,
and this realizes Do C Hom(S¢, Qac)-

Remark 3.2.3. — Imitating the construction of Remark 2.1.2 identifies
Dg = {w € eV(C): V(C) = wtoV(C) ® Cw & Cw}/C* C P(eV(C))

as an open subset of projective space.
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3.3. The first moduli interpretation. — Using the pair (Ag,n) defined in § 3.1, we now
construct a smooth integral model of the mixed Shimura variety (3.2.1). Following
the general recipes of the theory of arithmetic toroidal compactifications, as in [17,
24,42, 40], this integral model will be defined as the top layer of a tower of morphisms

C<1> — (B.:p — 04«1; — Spec(@k),

smooth of relative dimensions 1, n — 2, and 0, respectively.
Recall from § 2.3 the smooth O-stack

My1,0y X0, Myn—2,0) — Spec(Ok)

of relative dimension 0 parametrizing certain pairs (Ao, B) of polarized abelian
schemes over S with O-actions. The étale sheaf Homg, (B, Ap) on S is locally
constant; this is a consequence of [11, Theorem 5.1].

Define Ap as the moduli space of triples (Ao, B, @) over Og-schemes S, in which
(Ayp, B) is an S-point of CY)’L(LO) X9, C}’I’L(n,g,o), and

0: Ay = m@k(B,Ao)

is an isomorphism of étale sheaves of hermitian ©-modules.

Define Bg as the moduli space of quadruples (Ao, B, 9,c) over Og-schemes S, in
which (A, B, ¢) is an S-point of A, and ¢:n — B is an O-linear homomorphism
of group schemes over S. In other words, if (Ao, B, ) is the universal object over A,
then

By = Homg, (n, B).

Suppose we fix u,v € n. For any scheme U and any morphism U — Bg, there is
a corresponding quadruple (Ag, B, p,c) over U. Evaluating the morphism of U-group
schemes ¢ : n — B at p and v determines U-points c¢(u),c(v) € B(U), and hence
determines a morphism of U-schemes

g e p o B~ BxBY.

Denote by £ (u,v)y the pullback of the Poincaré bundle via this morphism. As U
varies, these line bundles.are obtained as the pullback of a single line bundle & (u, v)
on CBq;..

It follows from standard bilinearity properties of the Poincaré bundle that & (u, v)
depends, up to canonical isomorphism, only on the image of p ® v in

Symg = Sym? (n)/{(zp) ® v — p® (Tv) : @ € O, p,v € n).

Thus we may associate to every x € Symg a line bundle L (x) on Be, and there are
canonical isomorphisms

Lx)@LMKX) =LK+ x)

Our assumption that D is odd implies that Symg is a free Z-module of rank one.
Moreover, there is positive cone in Symg ®z R uniquely determined by the condition
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u®u > 0 for all y € n. Thus all of the line bundles L () are powers of the distinguished
line bundle

(3.3.1) Lo = L(xo0)

determined by the unique positive generator xo € Symg.
At last, define Bep-stacks

C©:Isio(°£§>7@@q>)a Cj{():I—IoiIn(°Q§WO(Bq>)

In other words, C} is the total space of the line bundle L5 1 and Cg is the complement
of the zero section By <— C%. In slightly fancier language,

Co = Specs, (D Ls), Ch = Spees, (D L),
>0

LEL

and the zero section By — C} is defined by the ideal sheaf @, o L§.

Remark 3.3.1. — When n = 2 the situation is a bit degenerate. In this case
B = Ag = NMya0);
L4 is the trivial bundle, and Ce — Bg is the trivial G,,-torsor.

Remark 3.3.2. — Using the isomorphism of Lemma 3.1.4, the group Ag acts on Be
via

(u7 t) b (AO?B7 Q’ C) S (AO’B’ IQO uil’co t71)7

for (u,t) € U(Ag) x GLg, (n). The line bundle Lg is invariant under Ag, and hence
the action of Ag lifts to both Ce and C.

Proposition 3.3.3. — There is a Ag-equivariant isomorphism
Sh(Q(},CDq;.) = C@/k.

Proof. — This is a special case of the general fact that mixed Shimura varieties
appearing at the boundary of PEL Shimura varieties are themselves moduli spaces
of 1-motives endowed with polarizations, endomorphisms, and level structure. The
core of this is Deligne’s theorem [14, § 10] that the category of 1-motives over C is
equivalent to the category of integral mixed Hodge structures of types (—1,-1),
(-1,0), (0,—1), (0,0). See [42], where this is explained for Siegel modular varieties,
and also [12]. A good introduction to 1-motives is [2].

To make this a bit more explicit in our case, denote by Xg the O-stack whose func-
tor of points ‘assigns to an Og-scheme S the groupoid e (S) of principally polarized
1-motives A consisting of diagrams

I
B

00— m Rz G,
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in which B € CWL(H_Q,O)(S), B is an extension of B by the rank two torus m ®z G,, in
the category of group schemes with O-action, and the arrows are morphisms of fppf
sheaves of Og-modules.

To explain what it means to have a principal polarization of such a 1-motive A, set
m" = Hom(m,Z) and n¥ = Hom(n,Z), and recall from [14, § 10] that A has a dual
1-motive AV consisting of a diagram

mV

|

0——nY ®z G,y BY BY 0.

A principal polarization is an Op-linear isomorphism B = BY compatible with the
given polarization B & BV, and with the isomorphisms m= n¥ and n & m" deter-
mined by the perfect pairing m ®z n — Z defined after (3.1.3).

Using the “description plus symétrique” of 1-motives [14, (10.2.12)], the Og-stack Cg
defined above can be identified with the moduli space whose S-points are triples
(Ao, A, o) in which

— (AO,A) S CWL(LO)(S) X %@(S),

— o0 : Ay = Homg, (B, Ap) is an isomorphism of étale sheaves of hermitian

Og-modules, where B € M, _3,0)(S) is the abelian scheme part of A.

To verify that Sh(Qge,Dg) has the same functor of points, one uses Remark 3.2.2
to interpret Sh(Qe,Ds)(C) as a moduli space of mixed Hodge structures on Wy
and W, and uses the theorem of Deligne cited above to interpret these mixed Hodge
structures as 1-motives. This defines an isomorphism Sh(Qe,Ds)(C) = Ce(C). The
proof that it descends to the reflex field is identical to the proof for Siegel mixed
Shimura varieties [42].

We remark in passing that any triple (Ag, A, 0) as above automatically satisfies
(2.2.4) for every prime £. Indeed, both sides of (2.2.4) are now endowed with weight
filtrations, analogous to the weight filtration on Homyg (Wy, W) defined in §3.1. The
isomorphism ¢ induces an isomorphism (as hermitian Oy ,-lattices) between the gr,
pieces on either side. The.gr_; and gr; pieces have no structure other then projective
O ¢-modules of rank 1, so are isomorphic. These isomorphisms of graded pieces imply
the existence of an isomorphism (2.2.4), exactly as in Remark 3.1.3. O

3.4. The second moduli interpretation. — In order to make explicit calculations, it
will be useful to interpret the moduli spaces

C@ — CB@ — 04@ — Spec(@k)

in a different way.
Suppose E — S is an elliptic curve over any base scheme, and denote by Pg the
Poincaré bundle on

ExgE~FExgE".
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If U is any S-scheme and a,b € E(U), we obtain an Oy-module Pg(a,b) by pulling
back the Poincare bundle via

(a,b)

U—5ExgE~ExgEV.

The notation is intended to remind the reader of the bilinearity properties of the
Poincaré bundle, as expressed by canonical Oy-module isomorphisms
(3.4.1) Pr(a+b,c) 2Pr(a,c) @Pg(b,c)
(/)E(aa b + C) =9 E(aa b) ® C/)E(aa C)
OE(aa b) = CPE(b7 CI,),
along with Pg(e,b) =2 Oy = Pg(a,e). Here e € E(U) is the zero section.

Let £ — C}’)’L(l,o) be the universal elliptic curve with complex multiplication by Op.
Its Poincaré bundle satisfies, for all a € Oy, the additional relation Pg(aa,b) =
Pg(a,ab).

Recall the positive definite self-dual hermitian lattice Ly of (3.1.4). Using Serre’s
tensor construction, we define an abelian scheme

(3.4.2) E® Ly = E ®g, Lo

over N o). As explained in detail in [1], the principal polarization on E and the
hermitian form on Ly can be combined to define a principal polarization on £ ® Ly,
and we denote by Pggr, the Poincaré bundle on

(E ® Lo) Xan, o, (E & Lo) Z(E ® Lo) Xan, o, (E® Lo)".

The Poincaré bundle Pggr, can-be expressed in terms of Pg. If U is a scheme, a
morphism

U — (E [ Lo) XCm(LO) (E X Lo)
is given by a pair of U-valued-points
c= ZSH@ZL% €EEU)® Ly, ¢ = Zs; ®z; € E(U) ® Ly,
and the pullback of Pggr, to U is

PreL,(c,c) (X)O (@i, x7)s4,5%).

Define Qggr, tobe the line bundle on E ® Ly whose restriction to the U-valued
point ¢ = > 8; Q@ x; is

(3.4.3) QeoL, (€) ®CPE ((zi,xj)s4,85) ®®O Y{Ti, T:)8i, Si),
i<J
where
146
Y= % € Og.
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It is related to Pgg L, by canonical isomorphisms

(3.4.4) ProL,(a,b) & Qegr,(a+b) ® WeL, (@) © ser, (b))
ProLy(a,a) = Qagr,(a)®?.

for all U-valued points a,b € E(U) ® Lo.

Remark 3.4.1. — As in the constructions of [40, §1.3.2] or [44, §6.2], the line bundle
QeeL, determines a morphism F ® Lo — (E® Lg)". The relations (3.4.4) amount to
saying that this morphism is the principal polarization constructed in [1].

Remark 3.4.2. — The line bundle Pggr,(da,a) is canonically trivial. This follows by
comparing

ProrL,(va,a)%? = Prer,(a,a) ® Prer, (5a,a)
with

)®2 o~

PreL,(Ya,a PreL,(7a,0) ® PrgL,(Ya,a) = PpgL,(a, a).

Remark 3.4.3. — 1In the slightly degenerate case of n = 2, E ® Ly is the trivial group
scheme over Ny ¢y, and Ppgr, is the trivial bundle on N o).

Proposition 3.4.4. — As above, let E — M oy be the universal object. There are
canonical isomorphisms

Cq; CB@ ‘A’(P

J o

ISJ(QE@LO? OE®L0) —E® LO E— Crn/(l,O)v

IR
IR

and the middle vertical arrow identifies Lo = Qrg L, -

Proof. — Define a morphism Ag — N1 o) by sending a triple (Ao, B, ¢) to the CM
elliptic curve

(3.4.5) E = Homg, (n, Ao)-

To show that this map is-an isomorphism we will construct the inverse.
If S is any O-scheme and E € N 0)(S), we may define (Ag, B, 0) € Ag(S) by
setting
Ap=E®p,n, B=Homg, (Ao, Ao),
and taking for ¢ : Ay = Homg, (B, Ag) the tautological isomorphism. The principal
polarization on B is defined using the Og-linear isomorphism

a®z—(.,z¥)a

Ap ®¢, Lo

Homg, (Ao, Ao)

and the principal polarization on Ay ®¢, Lo constructed in [1], exactly as in the
discussion following (3.4.2). The construction E — (Ao, B, p) is inverse to the above
morphism Age — My o).
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Now identify A 2 My ) using the above isomorphism, and denote by (4o, B, 0)
and E the universal objects on the source and target. They are related by canonical
isomorphisms

(3.4.6) Bs = Homg, (n, B)

IR

m@k (n ®@k: A07 AO)

IR

Homy, (Ao, E).

Combining this with the Og-linear isomorphism

a@z—(.,z")a
_—

E® L Homg, (Ao, E)

defines By = E® Lg. All that remains is to prove that this isomorphism identifies Lg
with QEgr,, which amounts to carefully keeping track of the relations between the
three Poincaré bundles Pg, Pg, and P4,.

Any fractional ideal b C k admits a unique positive definite self-dual hermitian
form, given explicitly by (b1,bs) = biby/N(b). It follows that any rank one projec-
tive Og-module admits a unique positive definite self-dual hermitian form. For the
Ok-module Homg, (n, Of), this hermitian form is

(€1, £2) = () l2(v) + €1 (v)l2(p),

where p ® v = xo € Symg is the positive generator appearing in (3.3.1).
The relation (3.4.5) implies a relation between the line bundles Pg and Py4,. If
U is any Ag-scheme and we are given points

s,8"€ E(U) = Homg, (n, Aov)

of the form s = ¢(-)a and s’ = ¢'(-)a’ with ¢,¢' € Homg, (n, O%) and a,a’ € Ao(U),
then

Pr(s,s') 2 Pa, ({4 )a,a)
Pr(vs,s) 2 Pa, (L(k)a, £(v)a).

Similarly, the isomorphism B = Homg, (Ao, Ao) implies a relation between P and
Pa,- If U is an_S-scheme, a morphism U — B x 4, B is given by a pair of points

b, b e B(U) = Hom@k (AOaAOU)

of the form b = (,A)a and ' = (,,N)a’ with A\, N € Ag and a,a’ € Ag(U). The
pullback of Pg to U is the line bundle

Pp(b,b) =Pa,(a, (A N)a).

SOCIETE MATHEMATIQUE DE FRANCE 2020



56 J. BRUINIER, B. HOWARD, S. KUDLA, M. RAPOPORT & T. YANG

Using the isomorphisms (3.4.6), a point ¢ € Be(U) admits three different interpre-
tations. In one of them, ¢ has the form

c= ZZ iya; € Homg, (n®g, A, Aov).
By setting
b; = (., \i)a; € Homg, (Ao, Agr) = B(U)
s;i =4;(-)a; € Homg, (n, Aov) = E(U),
we find the other two interpretations
c= Y £;()b; € Homg, (n, By)
c= Z(, Ai)s; € Homg, (Ao, Ey).

The above relations between Pp, Pg, and P 4, imply

Pplc(n ®° i(W)bi, £ (v)b;)
N®0Ao al? >‘2’)‘ >€( ) j)
~®1A0 ({05, ;) ai, (Miy X)a;) ®®0A0 (w)ai, £ () (Ni, Ai)as)

i<j
—®O (55, (Niy Aj)s5) ®®O (7805 (Aiy Ai)si)-
1<j

Now write \; = z)/ with x; € Ly, and use the relation
Pr(si, (Nis Aj)s;) = Pr((Nj, Ni)sis s5) = Pr((zi, 5)si, 55)

to obtain an isomorphism Pg(c(u)sc(v)) = ReeL,(c). The line bundle on the left
is precisely the pullback of L via ¢, and letting ¢ vary we obtain an isomorphism

Lo = QreL,- O

3.5. The line bundle of modular forms. — We now define a line bundle of weight
one modular forms on our-mixed Shimura variety, analogous to the one on the pure
Shimura variety defined in §2.4.

The holomorphic line bundle w*" on D defined in § 2.4 admits a canonical extension
to

(Dq;. = CD(WO) X CD@(W),

which we denote by w%". Indeed, recalling that D(Wy) = {yo} is a one-point set,
an element z € Dg is represented by a pair (yo,y) in which y is a k-stable R-plane
in W (R) such that W(R) = JX(R) @ y. The fiber of 03" at z is the line

Home (Wo(C)/eWo(C), pr.(y)) < eV(C),
exactly as in Remark 2.1.2 and (2.4.1).
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If we embed Dg into projective space over eV (C) as in Remark 3.2.3, then 3" is
simply the restriction of the tautological bundle. There is an obvious action of Q4 (R)
on the total space of w3", lifting the natural action on Dg, and so w3 determines a
holomorphic line bundle on the complex orbifold Sh(Qe,Ds)(C).

As in § 2.4, the holomorphic line bundle w%" is algebraic and descends to the canon-
ical model Sh(Qs,Ds). In fact, it admits a canonical extension to the integral model
Cs, as we now explain.

Recalling the Og-modules m and n of (3.1.3), define rank two vector bundles on Ag
by

Dﬁ:m®Z®A¢, m:n®Z8A¢.

Each is locally free of rank one over O ®z O 4,, and the perfect pairing between m
and n defined after (3.1.3) induces a perfect bilinear pairing MM ® M — O 4, . Using
the almost idempotents €,z € O ®z O 4, of §1.7, there is an induced isomorphism
of line bundles

(/M) @ (eN) = Oy, -
Recalling that A carries over it a universal triple (Ag, B, g), in which Ag is an
elliptic curve with O-action, we now define a line bundle on A by

wy = Hom(Lie(Ag),eMN),
or, equivalently,
w;' = Lie(4y) ®o,, M/eM.
Denote in the same way its pullback to.any step in the tower

C;H@Q —>04@.

The above definition of wg is-a bit unmotivated, and so we explain why we is
analogous to the line bundle w on Sk, defined in §2.4. Recall from the proof of
Proposition 3.3.3 that Cs carries over it a universal 1-motive A. This 1-motive has
a de Rham realization H{E(A), defined as the Lie algebra of the universal vector
extension of A, as in [14, (10.1.7)]. It is a rank 2n-vector bundle on Cg, locally free
of rank n over Oy ®z Og, , and sits in a diagram of vector bundles

0 0
| |
FOHIR(B) m
) |
0 —— FOH{R(A) —— H{R(A) —— Lie(A) —— 0
! l
N Lie(B)
| |
0 0,
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with exact rows and columns. The polarization on A induces a perfect symplectic
form on H{®(A). This induces a perfect pairing

(3.5.1) FOH{R(A) ® Lie(4) — O,
as in (2.2.1), which is compatible (in the obvious sense) with the pairings
F°H{®(B) ® Lie(B) — O,

and N Q@ M — O, that we already have.
The signature condition on B implies that e F H{®(B) = 0 and zLie(B) = 0. Using
this, and arguing as in [24, Lemma 2.3.6], it is not difficult to see that

Fa = ker(g : Lie(A) — Lie(A))

is the unique codimension one local direct summand of Lie(A) satisfying Kramer’s
condition as in §2.3, and that its orthogonal under the pairing (3.5.1) is F4 =
eFOH{R(A). Moreover, the natural maps

IM/eM — Lie(A)/Fa, Fx — N
are isomorphisms. These latter isomorphisms allow us to identify
wp = Hom(Lie(Ap), Fx), wg''=Lie(Ay) ® Lie(A)/Fa
in perfect analogy with § 2.4.
Proposition 3.5.1. — The isomorphism
Co(C) =Sh(Qe, De)(C)
of Proposition 3.3.3 identifies the analytification of we with the already defined w3’.
Moreover, the isomorphism Ag = CYI’L(LO) of Proposition 3.4.4 identifies
Wy =20 -Lie(E)™! C Lie(E)™*
where d = 6Oy is the different of O, and E — N oy is the universal elliptic curve
with CM by Oy.

