Proceedings of Machine Learning Research vol 132:1-24, 2021 32nd International Conference on Algorithmic Learning Theory

Learning a mixture of two subspaces over finite fields

Aidao Chen’ AIDAOCHEN2022 @ U.NORTHWESTERN.EDU
Northwestern University

Anindya De* ANINDYAD @ SEAS.UPENN.EDU
University of Pennsylvania

Aravindan Vijayaraghavan' ARAVINDV @ NORTHWESTERN.EDU
Northwestern University.

Editors: Vitaly Feldman, Katrina Ligett and Sivan Sabato

Abstract

We study the problem of learning a mixture of two subspaces over ['5. The goal is to recover the
individual subspaces Ag, A1, given samples from a (weighted) mixture of samples drawn uniformly
from the subspaces Ag and A;. This problem is computationally challenging, as it captures the
notorious problem of “learning parities with noise” in the degenerate setting when A; C Aj.
This is in contrast to the analogous problem over the reals that can be solved in polynomial time
(Vidal’03). This leads to the following natural question: is Learning Parities with Noise the only
computational barrier in obtaining efficient algorithms for learning mixtures of subspaces over
Fy?

The main result of this paper is an affirmative answer to the above question. Namely, we show
the following results:

1. When the subspaces Ay and A; are incomparable, i.e., Ag € Ay and A; € Ao, then there is a
polynomial time algorithm to recover the subspaces A and A;.

2. In the case when A; C Ay such that dim(A;) < a - dim(A) for a < 1, there is a n©(/(1=)) time
algorithm to recover the subspaces Ay and A;.

Thus, our algorithms imply computational tractability of the problem of learning mixtures of
two subspaces, except in the degenerate setting captured by learning parities with noise.
Keywords: mixture models, subspaces, learning parities with noise

1. Introduction

Mixture models form an expressive class of probabilistic models that are widely used to find struc-
ture in unlabeled data from a heterogeneous population. Each of the £ components in a mixture
model represents one of the k& sub-populations (assumed to be homogeneous) that constitute the
overall heterogeneous population. A variety of mixture models ranging from Gaussian mixture
models and mixtures of product distributions over continuous domains, to mixtures of ranking mod-
els, mixtures of subcubes over discrete domains are used to capture data in different domains. There
is an extensive literature in statistics and computer science that gives efficient polynomial time algo-
rithms for learning many mixture models with a constant number of mixture components (Feldman

* Supported by NSF grants CCF 1910534 and CCF 1926872. Part of the work was done while visiting the Simons
Institute for Theory of Computing for the program “Probability, Geometry and Computation in High Dimensions”.
¥ Supported by NSF grants CCF-1652491, CCF-1637585 and CCF-1934931.

© 2021 A. Chen, A. De & A. Vijayaraghavan.

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

et al., 2006; Kalai et al., 2010; Moitra and Valiant, 2010; Belkin and Sinha, 2010; Rabani et al.,
2014; Li et al., 2015; Awasthi et al., 2010; Liu and Moitra, 2018; Chen and Moitra, 2019).

A common assumption in high-dimensional data analysis is to assume that the given data belong
to a collection of lower dimensional subspaces. A prominent line of work in machine learning, com-
puter vision and computational geometry (Vidal, 2003; Elhamifar and Vidal, 2013; Soltanolkotabi
et al., 2014; Park et al., 2014) that formalizes this intuition is the problem of learning a mixture of
subspaces (or subspace clustering). Given a set of points in n dimensions that belong to a union of
k > 2 subspaces, the goal is to find the individual subspaces that contain all the points. When the
points belong to R™, a beautiful result of Vidal (2003) shows that for any mixture of k subspaces,
under some mild general-position assumption of the points in the subspaces,' there is an algorithm
that runs in time n®®) that recovers the k individual subspaces. Very recently, subspace cluster-
ing has also been studied with outlier noise, in the special case when the points in each cluster is
drawn from a Gaussian supported on a subspace (Raghavendra and Yau, 2020; Bakshi and Kothari,
2020). However these guarantees are specific to the real domain. A natural question is whether such
algorithmic guarantees also extend to other domains like [5.

Can we efficiently learn a mixture of subspaces over finite fields?

The algorithmic problem has a very different flavor over finite fields and becomes computa-
tionally challenging even in simple settings. In the simplest setting, we are given samples from a
mixture of £ = 2 unknown subspaces Ag, A1 C [5 of dimension dy, d; (respectively), with un-
known mixing weights wg,w; € [0, 1] that add up to 1. Each sample is drawn independently as
follows: with probability wy, the sample is drawn from U 4, the uniform distribution over subspace
Ao C F5, and with w; the sample is drawn from the uniform distribution U4, over A; C [F3.
The goal is to learn the individual subspaces Ay, A; from independent samples generated from this
model. We refer the reader to Definition 4 for the formal definition of the model.

Learning mixtures of subspaces over [5 essentially generalizes the problem of learning mixtures
of subcubes that was studied in (Chen and Moitra, 2019). In particular, subcubes correspond to
(affine) subspaces where the constraints are given by standard unit vectors. On the other hand, in
this work, we consider arbitrary subspaces of [} (though we do not allow for affine subspaces). Our
work can also be through the framework of learning from positive examples Denis et al. (2005); De
et al. (2014); Canonne et al. (2020); Ernst et al. (2015) which studies the learnability of supervised
concept classes (in this case subspaces) when the algorithm only gets positive samples.

More interestingly, the simple setting of k = 2 already captures the notorious problem of learn-
ing parities with noise (LPN) as a special case. One can encode LPN as learning a mixture of two
subspaces Ap, A1 where the subspaces A1 C Ag C 5 and dim(A;) = dim(A4p) — 1 (see Propo-
sition 21 and Proposition 20). The best known algorithm for LPN runs in time exp (O(n/logn))
(Blum et al., 2003). Moreover LPN is also used as an average-case hardness assumption in learning
theory and cryptography (Pietrzak, 2012). To avoid this computational barrier, we will assume
that we are not in the degenerate setting when one subspace contains the other. We call the two
subspaces A and Ay incomparable iff Ay ¢ Ay and A; € Ay. This leads to the following natural
question about the computational complexity of the problem:

Question. Is LPN the only computational obstruction for learning a mixture of two subspaces? Can
one design faster algorithms when the subspaces Agy, Ay are incomparable?

1. Such an assumption is necessary, to ensure that the individual subspaces are identifiable.

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Our first result shows that one can indeed design a polynomial time algorithm when the two
subspaces are incomparable.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the following
guarantee: given oracle access to O(Ag, A1, wp,w1) (for unknown Ay, Ay, wo, w1), Wimin > 0
(such that Wy, < min{wg, w1 }) and confidence parameter 6 > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmn)-
log(1/0)

2. With probability 1 — 6, the algorithm outputs the subspaces Ay, A1, and estimates the weights
wo, w1 Up to any desired inverse polynomial accuracy.

Hence the above result gives a significantly faster polynomial time algorithm if we are not in the
degenerate comparable setting when one subspace contains the other. In contrast, when A; C Ay
and dim(A;) = dim(Ap) — 1 (or vice versa), the best known algorithm takes exp(O(n/logn))
time. We remark that the algorithm succeeds in uniquely identifying and recovering the individual
subspaces, as opposed to just finding a mixture of two subspaces that fits the data. In the parlance
of statistics, our algorithm recovers the underlying model (sometimes referred to as parameter esti-
mation) as opposed to just doing density estimation.

Next, observe that the (presumed) hardness of LPN only implies hardness of the subspace re-
covery problem when (i) 41 C Ap and (ii) dim(A4;) = dim(Ag) — 1. This naturally prompts the
question whether subspace recovery remains hard if (say) A; C Ag but dim(A;) < dim(Ap). In
other words, we ask the following question:

Question. Can we design fast algorithms for subspace recovery when dim(Ag) and dim(A;y) are
substantially different? Note that we are not imposing any conditions on the comparability of the
hidden subspaces Ay and A;.

Our next result provides an affirmative answer to this question.

