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Abstract

To learn intrinsic low-dimensional structures from high-dimensional data that most
discriminate between classes, we propose the principle of Maximal Coding Rate
Reduction (MCRQ), an information-theoretic measure that maximizes the coding
rate difference between the whole dataset and the sum of each individual class.
We claritfy its relationships with most existing frameworks such as cross-entropy,
information bottleneck, information gain, contractive and contrastive learning, and
provide theoretical guarantees for learning diverse and discriminative features.
The coding rate can be accurately computed from finite samples of degenerate
subspace-like distributions and can learn intrinsic representations in supervised,
self-supervised, and unsupervised settings in a unified manner. Empirically, the
representations learned using this principle alone are significantly more robust to
label corruptions in classification than those using cross-entropy, and can lead to
state-of-the-art results in clustering mixed data from self-learned invariant features.

1 Context and Motivation

Given a random vector z € R which is drawn from a mixture of, say k, distributions D = {D;} ;‘-’:1,
one of the most fundamental problems in machine learning is how to effectively and efficiently learn
the distribution from a finite set of i.i.d samples, say X = [x1, Z2,..., %] € RP*™ To this end,
we seek a good representation through a continuous mapping, f(x,6) : R? — R9, that captures
intrinsic structures of @ and best facilitates subsequent tasks such as classification or clustering.

Supervised learning of discriminative representations. To ease the task of learning D, in the
popular supervised setting, a true class label, represented as a one-hot vector y; € R¥, is given for
each sample x;. Extensive studies have shown that for many practical datasets (images, audios, and
natural languages, etc.), the mapping from the data x to its class label ¢y can be effectively modeled
by training a deep network [GBC16], here denoted as f(x, ) : x — y with network parameters
0 € ©. This is typically done by minimizing the cross-entropy loss over a training set {(x;, y;) } /%1,
through backpropagation over the network parameters 6:

min CE(6, z,y) = ~E[{y, log[f (=, 0)])] ~ -

Z<yi,log[f(:ci,0>}>- (1)

|-

Despite its effectiveness and enormous popularity, there are two serious limitations with this approach:
1) It aims only to predict the labels y even if they might be mislabeled. Empirical studies show
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that deep networks, used as a “black box,” can even fit random labels [ZBH17]. 2) With such
an end-to-end data fitting, despite plenty of empirical efforts in trying to interpret the so-learned
features [ZF14], it is not clear to what extent the intermediate features learned by the network capture
the intrinsic structures of the data that make meaningful classification possible in the first place. The
precise geometric and statistical properties of the learned features are also often obscured, which
leads to the lack of interpretability and subsequent performance guarantees (e.g., generalizability,
transferability, and robustness, etc.) in deep learning. Therefore, the goal of this paper is to address
such limitations of current learning frameworks by reformulating the objective towards learning
explicitly meaningful representations for the data x.

Minimal discriminative features via information bottleneck. One popular approach to interpret
the role of deep networks is to view outputs of intermediate layers of the network as selecting certain
latent features z = f(x,0) € RY of the data that are discriminative among multiple classes. Learned
representations z then facilitate the subsequent classification task for predicting the class label y by
optimizing a classifier g(z):
f(=,9) 9(2)
T z(0)

The information bottleneck (IB) formulation [TZ15] further hypothesizes that the role of the network
is to learn z as the minimal sufficient statistics for predicting y. Formally, it seeks to maximize the
mutual information I(z,y) [CT06] between z and y while minimizing I (x, z) between x and z:

Ieneaé( IB(:B,y,Z(e)) = I(z(e)vy) - 6I($7Z(9)), ﬁ > 0. (2)

Given one can overcome some caveats associated with this framework [KTVKI18], such as how
to accurately evaluate mutual information with finitely samples of degenerate distributions, this
framework has been successful in describing certain behaviors of deep networks. But by being
task-dependent (depending on the label y) and seeking a minimal set of most informative features for
the task at hand (for predicting the label y only), the network sacrifices generalizability, robustness,
or transferability, in case the labels can be corrupted or the learned features be tackled. To address
this, our framework uses label y only as side information to assist learning diverse and discriminative
representations, hence making learned features more robust to mislabeled data.

Contractive learning of generative representations. Complementary to the above supervised
discriminative approach, auto-encoding [BH89, Kra91] is another popular unsupervised (label-free)
framework used to learn good latent representations, which can be viewed as a nonlinear extension to
the classical PCA [Jol02]. The idea is to learn a compact latent representation z € R¢ that adequately
regenerates the original data  to certain extent, through optimizing decoder or generator g(z,7):

o0 2(0) 22 8(0.m). 3
Typically, such representations are learned in an end-to-end fashion by imposing certain heuristics
on geometric or statistical “compactness” of z, such as its dimension, energy, or volume. For
example, the contractive autoencoder [RVM™11] penalizes local volume expansion of learned
features approximated by the Jacobian || ?TZ ||. Another key design factor of this approach is the choice
of a proper, but often elusive, metric that can measure the desired similarity between x and the decoded
Z, either between sample pairs x; and Z; or between the two distributions D,, and Dz;. However, the
distance between two distributions, say the KL divergence KL(Dy||Dz), is very difficult to evaluate
when the data distributions are discrete and degenerate. In practice, it can only be approximated with
the help of an additional disriminative network, known as GAN [GPAM™ 14, ACB17].