Proof. — Any point z = (yo,y) € Do determines, by Remarks 2.1.3 and 3.2.2, a pure
Hodge structure on Wy and a mixed Hodge structure on W, these induce a mixed
Hodge structure on V' =Homg(Wy, W), and the fiber of w3" at z is

w3, = F'V(C) = Hom¢ (W (C)/eWy(C),eF'W(C)).
On the other hand, we have just seen that
we = Hom(Lie(4p),F4) = Hom(Lie(Ay), e FCHIR(A)).

With these identifications, the proof of the first claim amounts to carefully tracing
through the construction of the isomorphism of Proposition 3.3.3.
For the second claim, the isomorphism Ay = E ®¢, n induces a canonical isomor-
phism
Lie(Ap) = Lie(E) ®o, n = Lie(E) @ N/eEN,
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where we have used the fact that n®g, O, = 9/eN is the largest quotient of 9 on
which Oy acts via the structure morphism O, — O 4, . Thus

wg = Hom(Lie(A), 1)
=~ Hom(Lie(E) ® M/EN, M)
= Lie(E) ™" ®¢,, Hom(9/z9,eN).

Now recall the ideal sheaf (¢) C O ®z O 4, of §1.7. There are canonical isomor-
phisms of line bundles

004, = (¢) = Hom(M/EN, eN),

where the first is (1.7.1) and the second is the tautological isomorphism sending ¢ to
the multiplication-by-& map D1/g91 — 1. These constructions determine the desired
isomorphism

we = Lie(E)_1 ®9Aq, 'OOA@. O

3.6. Special divisors. — Let Yo(D) be the moduli stack over O, parametrizing cyclic
D-isogenies of elliptic curves over O-schemes, and let & — &’ be the universal object.
See [28, Chapter 3] for the definitions.

Let (Ao, B, o, ¢) be the universal object over B¢. Recalling the Og-conjugate linear
isomorphism Ly = Aq defined after (3.1.4), each z € Ly defines a morphism

niB—m Ao

of sheaves of Og-modules on Bg. Define Zg(r) C By as the largest closed substack
over which this morphism is trivial. We will see in a moment that this closed substack
is defined locally by one equation. For any m > 0 define a stack over Bg by

(3.6.1) Zo(m)= || Ze(w).
x€Lg
(z,z)=m
We also view Zg(m) as a divisor on Bg, and denote in the same way the pullback of]
this divisor via C% — Bag.

Remark 3.6.1. — In the slightly degenerate case n = 2 we have Ly = 0, and every
special divisor Zg(m) is-empty.

We will now reformulate the definition of Z¢(x) in terms of the moduli problem
of §3.4. Recalling the isomorphisms of Proposition 3.4.4, every x € L determines a
commutative diagram
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where M, o) — Yo(D) sends E to the cyclic D-isogeny
E — E®g, 3_1,
and the rightmost square is cartesian. The upper and lower horizontal compositions

are denoted j, and j, giving the diagram

(3.6.2) By — =8

|,

Ag —2+ Yo (D).

Proposition 3.6.2. — For any nonzero © € Lg, the closed substack Zo(x) C Bo is
equal to the pullback of the zero section along j,. It is an effective Cartier divisor, flat
over Ag. In particular, as A is flat over O, so is-each divisor Lo ().

Proof. — Recall the isomorphisms
E = Homg, (n, Ag), B = Homyg, (Ao, Ao)
from the proof of Proposition 3.4.4. If we identify Ay ®o, Lo = B using

a®z—{.,z")a ~
Ay ®o,, Lo ————— Homyg, (Ao, 4o) = B,
we obtain a commutative diagram of Ag-stacks

E ®¢, Lo — Homyg, (n, Ao ®o,, Lo) — Homg, (n, B) = Be

<-,w)l l@(wv)

= Homy, (1, Ao),

in which all horizontal arrows areisomorphisms. The first claim follows immediately.
The remaining claims now follow from the cartesian diagram

Lo (x) My,

J ~ <.’z> \L

By —— FEFQLy———E.

The zero section e : CWL(LO) — F is locally defined by a single nonzero equation [28,
Lemma 1.2.2], and so the same is true of its pullback Zg(z) — Be. Composition
along the bottom row is flat by [44, Lemma 6.12], and hence so is the top horizontal
arrow. O

Remark 3.6.3. — For those who prefer the language of 1-motives: As in the proof of
Proposition 3.3.3, there is a universal triple (Ag, 4, g) over Cg in which Ag is an elliptic
curve with Og-action and A is a principally polarized 1-motive with Og-action. The
functor of points of Zg(m) assigns to any scheme S — Cg the set

Zao(m)(S) = {z € Home, (Ao,s,As) : (x,z) = m},

ASTERISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 61

where the positive definite hermitian form (.,.) is defined as in (2.5.1). Thus our
special divisors are the exact analogues of the special divisors on Sk, defined in §2.5.

3.7. The toroidal compactification. — We describe the canonical toroidal compactifi-
cation of the integral models Skra — Spap of §2.3.

Theorem 3.7.1. — Let S denote either Skya or Spap. There is a canonical toroidal
compactification Sg — Sf, flat over Oy of relative dimension n = 1. It admits a
stratification

St =|]85(®)
b

as a disjoint union of locally closed substacks, indexed by the K -equivalence classes of
cusp label representatives (defined in §3.1).

1. The Og-stack Si,, is regular.
2. The Og-stack S, is Cohen-Macaulay and. normal, with Cohen-Macaulay
fibers. If n > 2 its fibers are geometrically normal.
3. The open dense substack Sp C Sf is the stratum indexed by the unique equiv-
alence class of improper cusp label representatives. Its complement
a8s = || .85(®)
& proper
is a smooth divisor, flat over Oy
4. For each proper ® the stratum S5(®) is closed. All components of St (®) ¢ are
defined over the Hilbert class field k™'Y, and they are permuted simply transi-
tively by Gal(k™!® /k). Moreover, there is a canonical identification of Oy-stacks
Agp\By =————=35;(P)
Ag\C Sh
such that the two stacks in the bottom row become isomorphic after completion
along their common closed substack in the top row. In other words, there is a
canonical isomorphism of formal stacks
(3.7.1) As\(C3)3, = (SE)Q*D(@y
The morphism Skra — Spap extends uniquely to a stratum preserving morphism
of toroidal compactifications. This extension restricts to an isomorphism
(3.7.2) Skra \ Exc = 8p,, \ Sing,

compatible with (3.7.1) for any proper ®.
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The line bundle w on Sk.. defined in § 2.4 admits a unique extension (denoted
the same way) to the toroidal compactification in such a way that (3.7.1) iden-
tifies it with the line bundle wg on C%. A similar statement holds for Qx;., and
these two extensions are related by

w? 2 Q.. ® O(Exc).

The line bundle Qpap on Spap defined in § 2.4 admits a unique extension (de-
noted the same way) to the toroidal compactification, in such a way that (3.7.1)
identifies it with w3,.

For any m > 0, define Zj;,,(m) as the Zariski closure of Lxra(m) in Sk,,. The
isomorphism (3.7.1) identifies it with the Cartier. divisor Zo(m) on Cj.

For any m > 0, define Yp,,(m) as the Zariski closure of Ypap(m) in Sp, -
The isomorphism (3.7.1) identifies it with 2Zg(m). Moreover, the pullback

of Ypap(m) to Sk, denoted Yi,,(m), satisfies

2Z%ra(m) = Yiwa(m) + Y #{z € Ly (z,2) = m} - Exc,.

s€mo(Sing)
Proof. — Briefly, in [24, § 2] one finds the construction of a canonical toroidal com-
pactification
o o,
m(n—m) - m(n 1,1)°

Using the open and closed immersion

SD<—>CWL(10)><CWL

(n—1,1)

the toroidal compactification S s defined as the Zariski closure of Sp
in My ) x CWL(n 1,1)- All of the claims follow by examination of the construc-
tion of the compactification, along with Theorem 2.6.3. O

Remark 3.7.2. — If W is anisotropic, so that (G,D) has no proper cusp label repre-
sentatives, the only new information in the theorem is that Spa, and Sy, are already
proper over O, so that

SPap = 8;ap7 SKra = Sf(ra'

Corollary 3.7.3, — Assume that n > 2. The Cartier divisor Yp, (m) on St
Ok-flat, as is the restriction of Z;,.,(m) to Sk,. \ Exc.

Pap is

Proof. — Fix a prime p C Oy, and let Fy be its residue field. To prove the first
claim, it suffices to show that the support of the Cartier divisor Yp,,(m) contains no
irreducible components of the reduction SI’Zap JF,

By way of contradiction, suppose &, C S;ap /F, is an irreducible component con-
tained in Yy, (m), and let & C S, be the connected component containing it.
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Properness of 8¢, over Oy, implies that the reduction & g, is connected [18, Corol-
lary 8.2.18]. The reduction & /¥, is normal by Theorem 3.7.1 and our assumption
that » > 2, and hence is irreducible. Thus

8p :S/Fp.

Our assumption that n > 2 also guarantees that W contains a nonzero isotropic
vector, from which it follows that the boundary

aC = CN aSp,,

is nonempty (one can check this in the complex fiber).

Proposition 3.6.2 implies that Zg(m) is O-flat for every proper cusp label rep-
resentative ®, and so it follows from Theorem 3.7.1 that Yp, (m) is Op-flat when
restricted to some étale neighborhood U — C of 8C. On the other hand, the closed
immersion

U/]Fp = Cp Xg* U— Cypap Xs* U
shows that the divisor Yp,,(m)|,,
O-flat. This contradiction completes the proof that Yy, (m) is ﬂat

As the 1somorph1sm (3.7.2) identifies Yy, (m) with QzKra , it follows that the

restriction of £, (m) to the complement of Exc is also flat. O

— U contains-the spemal fiber Ujp,, so is not

3.8. Fourier-Jacobi expansions — We now define Fourier-Jacobi expansions of sec-
tions of the line bundle w* of weight & modular forms on Sf,, .

Fix a proper cusp label representative ® = (P, g). Suppose 9 is a rational function
on S%,., regular on an open neighborhood of the closed stratum Sj,,(®). Using the
isomorphism (3.7.1) we obtain a formal function, again denoted %, on the formal
completion

o, = Sotg, (TT44).
£>0
Tautologically, there is a formal Fourier-Jacobi expansion
(3.8.1) )= Fl()
£>0

With coefficients FJy(1p). € H°(Bs,Ls). In the same way, any rational section 1
of w* on 8%,,, regular on an open neighborhood of 8, (®), admits a Fourier-Jacobi
expansion (3.8.1), but-now with coefficients

Fl,(¢) € H*(Bo, 0k @ L4).

Remark 3.8.1. — Let m : Cj — Bg be the natural map. The formal symbol ¢ can
be understood as follows. As Cj is the total space of the line bundle £, there is a
tautological section

g€ H(Cy,m* Ly )
whose divisor is the zero section By — C%. Any FJ, € H°(Bs,Ls) pulls back to a
section of W*Dﬁgf;, and so defines a function FJ, - ¢* on Ck.
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3.9. Explicit coordinates. — Once again, let & = (P, g) be a proper cusp label repre-
sentative. The algebraic theory of § 3.8 realizes the Fourier-Jacobi coefficients of

(3.9.1) ¥ € H(Srar 0")
as sections of line bundles on the stack
CB@ 2 FEF® Lg.

Here £ — C}’T’L(l,o) is the universal CM elliptic curve, the tensor.product is over O,
and we are using the isomorphism of Proposition 3.4.4. Our goal is to relate this to
the classical analytic theory of Fourier-Jacobi expansions by choosing explicit complex
coordinates, so as to identify each coefficient FJ,() with a holomorphic function on
a complex vector space satisfying a particular transformation law.

The point of this discussion is to allow us, eventually, to show that the Fourier-
Jacobi coefficients of Borcherds products, expressed in the classical way as holomor-
phic functions satisfying certain transformation laws, have algebraic meaning. More
precisely, the following discussion will be used to deduce the algebraic statement of]
Proposition 6.4.1 from the analytic statement of Proposition 6.3.1.

Consider the commutative diagram

Sh(Qs, De)(C) —— Cg(C) ~—Bg(C) —— A (C)

| :

k*\kx /O My1.0)(C).

a—E(®

Here the isomorphisms are those of Propositions 3.3.3 and 3.4.4, and the vertical
arrow on the left is the surjection of Proposition 3.2.1. The bottom horizontal arrow
is defined as the unique function making the diagram commute. It is a bijection,
and is given explicitly by the following recipe: recalling the Og-module n of (3.1.3),
each a € k* determines a projective Og-module

b =a-Homg, (n, gay)
of rank one, and the elliptic curve E(*) has complex points
(3.9.2) E@(C) = b\(b®p, C).
For each a € k* there is a cartesian diagram
E@®Ly—— E® L
Spec(C) 2 Cmgo).

Now suppose we have a section ¢ as in (3.9.1). Using the isomorphisms Bg = EF®Lg
and wg = 0 - Lie(E)~! of Propositions 3.4.4 and 3.5.1, we view its Fourier-Jacobi
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coefficients
FJo(¢) € H(Ba, 0 @ LE)
as sections
FJy(¢) € H°(E ® Lo, 0" - Lie(E) ™ ® QL 1,),
which we pull back along the top map in the above diagram to obtain a section
(3.9.3) FI$” () € H°(E@ ® Lo, Lie(E@) ™ © Qb o1, )-
Remark 3.9.1. — Recalling that 9 = §Oy, is the different of k, we are using the inclu-
sion 9F C k C C to identify
o . Lie(E@)~F = Lie(E(®)~*

In particular, this isomorphism is not multiplication by 6.

The explicit coordinates we will use to express (3.9.3) as a holomorphic function
arise from a choice of Witt decomposition of the hermitian space V' = Homg (Wy, W).

The following lemma will allow us to choose this decomposition in a particularly nice
way.

Lemma 3.9.2. — The homomorphism vg of (3.1.1) admits a section

/_\
Qq> —I/q>> Resk/QGm

This section may be chosen so that s(@:) C Ko, and such a choice determines a
decomposition

(3.9.4) |_| (Qa(Q) N s(a)Kes(a) 1)\ De = Sh(Qa, Ds)(C),
ack*\kx /0%
where the isomorphism is z — (z,s(a)) on the copy of Do indexed by a.

Proof. — Fix an isomorphism of hermitian ©g-modules

gao ® ga.= gag ® gr_,(ga) ® gr_,(ga) ® gry(ga)

as in Remark 3.1.3. After tensoring with Q, we let k* act on the right hand side
by a — (a,Nm(a),a,1).-This defines a morphism k> — G(Q), which, using (3.1.1),
is easily seen to take values in the subgroup Q4(Q). This defines the desired section
s, and the decomposition (3.9.4) is immediate from Proposition 3.2.1. O

Fix a section's as in Lemma 3.9.2. Recall from § 3.1 the weight filtration wt;V C V|
whose graded pieces

gr_,V = Homg(Wy, gr_,W)
groV = Homy (Wp,gr_,W)
gr,V = Homy (Wp, gr,W)
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have k-dimensions 1, n — 2, and 1, respectively. Recalling (3.1.1), which describes
the action of Q¢ on the graded pieces of V, the section s determines a splitting
V =V_1®Vy ®V; of the weight filtration by

Voi={veV:Vack”, s(a)v=av}
Vo={veV:Vack” s(a)v=0v}
Vi={veV:Vack”, s(a)v=a v}

The summands V_; and V; are isotropic k-lines, and Vj is the orthogonal complement
of V_1 + V1 with respect to the hermitian form on V. In particular, the restriction of]
the hermitian form to Vy C V is positive definite.

Fix an a € k* and define an Og-lattice

L = Homg, (s(a)gag, s(a)ga) C V.
Using the assumption s(@,f) C Ko, we obtain a decomposition
L=L_ 1®&Ly® I,
with L; = LNV,. The images of the lattices L; in the graded pieces gr;V are given by
L_, = a-Homg, (gao, gro5(ga))
Lo = Homo, (gao, gr-4(ga))
Ly =a™! - Homg, (gao, gro(ga)).

In particular, Lg is independent of a and agrees with (3.1.4).
Choose a Z-basis e_;,f_1 € L_;, and let e;,f; € 971L; be the dual basis with
respect to the (perfect) Z-bilinear pairing

[.,.]:L 1 x07 'L — Z,
obtained by restricting (2.1.6). This basis may be chosen so that
L i=%Ze 1 +7Zf 1 0 'L_y=2Ze_1+D'Zf 4,
(3.95) Ly = Ze/+ DZfy 'Ly = Zey + Zf;.
As eV (C) C V1(C) is aline, there is a unique 7 € C satisfying
(3.9.6) Ter + f; € eV4(C).

After possibly replacing both e; and e_; by their negatives, we may assume
that Im(7) > 0.