Theorem 2 Let wy,, > 1/100. Let dy > dy and suppose o := dy/dy < 1 — ltz}gd%o. There is an
algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee: given oracle access
to O(Ayg, A1, wo, w1)(for unknown Ay, A1, wo, w1), Wmin > 0 (such that Wy, < min{wg,w; })

and confidence parameter § > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/8)poly(n) - d§H/ =)

2. With probability 1 — 0, the algorithm outputs the subspaces Ag, A1, and estimates the mixing
weights up to any desired inverse polynomial accuracy.

Informally speaking, if the ratio of dimensions « is bounded away from 1, the running time is
polynomial. In general, the running time of the algorithm has a dependence of O(1/(1 — «)) in the
exponent.

1.1. Overview of Techniques.

We now briefly describe the algorithmic ideas and techniques used to prove our results. The algo-
rithms that establish Theorem 1 and Theorem 2 use very different ideas. We begin with an overview
of Theorem 1.

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Incomparable Setting (Theorem 1). The main component of the polynomial time algorithm in
the incomparable setting is a careful procedure for dimension reduction that reduces the subspace
clustering problem to O(1) dimensions. We will construct a matrix M € F5*"™ where r = O(1)
(in the actual proof, we set » = 10), and solve the clustering problem given samples of the form
y = Mz where z is drawn from the original mixture. Note that a subspace under any linear map
M also gives a subspace; hence the samples in R” are drawn from a mixture of subspaces M Ag and
M A;. Any algorithm for learning a mixture of subspaces in r = O(1) dimensions will allow us to
cluster the points, and recover the individual subspaces Ag, 4.

How do we choose the linear map M? A key property that we require of M is that if Ag and
Aj are incomparable, then M Ay and M A; should also remain incomparable. While it is not hard
to see that such a M exists (even when = O(1)), it is far from clear how to find it given that we
do not have Ay and A; explicitly. A natural choice for M is a random matrix, where every entry is
chosen independently from 5. Random linear maps are often used for dimension reduction in the
real domain to approximately preserve inner products and pairwise distances. However, a random
map does not work in our setting, particularly when the target dimension r» < d;. This is because
with high probability the subspaces collapse and M Ay = M A; = [, thereby making it impossible
to recover the individual subspaces M Ay, M A;.

Our approach instead proceeds in multiple rounds, where in each round, we reduce the dimen-
sion by one while preserving the property that the projected subspaces remain incomparable. More
precisely, one can show that for a random linear map M,,_; € an_l) " with constant probability,
M,,_1Ag and M,,_1 A; are incomparable if Ay, A are originally incomparable. However, this does
not suffice per se, since we want to apply this for 2(n) rounds (and thus, the probability of success
becomes exponentially small). The crucial component of our algorithm is a testing procedure that
runs in polynomial time, which given samples from a mixture of subspaces U, V', w.h.p. outputs
whether U and V' are comparable or incomparable. With such a procedure, in every phase we can
reduce the dimension by 1, by sampling several random linear maps, running our testing procedure
on each of them, and picking one that preserves incomparability of the subspaces. The guarantee of
the testing procedure is given below.

Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee: Given
oracle access to O(U, V, wy, wy) (for unknown U, V, wy, wy), Wynin > 0 (such that min{wy, wy } >
Wmin) and confidence parameter § > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1 /wmin? - poly(n)log(1/6).

2. With probability 1 — 0, the algorithm outputs True if U and V' are comparable and False
otherwise.

The testing procedure uses the following main insight. Suppose for simplicity the span span(UU
V) = 5. We prove that the subspaces U and V' are incomparable if and only if there exists a non-
zero polynomial p of degree 2 that vanishes on A = U U V. In fact, it will suffice to choose A to
be a randomly chosen set of polynomial size sampled from the mixture of subspaces U and V. The
set of feasible degree-2 polynomials can then be obtained by setting up a system of linear equations
where the unknowns correspond to co-efficients of p.

Let us define M € [FQO(l)X" asM =M, -M,;;-...-M,_1 — in other words, M is the
linear map obtained by composing the dimension reduction maps over the n — r rounds. Once the

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

dimension is reduced to » = O(1), we use a brute-force algorithm to recover M Ay, M A;. Finally,
once we know M Ay, M A;, we can draw uniform samples from Ap\{x € Ag : Mz € MA;} to
recover Ag; we can recover A; similarly (see Lemma 16).

Significant dimension difference (Theorem 2). When the dimension of the subspaces are sub-
stantially different, we use algebraic ideas inspired from techniques in the real domain to recover
the subspaces. The main algorithmic idea is by adapting ideas from related problem of subspace re-
covery over the reals (Hardt and Moitra, 2013; Bhaskara et al., 2019). To explain the idea, consider
the setting with equal mixing weights of 1/2, dy &~ n, and suppose o« = 1 — Q(1). If we consider
a random subsample of dj points from the data set, we expect to have roughly dy/2 points from
subspace Ag and dy/2 points from subspace A;. Suppose o < 1/2 (referred to as the “large gap
case”)i.e., di < dp/2, then with high probability there is a linear dependence in this sub-sample.
Further, this linear dependence is (entirely) among points lying in the subspace A;. This can be
used to recover the subspace A; (and consequently, the subspace Ag as well).

To see why this idea does not work in general, consider the case when the weights wy =
0.9,w; = 0.1 and d; = 0.8dy. Then, to see a linear dependence among the points in A, we
need to sample at least d; points from A;. However, on an average, this will mean sampling around
(wo/w1) - dp = 9d; many points from Ag. As 9d; is much larger than the ambient dimension and
thus, we will find many spurious linear dependencies — i.e., dependencies which do not come from
points belonging to A;. Thus, this strategy will fail to identify A;.

Instead, when a > 1/2, we will adopt a dimension gap amplification strategy. In particular,
we consider a non-linear map ¢ : [Fgo — [Fgé’ where dj, = Z§:0 (dQ) for an appropriately chosen
¢. Further, for a set B, let us define ¢(B) as the set {¢(z) : = € Bﬁl. Roughly speaking, we want
to choose an appropriate ¢ such that dim(span(¢(A;)))/dim(span(¢(Ap))) < 1/2. For such an ¢,
we can now apply the strategy for the large gap case to recover A; and Ag. We note that the idea
of such a dimension gap amplification was also applied in the related subspace recovery problem
over reals (Bhaskara et al., 2019) — there, the goal was recover one subspace S of dimension d < n
containing o(d/n) fraction of the points, while the rest of the points are drawn in general position
from the whole of R™. While in spirit our idea is similar, it is challenging to get a handle on the
dimensions of span(¢(A1)) and span(¢(Ap)). In particular, the techniques of Bhaskara et al. (2019)
which are meant for the reals, do not seem to be applicable in the finite field setting. Fortunately for
us, some powerful results from additive combinatorics (Keevash and Sudakov, 2005; Ben-Eliezer
et al., 2012) let us get precise estimates for dim(span(¢(Ap))) and dim(span(¢(A1))). Roughly
speaking, we show that for £ ~ 1/(1 — «), dim(span(¢(A1)))/dim(span(¢(Ap))) < 1/2, thus
reducing to the large gap case.

2. Preliminaries

We start by defining the subspace recovery problem formally.

Definition 4 The Subspace-Recovery problem is instantiated by two subspaces of by - Ay and
Ay of dimensions dy and dy respectively. In addition, we also have weights wq and w1 such that
wo +wyp = 1.

The subspaces Ao, A1, dimensions dy, dy as well as the weights wqy and wi are unknown.
For this instance, we define the sampling oracle O(Ay, A1, wo,w1) is defined as follows: sample
b € {0,1} where Pr[b = 0] = wo and Pr[b = 1] = wy. If b = 0, O(Ay, A1, wo, w1) outputs a

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

uniformly random element from Ay and if b = 1, O(Ay, A1, wo, w1) outputs a uniformly random
element from Aj.
In the Subspace-Recovery problem, the algorithm is given access to the sampling oracle O(Ay, A1, wo, w1),
an error parameter ¢ > 0 and a weight parameter Wy, > 0 with the promise that Wy, <
min{wg, w; }. The goal of the algorithm is to output subspaces Agy, A1 and estimates 1, Wy such
that ‘wg - lf)()| + \wl — Zf)1| <e
Without loss of generality, we will assume dg > dy from now on.

Remark 5 Note that once Ay, Ay is found, estimating wo, w1 is not hard, this is because Py .o (A, A, wo,u1) [x €

Ap \ A1] = wy %. Formally, there is an algorithm with the following guarantee: given oracle

access to O(Ap, Ay, wg, w1) (for unknown wo, w1), Ao, A1 and confidence parameter 6 > 0,

1. this algorithm runs in sample and time complexity poly(n) - 1/€ - log(1/6)

2. With probability 1 — 6, the algorithm outputs 1y, 1 such that |wy — wo| + |w1 — 1| < €.
By this observation, we can focus on finding Ag, A1 from now on.
We next define the concept of incomparable subspaces.

Definition 6 We define two subspaces A, B to be incomparable if and only if A ¢ B and B ¢ A.

2.0.1. SOME USEFUL NOTATION

1. Forany f : F} — [Fa, we use zero(f) to denote the set {z : f(z) = 0}.

2. For integers n,d € N, we use RM(n, d) to denote the set of polynomials of degree at most d
over [5.

3. For integers n, k € N with n > k, we use (<"k) to denote Z?:o (")

i

4. For a sample oracle O which return samples in F5, matrix D € [FSX”, we use DO to denote
a new sample oracle which each time returns Dx where x is sampled from O.

5. For an index set S, we use xg to denote the set {z; : i € S}.
6. For a set S of vectors, we use rank(.S) to denote dim(span(.5)).

2.0.2. SOME USEFUL FACTS REGARDING POLYNOMIALS

We next list some useful facts regarding polynomials over the field [2. While most of these are easy
and standard, we list them here for the sake of completeness.

Claim 7 Let p be a polynomial over F%. If the polynomial p is not identically zero (as a formal
expression) and its degree is at most c, then

P [p(x) # 0] > 1/2¢.

x~Fy

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Proof The proof is by induction on degree. If ¢ = 0, then p is identically 1 and thus the claim
follows trivially.

Now, as an inductive hypothesis, assume that the claim is true for all polynomials of degree at
most ¢ — 1. Let p be a polynomial of degree c. Since p is not identically zero, there exists ¢ such
that p can be expressed as

p(xla e 7$n) - Q(JUla ey =1, Li41,5 - - - 7xn) * Ty + T($17 ey =1, Lj415 - - - >:13n)7 (l)
where degree of ¢ is at most ¢ — 1 and ¢ is not identically zero. The above formulation uses the fact
that polynomials over [are multilinear. Observe that any choice of Xx_; = (X1, ..., X;—1,Xj+1,- - -, Xn)
such that ¢(x_;) # 0,

1
Pr [p(Xl,-..,Xifl,Xi,XiJrl,...,Xn)#0] > = (2)
XjN[FQ 2
Now, applying the induction hypothesis on the polynomial ¢(x1, ..., z;—1,Zit1,...,Ty), We have
that 1
XEEEQ[Q(Xla---7X¢—17Xz‘+1,~~-7xn) # 0] > 5T
Combining this with (1) and (2), we get the claim.
|

Claim 8 There is an efficient algorithm SIZE-SYSTEM-POLYNOMIAL which given a set of points
as input z1, . ..,zr € FY, determines the size of the set T = |{p € RM(n,2) : p(z1) = p(22) =
= per) = 0}

Proof Observe that p can be expressed as linear system of equations (i) where the unknowns are
the coefficients of p and (ii) the equations are given by the constraints {p(z;) = 0}1<;<r. Using
Gaussian elimination, we can determine the rank r of this system. Observe that the size of T is just
27, thus proving the claim. |

2.0.3. SOME USEFUL FACTS REGARDING SUBSPACES OF [

We now list some useful facts about subspaces of 7.

Claim9 Let k,d,n € N such that k > 100d. Let V C 5 be a subspace of dimension d. Let
X1, - , Xk be k vectors sampled uniformly at random from V. Then,

Py, 5. [VS C [K] such that |S| > 0.9k, we have span(xg) = V] > 1 — 204%, 3)

Proof We know that there always exist a linear bijection between V' and [Fgl. Without loss of gener-
ality, we assume n = d, V = [Fg. Without loss of generality, assume 0.9k is a integer. For a fixed S
with |S| = 0.9k

P[span(xs) = [Fg]

d—1
= H (1 — 270'9]““') See (Ferreira et al., 2012, Equation (2))
=0
d—1
>1_ 22—0.9k+j > 19 09%k+d 5 | _ 9080k
§=0

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

The number of choice of S is at most (,*,) < (10e)%'* < 2048k Then the proof is completed by

a union bound. |

The next claim says that a union of two proper subspaces of [5 must differ substantially from any
subspace of 5.

Claim 10 Let S be a subspace of Iy and of dimension d. Let U,V C S be two proper subspaces.
Then |S\(U U V)| > 292,

Proof Notice that the size of subspace in [is always a power of 2. There are two cases:

Case 1: dim(U) = dim(V) =d — 1.

Observe that dim(U N V) > d — 2 and hence [U U V| = [U|+ |V| - |UNV| < 32472,

Case 2: At least one of dim(U) or dim(V) < d — 2.

In this case, [UUV| < |U|+|V]| < 2971 42972 < 32972, Thus, in either case, |[UUV| < 3-2¢2

which implies that |S\(U U V)| > 2472, |
Claim 11 Let by, -+ ,b; € F} be linearly independent. Sample M € F5" uniformly at ran-
dom. Then Mby,--- ,Mb; are independent and identically distributed. In other words, the joint
distribution of Mby, - - - , Mb, is the uniform distribution over [F;”Xt.

Proof Let us first add vectors by41,. .., by such that {b;,...,b,} is a basis of F. Let B be the
matrix whose i’ column is b;. Now, observe that the map W : F5"*" — F5**" defined as ¥ : M
M - B is a bijection. Thus, if the random variable M is uniform over [FE”X”, then sois M - B.
Consequently, the first £ columns of M - B, namely, Mby, ..., Mb; are independent and identically
distributed.

|

The following theorem gives a hypothesis testing routine for mixtures of subspaces over [5. The
proof of this theorem is deferred to Appendix A.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A, B C F5 with
mixing weights wa,wp > wo. Let {Aj, B; }é\le be a collection of N sets of hypothesis with the
property that there exists i such that {A;, B;} = {A, B}. There is an algorithm CHOOSE-THE-
RIGHT-HYPOTHESIS which is given a confidence parameter §, wo, {A;, B; }é\le and a sampler
for D. Every subspace of {A;, B; }é\/zl will be represented by a basis of that subspace, and the
algorithm will have the access to the basis. This algorithm has the following behavior,

1. It runs in poly(N, 1/wg) log(1/0) time.

2. With the probability 1 — & outputs the index i such that {A;, B;} = {A, B}.

3. Testing Comparability of the Subspaces

In this section, the main goal is to prove Theorem 3 (restated below for the convenience of the
reader). We recall that Theorem 3 gives an efficient algorithm which given samples from a mix-
ture of two subspaces U, V, decides whether U and V' are comparable. This result in turn is an
important piece in our subspace recovery algorithm in the “incomparable” case. The algorithm
TEST-COMPARABILITY is described in Figure 1.

(9 T N S S

o e 9 A

10
11
12
13
14

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Theorem 3 There is an algorithm TEST-COMPARABILITY with the following guarantee: Given
oracle access to O(U, V, wy, wy) (for unknown U, V, wy, wy), Wynin > 0 (such that min{wy, wy } >
Wmin) and confidence parameter § > 0,

1. TEST-COMPARABILITY runs in sample and time complexity 1/wpmin? - poly(n) log(1/6).

2. With probability 1 — 0, the algorithm outputs True if U and V are comparable and False
otherwise.

The main idea of the algorithm is the following. First we take a few samples from the mixture
to get span(U U V). By dimension reduction, it suffices to deal with the case span(U U V') = 5.
The crucial property we use is the following: If span(U U V') = 5, U, V are incomparable iff there
exists non-zero p € RM(n, 2) such that p vanishes on the entire set U U V. The proof of Theorem 3
is deferred to the end of the section — to start, we prove some auxiliary lemmas.