Proposition 3.9.3. — The Z-lattice b = Z1 + Z is contained in k, and is a fractional
Opr-ideal. The elliptic curve

(3.9.7) E@(C) =b\C

is isomorphic to (3.9.2), and there is an Og-linear isomorphism of complexr abelian
varieties

(3.9.8) E@(C)® Lo = bLo\Vo(R).
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Under this isomorphism the inverse of the line bundle (3.4.3) has the form
(399) QET(}L)((C)@LO = bLO\(Vb(R) X (C)7

where the action of yo € bLg on Vu(R) x C is

- (¥0,¥0) ﬂ,(wo»y())_ (y0,Y0?

vo - (wo,q) = (’LUO +eyo,q- e™ N e Tm(r) 7 2Im(r) )

Proof. — Consider the Q-linear map

(3.9.10) v, Seotftimerdl o

Its C-linear extension V_;(C) — C kills the vector e_; — 7f_; € eV_1(C), and hence
factors through an isomorphism V_1(C)/eV_1(C) = C. This implies that (3.9.10) is
k-conjugate linear. As this map identifies L_; = b, we find that the Z-lattice b C C
is Op-stable. From 1 € b we then deduce that b C k, and is a fractional Og-ideal.
Moreover, we have just shown that

(3.9.11) L, ae_1+Bf_1—ar+8 b

is an Og-conjugate linear isomorphism.
Exactly as in (2.1.4), the self-dual hermitian forms on gay and ga induce an
Og-conjugate-linear isomorphism
Homg, (a0, gr_»(ga)) = Home, (gro(ga), go),

and hence determine an ©Og-conjugate-linear isomorphism

L_; =a-Homy, (gaog,gr_,(ga))
=aq- HOIII@,c (gro(ga)>ga0)
=a- Homg, (n, gap).

The composition

(3.9.11)
2% p

is an Op-linear isomorphism, which identifies the fractional ideal b with the projective
Ok-module used in the definition of (3.9.2). In particular it identifies the elliptic curves
(3.9.2) and (3.9.7), and also identifies

E@(C)® Lo = (b\C) ® Lo = (b ® Ly)\(C ® Lo).

Here, and throughout the remainder of the proof, all tensor products are over Oy.
Identifying C ® Lo =V, (R) proves (3.9.8).

It remains to explain the isomorphism (3.9.9). First consider the Poincaré bundle
on the product

a- Home, (n,ga0) = L,

E@(C) x E@(C) 2 (b x b)\(C x C).
Using classical formulas, the space of this line bundle can be identified with the

quotient
P gy = (b x b)\(C x C x C),
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where the action is given by
(b1,b2) - (21,22,9) = (21 +b1,22 +b2,q- GWH’(Zl’b2)+7rHT(z2’b1)+ﬂH’(bl’bZ)) )

and we have set H,(w, z) = wz/Im(7) for complex numbers w and z.
Directly from the definition, the line bundle (3.4.3) on

E@(C)® Lo = (b ® Lo)\(C ® Lo)
is given by

@ (©)eL, = (0® Lo)\((C® Lo) x C),

where the action of b ® Ly on (C ® Lg) x C is given as follows: Choose any set
Z1,...,T, € Ly of Og-module generators, and extend the Og-hermitian form on L
to a C-hermitian form on C ® Lq. If

Yo=Y bi®z; €b® Lo

and
:Zzl@)mleC@Lo

then
Yo - (wo,q) = (wo + Yo, q - €™X ™),

where the factors X and Y are

X =7 (He (i, 25)7, by) + He (25, (i, 25)b0) + He (23, 2)bi,5)

1<j
1 1
= m Z(Z, ® z;,b; @ ;) + m Z<b’ Qi b; @ xj)
i#] 1<y

and, recalling v = (1 + 0)/2,

Y = Z ( wzaxz Zzab ) + HT(Zi77<xiami>bi) + H‘r(7<xl7xl>bu bl))

1
= E i i bs i — E b; iy bs i)
Im(T) p (a2 ®x>+1m(7) - b ® ® i)

For elements y1,ys € b ® Ly, we abbreviate

(yl,y2> (y2, y1)

Using 2iIm(7) = 0N(b), some elementary calculations show that

e Z.

X + 7Y — ngo(’f y)°>
21 2
= (b ® i, b; @ xj) + ——— vb; ® T4, b; ® x;)
s S sy o) S
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m e
= mzq)z@l'ub]®$]>—m§<bz®$“bj®xj>
271

+27riz alyb; ® x;,b; @ ;) +

i<j

All terms in the final line lie in 27¢Z, and so

m(wo,y0) 7{(¥0,¥0) 7i{y0,Y0)
e™X+1Y _ o ) e PAYE) e~ N(E)
The relation (3.9.9) follows immediately. O
y

Proposition 3.9.3 allows us to express Fourier-Jacobi coefficients explicitly as func-
tions on Vp(R) satisfying certain transformation laws. Suppose we start with a global
section

(3.9.12) % € H(Sipacr @)
For each a € k* and £ > 0 we have the algebraically defined Fourier-Jacobi coefficient
(3.9.13) FI () € H(E@ ®'Lo, Qb gr,)

of (3.9.3), where we have trivialized Lie(E(®)) using (3.9.7). The isomorphism (3.9.9)
now identifies (3.9.13) with a function on Vp(R) satisfying the transformation law

,Y0) é<wo,yo>+ﬂ_e<ymyo>

;9 (Y
(3.9.14) FI$ (1) (wo + yo) = FIS() (wp) - €™ N ™ it %m0
for all yo € bLy.
Remark 3.9.4. — If we use the isomorphism pr, : Vp(R) = eV,(C) of (2.1.7) to view

(3.9.13) as a function of wg € €V5(C), the transformation law can be expressed in
terms of the C-bilinear form [.,.] as

- Q(yo) [wo,y0l Q(wo)
FJy)('l/J)(’wo + prs(yo)) — FJga)(Tﬁ)(wo) . eme SIO) ewl o reSs +mlo il

for all yo € bLg. This uses the (slightly confusing) commutativity of

Vo(R) —— eVp(C) —— V5(C)

<'790>J/ \L['vyo]

k®gR C.

In order to give another interpretation of our explicit coordinates, let Ny C Q4 be
the unipotent radical, and let Us C Ng be its center. The unipotent radical may
be characterized as the kernel of the morphism vg of (3.1.1), or, equivalently, as the
largest subgroup acting trivially on all graded pieces gr;V.
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Proposition 3.9.5. — There is a commutative diagram

2= (wo,q)

(3.9.15) (Us(Q) N s(a) Kps(a) ")\ De £Vp(C) x CX

| J

(Ne(Q) N s(a)Kes(a) ™)\ Do ————— bLo\(eVo(C) x C*),

in which the horizontal arrows are holomorphic isomorphisms, and the action of bLg
on

eVo(C) x C* =2 Vp(R) x C*

is the same as in Proposition 3.9.3.

Proof. — Recall from Remark 3.2.3 the isomorphism
De =2 {w € eV(C): eV (C) = eV_1(C) ® eVp(C) & Cw}/C*.

As eV (C) is totally isotropic with respect to [.,.], a simple calculation shows that
every line w € Dg has a unique representative of the form

—&(e—1 — 1) +wo + (1e1 + 1) € eV_1(C) ® £V(C) & £V1(C)

with £ € C and wg € eVp(C) = Vo(R). These coordinates define an isomorphism of
complex manifolds

(3.9.16) Dy 22D, (€ x C.

The action of G on V restricts to a faithful action of Ng, allowing us to express
elements of Ng(Q) as matrices

1 ¢ u+3¢*0o
n(¢, 9", u) = 1 ¢ € No(Q)
1
for maps
¢ € Homg (V1, Vo), ¢" € Homg (Vo,V_1), u € Homg(V1,V_1)

satisfying the relations

= (¢(x1),%0) + (z1,8" (v0))
= (u(z1),y1) + (1, u(y1))
for x;,y; € V;./The subgroup Us(Q) is defined by ¢ = 0 = ¢*.
The group Us(Q)Ns(a)Kes(a)~! is cyclic, and generated by the element (0,0, u)
defined by
(371, a’)
u(zy) = ——2F—
( 1) [L_l : Oka]

for any a € L_;. In terms of the bilinear form, this can be rewritten as

-da

w(zy) = —=[z1,f 1le_1 + [z1,e_q]f 1.
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In the coordinates of (3.9.16), the action of n(0,0,u) on Dg becomes
(w07§) = (w07€ + 1)7

and setting ¢ = e>™*¢ defines the top horizontal isomorphism in (3.9.15).
Let V_; = V_; with its conjugate action of k. There are group isomorphisms

(3.9.17) N3(Q)/Us(Q) =V _1 @k Vo = V.
The first sends
n(¢a ¢*7 u) = Y1 & Yo,

where y_; and yg are defined by the relation ¢(z1) = (z1,y—1) + yo, and the second
sends

(ae_1 + Bf_1) ® yo — (a7 + B)yo-
Compare with (3.9.11).
A slightly tedious calculation shows that (3.9.17) identifies

(No(Q) N s(a)K}bs(a)_l)/(U(b(Q) N s(a)Kes(a)™t) = bL,

defining the bottom horizontal arrow in (3.9.15),-and that the resulting action of bLg
on £Vy(C) x C* agrees with the one defined in Proposition 3.9.3. We leave this to the
reader. O

Any section (3.9.12) may now be pulled back via
(No(Q) N (@) Kas(a)~ N\D Z2552, $h(G, D)(C)

to define a holomorphic section of (wan)k, the k*® power of the tautological bundle on
D = {weeV(C): [w,w] <0}/C*.

The tautological bundle admits a natural Ng(R)-equivariant trivialization: any line
w € D must satisfy [w,f_1] # 0, yielding an isomorphism

[.,fo1] : @* = Og.

This trivialization allows usto identify 1 with a holomorphic function on D C D,
which then has an analytic Fourier-Jacobi expansion

(3.9.18) Y=Y FIM (@) (wo) - ¢
4

defined using the coordinates of Proposition 3.9.5. The fact that the coefficients here
agree with (3.9.13) is a-special case of the main results of [39], which compare algebraic
and analytic Fourier-Jacobi coefficients on general PEL-type Shimura varieties.

4. Classical modular forms

Throughout §4 we let D be any odd squarefree positive integer, and abbreviate
I’ =T'g(D). Let k be any positive integer.
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4.1. Weakly holomorphic forms. — The positive divisors of D are in bijection with
the cusps of the complex modular curve Xo(D)(C), by sending r | D to

r
D

Note that » = 1 corresponds to the usual cusp at infinity, and so. we sometimes
abbreviate oo = 00;.
Fix a positive divisor r | D, set s = D/r and choose

R, = (a ﬂ) EFO(S)
sy 16

with «, 8,7,6 € Z. The corresponding Aktin-Lehner operator is defined by the matrix

(5 )+
D~y ré 1

The matrix W, normalizes I', and so acts on the cusps of X((D)(C). This action
satisfies W, - co = oco,..
Let x be a quadratic Dirichlet character modulo D, and let

€ I'\PY(Q).

Oy =

X = Xr *'Xs
be the unique factorization as a product of quadratic Dirichlet characters x, and x
modulo r and s, respectively. Write

Mk(D7X) @ Ml!c(DaX)

for the spaces of holomorphic modular forms and weakly holomorphic modular forms
of weight k, level I', and character x. We assume that x(—1) = (—1)*, since otherwise
ML(D, x) = 0.

Denote by GLJ (R) C GLy(R) the subgroup of elements with positive determinant.
It acts on functions on the upper half plane by the usual weight k slash operator

(F e 1)(r) = det()"2(er + d) ™ f (7). 7=<j Z)eGLJ(R),

and f — f |, W,. defines an endomorphism of M} (D, x) satisfying
fle Wr2 = xr(—1)xs(r) - f.

In particular, W, is an involution when yx is trivial.
Any weakly holomorphic modular form

fr)= Y em)-q™ € My(D,x)

m>—00

determines another weakly holomorphic modular form

Xr(ﬂ)Xs(a) : (f |k Wr) € M]!C(D’X)7
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which is easily seen to be independent of the choice of parameters «,3,,d in the
definition of W,.. This second modular form has a g-expansion at oo, denoted

(4'1'1) XT(ﬁ)Xs(a) ' (f |k Wr) = Z Cr(m) ’ qm.
m>—0o0
Definition 4.1.1. — We call (4.1.1) the g-ezpansion of f at co,. Of special interest is

¢-(0), the constant term of f at co,.

Remark 4.1.2. — If  is nontrivial, the coefficients of (4.1.1) need not lie in the sub-
field of C generated by the Fourier coefficients of f.

4.2. Eisenstein series and the modularity criterion. — Fix an integer & > 2. Denote by
!
MQ’EZ(Da X) - M2'—k(D7 X)

the subspace of weakly holomorphic forms that are holomorphic outside the cusp oo,
and by
Mg (D, x) € Mk(D, x)

the subspace of holomorphic modular forms that vanish at all cusps different from oo.
If £ > 2 there is a decomposition

where F is the Eisenstein series
E= Y x(d)-(1|x7) € Mg(D,x).
YEL o\
Here I'o C I is the stabilizer of co.€ P1(Q), and v = (2}) €T.
We also define the (normalized) Eisenstein series for the cusp oo, by

Er = xr(=B)xslar) - (E | Wr) € Mp(D, x).

It is independent of the choice of the parameters in W,, and we denote by
E.(r)= Z er(m)-q™
m>0

its g-expansion at oo.
Remark 4.2.1. — Our_notation for the g-expansion of E, is slightly at odds with
(4.1.1), as the g-expansion of F at co,. is not Y _ e,.(m)g™. Instead, the g-expansion of F

at 00, is X (+1)xs(r) D e-(m)g™, while the g-expansion of F,. at oo, is Y e1(m)q™.
In any case, what matters most is that

1 ifs=r,
constant term of E, at cos = )
0 otherwise.

The constant terms of weakly holomorphic modular forms in MQ'SZ (D, x) can be
computed using the above Eisenstein series.
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Proposition 4.2.2. — Assume k > 2. Suppose r | D and
1,00
fr)= Y e(m)-q™ € My%(D,x).
m>—0o0
The constant term of f at the cusp co,., in the sense of Definition 4.1.1, satisfies

0+ ) (- ) = 0.

m>0

Proof. — The meromorphic differential form f(7)E,(7)dr on X(D)(C) is holomor-
phic away from the cusps oo and co,. Summing its residues at these cusps gives the

desired equality. O
Theorem 4.2.3 (Modularity criterion). — Suppose k > 2. For a formal power series
(4.2.1) > d(m)g™ € Cllg]};

m>0

the following are equivalent.
1. The relation ZmZO c¢(=m)d(m) = 0 holds for every weakly holomorphic form

> e(m)- g €MD, X).
m>>—0o0

2. The formal power series (4.2.1) is the gq-expansion of a modular form
in M (D, x).

Proof. — As we assume k > 2, that the map sending a weakly holomorphic modular
form f to its principal part at oo identifies

M(D,x) € Clg™"].
On the other hand, the map sending a holomorphic modular form to its g-expansion
identifies
M;< (D, x) c Cllg]]-
A slight variant of the modularity criterion of [5, Theorem 3.1] shows that each sub-

space is the exact annihilator of the other under the bilinear pairing C[g~1] ® C[[¢]] — C
sending P ® g to the constant term of P - g. The claim follows. O

5. Unitary Borcherds products

The goal of § 5 is to state Theorems 5.3.1, 5.3.3, and 5.3.4, which assert the existence
of Borcherds products on Sy, and S;ap having prescribed divisors and prescribed
leading Fourier-Jacobi coeflicients. These theorems are the technical core of this work,
and their proofs will occupy all of §6.

We assume n > 3 throughout § 5.
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5.1. Jacobi forms. — In this section we recall some of the rudiments of the arithmetic
theory of Jacobi forms. A more systematic treatment can be found in the work of
Kramer [29, 30].

Let Y be the moduli stack over Z classifying elliptic curves, and let 7 : & — Y be
the universal elliptic curve. Abbreviate I' = SLo(Z), and let $) be the complex upper
half-plane. The groups I" and Z2 each act on $ x C by

a b at +b z a
<C d)'(T7z):<CT+d7CT+d>7 lﬂ].(T,Z):(T’z+aT+ﬂ),

and this defines an action of the semi-direct product I'* =T x Z2. We identify the
commutative diagrams (of complex orbifolds)

(5.1.1) T\($ x C) Lie(&(C))
"\(9 xC) ——T'\H &(€) ——Y(©)

by sending (7, z) € $ x C to the vector z in the Lie algebra of C/(Z7 + Z).

Define a line bundle O(e) on £ as the inverse ideal sheaf of the zero section
e: Y — &. The Lie algebra Lie(E) is (by definition) e*O(e), and wq = Lie(£)~" is
the usual line bundle of weight one modular forms on Y (see Remark 5.1.3 below).
In particular, the line bundle

 =0(e) ® T wy
on & is canonically trivialized along the zero section. By the constructions of [40,
§1.3.2] and [44, §6.2], this line bundle induces a homomorphism
(5.1.2) £E—-8Y,

which is none other than the unique principal polarization of & (one can verify this
fiber-by-fiber over geometric points of Y, reducing the claim to standard properties
of elliptic curves over fields). Denote by P the pullback of the Poincaré bundle via

E xqp & =8 xq &Y.

For a scheme U and points a,b € E(U), denote by & (a) the pullback of & via
a:U — &, and by P(a,b) the pullback of P via (a,b) : U — & xq; E. There are
canonical isomorphisms

P(a,b) = Q(a+b)® ()t © L)~
and
Pla,a) = (a) ® (a).

Given the way that (5.1.2) is constructed from &, the first isomorphism is essentially
a tautology. The second is a consequence of the isomorphisms

Q(2a) = Q(a)*° ®  (=a) =  (a)®*,
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which follow from the theorem of the cube [17, Theorem 1.1.3] and the invariance
of  under pullback by [—1] : & — &, respectively.

Definition 5.1.1. — The diagonal restriction

((]0’1 = (dlag)*‘P it QQ
is the line bundle of Jacobi forms of weight 0 and index 1 on £€. More generally,

Trm = I © 7w

is the line bundle of Jacobi forms of weight k and index m on &.

The isomorphism of the following proposition is presumably well-known. We in-
clude the proof in order to make explicit the normalization of the isomorphism (see
Remark 5.1.3 below, for example).

Proposition 5.1.2. — Letp: HxC — E(C) be the quotient map. The holomorphic line
bundle 35, on E(C) is isomorphic to the holomorphic line bundle whose sections over|

an open set % C E(C) are holomorphic functions F(7,z) on p~ (%) satisfying the
transformation laws

atr+b =z b omimes?
Fl— — | = F . d)F . g2rimez /(cT+d)
(cr+d’c7'+d> (r,2) - (ers+ d)" - e
and
(513) F(T, z+ ar + /8) L F(T, Z) . e—?ﬂim(a27-+2ozz).

Proof. — Let Jim, be the holomorphic line bundle on &(C) defined by the above
transformation laws.