Algorithm 1: TEST-COMPARABILITY
Input:
n — ambient dimension
O(U, V,wy, wy) — oracle for random samples from mixture of subspaces.
Win — lower bound of two mixture weights.
Output: True (if comparable) or False (if incomparable)

Sett = 161/ (Wmin?);

Sample x1, - - - , x¢ from O(U, V, wyr, wy);

Set S = span(x1, -+ ,x¢),v = dim(S);

Find y1, - - - , y, such that they form a basis of S = span(x1,- - ,X¢).;

Find a matrix D € [F;X" such that Dy; = e; for all ¢, where ¢; is the ith element of the

standard basis of [5.;

Set O’ = DO(U, V,wy, wv) = O(DU, DV, wy, wv);
Set 7 = 812 /Wpmin;
Sample z1, - - - , z, from O = O(DU, DV, wy,wy);
Use algorithm S1ZE-SYSTEM-POLYNOMIAL to compute
T =[{p € RM(v,2) : p(21) = p(22) = --- = p(z,) = O}
// See Claim 8
.if T'=1 then
| return True;
else
‘ return False;
end
Claim 13 Assume s > 8n/wpin. Let X1,Xa, -+ , X5 be sampled from a mixture of two subspaces

U,V C [y(potentially comparable) of dimension at most d with mixing weights wy, Wy > Wmin.
Then, with probability at least 1 — exp(—5Wmin2/32), span(xy,- - ,Xs) = span(U U V).

Proof For fixed 1, - - - , z; such that span(zy,--- ,z;) € span(U U V'), we will show

Pxiy1[Xiv1 € span(z1,- -+, 2i)] > Winin/2. 4)

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Define W = span(x1,- -, x;). By our assumption, either U ¢ W or V' € W. Let us assume that
it is the former (the other case is symmetric). Under this assumption, U N W is a proper subset of
U. Since both are linear subspaces and the size of any linear space over [is always a power of 2,
|[UNW|<0.5|U|. Hence

U\W
P[Xprl S U\W] > ZUU’ \ ‘ > Wmin - 0.5.

12—
In other words, rank(x1,- -+ ,x;+1) = rank(xi,--- ,x;) + 1 will hold with probability at least
Wmin /2, thus proving (4). Define y; = rank(xy, -+ ,x;) — rank(xy, -+ ,X;—1), then y1,- -+ ,ys
satisfy the condition of Lemma 25 with v = wpn/2,d = rank(U U V), k = s. Claim 13 now
follows by applying Lemma 25. |

The next (easy) claim says that suppose the distribution Z (over [$) is not too concentrated on
any single element. Then, a randomly chosen set of size roughly quadratic in d is a hitting set for
quadratic polynomials over ['4. In other words, any non-zero element of RM(d, 2) is non-zero on at
least one element of this set.

Claim 14 Let Z be a distribution over [Fg such that the probability weight of every element is at
least w*/ 24, Let x1, X, . .., X; be independent sampled from Z. Then, we have

d
P|Vq € RM(d,2) \ {0},3j € [t] s.t. q(x;) # 0} >1—exp (—tw*/4 + (< 2) log 2))
Proof Fix ¢ € RM(d, 2) such that ¢ # 0. By Claim 7,

[wau[Fg[q(x) =1]>1/4.

As a consequence,

*

Peozla(x) =0] <1 - %
Hence
Pla(x1) = -+ = q(x) = 0] < (1 — w*/4)" < exp(—tw"/4).
Notice that [RM(d, 2)| = o) Using the union bound, we get the claim. [

We are now ready to finish the proof of Theorem 3.

Proof of Theorem 3. Without loss of generality, we assume ¢ = 0.1, since we can always boost
the probability at a multiplicative cost of log(1/4). By Claim 13, we know that S = span(U U V)
(defined in Step 3 of the algorithm) with probability 0.999. Henceforth, we assume that S =
span(U U V) holds.

By definition, D (defined in Step 5 of the algorithm) is a linear bijection between S and
[5. Hence DU, DV are incomparable if and only if U, V' are incomparable. Now observe that,
O’ = O(DU, DV, wy,wy) will give samples from mixture of two subspaces DU, DV with mix-
ing weights wyr, wy > Wiip. Notice that span(DU U DV') = FY. We divide the rest of the analysis
into two cases.

10

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Case 1: DU, DV are comparable.

We have DU = [§ or DV = [§. By Claim 14, with probability 0.999, there will only be one
polynomial (the zero polynomial) in the set {p € RM(v,2) : p(z1) = p(z2) = --- = p(z,) = 0}.
In this case, T' = 1. Thus, overall, with probability 0.998, algorithm returns the correct answer in
this case.

Case 2: DU, DV are incomparable.

In this case, dim(DU) < v — 1 (and dim(DV) < v — 1). Thus, there exists non-zero vector
by (resp. by) such that (by, DU) = {0} (resp. (by, DV) = {0}). Now, consider the non-zero
polynomial p(z) = (by, z)(by,z). By definition it satisfies p(DU U DV') = {0}. Thus, in this
case, the set {p € RM(v,2) : p(z1) = p(z2) = - -+ = p(z,) = 0} has at least two elements. Thus,
overall, with probability 0.999, the algorithm returns the correct answer in this case. |

4. Learning Mixtures of Incomparable Subspaces

In this section, we give a polynomial time algorithm (Algorithm 2: INCOMPARABLE-SUBSPACE-
RECOVERY) for recovering the subspaces Ay, A1 when given access to samples from a mixture of
two subspaces that are incomparable. We prove the following theorem.

Theorem 1 There is an algorithm INCOMPARABLE-SUBSPACE-RECOVERY with the following
guarantee: given oracle access to O(Ag, A1, wp,w1) (for unknown Ay, Ay, wp, w1), Wimin > 0
(such that Wy, < min{wo, w1 }) and confidence parameter 6 > 0,

1. INCOMPARABLE-SUBSPACE-RECOVERY runs in sample and time complexity poly(n/wmn)-
log(1/4)

2. With probability 1 — 6, the algorithm outputs the subspaces Ay, A1, and estimates the weights
wo, w1 Up to any desired inverse polynomial accuracy.

The main idea is a new procedure for dimension reduction that reduces the subspace clustering
problem to O(1) dimensions. We will construct a linear map M € [F%OX” such that after projecting
using M, the subspaces obtained M Ay = {Mz : x € Ap} and MA; = {Mz : x € A} are
incomparable. The construction of M involves multiple rounds. In each round, we use Algorithm
TEST-COMPARABILITY (and Theorem 3) as a black-box, and find a projection that brings down
the dimension by one with high probability, while maintaining incomparability of the subspaces.
Once we recover the subspaces M Ay, M A; in O(1) dimensions (using a brute force algorithm:
enumerate all possible pairs of subspace, then use Theorem 12), we can then recover the original
subspaces Ay, A1 by considering samples in Ag U A; which are not mapped to M Ay N M A; by
M. We defer the proof of Theorem 1 to the end of section.

The following lemma is crucial in establishing Theorem 1. The lemma proves that with high
probability, Algorithm FIND- A-GOOD-PROJECTOR (Algorithm 3) reduces the dimension to r = 10
while preserving the incomparability of the subspaces. If M is randomly chosen from [F%OX”, then
MA; C MAg since M Ag collapses to Fi° with high probability. Algorithm FIND-A-GOOD-
PROJECTOR instead proceeds in multiple rounds, and reduces the dimension one per round. If the
projector M is chosen uniformly at random from an_l) " with constant probability M’ Ay, M’ A; €
[Fgfl remain incomparable. We can now use Algorithm TEST-COMPARABILITY (and Theorem 3)

11

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Algorithm 2: INCOMPARABLE-SUBSPACE-RECOVERY

Input:

n — ambient dimension.

O(Ap, A1, wo, wy) — oracle for random samples from mixture of subspaces.

Wmin — lower bound of two mixture weights.

Output: two subspaces.