By identifying the diagrams (5.1.1), a function f, defined on a I'-invariant open
subset of ) and satisfying the transformation law

F(E5) =10 e+

of a weight —1 modular form; defines a section 7 +— (7, f(7)) of the line bundle
I\($ x C) = Lie(£(C)) 2 ()~

on I'\$. This determines an isomorphism J; o = J1%. It now suffices to construct an
isomorphism Jo 1 = ¢/¢%, and then take tensor products.

Fix 7 € 9, set E; = C/(Zr + 7Z), and restrict both {J§% and Jo 1 to line bundles
on E, C £(C)/ The imaginary part of the hermitian form
2122
I(7)
on C restricts to a Riemann form on Z7 + Z. Using classical formulas for the Poincaré
bundle on complex abelian varieties, as found in the proof of [3, Theorem 2.5.1], the
restriction of o1 to the fiber E is isomorphic to the holomorphic line bundle deter-
mined by the Appell-Humbert data 2H, and the trivial character Z7r + Z — C*. The

H.(z1,22) =
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sections of this holomorphic line bundle are, by definition, holomorphic functions g,
on C satisfying the transformation law

gT(z 4 E) — gT(z) . e?wHT(z,l)+7rH,.(£,Z)
for all £ € Z1 + Z. If we set
F(r,2) = g:(2) 'e*”HT(Z’Z),

this transformation law becomes (5.1.3).

The above shows that ¢f§% and Jo are isomorphic when restricted to the fiber
over any point of Y(C), but such an isomorphism is only determined up to scaling
by C*. To pin down the scalars, and to get an isomorphism over the total space, use
the fact that both J3% and Jo;1 come (by construction) with canonical trivializations
along the zero section. By the Seesaw Theorem [3, Appendix A], there is a unique
isomorphism J8% = Jy,1 compatible with these trivializations. O

Remark 5.1.3. — The proof of Proposition 5.1.2 identifies a classical modular form

f(r) = > c(m)g™ of weight k and level I" with a holomorphic section of (w?yn)k,

again denoted f, satisfying an additional growth condition at the cusp. Under our
identification, the g-expansion principle takes the following form: if R C C is any
subring, then f is the analytification of a global section f € H(Y /R> w% / r) if and

only if ¢(m) € (2mi)* R for all m.

For 7 € $ and z € C, we denote by

V1(7,2) = Z ori(n+3) r42mi(n+§)(2—3)
nez

the classical Jacobi theta function, and by
77(7) A e7ri‘r/12 H(l _ eQnTriT)
n=1
Dedekind’s eta function. Set

o(r,z) & z%(@)ﬁ = g2 = ¢ ﬁ(l —¢qMA = ¢,

where g = €277 and (= e27%%,

n=1

Proposition 5.1.4.— The Jacobi form ©2* defines a global section
@24 S HO(S,gO’lg)
with divisor 24e, while (2win?)'? determines a nowhere vanishing section

(2min®)'? € HO(Cy,w}yQ).
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Proof. — It is a classical fact that (2min?)'? is a nowhere vanishing modular form of
weight 12. Noting Remark 5.1.3, the g-expansion principle shows that it descends to
a section on Y /@, and thus may be viewed as a rational section on Y. Another appli-
cation of the ¢g-expansion principle shows that its divisor has no vertical components.
Thus its divisor is trivial.

Classical formulas show that ©2* defines a holomorphic section of J§%, with divi-
sor 24e, and so the problem is to show that ©2* is defined over Q, and extends to a
section on the integral model with the stated divisor. One could presumably deduce
this from the g-expansion principle for Jacobi forms as in [29, 30]. We instead borrow
an argument from [51, §1.2], which requires only the more elementary g-expansion
principle for functions on &.

Let d be any positive integer. The bilinear relations (3.4.1) imply that the line
bundle 3,21 ® [d]*J51 on € is canonically trivial, and so

0(214 _ @24112 ® [d]*@_24

defines a meromorphic function on &(C). The crucial point is that §2* is actually a
rational function defined over Q, and extends to-a rational function on the integral
model & with divisor

(5.1.4) div(93") = 24(d*E[] — E[d)).
As in [51, p. 387], this follows by computing the divisor first in the complex fiber,
then using the explicit formula

24

24  2(d%—1) f—12d(d—1 (l—q"C)d2 (I—Q"C_l)dz
(7, 2) = e (] G209 Qe

n>0 n>0

and the g-expansion principle on-€ to see that the divisor has no vertical components.
The line bundle wclyz is trivial, and hence there are isomorphisms

Jo12 2 Q¥ =2 0(e)* ® W*wcllf =~ O(e)*.
Thus there is some ©24 € HO(S,gO,]_Q) with divisor 24e, and the rational function
534 _ éQ4d2 ® [d]*C:)_24

on & also has divisor (5.1.4).

Consider the meromorphic function p = ©2¢/6%* on &(C). By computing the
divisor in the complex fiber, we see that p is a nowhere vanishing holomorphic function,
and hence is constant. But this implies that

P = 3

By what was said above, the right hand side is (the analytification of) a nowhere
vanishing function on €. This implies that p"lQ_1 = 41, and the only way this can
hold for all d > 1 is if p = +1. O
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Now consider the tower of stacks

Y1(D) = Yo(D) =Y
over Spec(Z) parametrizing elliptic curves with Drinfeld T'y(D)-level structure,
T'o(D)-level structure, and no level structure, respectively. See [28, Chapter 3] or [15]
for the definitions. We denote by £ the universal elliptic curve over any one of these
bases, and view the line bundle of Jacobi forms o 12 as a line bundle on any one
of the three universal elliptic curves. Similarly, we view the Jacobi forms ©2* and
(2min?)12 of Proposition 5.1.4 as being defined over any one of these bases.
The following lemma will be needed in §5.3.

Lemma 5.1.5. — Let Q : Y1(D) — & be the universal D-torsion point. For any r | D
the line bundle

(5.1.5) ® (6Q)*Jo,12

beZ/DZ
b#£0
rb=0

on Y1(D) 1is canonically trivial, and its section

- ® Qe
beZ/DZ
b#0
rb=0

admits a canonical descent, denoted the same way, to a section of the trivial bundle
on Yo(D).

Proof. — If x1,...,x, are integers representing the r-torsion subgroup of Z/DZ, then
6> 22 = 0 (mod D). The bilinear relations (3.4.1) therefore provide a canonical
isomorphism

Q) PR, = (K P(Q,126°Q) = P(Q,e) = Oy, (p)

beZ/DZ beZ/DZ
b#0 b#0
rb=0 rb=0

of line bundles on Y, (D). This is the desired trivialization of (5.1.5). The section F24
is obviously invariant under the action of the diamond operators on Y1 (D), and so
descends to Yo(D). O

5.2. Borcherds’ quadratic identity. — For the remainder of §5 we denote by
Xk : (Z/DZ)* — {1} the Dirichlet character determined by the extension k/Q,
abbreviate

(5.2.1) X=X %

and fix a weakly holomorphic form

(5.2.2) fr)="Y_ c(m)g™ € My%,(D,x)
m>3>—00

with ¢(m) € Z for all m < 0.
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For a proper cusp label representative ® as in Definition 3.1.1, recall the self-dual
hermitian O-lattice Lo of signature (n — 2, 0) defined by (3.1.4). The hermitian form
on Lo determines a quadratic form @Q(z) = (z,x), with associated Z-bilinear form
[x1,22] = Trg/g(z1, 22) of signature (2n — 4,0).

The modularity criterion of Theorem 4.2.3 implies the following identity of]
quadratic forms on Ly ® R.

Proposition 5.2.1 (Borcherds’ quadratic identity). — For all u € Lo ® R,

[, u]

Do Q@) [wal® = 5 20 3 e(-Q(@)): a2,
xz€Lg z€Lo
Proof. — The homogeneous polynomial

P(u,v) = [u,v]* — o 4

on Lo ® R is harmonic in both variables u and v. For any fixed u € Ly ® R there is a,
corresponding theta series

0(r,u,P) = > P(u,z) g™ € 8,(D,x).
x€Lg

The modularity criterion of Theorem 4.2.3 therefore shows that

I I S (e .

m>0 xz€Lg
Q(z)=m
for all u € Ly ® R. This implies the assertion. O

Recall from (3.6.2) that every x € Ly determines a diagram

(5.2.3) By — .8

|,

Ap —2+Yo(D),

where, changing notation slightly from §5.1, Yo(D) is now the open modular curve
over O. Recall also that Be carries a distinguished line bundle Ls defined by
(3.3.1), used to define the Fourier-Jacobi expansions of (3.8.1). We will use Borcherds’
quadratic identity to relate the line bundle Lg to the line bundle o 1 of Jacobi forms
on &.

Proposition 5.2.2. — The rational number
m-c(—m
(5.2.4) multe(f) = Z # -#{x € Ly : Q(z) = m}
m>0
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lies in 7, and there is a canonical isomorphism

aaé.multqp(f)g ® ® nggfl—m)

m>0 xz€Lg
Q(z)=m
of line bundles on Bsy.
Proof. — Proposition 5.2.1 implies the equality of hermitian forms
(u,v)
> Q@) - {uw) - z0) = ok 37 (- Q) ]
x€Lg xE€Lg

= (u,v) - multe (f)

for all u,v € Lg. As Ly is self-dual, we may choose w and v so that (u,v) = 1, and
the integrality of multe (f) follows from the integrality of c(—m).

Set E = & xq),(p) A, and use Proposition 3.4.4 to identify Be = E ® Lo. The
pullback of the line bundle

® ® ]zg(?c( m) ~ ng@w( Q(z))

m>0 xz€Lg x€Lg
Q(z)=m

via any T-valued point a = > t; ® y; € E(T).® Ly is, in the notation of § 3.4,

(=Q(=))
® ®E<Z<yi,$>ti,z<yj,$>t ) = ® ® O <yzv > <l',yj>'ti,tj)
z€Lg [ 7 i,j TELg
= QP ((yiy) - taty) ™
i,J
= Ppor,(a,a)@™ite)

> Qs (a) 100,

This, along with the isomorphism Qggr, = Lo of Proposition 3.4.4, proves that

2-mult ~ 2-mult ~ -k cge(—m
D&q) 2 (f) QE@LO a(f) ® ® ngofl ). 0

m>0 xz€Lg
Q(z)=m
5.3. The unitary Borcherds product. — We now state our main results on Borcherds
products.
For a prime p dividing D define
(5.3.1) Yo =€, "+ (D,p)y - invy (V) € {£1, £i},

where inv,(V},) is the invariant of V,, = Homy (W, W) ®¢ Q, in the sense of (1.7.3),
and

o 1 ifp=1 (mod4)
P i ifp=3 (mod 4).
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It is equal to the local Weil index of the Weil representation of SLqo(Z,) on
Sr, C S(Vp), where V,, is viewed as a quadratic space as in (2.1.6). This is explained
in more detail in §8.1. For any r dividing D we define

(5.3.2) v =] -
plr

Let ¢,(0) denote the constant term of f at the cusp oo, as in‘Definition 4.1.1, and

define
k= Z% - ¢ (0).
r|D

We will see later in Corollary 6.1.4 that all ~, - ¢.(0) € Q.
For every m > 0 define a divisor

(533) CBKra(m) = % Z #{-'17 € Lo: <SC,JL'> N m} '8;{ra(¢))
Lo

with rational coefficients on S¥,,. Here the sum is over all K-equivalence classes of]
proper cusp label representatives ® in the sense of § 3.2, Ly is the hermitian O-module
of signature (n — 2,0) defined by (3.1.4), and S,.(®) is the boundary divisor of]
Theorem 3.7.1. It follows immediately from the definition (5.2.4) that

> e(=m) - Bira(m) =)~ multe(f) - Sicra(®).
m>0 Lo}
For m > 0 define the total special divisor

Kra(M) = Liega (M) + Brcra(m),
where Zj; .. (m) is the special divisor defined on the open Shimura variety in § 2.5, and
extended to the toroidal compactification in Theorem 3.7.1.
The following theorems assert the existence of Borcherds products on S, and
Spap having prescribed divisors and prescribed leading Fourier-Jacobi coefficients.
Their proofs will occupy all of §6.

Theorem 5.3.1. — After possibly replacing the form f of (5.2.2) by a positive integen
multiple, there is a rational section ¥ (f) of the line bundle w* on Sk, with the
following properties.

1. In the generic fiber, the divisor of ¥ (f) is
div((f) e = Y e(=m) - Zigh(m) ja.-
m>0

2. For every proper cusp label representative ®, the Fourier-Jacobi expansion
of ¥(f), in the sense of (3.8.1), along the boundary divisor

Ag\Bo = Sk;a(®)
has the form
() = g™ DY 4y - o,

£>0
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cﬂgmltq’(f)-'_e over Bg.

3. For any ® as above, the leading coefficient vy admits a factorization

o = P ® PE ® Py,

where the three terms on the right are defined as follows.

(a)

(c)

Proposition 3.5.1 provides us with an isomorphism

v lwg J oy
of line bundles on Ag, where j : Ay — Yo(D) is the morphism of (5.2.3),
and wq = Lie(€)~" is the pullback via Yo(D) — Y of the line bundle
of weight one modular forms. Pulling back the modular form (2min?)1? of
Proposition 5.1.4 defines a nowhere vanishing section

§*2min®)F € HO(Ag, 0 " wk).
Using the canonical inclusion we C 0 wg, define
Py = j*(2min®)";
but viewed as a rational section of wf% over Ag. Denote in the same way its
pullback to Bs.
Recalling the function
F'= @ (@) e™
beZ/ D7,

b0

rb=0
on Yo(D) of Lemma 5.1.5, define a rational function

Pgert — ®j*Frﬁ’rCr(0)

r|D
r>1

on As, and again pull back to Bs.
Using Proposition'5.2.2, define a rational section

qur;or — ® ® ];ec(fm)

m>0 xz€Lg
(z,x)=m

of the line bundle aﬁgu“q’(f) on Bg.

These properties determine ¥ (f) uniquely.

Remark 5.3.2. — Inreplacing f by a positive integer multiple, we are tacitly assuming
that the constants v,c.(0) and ¢(—m) are integer multiples of 24 for all » | D and all
m > 0. This is necessary in order to guarantee k € 12Z, and to make sense of the
three factors (27in2)*, Pir and Pyert.

In fact, we can strengthen Theorem 5.3.1 by computing precisely the divisor of ¥ ( f)

on the integral model Si..,.
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Theorem 5.3.3. — The rational section 1 (f) of w* has divisor

div((f)) = Y e(—m) - Zigh(m)

m>0

Exc
+k- (2 —div(§ ) + Z%cr(o ZSKm/Fp

r|D plr

YUY gl o a)=m) B,

m>0 s€mo(Sing)

where p C Oy is the unique prime above p, L is the self-dual Hermitian Oy-lattice
defined in § 2.6, and Excs C Exc is the fiber over the component s € mo(Sing). Recall
that 6 =+/—D € k.

It is possible to give a statement analogous to Theorem 5.3.3 for the integral
model S, . To do this we first define, exactly as in (5.3.3), a Cartier divisor

(y‘%,o;p q«JPap + 2CBP&P( )

with rational coeflicients on 81";ap Here Y}, (m) is the Cartier divisor of Theo-
rem §3.7.1, and

Bpap(m) = —— Z #{z € Lo (z,2) = m} - Spop (P).

It is clear from Theorem 3.7.1 that

(5.3.4) 2-Ziek(m) =Ygk, (m)+ > #{z € L,: (z,2) = m} - Exc,,
s€mo(Sing)
where Y32l (m) denotes the pullback of Yy (m) via Sk, — Sp,,-
The 1somorphlsm

0?2 Qk,. ® O(Exc)

of Theorem 3.7.1 identifies w?* = QKra in the generic fiber of Sk,,, allowing us to

view 1 (f)2 as a rational section of Q.. As Stra — Sk, 1s an isomorphism in

Pap
the generic fiber, this section descends to a rational section of the line bundle oF

Pap
on Sp, .-

Theorem 5.3.4. — When viewed as a rational section of Qlliap, the Borcherds prod-
uct ¥ (f)? has divisor

div(yp(f)%) = e(—m) - Yk, (m) — 2k - div(3) + 2> 7 (0) Y Spap JE,

m>0 r|D plr

These three theorems will be proved simultaneously in § 6. Briefly, we will map our
unitary Shimura variety Sh(G,D) to an orthogonal Shimura variety, where a mero-
morphic Borcherds product is already known to exist. If we pull back this Borcherds
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product to Sh(G,D)(C), the leading coefficient in its analytic Fourier-Jacobi expan-
sion is known from [32], up to multiplication by some unknown constants of absolute
value 1.

By converting this analytic Fourier-Jacobi expansion into algebraic language, we
will deduce the existence of a Borcherds product 1 (f) satisfying all of the properties
stated in Theorem 5.3.1, up to some unknown constants in the leading Fourier-Jacobi
coefficient. These unknown constants are the xg’s appearing in Proposition 6.4.1. We
then rescale the Borcherds product to make many k¢ = 1 simultaneously.

After such a rescaling, the divisor of % (f)? on Spap can be computed from the
Fourier-Jacobi expansions, and agrees with the divisor written in Theorem 5.3.4.
Pulling back that divisor calculation via Sg,, — S&p,,, and using Theorem 2.6.3,
yields the divisor of Theorem 5.3.3.

Using the above divisor calculations, we prove that all kg are roots of unity. Thus,
after replacing f by a multiple, which replaces ¥ (f) by a power, we can force all
ke = 1, completing the proofs.

5.4. A divisor calculation at the boundary. — Let ® be a proper cusp label repre-
sentative for (G,D). The following proposition is a key ingredient in the proofs of
Theorems 5.3.1, 5.3.3, and 5.3.4.

Proposition 5.4.1. — The rational sections Py, Phorand Pyt of the line bundles w%,
oﬂgu“‘b(ﬂ, and Og, , respectively, have divisors

div(Pg) ==k div(d)
div(Pp) =) e(—m)Ze(m)

m>0
div(PE™) =3 1,6 (0) 3 Bays,.
r|D plr

In particular, the divisor of P£°r is purely horizontal (Proposition 3.6.2), while the
divisors of Pg and Py are purely vertical.

Proof. — By Proposition 5.1.4 the section
§*2rin®)* € HO(Ap, 07 whk) = HO(CUO(D),w%)

has trivial divisor. When we use the inclusion we C 9 lwg to view it instead as a
rational section Pj of wg, its divisor becomes div(6~*). This proves the first equality.
To prove the remaining two equalities, let & — UYo(D) be the universal elliptic
curve, and denote by e : Yo(D) — & the O-section. It is an effective Cartier divisor
on &.
Directly from the definition of Pi°" we have the equality
div(Pyr) = Y c(=m) 3 div(jze%).

24
m>0 x€Lg

(@, x)y=m
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Combining Proposition 5.1.4 with (3.6.1) shows that

Z div(j;0%*) = Z 2457 (e) = Z 24Zs () = 24ZLa(m),
(o) (o) (o)

and the first equality follows immediately.
Recall the morphism j : Ag — Yo(D) of §3.6. For the second equality it suffices
to prove that the function F?* on Yo (D) defined in Lemma 5.1.5 satisfies

(5.4.1) div(j* F?*) = 24 A, -
plr
Let C C & be the universal cyclic subgroup scheme of order D. For each s | D

denote by C[s] C C the s-torsion subgroup, and by C[s]* < C|s] the closed subscheme
of generators. This is defined as follows. Noting that

cls) =TI ¢l

pls

we define
ols)* = [ cll,
pls
where C[p]* denotes the closed subscheme of generators of C[p] as in [21, § 3.3]. Note
that C[p]* coincides with the subscheme of points of exact order p Z (see [21, Re-
mark 3.3.2]) which allows the comparison with the formulation of the moduli problem
in [28, Chapter 3]. Here and in the sequel, we are using [21, §3.3] as a convenient
summary of Oort-Tate theory (see also [19]) and of facts from [28] and [15].
There is an equality of Cartier divisors

idiv(Ff‘l) = (Clr]—e) xg, Yo(D) = Z (Clsl™ xg,c Yo(D))
s|r

s#1

on Yo(D). Indeed, one can check this after pullback to Y1 (D), where it is clear from
Proposition 5.1.4, which asserts that the divisor of the section ©2* appearing in the
definition of F?* is equal to 24e. If s is divisible by two distinct primes then

(Cls]* xg.e Yo(D)) =0,
and hence

div(F?) = 243" (Clp)* xg.. Yo(D))-

plr

Now pull back this equality of Cartier divisors by j. Recall that j is defined as the
composition

Ap = M0y~ Yo(D),
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where the isomorphism is the one provided by Proposition 3.4.4, and the arrow la-
beled i endows the universal CM elliptic curve EE — My o) with its cyclic subgroup
scheme E[4]. Thus

(5.4.2) *div(F2) =24 (Ep]* xp.e M),
plr

where p denotes the unique prime ideal in Oy, over p.
Fix a geometric point z : Spec(F‘;lg) — My 0y, and view 2z also as a geometric
point of E or & using

m(l’o) i) E L) 8
Let Op . and Og , denote the completed étale local rings of E and & at z.
There is an isomorphism

OS,z = W[[X7 Yv Z]]/(XY . wp)

for some uniformizer w, in the Witt ring W = W(Fglg). Compare with [21, The-
orem 3.3.1]. Under this isomorphism the O-section of & is defined by the equation
Z =0, and the divisor C[p]* is defined by ZP?~! =X = 0. Moreover, noting that the
completed étale local ring of My o) at z can be identified with O ® W, the natural
map Og , — O, is identified with the quotient map

WI(X,Y, Z)|/(XY —w,) - W[X,Y, Z]] /(XY —wp, X —uY)

for some u € W*.
Under these identifications, the closed immersion

Ep]* xge My1,0) = Mya,0

corresponds, on the level of completed local rings, to the quotient map

Oy, gy,e == WX, Y, Z]|/(XY = wp, X — uY, )
F;lg —=WI[X,Y, Z]]/(XY — wp, X —uY,Z,ZP~" — X).

This implies that
Ep]™ xm,e Mya0) = My o) e

The equality (5.4.1) is clear from this and (5.4.2). O

6. Calculation of the Borcherds product divisor

In this section we prove Theorems 5.3.1, 5.3.3, and 5.3.4. We assume throughout
that n > 3.

Throughout §6 we keep f as in (5.2.2), and again assume that ¢(—m) € Z for all
m > 0. Recall that V = Homy (Wy, W) is endowed with the hermitian form (z,y) of
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(2.1.5), as well as the Q-bilinear form [z, y] of (2.1.6). The associated quadratic form
is
[z, z]

Q) = (a,2) =

6.1. Vector-valued modular forms. — Let L C V be any Og-lattice, self-dual with
respect to the hermitian form. The dual lattice of L with respect to the bilinear
form [.,.] is L' =0~ 'L.

Let w be the restriction to SLy(Z) of the Weil representation-of SLy(Q) (associ-
ated with the standard additive character of A/Q) on the Schwartz-Bruhat functions
on L ®z Ay. The restriction of w to SLo(Z) preserves the subspace Sy = C[L'/L] of
Schwartz-Bruhat functions that are supported on L’ and invariant under translations
by L. We obtain a representation

wr, - SLQ(Z) — Aut(SL).
For € L'/L, we denote by ¢, € Si the characteristic function of p.
Remark 6.1.1. — The conjugate representation wy on Sy, defined by

wL(7)(9) = wr(V)(9)
for ¢ € S, is the representation denoted py, in-[4,7,9].

Recall the scalar valued modular form
fr)=Y ‘elm)-q™ € My®5,(D,x)
m>—o00
of (5.2.2), and continue to assume that ¢(m) € Z for all m < 0. We will convert f into

a C[L'/L]-valued modular form f, to be used as input for Borcherds’ construction of

meromorphic modular forms on orthogonal Shimura varieties. The restriction of wy,

to To(D) acts on the line C - ¢ via the character x = x7 2, and hence the induced

function
(6.1.1) fry= "> (flan) wp() o
v€T0(D)\SL2(Z)

is an Sp-valued weakly holomorphic modular form for SLy(Z) of weight 2 — n with
representation wy,. Its Fourier expansion is denoted

(6.1.2) foy= 3 ém)-qm,
m>—o0

and we denote by ¢(m, ) the value of é(m) € S, at a coset u € L'/ L.
For any r | D let 7, € {#1,4i} be as in (5.3.2), and let c,(m) be the m'* Fourier
coefficient of f at the cusp oo, as in (4.1.1). For any p € L'/L define r, | D by

(6.1.3) ru= ] »,

pup#0

where p,, € L; /Ly is the p-component of .

ASTERISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 89

Proposition 6.1.2. — For all m € Q the coefficients &(m) € Sy, satisfy

Z'I‘Ml'l‘lD Yr - CT(mr) me = _Q(M) (mOd Z)}

0 otherwise.

&(m, p) = {
Moreover, for m < 0 we have

oy — {em) i n=0,
A0 ifuo,

and the constant term off s given by

&0,pu) = Z Vr - cr(0):

ru|r|D

Proof. — The first formula is a special case of results of Scheithauer [50, Section 5].
For the reader’s benefit we provide a direct proof in'§ 8.2.

The formula for the m = 0 coefficient is immediate from the general formula. So is
the formula for m < 0, using the fact that the singularities of f are supported at the
cusp at oo. O

Remark 6.1.3. — The first formula of Proposition 6.1.2 actually also holds for f in
the larger space M;_, (D, ).

Corollary 6.1.4. — The coefficients c(m).and é(m) satisfy the following:
1. The ¢(m) are rational for-all m.
2. The é(m, ) are rational for all m and p, and are integral if m < 0.

3. For all v | D we have 7+ ¢-(0) € Q. In particular

¢(0,0) = Z%" ¢ (0) € Q.

r|D

Proof. — For the first claim, fix any ¢ € Aut(C/Q). The form f7 — f € MQ'ffl is
holomorphic at all cusps-other than oo, and vanishes at the cusp oo by the assumption
that as ¢(m) € Z for m < 0. Hence f° — f is a holomorphic modular form of weight
2 —n < 0, and therefore vanishes identically. It follows that ¢(m) € Q for all m.

Now consider-the second claim. In view of the Proposition 6.1.2 the coefli-
cients &m,u) of f with m < 0 are integers. Hence, for any o € Aut(C/Q), the
function f” — f is a holomorphic modular form of weight 2 —n < 0, which is therefore
identically 0. Therefore f has rational Fourier coefficients.

The third claim follows from the second claim and the formula for the constant
term of f given in Proposition 6.1.2. O
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6.2. Construction of the Borcherds product. — We now construct the Borcherds prod-
uct 9 (f) of Theorem 5.3.1 as the pullback of a Borcherds product on the orthogonal
Shimura variety defined by the quadratic space (V, Q). Useful references here include
[4,7,37,22].

After Corollary 6.1.4 we may replace f by a positive integer multiple in order to
assume that ¢(—m) € 24Z for all m > 0, and that ~,c,(0) € 24Z for all r | D. In
particular the rational number

k = ¢(0,0)
of Corollary 6.1.4 is an integer. Compare with Remark 5.3.2:
Define a hermitian domain

(6.2.1) D = {w € V(C) : [w,w] =0, [w,w] < 0}/C*.

Let & be the tautological bundle on D, whose fiber at w is the line Cw C V(C).
The group of real points of SO(V') acts on (6.2.1), and this action lifts to an action
on @*".

As in Remark 2.1.2, any point z € D determines a line Cw C £V(C). This con-

struction defines a closed immersion
(6.2.2) DD,

under which ®@*" pulls back to the line bundle w®® of §2.4. The hermitian domain D
has two connected components. Let D+ C D be the connected component contain-
ing D.

For a fixed g € G(Ay), we apply the.constructions of §6.1 to the input form f and
the self-dual hermitian Og-lattice

L= Homok (gag,ga) cV.

The result is a vector-valued ‘modular form f of weight 2 — n and representation
wy, : SLy(Z) — Sp. The form f determines a Borcherds product ¥(f) on DT; see [4,
Theorem 13.3] and Theorem 7:2.4. For us it is more convenient to use the rescaled
Borcherds product

(6.2.3) Y (f) = 2mi)“ 00T (2f)

determined by 2f. It is-a meromorphic section of (&*")*.

The subgroup SO(L)* C SO(L) of elements preserving the component D+ acts
on I/~Jg( f) through a finite order character [6]. Replacing f by mjf has the effect
of replacing 1Z7g( )by 1,Z~Jg( f)™, and so after replacing f by a multiple we assume
that b, (f) is'invariant under this action.

Denote by 1,4(f) the pullback of z/;g (f) via the map

(G(@) NgKg™)\D — SO(L)"\D*

induced by (6.2.2). It is a meromorphic section of (»**)* on the connected component

(G(Q) N gKg~ND =52, gh(@, D)(C).
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By repeating the construction for all g € G(Q)\G(As)/K, we obtain a meromorphic
section 1 (f) of the line bundle (w®*)* on

Sh(G,D)(C) = Skra(C).

After rescaling on every connected component by a complex constant of absolute
value 1, this will be the section whose existence is asserted in Theorem 5.3.1.

Proposition 6.2.1. — The divisor of 1(f) is
div((f)) = Y e(=m) - Zicra(m)(C).

m>0

Proof. — The divisor of 1[19( f) on D+ was computed by Borcherds in terms of the
Fourier coefficients &(—m) of f, and from this it is easy to obtain a formula for the
divisor of 14(f) on D. See |7, Theorem 3.22| and [22, Theorem 8.1| for the details.
The claim therefore follows by using Proposition 6.1.2 to rewrite this formula in terms
of the ¢(—m), and comparing with the explicit description of Zx(m)(C) stated in
Remark 2.5.2. U

6.3. Analytic Fourier-Jacobi coefficients. — We return to the notation of §3.9. Thus
® = (P, g) is a proper cusp label representative for (G, D), we have chosen
s : Resk/9Gm — Qo
as in Lemma 3.9.2, and have fixed a € k. This data determines a lattice
L = Homo, (s(a)gao, s(a)ga),
and Witt decompositions
V=VaeVweVi,, L=L_1®Ly® L.

Choose bases e_1,f_1 € L_; and ey, f; € L as in §3.9.
Imitating the construction of (3.9.16) yields a commutative diagram

(6.2.2)

D Dt
w’—’(wmf)J/ lw'—’(ﬂwoyﬁ)

eV(C) x C———— 9 x (C) x C

in which the vertical arrows are open immersions, and the horizontal arrows are closed
immersions. The vertical arrow on the right is defined as follows: Any w € D pairs
nontrivially with the isotropic vector f_;, and so may be scaled so that [w,f_;] = 1.
This allows us to identify

D ={w e V(C) : [w,w] =0, [w,w] <0, [w,f_,] =1}.
Using this model, any w € D+ has the form
w=—fe_1+ (T§ — Q(U}O))f,;[ + wg +Te; + 1
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with 7 € 9, wy € Vp(C), and £ € C. The bottom horizontal arrow is (wg, &) — (7,wo, §),
where 7 is determined by the relation (3.9.6).

The construction above singles out a nowhere vanishing section of @*", whose value
at an isotropic line Cw is the unique vector in that line with [w,f_;] = 1. As in the
discussion leading to (3.9.18), we obtain a trivialization

[ ] 6™ = 0,

Now consider the Borcherds product 1/35((1) g(f) on D+ determined by the lattice L
above (that is, replace g by s(a)g throughout §6.2). It is a meromorphic section
of (&*")F, and we use the trivialization above to identify it with a meromorphic
function. In a neighborhood of the rational boundary component associated to the
isotropic plane V_; C V, this meromorphic function has a product expansion.

Proposition 6.3.1 ([32]). — There are positive constants A and B with the following
property: For all points w € DT satisfying

Q(Im(wo)) B

Im(¢) — Tm(7) > Alm(7) + Tm(r)’

there is a factorization
’l/;s(a)g(f) = k- (2mi)" - (1) - ¥E - Py(7) - Pi(7, wp) - Pa(T,w0,€)
in which k € C* has absolute value 1, n.is the Dedekind n-function, and
1
IZlQbeZZHDZé(O - >—27§M§0 o1 (m — Q(z)).
The factors Py and Py are defined by

b\ SO B
1 e(~3)

beZ/DZ
b£0

(T, wo) H H O(r, [wo, = )C(_m).

m>0 xz€Lg
Q(z)=m

and

The remaining factor-is

Py (T, wo, S) _ H (1 _ e27ric£627riaTe27rib/De—27ri[a:,w0

z€d Lo
a€Z
beZ/DZ
c€Z>o

])2~6(ac—Q(x)>u)

)

where | = —ae_1 — %f,l +x+cep €5L/L.

ASTERISQUE 421



MODULARITY OF UNITARY GENERATING SERIES 93

Proof. — This is just a restatement of [32, Corollary 2.3], with some simplifications
arising from the fact that the vector-valued form f used to define the Borcherds
product is induced from a scalar-valued form via (6.1.1).

A more detailed description of how these expressions arise from the general formulas
in [32] is given in the appendix. O

If we pull back the formula for the Borcherds product 1,[35(,1)9 (f) found in Propo-
sition 6.3.1 via the closed immersion (6.2.2), we obtain a formula for the Borcherds
product %,(q)4(f) on the connected component

(G(Q) N s(a)gKkg™"s(a) N\D 2292 8n(G, D) (C),
from which we can read off the leading analytic Fourier-Jacobi coeflicient.

Corollary 6.3.2. — The analytic Fourier-Jacobi expansion of ¥(f), in the sense of
(3.9.18), has the form

1o(f) = S FI (o (f))(wo) - ¢,

0>1

where I is the integer of Proposition 6.3.1. The'leading coefficient FJga) (WY(f)), viewed
as a function on Vo(R) as in the discussion leading to (3.9.14), is given by

(6.3.1) FIE (4(£))(wo) = - (2mi)* - n(r)?* - Po() - Pi(r, o),
where T € §) is determined by (3.9.6),

ro =TI T ® (ﬂ l,)))wr(m

r|DbeZ/DZ
b#£0
rb=0

and

Pirw) =[] TI ©(r (wo,a) ™.

m>0 xzE€Lg
Q(z)=m

The constant k € C, which depends on both ® and a, has absolute value 1.

Proof. — Using Proposition 6.3.1, the pullback of 'J)s(a)g (f) via (6.2.2) factors as a
product
Yy()g(f) =1k 2mi)* - n* (1) - 2 &L . Py () Py (7, w0) Pa(T, w0, £),

where £ € C* and wg € V(R) = ¢V (C). The parameter 7 € §) is now fixed, determined
by (3.9.6). The equality

b &0,5f-1) p\ 7rer (@)
I o(np) = =III o(~p)
beZ/DZ r|D beZ/DZ
b#£0 b#£0
THb=0
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follows from Proposition 6.1.2, and allows us to rewrite P, in the stated form. To
rewrite the factor P; in terms of (.,.) instead of [.,.], use the commutative diagram of
Remark 3.9.4. Finally, as Im(¢) — oo, so ¢ = €*™ — 0, the factor P, converges to 1.
This P, does not contribute to the leading Fourier-Jacobi coeflicient. O

Proposition 6.3.3. — The integer I defined in Proposition 6.3.1 is equal to the integen
multe (f) defined by (5.2.4), and the product (6.3.1) satisfies the transformation law
(3.9.14) with ¢ = multg(f).

Proof. — The Fourier-Jacobi coefficient FJga)(z/;( f)) appearing on the left hand side
of (6.3.1) is, by definition, a section of the line bundle QJ/,, oL O E(@) @ L. When
viewed as a function of the variable wy € Vp(R) using our-explicit coordinates, it
therefore satisfies the transformation law (3.9.14) with £ =1.

Now consider the right hand side of (6.3.1), and recall that 7 is fixed, determined
by (3.9.6). In our explicit coordinates the function ©(r, (wg,z))?* of wy € Vo(R) is
identified with a section of the line bundle ¢ 12 on E(@) @ L; this is clear from the
definition of j, in (3.6.2), and Proposition 5.1.4. Thus P; (7, wp), and hence the entire
right hand side of (6.3.1), defines a section of the line bundle

sk cge(—m) /2 ~ p2-multe (f/2) ~ multe (f
® ® chc7051 )/ =L 72 <a>§£)’

m>0 xz€Lg
Q(z)=m
where the isomorphisms are those of Proposition 5.2.2 and Proposition 3.4.4. This
implies that the right hand side of (6.3.1) satisfies the transformation law (3.9.14)
with £ = mults (f).