M=FIND-A-GOOD-PROJECTOR(n, O(Ay, A1, wp, w1), Wnin);

Use brute force to solve
INCOMPARABLE-SUBSPACE-RECOVERY (10, M O(Ag, A1, wo, w1), Wmin), let U, V be the
output ;

3 Sett = 100m/wpmin;
4 Sample x1, - - ,x; from O(Ag, A1, wo, w1);

AW N =

o e N a wn

return span({x; : Mx; ¢ V}),span({x; : Mx; ¢ U});

to boost the success probability in each round by repeatedly sampling M’ and rejecting it if the
resulting subspaces are comparable.

Lemma 15 Given samples from a mixture of two incomparable subspaces Ay, Ay C [5 with
mixing weights wg, w1 > Wpin. There exists M &€ [F%OX" such that M Ay, M Ay are incomparable
subspaces. Moreover, there is an algorithm FIND-A-GOOD-PROJECTOR that runs in time 1 /Wy, -
poly(n) and find such a M with probability at least 0.999.

Algorithm 3: FIND-A-GOOD-PROJECTOR
Input:
n — ambient dimension
O(Ap, A1, wo, wy) — oracle for random samples from mixture of subspaces.
Win — lower bound of two mixture weights.

Output: a matrix M € F"*".

Set M = I,,, where I,, € F5*" is the identity matrix;
fori=n;i>10;i =7 — 1do
Sample T € FS""*" uniformly at random;
while TEST-COMPARABILITY (i, TM O(Ag, A1, wo, w1), Wmin, 1/n?) // the last
parameter is the failure probability we want.
do
Sample T € F{ " uniformly at random;
end
M =TM,;
end
return M ;

Proof We now show that Algorithm FIND-A-GOOD-PROJECTOR runs in polynomial time and
finds a required projector M with high probability. Observe that from Theorem 3, every call of

12

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

TEST-COMPARABILITY (in step 4 of Algorithm 3) fails with probability at most § = O(1/n?). We
will prove that at any iteration ¢ € {n,n — 1,...,11}, a randomly chosen matrix T € [ngl) x (in
step 3) succeeds with constant probability in preserving the incomparability of the subspaces. This
ensures that it will suffice to sample O(logn) many random 7" per round before we succeed in that
round (and hence O(nlog n) overall).

Fix an iteration i € {n,n — 1,...,11}, and let M € [FQX” be the current projector. Let U :=
MAy,V := M A, and assume U, V are incomparable. We show the following claim.

Claim: For a random T € [Fg*l)m chosen in step 3,

Pr[TU, TV are incomparable] > 9/128. 5)

We now prove the claim by considering two cases depending on the rank of UUV i.e., the dimension
of the spanof U U V.

Case 1: rank(UU V) <i— 1.

Letv = rank(UUV) and by, - - - , b, be a basis of span(UUV). By Claim 11, Tby, - - - , Tb, can be

viewed as being sampled independently from [Fg_l. A uniformly random matrix from [ngil) x(i=1)

is full-rank with probability at least [T, (1 — 277) > 1/4. Hence,
P[Tby,- -, Tb, are linearly independent] > 1/4.

When Tby, - - -, Tb, are linearly independent, TU, TV are incomparable as required. This estab-
lishes (5) in Case 1.

Case 2: rank(UU V) = i.

Let b1, ..., bgim@wnv) be abasis of U N V. We extend the basis such that

b1,y bdim@Unv)s €1y -+ - Caim(U)—dim(Unv') 18 @ basis of U, and similarly we extend the basis

so that by, ..., baim@wnv), d1; - - s gim(v)—dim(Unv) 1S @ basis of V. Observe that

b1y s baim(Unv), €1y - + - s Cdim(U)—dim(UAV)s @15 - - s Adim(V)—dim(Unv) 18 @ basis of span(UUV).
Reorder this basis to get ai, ..., a; such that a;_1 = c1,a; = dy. Let t; denote Ta;. By Claim 11,
ty,-- -, t; are independent and identically distributed. Let £ be the event

t; & span(ty,--- ,t;-1) Vi<j<i-—3
ti—o € span(ty, -+ ,t;_3)

ti—1 & span(ty, - ,ti2)

t; & span(ty, - ,ti—1)

Then,

w

Pr[€] = (% (1—2/"1/271)) . 1/4-3/4-1/2 > 3/4-3/32 = 9/128.

I
—

Condition on £. We now show that TU, TV are incomparable as required. We will show TU ¢
TV, the other direction is similar. By definition t;_y = Ta;—1 = Tc¢; € TU, and t;—1 ¢
span(ti,ta, -+ ,t;_2,t;). However TV C span(ti,tg,---,t;_2,t;), hence t;—1 ¢ TV, TU ¢
TV. This establishes (5). Hence the lemma follows. |

The following lemma shows that a few samples drawn uniformly from S \ 7" suffice to recover
S with high probability. This will allow us to recover Ag and A; after clustering the points in
MAyUMA;.

13

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Lemma 16 Let S be a subspace of Iy and of dimension d. Let T' be a proper subspace of S. Let
t > 8n be a integer. X1, - -+ ,x; are independently uniformly sampled from S\T. Then,

Plspan(xi,--- ,x¢) =S| >1— o /128

Proof Let V C S be a fixed subspace. Then by Claim 10, |S\(7 U V)| > 2972, which is at least
1/4 of | S|. We have

Pxvos\r[x & V] > 1/4.

In other words, if span(xy,---,xx) # S, then rank(xy, - ,Xgy1) = rank(xy,---x;) + 1
will hold with probability at least 1/4. Define the random variables y; = rank(xy, -+ ,X;) —
rank(xy, -+ ,x;—1) fori € {1,2,...,t}. Note thatyy, - - - , y; are not quite independent (since the
probability the rank increases at step ¢ depends on the random choices of x,...,X;_; in previous
iterations). But they satisfy the condition of Lemma 25 with v = 1/4,d = dim(S),k = t. The
proof is completed after applying Lemma 25. |

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, we assume 0 = 0.1, since we can always boost
the probability at a multiplicative cost of log(1/d). By Lemma 15, M satisfies the property that
M Ay, M Ay are incomparable with high probability (probability at least 0.999, say). Moreover
assuming M Ay, M A are incomparable, the brute force algorithm will return them with high prob-
ability.

Let U = M Ay, V = MA;. We will show that span({x; : Mx; ¢ V} = Ay with probability
0.998. Observe that W = {z € Ay : Mx € MA,} is a proper subspace of Ag. Hence if x is
drawn uniformly from Ag, x will not in W with probability at least 1/2. By Chernoff bound, we
expect to see at least 20n samples in {x; : Mx; ¢ V'} with probability 0.999 and all these samples
can be viewed as uniformly drawn from Ay\W. By Lemma 16, span({x; : Mx; ¢ M A} = Ao
with probability 0.998. A similar argument shows that the algorithm also recovers A; with high
probability. Finally, after recovering Ag, A; it is also easy to estimate the weights wy, w; to inverse
polynomial accuracy (see Remark 5). |

5. Mixtures of two subspaces with signficant dimension difference

In this section, we prove Theorem 2 (restated below for convenience of the reader) which shows
that there is a computationally efficient algorithm for learning a mixture of two subspaces with
significantly different dimensions. Note that the following theorem does not assume that the two
subspaces are incomparable.

Theorem 2 Let wyyin > 1/100. Let dy > dy and suppose o := dy/dy < 1 — %. There is an
algorithm SUBSPACE-RECOVER-LARGE-DIFF with the following guarantee: given oracle access
to O(Ag, A1, wo, w1)(for unknown Ay, A1, wo, w1), Wmin > 0 (such that Wy, < min{wo,w; })

and confidence parameter § > 0,

1. SUBSPACE-RECOVER-LARGE-DIFF runs in sample and time complexity
log(1/8)poly(n) - 491/ (1=,

14

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

2. With probability 1 — 6, the algorithm outputs the subspaces Ay, A1, and estimates the mixing
weights up to any desired inverse polynomial accuracy.

The algorithm RECOVER-SUBSPACE-LARGE-DIFF is described in Figure 4. Before proving
Theorem 2, we will make some simplifying assumptions (with their justifications given below)
followed by some useful notation.

Remark 17 Without loss of generality, we can assume

1. n = dy. This is because we can first use Theorem 3 to test whether the underlying sub-
spaces are incomparable. If they are incomparable, we can use Theorem I to recover the
subspaces. If not, we can take O(n/wpm;n) samples from the mixture to get span(Ag U A1)
with high probability (see Claim 13). We can then construct a linear bijection, say D, be-
tween span(AgU A1) and [F‘Qlo. Applying the map D to every sample from the mixture, we can
now assume that n = dy.

2. The algorithm knows dgy,dy. This is because we can enumerate all the possible values of
do, d1 and run the algorithm SUBSPACE-RECOVER-LARGE-DIFF fo get a list of candidate
hypothesis. We can then use the hypothesis testing algorithm in Theorem 12 to identify the
correct one with high probability.

3. We set 6 = 0.1. This is because we can always boost the success probability of our algorithm
at a multiplicative cost of log(1/0).

4. dy is at least a sufficiently large constant (which only depends on wy,;,). Otherwise, we can
always apply a brute force algorithm to recover the subspaces.

Notation.

(<)

1. We will use ¢y(z) € F5=" to represent the vector consisting of all the monomials of degree
at most £ on x, including the constant term. As an example, when £ = 2 and n = 2, we have
¢e(x) = (1, 21,22, x122) — note that because the underlying field is [y, all the monomials
are multilinear. We will use ¢(A) to denote {¢py(x) : = € A}. ¢y(A) is a set of vectors in
(2

9.

2. We define ¢ := dp — d; = (1 — a)dp to denote the difference between the dimensions of the
underlying subspaces Ag and A;.

3. For a sequence of vector z1, z2, - - - , &), we define x_; := {x; : j # i}

4. Let us denote by y; := ¢p(z;).

Finally, we note that for any subspace V' of dimension d over Fa, rank(¢e(V)) = (<d£).

We start with the following crucial lemma from Ben-Eliezer et al. (2012) (stated below). An
equivalent version was also proven in (Keevash and Sudakov, 2005, Theorem 1.5).

Lemma 18 (Lemma 4, Ben-Eliezer et al. (2012)) Let x1,x2, -+ ,xr be R = 2" distinct points
in F'5. Consider the linear space of degree d polynomials restricted to these points; that is, the space

{(p(z1),---p(zr)) : p € RM(n,d)}.

The linear dimension of this space is at least (< d)'

15

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Algorithm 4: SUBSPACE-RECOVER-LARGE-DIFF
Input:
dp — dimension of the larger subspace
a < 1 —ratio of the dimensions of two subspaces
O(Ag, A1, wo, wy) — oracle for random samples from mixture of subspaces.
Wynin — Minimum of two mixture weights.

Output: two subspaces U, V.
_ 210g(100/wmin) .
Set ¢ = 2108000/ wmin),

—Q

Use O(Ag, A1, wp, w1) to sample m = (iog) vectors X1, X2, * -+, Xy

Let S be the set of all ¢ € [m] such that y; := ¢,(x;) can be expressed as linear combination of
{de(x)) -5 # i}

return U = span({x; : i € S}),V =span({x; : x; ¢ U});

As an easy corollary, we have the following claim.

Lemma 19 Letx1,x9,- -+ , xR bedistinct pointsinF5. If R > 27, then rank({¢¢(x1), -, pe(zr)}) >
(<)-
Proof Without loss of generality, we can assume R = 27, since having more points can only

increase the rank. Let t = |RM(n, £)|. Say RM(n,£) = {p1,--- ,p}. Let A € F5*" be defined as
A; j = pi(z;). Applying Lemma 18 with d = ¢, we know the row-rank of A is atleast (7,). Let B €

S xR S .
[Fgg) be the matrix whose ith column is ¢4 (x;). Since every polynomial is a linear combination

. . t><(£é) . r
of monomials, there exists C' € [, such that A = C'B, hence rank(B) > rank(A) > (/,). W

Proof of Theorem 2. Let [y (resp. 1) be the set of all ¢ such that x; was sampled from Ag (resp.
A1). We now define the events &1, £, €3 and &4 as follows:

1. &1:Vie Iy, y; ¢ span({y—i} U ¢de(A1))

2. &: || > 10(%)

3. &3: VT C I; such that |T'] > 0.9]1;], we have span({x; }jer) = A;
4. &y span({x;}jcr,) = Ao

Assume &1, &9, E3, E4 holds. Note that whenever £ holds, it follows that S (defined in line 3 of
SUBSPACE-RECOVER-LARGE-DIFF) is a subset of I;. We now show that A; can be recovered
from the span of the samples corresponding to S. Now, consider the set {¢y(x;) : i € I; \ S}. By
definition, the elements of this set are linearly independent (otherwise, they will belong in .S). As
dim(span(¢e(A1))) < (2%), it follows that |{¢e(x;) : i € I1 \ S} < (°%). Asi > ¢p(x;) isa
injection on [; \ .S, it follows that |[{i € I; \ S}| < (O‘jl?) Since & holds, |17 \ S| < 0.1|;], hence
|S| > 0.9]1;]. Since &3 holds, span ({x;}es) = Ai.

We now argue that the algorithm also recovers Ag. We claim {j € [m] : x; ¢ A1} = Iy. Fix
j € Iy. Since &7 holds, gbg(Xj) =Yy;j §é qbg(Al), then X; §é Ajq. Hence Iy C {] DX §é Al}. It

16

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

is not hard to see {j : x; ¢ A1} C Ij. Finally when &4 holds, we have span({x; : x; ¢ A;}) =
span({x; : j € Ip}) = Ao.

Thus, it remains to show that &1, &2, €3 and &4 hold simultaneously with probability 0.99.
Proof of P[£;1] > 0.999: First, observe that by definition, ¢ = W. Using the assumption
on do and Wy, it follows that

210g(100/wynin) Vdo 20
1-« logdy)’ T (1—a) ©
From this, applying the constraints on dy and ¢ from (6), we get
Wimin 1/¢ 1 Wimin (1 + CK) 14
>1+-01 () > > o+ —. 7
(10()) SRR AN TV TV A R @

Now, it is not difficult to see that (°‘<dl9) < (ad%M) — it easily follows from the combinatorial
interpretation of binomial coefficients. Now, using this and (7), we get

(5%) _ (v £\ _ i
<y <lra) <5 v
‘We now have,
P [dim(span({y-} U (A1) < (1 = 0w} (2] ®
>P :dim(span({}’—i} U ¢e(41))) < (1= 0.5wmin) (;%) T <Zd2>}
using (8),
>P :dim(span({yfi})) < (1= 0.5wmin) (j()é)}

using dim(span(r(40) = ().

</

>P[[Zo] < (1 — 0.5wpin) (;1%)]
using |Io| > {y_}| > dim(span({y_})).

10)

2
>1 e B (9)

from a standard Chernoff bound.

Let us now define the event B; as the event that i € I and dim(span({y—;} U ¢¢(A1))) < (1 —
0.4wmin) (ioz) Let r := [(1 — 0.4wmin/€)do + ¢]. Using reasoning similar to (8), we have

(STZ) (;) r— 0\ 0.4wmin ¢
G2z () 2 (-2) 210

Thus, it follows that if the event B; holds, dim(span({y—;} U ¢¢(41))) < (Z,). Now, let us define
the set #; = {z € F9 : ¢y(x) € span({y_i} Ue(A1))}. By Lemma 19, we get that |H,;| < 21,

17

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Thus, we now have

|’Hz‘ or+1 0.35w,;,dg
Ply: € span({y—i} U ¢¢(A1))|Bi] = ol S ody =2 e (11)

Applying the above inequality along with (10), we get

2

) —0.35w,,, i do _ Wmin (do) —0.3w,,do
Ply: ¢ span({y—i} U ¢e(A1))]i € Iy] > 1 —2 7 —e 2 \st) >1 27 ¢
(12)
By taking a union bound, it follows that
, do '\, =03wmindo =0-2wpmindy
P[Vi € Iy, y: ¢ span({y—i} U pe(A41))] > 1 — Py 27 ¢ >1-2" ¢ . (13)

As we have chosen dj to be sufficiently large, the right hand side is at least 0.999 showing that
P[&1] > 0.999.