A function on V5 (RR) cannot satisfy the transformation law (3.9.14) for two different
values of ¢, and hence I = multe(f). Note that we are using here the standing
hypothesis n > 2; if n = 2 then V5(R) = 0, and the transformation law (3.9.14) is
vacuous.

For a more direct proof of the proposition, see §8.4. O

6.4. Algebraization and descent. — The following weak form of Theorem 5.3.1 shows
that ¥ (f) is algebraic, and provides an algebraic interpretation of its leading Fourier-
Jacobi coefficients.

Proposition 6.4.1. — The meromorphic section ¥ (f) is the analytification of a ratio-
nal section of the line bundle w* on Skra/c. This rational section satisfies the following
properties:

1. When viewed as a rational section over the toroidal compactification,

div(¥ () = D e(=m) - Zera(m) e + Y multe(f) - Sicra(®) -
P

m>0
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2. For every proper cusp label representative ®, the Fourier-Jacobi expansion
of ¥(f) along Sk, (®),c, in the sense of § 3.8, has the form

P(f) = g™ DY 4y g

>0

3. The leading coefficient 1y, a rational section of w% ® aﬁgmltq’(f) over By c,
factors as

Yo = ke ® Py ® PL" ® Py
for a unique section

K € HO(A@/(C, O:L¢/(C)'

This section satisfies |ke(2)| = 1 at every complex point 2z € A (C). (The other
factors appearing on the right hand side were defined in Theorem 5.3.1.)

Proof. — Using Corollary 6.3.2 and Proposition 6.3.3, one sees that ¥ (f) extends to
a meromorphic section of w* over the toroidal compactification S, (C), vanishing to
order I = mults(f) along the closed stratum

Sik(ra(q))/c C Sf(ra/C

indexed by a proper cusp label representative &

The calculation of the divisor of ¥ (f) over the open Shimura variety Sk;a(C) is
Proposition 6.2.1. The algebraicity claim now follows from GAGA (using the fact that
the divisor is already known to be algebraic), proving all parts of the first claim. The
second and third claims are just a translation of Corollary 6.3.2 into the algebraic
language of Theorem 5.3.1, using the explicit coordinates of §3.9 and the change of
notation (2min?)* = P, Py = Py and P, = P O

We now prove that ¥ (f), after minor rescaling, descends to k. This can be deduced
from the analogous statement about Borcherds products on orthogonal Shimura va-
rieties proved in [26], but in the unitary case there is a much more elementary proof.
This will require the following two lemmas.

Lemma 6.4.2. — The geometric components of Sh(G,D) are defined over the Hilbert
class field K™ of k, and each such component has trivial stabilizer in Gal(k™® /).

Proof. — One could prove this using Deligne’s reciprocity law for connected com-
ponents of Shimura varieties [43, § 13], but it also follows easily from the theory of
toroidal compactification.

Our assumption that n > 2 guarantees that every connected component of 8j . /c
contains some connected component of the boundary. It is a part ® of Theorem 3.7.1
that all such boundary components are defined over the Hilbert class field, and it

(8) This particular part of Theorem 3.7.1 follows from the reciprocity law for the boundary compo-
nents of WLE:El H proved in [24, Proposition 2.6.2|.
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follows that the same is true for components of Sy . e The same is therefore true for
the components of the interior

8Kra/C = Sh(GaCD)/(C
The claim about stabilizers follows from the open and closed immersion
Sh(G,D) € M0y Xk M(n—1,1)

of (2.2.2), along with the classical fact (from the theory of complex multiplication
of elliptic curves) that the geometric components of M(; oy form a simply transitive
Gal(kHP /k)-set. O

The lemma allows us to choose a set of connected components

{Xz} C mo (Sh(G, @)/kHilb)

in such a way that

Sh(G, D) jguin = | | | o(X;).

i ocGal(kHilb /k)

For each index 4, pick g; € G(Ay) in such a way that X;(C) is equal to the image of

(GQ) N g:Kg)N\D 2=, sh(@, D)(C).

Choose an isotropic k-line J C W, let. P C G be its stabilizer, and define a proper
cusp label representative ®; = (P,g;). The above choices pick out one boundary
component on every component.of the toroidal compactification, as the following
lemma demonstrates.

Lemma 6.4.3. — The natural maps
Ui Sf(ra(éi) B Sik{ra

/

L; A ——— LI; Be,

N

I_li SEap(q)i) — 81*3ap

IR

induce bijections on connected components. The same is true after base change to k
or C.

Proof. — Let X} C SI’Eap((C) be the closure of X;. By examining the complex an-
alytic construction of the toroidal compactification [24, 39, 47|, one sees that some

component of the divisor 8¢, (®;)(C) lies on X.
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Recall from Theorem 3.7.1 that the components of Sp, (®;)(C) are defined
over kM and that the action of Gal(k™!"/k) is simply transitive. It follows
immediately that

Si‘é’ap(@l)(c) - |_| U(X:)a
c€Gal(kHilP /k)
and the inclusion induces a bijection on components. By Proposition 3.2.1 and the
isomorphism of Proposition 3.3.3, the quotient map

induces a bijection on connected components, and both maps Co — Bs — As have
geometrically connected fibers (the first is a G,,-torsor, and the second is an abelian
scheme). We deduce that all maps in

Ag,(C) — Ba,(C) = Aa,\Ba, (C) = Sicra(®i)(C) = Sp,p (9:)(C)

induce bijections on connected components.

The above proves the claim over C, and the claim over k follows formally from
this. The claim for integral models follows from the claim in the generic fiber, using
the fact that all integral models in question are.normal and flat over O. O

Proposition 6.4.4. — After possibly rescaling by.a constant of absolute value 1 on every
connected component of 8f<ra/c, the Borcherds product 1(f) is defined over k, and
the sections of Proposition 6.4.1 satisfy

ko € HO(O‘%/M O:Lq)/k)

for all proper cusp label representatives ®. Furthermore, we may arrange that ke, =1
for all 1.

Proof. — Lemma 6.4.3 establishes a bijection between the connected components
of 8%, (C) and the finite set | |, A, (C). On the component indexed by z € Ag,(C),
rescale ¥ (f) by ke, (z) 1. For this rescaled 1 (f) we have kg, = 1 for all i.

Suppose o € Aut(C/k). The first claim of Proposition 6.4.1 implies that the divisor
of ¥(f), when computed onthe compactification Sj . /oo 18 defined over k. Therefore
o(Y(f))/¥(f) has trivial divisor, and so is constant on every connected component.

By the third claim of Proposition 6.4.1, the leading coefficient in the Fourier-Jacobi
expansion of ¥(f) along the boundary stratum Si,,(®;) is

Po = Pgi ® ch‘;r & P%f”,
which is defined over k. From this it follows that o(1(f)) /v (f) is identically equal to 1
on every connected component of S . /C meeting this boundary stratum. Varying 4
and using Lemma 6.4.3 shows that o(¢(f)) = ¥(f).
This proves that ¥ (f) is defined over k, hence so are all of its Fourier-Jacobi
coefficients along all boundary strata Sk,,(®). Appealing again to the calculation of]

the leading Fourier-Jacobi coefficient of Proposition 6.4.1, we deduce finally that k¢ is
defined over k for all ®. O
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6.5. Calculation of the divisor, and completion of the proof. — The Borcherds product
Y(f) on Sfﬁa/k of Proposition 6.4.4 may be viewed as a rational section of w* on the
integral model Sk,

Let ® be any proper cusp label representative. Combining Propositions 6.4.1 and
6.4.4 shows that the leading Fourier-Jacobi coefficient of 4 (f) along the boundary
divisor S, (®) is

(6.5.1) o = ke @ Pg ® Pp® ® Py,

Recall that this is a rational section of w} ® Ly Wte(£) on B Here, by mild abuse of
notation, we are viewing k¢ as a rational function on 44, and denoting in the same
way its pullback to any step in the tower

Ch I By — A

Lemma 6.5.1. — Recall that © has a canonical section Bg — C}, realizing Bo as @
divisor on C%. If we use the isomorphism (3.7.1) to view ¥ (f) as a rational section
of the line bundle w% on the formal completion (C3)3,, » its divisor satisfies

div(¥(f)) = div(6 *ke) + multe (f) - Be
+ Z C(_m)z<1> (m) + Z YrCr (0) Z T ((B<1>/]F,, )

m>0 r|D plr

Proof. — The key step is to prove that the divisor of ¥ (f) can be computed from
the divisor of its leading Fourier-Jacobi coefficient 1y by the formula

(6.5.2) div((f)) = m*div(g) + multe (f) - Be.

Recalling the tautological section g with divisor Bs from Remark 3.8.1, consider the
rational section

R=q ™MW gp(f) = i’

i>0

of vk ® W*oﬁgu“q’(f) on the formal completion (C3)3, -

We claim that div(R) = m*A for some divisor A on Bg. Indeed, whatever div(R) is,
it may decomposed as a sum of horizontal and vertical components. We know from
Theorem 3.7.1 and Proposition 6.4.1 that the horizontal part is a linear combination
of the divisors Zg(m) on C} defined by (3.6.1); these divisors are, by construction,
pullbacks of divisors on Be. On the other hand, the morphism C} — By is the total
space of a line bundle, and hence is smooth with connected fibers. Thus every vertical
divisor on C}, and/in particular the vertical part of div(R), is the pullback of some
divisor on Be.

Denoting by i : B — C} the zero section, we compute

A =" A =i"div(R) = div(i* R) = div(y).
Pulling back by 7 proves that div(R) = n*div(1y), and (6.5.2) follows.
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We now compute the divisor of 4y on Bg using (6.5.1). The divisors of Py, Phor,
and Py°"* were computed in Proposition 5.4.1, which shows that on Be we have the
equality

div(3po) = div(6 " k) + Z m)Ls(m) + Z’Yrcr )ZCB{)/]Fp-

m>0 r|D
Combining this with (6.5.2) completes the proof. O
Proposition 6.5.2. — When viewed as a rational section of w* on Sk, the Borcherds

product Y (f) has divisor
div(h(f)) = Y e(-m) - Ligpa(m) + Y_ multa(f) - Sipa(®)
@

m>0

(6.5.3) +div(6™*) + D wer(0) Y Siceasr,

r|D plr

up to a linear combination of irreducible components of the exceptional divison
Exc C 8k,.- Moreover, each section ke of Proposition 6.4.4 has finite multiplicative
order, and extends to a section ke € HO(As, 0%

Proof. — Recall from Lemma 6.4.3 that the natural maps
Ll; Ba, —— Ll; Spap(®i) —— S§

|

I—li 04@’«;

induce bijections on connected components, as well as on connected components of]
the generic fibers.

All stacks in the diagram are proper over O, and have normal fibers. (For Sl’éap
this follows from Theorem 3.7.1 and our assumption that n > 2. The other stacks
appearing in the diagram are smooth over Og.) It follows from this and [18, Corol-
lary 8.2.18] that all arrows in the diagram induce bijections between the irreducible
(= connected) components modulo any prime p C O.

Deleting the (0-dimensional) singular locus Sing C §p,, does not change the irre-

ducible components of S}, or its fibers, and so if we define

Pap

Pap

UL Spap \ Sing = 8k, \ Exc,
then the natural maps

i Be; —— Li Spap(®:) —— U

|

I—Ii 04@7;
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induce bijections on irreducible components, as well as on irreducible components
modulo any prime p C O,

Suppose ® is any proper cusp label representative, and let Ug C U be the union
of all irreducible components that meet Sp,,(®). If we interpret div(xe) as a divisor
on U using the bijection

{vertical divisors on A} = {vertical divisors on U };

then the equality of divisors (6.5.3) holds after pullback to Ug, up to the error term
div(k4). Indeed, this equality holds in the generic fiber of Ug by Proposition 6.4.1,
and it holds over an open neighborhood of 8¢, (®) by Lemma 6.5.1 and the isomor-
phism of formal completions (3.7.1). As the union of the generic fiber with this open
neighborhood is an open substack whose complement has codimension > 2, the stated
equality holds over all of Ug.

Letting ® vary over the ®; and using kg, = 1, we see from the paragraph above
that (6.5.3) holds over | |, U, = W. With this in hand, we may reverse the argument
to see that the error term div(kg) vanishes for every ®. It follows that ke extends to
a global section of Oj%.

It only remains to show that each x4 has finite order. Choose a finite extension L/k
large enough that every elliptic curve over C with complex multiplication by O ad-
mits a model over L with everywhere good reduction. Choosing such models deter-
mines a faithfully flat morphism

|_| Spec(Or) — Myq,0) = As,

and the pullback of k¢ is represented by a tuple of units (z,) € [ OF. Each z, has
absolute value 1 at every complex embedding of L (this follows from the final claim
of Proposition 6.4.1), and is therefore a root of unity. This implies that k¢ has finite
order. O

Proof of Theorem 5.3.1. — ‘Start with a weakly holomorphic form (5.2.2). As in §6.2,
after possibly replacing f by a positive integer multiple, we obtain a Borcherds prod-
uct 4 (f). This is a meromorphic section of (w")*. By Proposition 6.4.1 it is algebraic,
and by Proposition 6.4:4 it may be rescaled by a constant of absolute value 1 on each
connected component in-such a way that it descends to k.

Now view %(f) as a rational section of w* over Sy, .. By Proposition 6.5.2 we may
replace f by a further positive integer multiple, and replace ¥ (f) by a corresponding
tensor power, in,order to make all kg = 1. Having trivialized the k¢, the existence
part of Theorem5:3.1 now follows from Proposition 6.4.1. For uniqueness, suppose
Y'(f) also satisfies the conditions of that theorem. The quotient of the two Borcherds
products is a rational function with trivial divisor, which is therefore constant on
every connected component of Sk, (C). As the leading Fourier-Jacobi coefficients
of ©'(f) and 9(f) are equal along every boundary stratum, those constants are all
equal to 1. ]
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Proof of Theorem 5.3.4. — As in the statement of the theorem, we now view 1 (f)?
as a rational section of the line bundle Q’;ap on Si‘;ap. Combining Proposition 6.5.2
with the isomorphism

of (3.7.2), and recalling from Theorem 3.7.1 that this isomorphism identifies

2k ~ OF  ~ OF
w = QKra = QPap7

we deduce the equality

div($(f)?) = D e(=m) - Ypap(m) +2 Y multa(f) - Sp,, (@)

m>0

(o3
(6.5.4) +div(0™) + 2 3en(0) D Spapsr,

r|D plr

of Cartier divisors on 83, \ Sing. As 8%, is normal and Sing lies in codimension > 2,

this same equality must hold on the entirety of S;ap. O

Proof of Theorem 5.8.3. — 1If we pull back via Sk, — Sp,, and view P(f)? as a
rational section of the line bundle

Qe = 0™ ® O(Exc) ¥,

the equality (6.5.4) on S

pap Pulls back to

div($(f)?) = D e=m) - Yiea(m) + 2 multa(f) - Siea(®)
P

m>0

+ diV((s_2k) +2 Z 'VTCT(O) Z Sf(ra/IFp .
pl

r|D

Theorem 2.6.3 allows us to rewrite this as

div($(f)*)=2 Y e(-m) - Lral(m) +2 ) multe(f) - Sira(®)
L]

m>0

—+ diV((SiZk) + 2 Z YrCr (0) Z Sik(ra/]Fp

r|D plr
- Z c(—m) Z #{x € L, : (z,z) = m} - Exc;.
m>0 s€mo(Sing)
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If we instead view 1 (f)? as a rational section of w?*, this becomes

div(®(f)?) =2 ) e(=m) - Ligra(m) +2 ) multa(f) - Sicra(®)

m>0 o
+div(0™) + 2 7en(0) D Sirar,
r|D plr
=Y e-m) X #{weLo:(ax) = m) - Bxe,
m>0 s€mo(Sing)
+ k- Exc
as desired. =

7. Modularity of the generating series

Now armed with the modularity criterion of Theorem 4.2.3 and the arithmetic
theory of Borcherds products provided by Theorems 5.3.1, 5.3.3, and 5.3.4, we prove
our main results: the modularity of generating series of divisors on the integral models
Skra and Sp, of the unitary Shimura variety Sh(G, D). The strategy follows that of
[5], which proves modularity of the generating series of divisors on the complex fiber
of an orthogonal Shimura variety.

Throughout § 7 we assume n > 3.

7.1. The modularity theorems. — Denote by
Ch(b (Sik(ra) = Pic(Sf(ra) ®z @

the Chow group of rational equivalence classes of Cartier divisors on Sj,, with Q
coefficients, and similarly for S;ap. There is a natural pullback map

Chg(Spap) — Chy(Sicra)-
Let x = x} be the quadratic Dirichlet character (5.2.1).

Definition 7.1.1. — If V is any Q-vector space, a formal g-expansion
(7.1.1) Y d(m)-q™ € V()]
m>0

is modular of level D, weight n, and character x if for any Q-linear map o : V — C
the g-expansion

> a(d(m))-q™ € Cllq]
m>0

is the g-expansion of an element of M, (D, x).

Remark 7.1.2. — If (7.1.1) is modular then its coefficients d(m) span a subspace of V'
of dimension < dim M, (D, x). We leave the proof as an exercise for the reader.

We also define the notion of the constant term of (7.1.1) at a cusp oo, generalizing
Definition 4.1.1.
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Definition 7.1.3. — Suppose a formal g-expansion g € V[[q]] is modular of level D,
weight n, and character x. For any r | D, a vector v € V(C) is said to be the constant
term of g at the cusp oo, if, for every linear functional o : V(C) — C, a(v) is the
constant term of a(g) at the cusp oo, in the sense of Definition 4.1.1.

For m > 0 we have defined in § 5.3 effective Cartier divisors

Pap(M) = Spap,  Licta(m) = Sicra

related by (5.3.4). We have defined in § 3.7 line bundles
Qp,p € Pic(Sp,,), @ € Pic(Sk,a)

extending the line bundles on the open integral models defined in § 2.4. For notational
uniformity, we define

Yio(0) = Qpypys - Zi84(0) = 071 ® O(Exc).
Theorem 7.1.4. — The formal q—ea:pansion
Z Cyig:’oafp q € ChQ(SPap)[[ ]]
m>0

is a modular form of level D, weight n, and character x. For any r | D, its constant
term at the cusp oo, is

7 (Y (0) +2 Zspap 5y) € Chly(Shp) ®0 C.