Proof of P[] > 0.999: This follows from a straightforward Chernoff bound on the sampling
process defining I.

Proof of P[E3] > 0.999: This is a direct application of Claim 9.

Proof of P[E4] > 0.999: This also follows from Claim 9.

6. Reduction from Learning Noisy Parities

In this section, we show how the problem of learning a mixture of two (comparable) subspaces
captures the notorious hard problem of learning parity with noise (LPN).

Given n € N, the (n,¢€)-LPN problem is instantiated by an (unknown) parity function f :
F% — F2 and a noise parameter ¢ € (0,1/2). The samples are generated i.i.d. by a sampling oracle
O = O(f, €) as follows. First, x ~,, [} is sampled uniformly at random from F%5. Then b € {0,1}
is sampled such that P[b = 0] = 1 — e and P[b = 1] = €. If b = 0, O outputs (x, f(x)) and if
b = 1, outputs (x,1 — f(x)). Given samples generated i.i.d. by the sampling oracle O(f, ¢), the
goal is to learn the unknown parity function f.

The following simple proposition reduces LPN to learning mixtures of (comparable) subspaces
in [FSH, where the subspaces have dimensions n + 1 and n respectively.

Proposition 20 Suppose there exists an algorithm ALG that given samples from a mixture of
two subspaces Ay = [FS'H, Ay C [Fg'Irl of dimensions n + 1,n respectively, with mixing weights
2¢,1 — 2¢, runs in time T = T'(n, 0) and solves this problem with probability 1 — 0. Then there is
an algorithm that solves (n, €)-LPN with probability 1 — § and running time O(T') + poly(n).

Proof Consider a sample (x,y) € F5™! (with x € F%) drawn from a sampling oracle O(f,)
for the (n,€)-LPN problem. We can view (x,y) as a sample from a mixture of two subspace
Fo+t Ay C F5+! of dimension n -+ 1,7 (respectively) with mixing weights 2¢, (1 — 2¢) as follows.

18

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Let A; be the subspace of dimension n defined by the linear equation f(x) +y = 0 over F2. On
the one hand, if b = 1, then (x,y) € F5*! does not belong to Ay; it is drawn from Ag \ A;. On
the other hand when b = 0, (x,y) € F5 " lies in the subspace A;. But this could correspond
to a sample drawn from A; or to the portion of Ay that overlaps with A; (recall that A; C Ay
and |Ap N A1] = |Ap|/2 in our case). Hence by setting the mixing weights of the subspaces
Ag = [FSH, A to be 2¢,1 — 2¢ respectively, we can view a sample (x,y) drawn from the LPN
problem as being drawn from the mixture of subspaces Ay, A;.

Our goal is then to recover Ag, A; from i.i.d. samples of the form (x,y) drawn from the LPN
problem. If the algorithm ALG succeeds in finding A, then this provides a parity function f
(corresponding to the constraint defining A1) that satisfies the LPN problem. |

The next proposition shows that learning mixtures of two subspaces Ag, A1 in [FSH where
Ag = F3™! and dim(A;) = n is in fact equivalent to the LPN problem.

Proposition 21 Suppose there is an algorithm ALG that solves (n, €)-LPN with probability 1 — 6
and running time T = T'(n,). Then, there is an algorithm that given samples from a mixture of
two subspaces [F;"H, A C [F;'H of dimension n + 1, n respectively with mixing weights 2¢,1 — 2e,
runs in time O(nT’) 4 poly(n) and recovers Ay with probability 1 — § — exp(—n).

Proof We start with a simple observation. Suppose (*) x;, + x;, + - - - + x;, = 0 be the constraint
defining subspace A1, and suppose j € {i1, 2, - ,if}. Consider the parity

f H_—él,2,...,n+1}\{j} — o, where f(x) = Z Zy.
Lefini,.ip }\{J}

On one hand, if (x1,...,Xp,+1) is drawn from A; (this is with probability 1 — 2¢), then the pair
(x_j,x;) satisfies the parity f by definition of A;. On the other hand, if (x1,...,Xp11) is drawn
from Ag (this is with probability 2¢), it satisfies parity f with probability 1/2. In total, the parity
f is satisfied with probability 1 — 2¢ + 3(2¢) = 1 — €. Hence, a sample (x1,...,X,+1) from the
mixture of subspaces with weights 2¢,1 — €, (x_j,x;) can be viewed as a sample of (n,¢)-LPN
with unknown parity f.

We do not know {i1, ig, ..., ix}. However we can guess and tryout j = 1,--- ,7 =n + 1 and
get at most n + 1 candidate hypothesises. We can then use the well known hypothesis testing result
from Proposition 22 to filter and find the correct subspace A; with high probability. |
Acknowledgments

We thank Swastik Kopparty for telling us about the results in Ben-Eliezer et al. (2012).

References

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Improved guarantees for agnostic learning of disjunc-
tions. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT, pages 359-367. Omnipress,
2010. ISBN 978-0-9822529-2-5. URL http://dblp.uni-trier.de/db/conf/colt/
colt2010.html#AwasthiBS10.

19

http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10
http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Ainesh Bakshi and Pravesh Kothari. List-decodable subspace recovery via sum-of-squares. ArXiv,
abs/2002.05139, 2020.

Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In Foundations of
Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 103—112. IEEE, 2010.

Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to ap-
proximate. computational complexity, 21(1):63-81, 2012.

Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vijayaraghavan. Smoothed analysis
in unsupervised learning via decoupling. In Proceedings of the 60th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE, 2019.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. J. ACM, 50(4):506-519, July 2003. ISSN 0004-5411. doi: 10.1145/
792538.792543. URL http://doi.acm.org/10.1145/792538.792543

Clément L Canonne, Anindya De, and Rocco A Servedio. Learning from satisfying assignments
under continuous distributions. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 8§2-101. SIAM, 2020.

Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: Mixtures of subcubes and
their applications. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, page 869-880, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450367059. doi: 10.1145/3313276.3316375. URL https:
//doi.org/10.1145/3313276.3316375.

Anindya De, Ilias Diakonikolas, and Rocco A Servedio. Learning from satisfying assignments.
In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages
478-497. SIAM, 2014.

Francois Denis, Rémi Gilleron, and Fabien Letouzey. Learning from positive and unlabeled exam-
ples. Theoretical Computer Science, 348(1):70-83, 2005.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2765-2781, 2013. doi: 10.1109/TPAMI.2013.57.
URL http://dx.doi.org/10.1109/TPAMI.2013.57.

Matthias Ernst, Maciej Liskiewicz, and Riidiger Reischuk. Algorithmic learning for steganography:
proper learning of k-term dnf formulas from positive samples. In International Symposium on
Algorithms and Computation, pages 151-162. Springer, 2015.

Jon Feldman, Rocco A. Servedio, and Ryan O’Donnell. PAC learning axis-aligned mixtures of
Gaussians with no separation assumption. In Proceedings of the 19th annual conference on
Learning Theory, COLT 06, pages 20-34, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-
540-35294-5, 978-3-540-35294-5. doi: 10.1007/11776420_5. URL http://dx.doi.org/
10.1007/11776420_5.

Paulo JSG Ferreira, Bruno Jesus, Jose Vieira, and Armando J Pinho. The rank of random binary ma-
trices and distributed storage applications. IEEE communications letters, 17(1):151-154, 2012.

20

http://doi.acm.org/10.1145/792538.792543
https://doi.org/10.1145/3313276.3316375
https://doi.org/10.1145/3313276.3316375
http://dx.doi.org/10.1109/TPAMI.2013.57
http://dx.doi.org/10.1007/11776420_5
http://dx.doi.org/10.1007/11776420_5

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery. In Confer-
ence on Learning Theory, pages 354-375, 2013.

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of two
Gaussians. In Proceedings of the 42nd ACM symposium on Theory of computing, pages 553—
562. ACM, 2010.

Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and the minimum
rank ofinclusion matrices. SIAM Journal on Discrete Mathematics, 18(4):713-727, 2005.

Jian Li, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. Learning arbitrary statistical
mixtures of discrete distributions. In Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 15, page 743-752, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450335362. doi: 10.1145/2746539.2746584. URL https:
//doi.org/10.1145/2746539.2746584.