Here vy, € {£1,+4} is defined by (5.3.2), p C O is the unique prime above p | r, and
Iy is its residue field.

Proof. — Let f be a weakly holomorphic form as in (5.2.2), and assume again
that ¢(m) € Z for all m < 0. The space M;ffl (D, x) is spanned by such forms. The
Borcherds product 1(f) of Theorem 5.3.1 is a rational section of the line bundle

o = Q wrer©),
r|D
on S}... If we view 1(f)? as a rational section of the line bundle
~ ~rcr(0)
Pap ® QPap
r|D

on S

Pap: €xactly as-in Theorem 5.3.4, then

le(’l[J(f) Z YrCr (0) Cy{)oa?p(o)
r|D

holds in the Chow group of SPap Comparing this with the calculation of the divisor
of ¥ (f)? found in Theorem 5.3.4 shows that

(7.1.2) 0= E c(—m {go;p )+ E ~rer(0 '{f;p(O) +29,.),
m>0 r|D
r>1
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where we abbreviate U, = - Sp, /7,
For each r | D we have defined in §4.2 an Eisenstein series
E’I"(T) = Z er(m) : qm € Mn(DaX),
m>0
and Proposition 4.2.2 allows us to rewrite the above equality as

0= c(—m) - [ Y (m) = 3 vren(m) - (Y3, (0) + 20,)]
m=>0 r|D
r>1
Note that we have used e,.(0) = 0 for r > 1, a consequence of Remark 4.2.1.
The modularity criterion of Theorem 4.2.3 now shows that

Z g)atp Z'YT [ t1;3()atp ) + ZCUT)

m>0 r|D
r>1

is a modular form of level D, weight n, and character x, whose constant term vanishes
at every cusp different from oo.
The theorem now follows from the modularity of each FE,, together with the de-

scription of their constant terms found in Remark 4.2.1. O
Theorem 7.1.5. — The formal q-expansion

> Zigh(m) g™ € Chy(Sic,a)lall,

m>0

is a modular form of level D, weight n, and character x.

Proof. — Recall from Theorems 2.6.3 and 3.7.1 that pullback via S%,, — &p,, sends

m) = 2-Zi(m) = Y #{z €Ly (z,7) =m} Exc,
s€mo(Sing)
for all m > 0. This relation also-holds for m = 0, as those same theorems show that
190 (0) = Qp,, — 02 ® O(Exc) = 2- Zi4(0) — Exc.
Pulling back the relation (7.1.2) shows that

0= e(om)- (Zhm) - Y FEEL BB I )

m>0 s€mo(Sing)

1
3276 (0) - (ZiER(0) - 5 - Exe+V, )
r|D
r>1

in Ché@(&fﬁa) for any input form (5.2.2), where we now abbreviate

KUT = Z Sr(ra/]Fp :

plr
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Using Proposition 4.2.2 we rewrite this as

0= (-m)- (Zhom) — Y HEELEBB M )

m>0 s€mo(Sing)
1
= 3 el=m) Y e (m) (ZER(0) — 5 - Exe+V, ),
m>0 r|D
r>1

where we have again used the fact that e, (0) = 0 for r > 1.
The modularity criterion of Theorem 4.2.3 now implies the modularity of

S o) a5 Y 9u(r) B, = Y () - (ZH(O) - 5 Bxe+ ;).

m>0 s€mo(Sing) r|D
r>1

The theorem follows from the modularity of the Eisenstein series E,.(7) and the theta
series

da(r) = Y ¢ € M,(D, ). D
rE€Lg
7.2. Green functions. — Here we construct Green functions for special divisors

on S, as regularized theta lifts of harmonic Maass forms.
Recall from Section 2 the isomorphism of complex orbifolds

Sra(C) = Sh(G,D)(C) = G(Q\D x G(Af)/K.

We use the uniformization on the right -hand side and the regularized theta lift to
construct Green functions for the special divisors

Kra (M) = Lira (M) + Brcra(m)
on Sk,,.. The construction is a variant of the ones in [9] and [11], adapted to our
situation.

We now recall some of the basic notions of the theory of harmonic Maass forms,
as in [9, Section 3]|. Let HS® (D, x) denote the space of harmonic Maass forms f of]
weight 2 — n for I'g(D) with character x such that

— f is bounded at all'cusps of I'g(D) different from the cusp oo,

— f has polynomial growth at oo, in sense that there is a

Py =Y ct(m)¢™ €Clg™"]
m<0
such that f'— Pr is bounded as g goes to 0.
A harmonic Maass form f € HS® (D, x) has a Fourier expansion of the form

(7.2.1) fry= > et m)g™+ D ¢ (m) - T(n—1,4x|m|Im(r)) - ¢™,

meZ meZ
m>>>—o0 m<0

where

F(s,x):/ e "t dt
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is the incomplete gamma function. The first summand on the right hand side of]
(7.2.1) is denoted by f* and is called the holomorphic part of f, the second summand
is denoted by f~ and is called the non-holomorphic part.

If f € H3,(D,x) then (6.1.1) defines an Sp-valued harmonic Maass form
for SL2(Z) of weight 2 — n with representation wy,. Proposition 6.1.2 extends to such
lifts of harmonic Maass forms, giving the same formulas for the coefficients ¢t (m, u)
of the holomorphic part f+ of f . In particular, if m < 0 we have

ct(m) ifpu=0,

(7.2.2) ét(m,p) = {0 00

and the constant term of f is given by

N0, p) = > v ecf(0).

rulr|D

The formula of Proposition 4.2.2 for the contant terms ¢, (0) of f at the other cusps
also extends.

As before, we consider the hermitian self-dual Og-lattice L = Homg, (a9, a) in
V = Homg (Wy, W). The dual lattice of L with respect to the bilinear form [.,.] is
L' =07'L. Let

Sr, C S(V(Ay))
be the space of Schwartz-Bruhat functions that are supported on I’ and invariant

under translations by L.
Recall from Remark 2.1.2 that we may identify

Dx{weeV(C): [w,w <0}/CX,
and also
D = {negative definite k-stable R-planes z C V(R)}.

For any z € V and 2z € D, let xz, be the orthogonal projection of z to the plane
2z C V(R), and let x,. be the orthogonal projection to zt.
For (7,2,9) € 9 x D x G(Ay) and ¢ € Sg,, we define a theta function

0(r,2,9,0) = > 9(97'x) - Poo(T, 2,T),
zeV
where the Schwartz function at oo,

(Poo('r; z,x) —u- ezﬂiQ(ﬂ?zJ_)T+27T’iQ(CEz)7:,

is the usual Gaussian involving the majorant associated to z. We may view 6 as a
function $ x D x G(Ay) — SY. As a function in (z,g) it is invariant under the left
action of G(Q). Under the right action of K it satisfies the transformation law

H(T,Z,gk,(p) = 0(7_7279""}[/(]6)30)’ ke Ka
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where wy, denotes the action of K on Sy, by the Weil representation and v = Im(7).
In the variable 7 € § it transforms as a S\L/—valued modular form of weight n — 2
for SLy(Z).

Fix an f € H3°,(D,x) with Fourier expansion as in (7.2.1), and assume
that ¢ (m) € Z for m < 0. We associate to f the divisors

Lxra(f) = Z ¢t (=m) - Licra(m)

m>0
() = et (=m) - Zigh(m)
m>0

on Skra and Sk, , respectively. As the actions of SLo(Z) and K via the Weil represen-
tation commute, the associated Sp-valued harmonic Maass form f is invariant under
K. Hence the natural pairing Sp x SY — C gives rise to a scalar valued function
(f(7),6(7,2,9)) in the variables (7, 2,g) € $ x D x G(A), which is invariant under
the right action of K and the left action of G(Q). Hence it descends to a function
on SL2(Z)\$ x Sh(G,D)(C).

We define the regularized theta lift of f as

reg ~ du dv
0% f) = [ ([D0lr9)
SL2(Z)\$ v

Here the regularization of the integral is defined as in [4, 9, 11]. We extend the incom-
plete Gamma function

o0
d
(7.2.3) T(0;¢) = / e
+ v
to a function on Rx>( by setting

. T(0,4) ift >0,
Ho.o= {o if£=0

Theorem 7.2.1. — The regularized theta lift ©™°8(z, g, f) defines a smooth function
on Skra(C) \ Lxra(f)(C)--For g € G(Ay) and zy € D, there exists a neighborhood
U CD of 2 such that

@reg(zvg’f) - Z c+(—<a:,a:>) : f(0’47‘r|<'7;Zv:UZ>|)

r€EgL
zlzg

is a smooth function on U.

Proof. — Note that the sum over z € gLNzg is finite. Since Sh(G, D)(C) decomposes
into a finite disjoint union of connected components of the form

(G(Q)NgKg "\D,

where g € G(Ay), it suffices to consider the restriction of ©"°&(f) to these components.
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On such a component, ©*8(z, g, f) is the regularized theta lift considered in [11,
Section 4] of the vector valued form f for the lattice

gL = gL NV = Homog, (gag,ga) C V,
and hence the assertion follows from (7.2.2) and [11, Theorem 4.1]. O

Remark 7.2.2. — Let Aq denote the U(V)(R)-invariant Laplacian on D. There exists
a non-zero real constant ¢ (which only depends on the normalization of Aq and which
is independent of f), such that

A(D@reg(z’g’ f) =c- degzKra(f)((C)
on the complement of the divisor Zx.a(f)(C).

Using the fact that
I'0,t) = —log(t) + I'(1) +o(t)
as t — 0, Theorem 7.2.1 implies that ©™2(f) is a (sub-harmonic) logarithmic Green
function for the divisor Zx.a(f)(C) on the non-compactified Shimura variety Sk (C).
These properties, together with an integrability condition, characterize it uniquely up
to addition of a locally constant function [11, Theorem 4.6]. The following result
describes the behavior of ©™2(f) on the toroidal compactification.

Theorem 7.2.3. — On 8k,,(C), the function ©™8(f) is a logarithmic Green func-
tion for the divisor 28 (f)(C) with possible additional log-log singularities along the

ra
boundary in the sense of [13].

Proof. — As in the proof of Theorem 7.2:1 we reduce this to showing that ©™8(f) has
the correct growth along the boundary of the connected components of Sk, (C). Then
it is a direct consequence of [11, Theorem 4.10] and [11, Corollary 4.12]. O

Recall that w?" is the tautological bundle on

D= {weeV(C): [ww] <0}/C*.

We define the Petersson metric || - || on @** by
2 _ [w’@]
Jo)? = -5,
where v = —I"(1) denotes Euler’s constant. This choice of metric on w*" induces a

metric on the line bundle w on Sk;a(C) defined in §2.4, which extends to a metric
over Sk,.(C) with leg-log singularities along the boundary [11, Proposition 6.3]. We
obtain a hermitian line bundle on Sk, ,, denoted

©=(w, -

If f is actually weakly holomorphic, that is, if it belongs to MQ!’_OZ(D,)O, then
O8(f) is given by the logarithm of a Borcherds product. More precisely, we have
the following theorem, which follows immediately from [4, Theorem 13.3] and our
construction of 1(f) as the pullback of a Borcherds product, renormalized by (6.2.3),
on an orthogonal Shimura variety.
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Theorem 7.2.4. — Let f € My™ (D, x) be as in (5.2.2). The Borcherds product ()
of Theorem 5.3.1 satisfies

0" (f) = —log |l (f)|*.

7.3. Generating series of arithmetic special divisors. — We can now define arithmetic
special divisors on Sjk,., and prove a modularity result for the corresponding gen-
erating series in the codimension one arithmetic Chow group:. This result extends
Theorem 7.1.5.

Recall our hypothesis that n > 2, and let m be a positive integer. As in [9, Propo-
sition 3.11], or using Poincaré series, it can be shown that there exists a unique
fm € HS® (D, x) whose Fourier expansion at the cusp co has the form

fm = qim + 0(1)
as ¢ — 0. According to Theorem 7.2.3, its regularized theta lift ©™8(f,,) is a loga-
rithmic Green functlon for Zi2t (m).

Denote by ChQ(Sfﬁa) the arithmetic Chow group{20] of rational equivalence classes
of arithmetic divisors with Q-coefficients. We allow the Green functions of our arith-
metic divisors to have possible additional log-log error terms along the boundary
of 8,.(C), as in the theory of [13]. For m > 0 define an arithmetic special divisor

Zict (m) = (ZL28 (m), 0™ (f,n)) € Chyy(Sicea)

on S8k,., and for m = 0 set

Zict (0) = & + (Exo, — log(D)) € Chy(Sicra):

In the theory of arithmetic Chow groups one usually works on a regular scheme
such as S%,,. However, the codimension one arithmetic Chow group of S, makes
perfect sense: one only needs to specify that it consists of rational equivalence classes
of Cartier divisors on Sp,, endowed with a Green function.

With this in mind one can use the equality

pap(m)(C) = 2L, (m) (C)
in the complex fiber SPap( ). = S, (C) to define arithmetic divisors
1
Yisia(m) = (Y155, (m), 20(f1n)) € Chyy(Spy)
for m > 0. For m = 0 we define

~1
Y, (0) =@ "1 (0,~2log(D)) € Chg Pap)>
where the metric. on Q is induced from that on w, again using Q = w? in the complex
fiber.

Theorem 7.3.1. — The formal q-expansions
" Stot m =1 *
(7.3.1) $(r) =Y Zigh(m) - ¢™ € Chy(Si.a)llg]]
m>0
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and )
> Yok (m) - g™ € Chy(Spap)llal]
m>0

are modular forms of level D, weight n, and character x.

Proof. — For any input form f € Mz!’ffl(D, X) as in (5.2.2), the relation in the Chow
group given by the Borcherds product 1 (f) is compatible with the Green functions,
in the sense that

“log [ (N2 = Y e(-m) - 0°%(£,).
m>0
Indeed, this directly follows from f =} _,c(—m)fm, and Theorem 7.2.4.
This observation allows us to simply repeat the argument of Theorems 7.1.4 and
7.1.5 on the level of arithmetic Chow groups. Viewing 1(f)? as a rational section of
the metrized line bundle Q{iap, the arithmetic divisor

Av(w(£)2) % (div(w(f)2), —2log [w(f)[2) € Chy(Spap)
satisfies both

(7.3.2) Gv((f)2) = oy = —2k - (0, 10g(D)) — 3 7 (0) - Y, 0)
r|D

and, recalling 6 =+ —D € k,

d/'l\V('l/)(f)2) = Z Cy}?;p — 2k - (div(é —|—22%0T
(7 3 3) m>0 T‘D
= Z (—m) Cy{)";p k- (0,log(D)) + 2nyrcT - Uy,
m>0 r|D

where CDT is the the vertical divisor V, = Zp|r S;ap JF, endowed with the trivial
Green function. Note that in the second equality we have used the relation

0= div(8) = (div(), - log|8°]) = (div(3), 0) — (0, log(D))
in the arithmetic Chow group. Combining (7.3.2) and (7.3.3), we deduce that

0= c(=m) Y (m) + 3 en0) (Vi (0) +2- Dy ).

m>0 r|D

r>1
With this relation in hand, both proofs go through verbatim. O
7.4. Non-holomorphic generating series of special divisors. — In this subsection we

discuss a non-holomorphic variant of the generating series (7.3.1), which is obtained
by endowing the special divisors with other Green functions, namely with those con-
structed in [23, 24] following the method of [36]. By combining Theorem 7.3.1 with a
recent result of Ehlen and Sankaran [16], we show that the non-holomorphic generat-
ing series is also modular.
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For every m € Z and v € R>0 define a divisor
Bkra(m,v) = — Z #{x € Lo: (z,2) =m} - Si,a(P)

with real coefficients on S,,. Here the sum is over all K-equivalence classes of proper
cusp label representatives ® in the sense of §3.2, L is the hermitian Og-module of|
signature (n — 2,0) defined by (3.1.4), and Sk,.(®) is the boundary divisor of Theo-
rem 3.7.1. Note that B, (m, v) is trivial for all m < 0. We define classes in Chg (Sk ),
depending on the parameter v, by

tot zf&ra(ﬂl) + CBKra(m, 'U) if m ;A 0
o (m,v) =
0! + Exc + Bkra(0,v) if m = 0.

ra

Following [23, 24, 36], Green functions for these divisors can be constructed as
follows. For z € V(R) and z € D we put

R(z,z) = —2Q(x).
Recalling the incomplete Gamma function (7.2.3), for m € Z and
(v,2,9) € Rug x D xG(Ay)
we define a Green function

(7.4.1) E(m,v,z,9) = Z x7 (97 ) - I(0,2mvR(z, 2)),

zeV\{0}

Q(z)=m
where x; € Sr denotes the characteristic function of L. As a function of the variable
(2,9), (7.4.1) is invariant under the left action of G(Q) and under the right action
of K, and so descends to a function on Rsg X Sh(G,D)(C). It was proved in [24,
Theorem 3.4.7] that Z(m,v) is a logarithmic Green function for Z{% (m,v) when
m # 0. When m = 0 it is a logarithmic Green function for Bk, (0, v).

—~1
Consequently, we obtain arithmetic special divisors in Chy(S%,,) depending on the

parameter v by putting
(Zhet, (m,v),E(m, v)) if m#0
® ' + (Bkra(0,v),5(0,0)) + (Exc, — log(Dv)) if m = 0.

tC;ta(ma ’U) =

Note that for m < 0-these divisors are supported in the archimedian fiber.

Theorem 7.4.1. — The formal g-expansion
—~1
¢n0n hol Z z}( (m U qm € ChR(S;(ra)[[q]L
meZ

is a mon-holomorphic modular form of level D, weight n, and character x. Here
2miT

g=e and v = Im(7).
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Proof. — Theorem 4.13 of [16] states that the difference

(7.4.2) Dron-hol (T) — @(T)

is a non-holomorphic modular form of level D, weight n, and character yx, valued
1

in Che(Sk,,)- Hence the assertion follows from Theorem 7.3.1. O

The meaning of modularity in Theorem 7.4.1 is to be understood as in [16, Defini-
tion 4.11]. In our situation it reduces to the statement that thereis a.smooth function
s(7,2,9) on $ x Sh(G,D)(C) with the following properties:

1. in (z,g) the function s(7, 2, g) has at worst log-log-singularities at the boundary

of Sh(G,D)(C) (in particular it is a Green function for the trivial divisor);

2. s(1,2,g) transforms in 7 as a non-holomorphic modular form of level D, weight
n, and character y;

3. the difference ggnon_hol(r) — s(, 2, g) belongs to the space

—~1 —~1
My (D, x) ®c Che(Skya) @ (Rn-2Mn_2(D;x)) ®c Che(Skra),

where R,,_o denotes the Maass raising operator as in Section 8.4.

8. Appendix: some technical calculations

We collect some technical arguments and calculations. Strictly speaking, none of
these are essential to the proofs in‘the body of the text. We explain the connection
between the fourth roots of unity v, defined by (5.3.1) and the local Weil indices ap-
pearing in the theory of the Weil representation, provide alternative proofs of Propo-
sitions 6.1.2 and 6.3.3, and explain in greater detail how Proposition 6.3.1 is deduced
from the formulas of [32].

8.1. Local Weil indices. — In this subsection, we explain how the quantity ~y, defined
in (5.3.1) is related to the local Weil representation.

Let L C V be as in § 6.1, and recall that Sy, = C[L’/L] is identified with a subspace
of S(V(Ay)) by sending . € L'/ L to the characteristic function ¢,, of u+ Lc V(Ay).

As dimgV = 2n and-D is odd, the representation wy of SLy(Z) on Sy is the
pullback via

SLy(2) — ] SLa2(2,)
p|D

wr = ®wp,

p|D

where w, = wr,, is the Weil representation of SLy(Z,) on Sz, C S(V},). These Weil
representations are defined using the standard global additive character ¢ = ®py,

of the representation
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which is trivial on Z and on Q and whose restriction to R C A is given by t(z) =
exp(2miz). Recall that, for a € Q) and b € Q,,

wp(n(b))¢(z) = Pp(bQ()) - ¢(x)
wp(m(a))¢(z) = Xk ,(a) - laly - ¢(ax)

wp(w)$(z) = 7 /V Go(—lz,9) - $) dy, w=(,"1,

where vy, = v,(L) is the Weil index of the quadratic space V, with respect to ¢,
and Xg,p is the quadratic character of Q) corresponding to k. Note that dy is the
self-dual measure with respect to the pairing v, ([z, y]).

Lemma 8.1.1. — The Weil representation w, satisfies the following properties.

1. When restricted to the subspace St,, C S(V,), the action of v € SLa(Z,) depends
only on the image of v in SLy(Fy).

2. The Weil index is given by
Yo = E;n : (D,p); -inv, (V)
where (a,b), is the Hilbert symbol for Q, and inv,(V,) is the invariant of V,, in

the sense of (1.7.3).

Proof. — (i) It suffices to check this on the generators. We omit this.

(if) We can choose an Oy p-basis for L, such that the matrix for the hermitian
form is diag(as,...,a,), with a; € Z). The matrix for the bilinear form [z,y] =
Trg, /0, ((z,y)) is then diag(2ay,...;2a,,2Day,...,2Day,). Then, according to the
formula for By in [35, p. 379], we have

-1

1 n
T =05 Yo V) = 11 e, (%) - va, (Dajip),
j=1

where we note that, in the notation there, z(w) = 1, and j = j(w) = 1. Next by
Proposition A.11 of the appendix to [48], for any o € Z), we have vg, (1)) = 1 and

—Q

Yo, (apyp) = <p> &p = (—a,p)p * Ep.
Here note that'if 7 = apyy,, then the resulting character 7 of I, is given by
i(a) = ¢p(p~"a) = e(—p~'a).
and 7, (1) = (_71) - €p. Thus

Y =¢," (=D/p,p), - (det(V),p)p,

as claimed. O
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8.2. A direct proof of Proposition 6.1.2. — The proof of Proposition 6.1.2, which ex-
presses the Fourier coefficients of the vector valued form f in terms of those of the
scalar valued form f € Mj_, (D, x), appealed to the more general results of [50]. In
some respects, it is easier to prove Proposition 6.1.2 from scratch than it is to extract
it from [loc. cit.]. This is what we do here.

Recall that f is defined from f by the induction procedure of (6.1.1), and that
the coefficients ¢(m, u) in its Fourier expansion (6.1.2) are indexed by m € Q and
u € L'/L. Recall that, for r | D, rs = D,

wo= (" PYr (" ) mR=(% P)ery.
D~y ré 1 sy rd
Note that

(8:2.1) T'o(D)\SLs(Z) = To(D)\SLy(Z)/T(D) = [ [ Bo\SL2(Fy),
p|D

so this set has order Hp\ p(P+1). A set of coset representatives is given by
1. ¢
|_| RT ( 1) '
r|D
c(modr)

Now, using (4.1.1), we have

(o or-fuin ()

(8.2.2) =X (B)xs(@) D> rile(m) e

m>—00

2mim(r+c)
T

On the other hand, the image of the inverse of our coset representative on the right
side of (8.2.1) has components

0 D)
ifp|r
1 -7 «
1 —¢c\ (ré -0 it s
1 0 « pis
Note that rad — sfy = 1. Then, as elements of SLy(F,), we have
1 —c I) -1 1 af .
()0 ) G ) e
1 —c\ [a! 1 —ap .
) 0 o . ifp|s.
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The element on the second line just multiplies ¢g , by xp(c). For the element on the
first line, the factor on the right fixes ¢ and

_1 n
Wp <<1 >) ¢0=7pp75 Z ¢,u~
RELL/Ly

Thus, the element on the first line carries ¢g ), to

Xo(B) P % Y Y(—cQ(n)) du-

€Ly /Ly

Recall from (6.1.3) that for p € L'/L, r, is the product of the primes p | D such
that pp, # 0. Thus

-1
(8'2'3) wr (Rr <1 c>> $o = Xs(Oé)X'r(ﬂ) Yo r e Z 62MCQ(H)¢H.

1
uweL’'/L
rulr

Taking the product of (8.2.2) and (8.2.3) and summing on ¢ and on r, we obtain

Z%,fl Z Z e27ricQ(M)¢H Z cr(m)ew

r|D c(modr)ueL’/L m3>—00
rulr
=2 % X bu ) elmd?
r|D neL’/L m>>—00

lr T+Q(wez

= Z Z Z 'YTCT(mr)QSuqm-

€Q L'/L T

mg—mmi%(l{)ez Tu‘T|D
This gives the claimed general expression for é(m,pu) and completes the proof of
Proposition 6.1.2.

8.3. A more detailed proof of Proposition 6.3.1. — In this section, we explain in more
detail how to obtain the product formula of Proposition 6.3.1 from the general formula
given in [32].

For our weakly holomorphic Sp-valued modular form f of weight 2 — n, with
Fourier expansion given by (6.1.2), the corresponding meromorphic Borcherds product
U(f) on D+ has a product formula [32, Corollary 2.3] in a neighborhood of the
1-dimensional boundary component associated to L_;. It is given as a product of 4
factors, labeled (a), (b), (c) and (d). We note that, in our present case, there is a
basic simplification in factor (b) due to the restriction on the support of the Fourier
coefficients of f. More precisely, for m > 0, & —m, u) = 0 for u ¢ L, and &(—m,0) =
¢(—m). In particular, if € L' with [z,e_;1] = [z,f_1] = 0, then Q(z) = Q(z0), where
zo_is the (Lo)g component of z. If g # 0, then Q(z) > 0, and &(—=Q(x),u) = 0
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for ;1 ¢ L. The factors for ¥(f) are then given by:
(a)
H (1 _ e—27ri[x,w])5(_Q($)vx).
z€L’
[z,f_1]=0

[z,e—1]>0
mod LNQf_;

. 91 (—fz,w]. 1) \ QD
Pl(wOaTl) d:f H < 1( [( )] 1) ) )
zE€Lg M7
[I,Wo]>0
where Wy is a Weyl chamber in V5(R), as in [32, §2].
()

91 (=[x, w], T , &0.2)/2
PO(TI) déf H ( 1( TE(Tl)] 1) ewz[z,w]~[z,el]>

(d) and

&(0,0)

kn(T1) 3

where « is a scalar of absolute value 1, and

I==Y Y,  &-mz)01(m—Q(x)).
m xeL’mEiLZI)J-

The factors given in Proposition 6:3.1 are for the form

def

Py(f) = @2mi) 00w (2f).
The quantity ¢o in [32] is our-e(£), and 7 there is our 7.
Recall from (3.9.5) that 97 'Ly = Ze_1+ D~ 'Zf_1, so that, in factor (c), the prod-

uct runs over vectors D~1bf-y, with b (mod D) nonzero. For these vectors [z,e;] = 0.
In the formula for I, x runs over vectors of the form

bf +
r=——f 1+
D! 0

with 7o € 97! Lg. But, again, if 2o # 0, Q(z) = Q(x) > 0 and &(—Q(x), z) = 0 unless
b = 0, and so the sum-in that term runs over zy € Ly g # 0 and over —%f_l’s.
Thus the factors for 1/39 (f) are given by:
(a)
H (1 _ e—27ri[z,w])26(_Q($)aw)’

zeL’
[z,f_1]=0
[z,e—1]>0
mod-LOQf_5
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—[zo, w], T c(=Q(z0))
P1(wo,T1)d§f H <191( £7(OT’1)], )> )

zo€Lo
Zo 750

P(m) ¥ ] (191(—[35,10],7'1)>5(07}5f1)7

beZ/ Dz n(m1)
b£0

(d) and, setting k = ¢(0, 0),
K* (2min?(r)* g3",

where « is a scalar of absolute value 1, and

1 b
In=-2> Y c(-m)oi(m— Q(x0)) + B > o, i)
m>0zo€Lg beZ/ DL
Here note that for 1, (f) = (2mi)*©9W(2f) we have multiplied the previous expres-
sion by 2.
Finally recall

w=—e_1 + (7§ — Q(wo))f_1 + wo + Te1 + f1.
If [z, f—1] = 0, then z has the form

r=—ae_j — Bf_l + xzg + ceq,

so that ;
[z, w] = —c&A+ [z, wo] — aT — D’

and
Q(z) = —ac+ Q(zo).

Using these values, the formulas given in Proposition 6.3.1 follow immediately.

8.4. A direct proof of Proposition 6.3.3. — Here we give a direct proof of Proposi-
tion 6.3.3, which does not rely on Corollary 6.3.2. We begin by recalling some general
facts about derivatives of modular forms.

We let qd% be the Ramanujan theta operator on g-series. Recall that the image
under qdi of .a-holomorphic modular form g of weight & is in general not a modular
form. However, the function

dg k
8.4.1 D(g) =q— — —gF
( ) (9) qdq 12952
is a holomorphic modular form of weight k + 2 (see [11, §4.2]). Here
Ey(r)=-24 ) o1(m)g™

m>0
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denotes the non-modular Eisenstein series of weight 2 for SLo(Z). In particular

c1(0) = We extend oy to rational arguments by putting o1(r) = 0 if 7 ¢ Z>o.
If Ry = 21 = k denotes the Maass raising operator, and
3
Ej(r)=E - —
() = Ba(r) — —

is the non-holomorphic (but modular) Eisenstein series of weight 2, we also have
1 k
D(g) = —— — —gEj.
(9) = = Bi(9) — 159E2

Proposition 8.4.1. — Let f € My> (D,x) as in (5.2.2). The integer

I= % > §0,0) =2 ) e(-m) Y o1(m — Q(x)).

aeb’lL_l/L_l m>0 x€Lg

defined in Proposition 6.3.1 is equal to the integer

multe (f S Z ()

weLo
defined by (5.2.4).
Proof. — Consider the Sy -valued theta function
= > q®Ox 1y € Myo(wy,).

z€L

Applying the above construction (8.4.1).to ©¢ we obtain an Sy -valued modular form

n—2
= Z Q(m)qQ(z)X;/JFLO - TGOEQ € M, (wy,)
z€Lj

of weight n. For its Fourier coefficients we have

D(©y) = Z Zb(m,l/)qu,\,/

veL} /Lo m>0

= 3 Q@ +2n-2) Y oi(m-Q)).
B etk

As in [11, (4.8)], an Sg-valued modular form F induces an S,-valued form Fr,. If
we denote by F), the components of F' with respect to the standard basis (x,) of S,
we have

(8.4.2) Fro, = > Fuia
eb’lL,l/L,l

for v € L{/Lo.
Let f € Mj_, (wr) be the Sy-valued form corresponding to f, as in (6.1.1). Using
(8.4.2) we obtain

fLo € Mé—n(wLo)
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with Fourier expansion

fLo = Z Z 6(m7 v+ a)qmXV+L0'

vmoaes /1

We consider the natural pairing between the Sy,,-valued modular form 1 1, of weight
2 —n and the S} -valued modular form D(6q) of weight n,

(fLos D(80)) € M;(SLa(Z))-
By the residue theorem, the constant term of the g-expansion vanishes, and so

(8.4.3) Z Z é(—m,v + a)b(m,v) = 0.

m2>0 veLy/Lo
a€s 1)1

We split this up in the sum over m > 0 and the contribution from m = 0. Employing
Proposition 6.1.2, we obtain that the sum over m > 0 is equal to

> e(=m)b(m, 0).
m>0

For the contribution of m = 0 we notice
n—2 —
b(() y): 3 I/—OELB/LO,
’ 0, v #0.

Hence this part is equal to

n—2 -
T Z é(0, a).

a€d 'Ly /L_,

Inserting the two contributions into (8.4.3), we obtain

0= Z c¢(—m)b(m,0) — n1—22 Z ¢(0, a)

m>0 aeaflL,l/L,l
= c(—m)< > Q@) +2(n-2) > oi(m - Q(x)))
m>0 chzg)l;()m x€Lg

- ”1_22 S 0,a)
a€d 'L_1/L_4
= ((=Q()Qz) +2(n—2) Y ¢(—m) Y o1(m - Q(x))
€L m>0 xzE€Lg
_ ”1_22 S 0,0
a€d 'L_1/L_;
= (n — 2)multe(f) — (n — 2)I.

This concludes the proof of the proposition. O
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Now we verify directly the other claim of Proposition 6.3.3: the function

P1 T ’wo H H @ ’(Uo, ) -

m>0 xzE€Lg
Q(z)=m
satisfies the transformation law (3.9.14) with respect to the translation action of bLg
on the variable wyg.
First recall that, for a, b € Z,

2

O(r,z + ar + b) = exp ( — mia®r — 2miaz + mi(b — a)) - O(7, 2).

If we write @« = a7 + b and 7 = u + iv, then

~Im(a) a-—-a B u
a=——=— b = Re(a) " Im(c).
Thus
1, 1 1 _ 1 o1
2@ T+az+§(a—b)—ﬂ(a—a)a—l—%(a—a)z—i—i(a—b—ab).

For z and w in C, write
1
R(z,w) = R, (z,w) = B;(z,w) — Hy(z,w) = —z(w — w).
v

Then 1 1 L
E(a —a)a+ —(a—a)z = ER(z,oz) + ZR(a, a),

and we can write
O(7,z + a) = exp(—7R(z, ) — gR(a, @)) - exp(mi(a — b — ab)) " O(7, 2).

We will consider the contribution. of the %(a — b — ab) term separately.
For 8 € Vj, we have (wg +.03,2) = (wg, z) + (B,x). Suppose that for all z € Ly,
we have (8,2) = ar + b for a and b in Z. Writing b = Z + Zr, this is precisely the

condition that 8 € b Ly. Then we obtain a factor

| =md, ) el [R(<wo,x>,<ﬁ,w>)+W]

m>0 xz&Lg
Q(z)=m

Expanding the sum and using the hermitian version of Borcherds’ quadratic identity
from the proof of Proposition 5.2.2, we have

Z C(—Q(CL’)) |:<U}0,.'17><ﬂ,.'13> _ <w0,$><$,ﬁ> + <ﬂ7l’><ﬂ,.’1}> _ (ﬂ7x><$’ﬂ>:|

z€Lo J ? i
=5 (100 +36.9) - 575 3 =@ e

x€Lg
= _% <<w076> + ;</B’ﬁ>> ’ mult@(f)'
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Thus, using I = mults(f), we have a contribution of

m(wo, B) | 7(B,B)\
()

exp %

to the transformation law.
Next we consider the quantity

a—b—ap= 2 peq) - M) Im(e) (Re(a) - M)

v v v v

2iv 2 2iv 2iv

2 24v

a-a (a+a) u(a—a)_a—a<(a+a) u(a—a)>.

This will contribute exp(—miA), where A is defined as the sum

ZC(_Q("’))[ aQ;U@_a—I—d_u(oz.—d) _oz—'d <(a+@) _u(a»—o‘z))}

2 21v 2iv 2 21v
z#0

where o = (3, z). Since x and —z both occur in the sum, the linear terms vanish and
—a ((a+a) ula—a)
A= — .
Z —Q@)) [ 2iv ( 2 23v ) ]
z#0

Using the hermitian version of Borcherds quadratic identity, as in the proof of Propo-
sition 5.2.2, we obtain

ul

Thus we have
I —2mi I
Pi(r,wo + 8) = Pa(r,wo) - exp(=wo, B) + 5-(6,8)) - exp (W) .

Finally, we recall the conjugate linear isomorphism L_; = b of (3.9.11) defined
by e_1 — 7 and f_; — 1. As

YL =Ze_1+D7Zf_4,
we have —6 17 = ar + D7 'b-for some a,b € Z, and hence
7=-D"'bla+6")!
This gives u/v = a D2 . Also, using
de_1 =—Dae_1 —bf_q,

we have

1 1 1

5(1 + 5) e_1 = 5(1 — Da) e_1— ibf_l € Ze_1+ Zf_l =L_4.
Thus a is odd and b is even. Recall that N(b) = 2v/v/D. Thus

u o aD3
402 9N(b)Dz

)
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and, since (3, 3) € N(b), we have

oxp (- 2 — o (- T

The transformation law is then

Py (1,wo + B) = exp (%@Uo,ﬁ) + %w,ﬂ) —im <£E£)>)I'P1(7'7wo)y

as claimed in Proposition 6.3.3.
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