A. Liu and A. Moitra. Efficiently learning mixtures of mallows models. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 627-638, 2018.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of Gaussians.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 93—
102. IEEE, 2010.

Dohyung Park, Constantine Caramanis, and Sujay Sanghavi. Greedy subspace clustering. In Neural
Information Processing Systems, December 2014.

Krzysztof Pietrzak. Cryptography from learning parity with noise. In Proceedings of the 38th
International Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM’12, pages 99-114, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-
27659-0. doi: 10.1007/978-3-642-27660-6.9. URL http://dx.doi.org/10.1007/
978-3-642-27660-6_09.

Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. Learning mixtures of arbitrary dis-
tributions over large discrete domains. In Proceedings of the 5th conference on Innovations in
theoretical computer science, pages 207-224, 2014.

Prasad Raghavendra and Morris Yau. List decodable subspace recovery. volume 125 of Proceedings
of Machine Learning Research, pages 3206-3226. PMLR, 09-12 Jul 2020. URL http://
proceedings.mlr.press/v125/raghavendra20a.html.

Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J. Candes. Robust subspace clustering.
Ann. Statist., 42(2):669—699, 04 2014. doi: 10.1214/13-A0S1199. URL http://dx.doi.
org/10.1214/13-A0S1199.

René Esteban Vidal. Generalized principal component analysis (gpca): an algebraic geometric
approach to subspace clustering and motion segmentation, 2003.

21

https://doi.org/10.1145/2746539.2746584
https://doi.org/10.1145/2746539.2746584
http://dx.doi.org/10.1007/978-3-642-27660-6_9
http://dx.doi.org/10.1007/978-3-642-27660-6_9
http://proceedings.mlr.press/v125/raghavendra20a.html
http://proceedings.mlr.press/v125/raghavendra20a.html
http://dx.doi.org/10.1214/13-AOS1199
http://dx.doi.org/10.1214/13-AOS1199

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Appendix A. Hypothesis Test

In this section we will prove the following theorem.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A, B C T3 with
mixing weights wa,wp > wo. Let {Aj, B; }5\7:1 be a collection of N sets of hypothesis with the
property that there exists i such that {A;, B;} = {A, B}. There is an algorithm CHOOSE-THE-
RIGHT-HYPOTHESIS which is given a confidence parameter §, wo, {A;, Bj}é-vzl and a sampler
for D. Every subspace of {A;j, B; }é\le will be represented by a basis of that subspace, and the
algorithm will have the access to the basis. This algorithm has the following behavior

1. It runs in poly(N, 1/wg) log(1/0) time.
2. With the probability 1 — 0 outputs the index i such that { A;, B;} = {A, B}.

We defer the proof to the end of this section.

In order to prove Theorem 12, we need a fundamental tool from statistics, namely “hypothesis
testing for distributions”. There are many equivalent forms of this algorithm — we use the following
(convenient) version from De et al. (2014).

Proposition 22 (Simplified (De et al., 2014, Proposition 6)) Let D be a distribution over W and
D. = {D; }szl be a collection of N distribution over W with the property that there exists i € [N]

such that dpy (D, D;) < e. There is an algorithm TP which is given an accuracy parameter ¢, a
confidence parameter 0, and is provided with access to (i) samplers for D and Dy, for all k € [N]
(ii) a evaluation oracle EV ALp,, for all k < [N], which, on input w € W, output the value
Dy (w). This algorithm has the following behavior: It makes m = O((1/€*)(log N + log(1/6)))
draws from D and each Dy, k € [N], and O(m) calls to each oracle EV ALy, , k € [N], performs
O(mN?) arithmetic operations, and with probability 1 — § outputs an index i* € [N] that satisfies
dTV (D, Dl*) S Ge.

Definition 23 D(A, B,wa,1 — wy) is defined as the distribution induced by a mixture of two
incomparable subspaces A, B C [y of dimension at most d with mixing weights wa,1 — w 4.

Lemma24 Let A,B,C,D be 4 subspaces of F3. Suppose {A,B} # {C,D}. Let D; =
D(A,B,wa,1 —wy),Ds = D(C, D, we, 1 — we),w* =min(wa, 1 —wa,we, 1 —we). Then
drv(Dy,D2) > w*/8.

Proof Without loss of generality, assume A has largest dimension among all 4 subspaces. We divide
the rest of the analysis into a few cases.

Casel: A# Cand A# D.
Case2: A=BorA=D.
Case 3 : A, B are incomparable.
A# Band A# D.< Case4: A, D are incomparable.
Caseb5: B C Aand D C A.

A=Cor A= D. Assume A=C.2

22

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Case 1:

In this case, A N C and A N D are two proper subspace of A. By Claim 10, |[A\(C U D)| > |A|/4,
dTv(Dl,DQ) Z w*/4

Case 2:

Without loss of generality, assume A = B. We have dim(A) > dim(D) and D # A. Hence AN D
is a proper subspace of A. |(D; — D9)(A\D)| = (1 — w¢)|A\D|/|A| > w* - 1/2.

Case 3:

If B C D, we have B C D. Since A, B are incomparable, A, D are incomparable. |(D; —
D,)(D\(AUB)| > w*/4.If B ¢ D, BND is a proper subspace of B, |(D1 —D2)(B\(AUD)| >
w* /4.

Case 4: similar to Cases 3.

Case 5:

If lwg —we| > w*/2, then |(D; —D2)(A\(BUD))| = |lwa—w¢|-|A\(BUD))|/|A] > w*/2-1/4.
If lwa —we| < w* /2, without loss of generality, assume dim(B) > dim(D). Since B # D, BND
is a proper subspace of B. |(D1—D3)(B\D)| = |(wa—w¢)-|B\D|/|A|+(1—w4)|B\D|/|B|| >
(1= wa) B\D|/|B| — (s — we) - |B\D|/|A|| > w*/2 — w2 1/2 = w* /4. =

Proof [Proof of Theorem 12] Set ¢ = wy/100,M = [1/e],y7 = (1 — wo)/M. Let D, =
{D(Ay, Bj, wo+k*v,1—wo—k*v}jcn ke[mju{o}- It is not hard to see that there exist D* € D,
such that dpy (D*, D) < e. By Proposition 22, we can find D’ € D, such that dry (D', D) < 6e
with probability 1 — 6. Say D’ = D(A’, B’,w',1 — w'). We claim {A4’, B’} = {A, B}. For a
contradiction, suppose it is not true. Then by Lemma 24, dry (D', D) > wy/8 > 6e, we derive a
contradiction. |

Appendix B. Generalized Chernoff Bound

Lemma 25 Let~y € (0,1),d,k € N. Let x1,X2, -+ , X be a sequence of random variables such
that for all i € [k]

Pl(xi=1)V (x1+x2+ - +xi-1 > d)|x1, -+ ,Xi—1] > 7.
Assume k > 2d/~. Then
Plxi+ - +x>d >1—exp (—k72/8) .
Proof We will use the coupling technique. Define

{1 ifxi+--+x.1>d.
Yi = .
x; otherwise.

Then
l.x1+ - +x,>d < y1+ - +yr>d.

2. Foralli € [k],Ply; = 1|y1, - ,yi-1] > 7.

2. This is without loss of generality.

23

LEARNING A MIXTURE OF TWO SUBSPACES OVER FINITE FIELDS

Define a submartingale Zo, - - - ,Z;, by Zg = 0and Z; = Elglgj y: — j. Then,

Plx1 + - +x > d]
=Plyi+-+yr >4
=1-Ply1+--+yr <d—1]
>1-P[Zy —Zo <d—1- k]

e (_(m—(;]i— 1))2)

> 1 —exp (—kv?/8) . by kv > 2d

by Azuma-Hoeffding inequality

24

	Introduction
	Overview of Techniques.

	Preliminaries
	Some useful notation
	Some useful facts regarding polynomials
	Some useful facts regarding subspaces of F2n

	Testing Comparability of the Subspaces
	Learning Mixtures of Incomparable Subspaces
	Mixtures of two subspaces with signficant dimension difference
	Reduction from Learning Noisy Parities
	Hypothesis Test
	Generalized Chernoff Bound