Representations learned through this framework can be arguably rich enough to regenerate the data
to a certain extent. But depending on the choice of the regularizing heuristics on z and similarity
metrics on x (or D), the objective is typically task-dependent and often grossly approximated
[RVM™11, GPAM™14]. When the data contain complicated multi-modal structures, naive heuristics
or inaccurate metrics may fail to capture all internal subclass structures or to explicitly discriminate
among them for classification or clustering purposes. For example, one consequence of this is the
phenomenon of mode collapsing in learning generative models for data that have mixed multi-modal
structures [LPZM20]. To address this, we propose a principled measure (on z) to learn representations
that promotes multi-class discriminative property from data of mixed structures, which works in both
supervised and unsupervised settings.

This work: Learning diverse and discriminative representations. Whether the given data X of
a mixed distribution D can be effectively classified depends on how separable (or discriminative)



10

g Si

10000

R
s
S S =

00

RD

10000 20000 30000 40000 50000

Figure 1: Left and Middle: The distribution D of high-dim data @ € RP is supported on a manifold M and
its classes on low-dim submanifolds M, we learn a map f(x, 0) such that z; = f(x;,6) are on a union of
maximally uncorrelated subspaces {S;}. Right: Cosine similarity between learned features by our method
for the CIFARI10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions D; are (or can be made). One popular working assumption is that
the distribution of each class has relatively low-dimensional intrinsic structures. There are several
reasons why this assumption is plausible: 1). High dimensional data are highly redundant; 2).
Data that belong to the same class should be similar and correlated to each other; 3). Typically
we only care about equivalent structures of x that are invariant to certain classes of deformation
and augmentations. Hence we may assume the distribution D; of each class has a support on a
low-dimensional submanifold, say M with dimension d; < D, and the distribution D of x is
supported on the mixture of those submanifolds, M = U;?:l./\/l j» in the high-dimensional ambient

space RP, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, #) that maps each of
the submanifolds M; C RP to a linear subspace S; C R? (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {S,} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering or
classification tasks (such as object recognition), we consider two samples as equivalent if they differ
by certain class of domain deformations or augmentations 7 = {7}. Hence, we are only interested
in low-dimensional structures that are invariant to such deformations (i.e., x € M iff 7(x) € M for
all 7 € T'), which are known to have sophisticated geometric and topological structures [WDCBOS5]
and can be difficult to learn in a principled manner even with CNNs [CW16, CGW19]. There are
previous attempts to directly enforce subspace structures on features learned by a deep network
for supervised [LQMS18] or unsupervised learning [JZL*17, ZJH™ 18, PFX 17, ZHF18, ZJH™ 19,
ZLY 119, LQMS18]. However, the self-expressive property of subspaces exploited by [JZL*17] does
not enforce all the desired properties listed above [HY V20]; [LQMS18] uses a nuclear norm based
geometric loss to enforce orthogonality between classes, but does not promote diversity in the learned
representations, as we will soon see. Figure 1 right illustrates a representation learned by our method
on the CIFAR10 dataset. More details can be found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at



once? If so, is there a simple but principled objective that can measure the goodness of the resulting
representations in terms of all these properties? The key to these questions is to find a principled
“measure of compactness” for the distribution of a random variable z or from its finite samples
Z. Such a measure should directly and accurately characterize intrinsic geometric or statistical
properties of the distribution, in terms of its intrinsic dimension or volume. Unlike cross-entropy (1)
or information bottleneck (2), such a measure should not depend explicitly on class labels so that it
can work in all supervised, self-supervised, semi-supervised, and unsupervised settings.

Low-dimensional degenerate distributions. In information theory [CT06], the notion of entropy
H(z) is designed to be such a measure. However, entropy is not well-defined for continuous
random variables with degenerate distributions. The same difficulty resides with evaluating mutual
information I (x, z) for degenerate distributions. This is unfortunately the case here. To alleviate this
difficulty, another related concept in information theory, more specifically in lossy data compression,
that measures the “compactness” of a random distribution is the so-called rate distortion [CTO06]:
Given a random variable z and a prescribed precision € > 0, the rate distortion R(z, €) is the minimal
number of binary bits needed to encode z such that the expected decoding error is less than e, i.e., the
decoded z satisfies E[||z — Z]|2] < e. Although this framework has been successful in explaining
feature selection in deep networks [MWHK19], the rate distortion of a random variable is difficult, if
not impossible to compute, except for simple distributions such as discrete and Gaussian.

Nonasymptotic rate distortion for finite samples. When evaluating the lossy coding rate R, one
practical difficulty is that we normally do not know the distribution of z. Instead, we have a finite
number of samples as learned representations where z; = f(x;,0) € R?, i =1,...,m, for the given
data samples X = [x1, ..., &,,]. Fortunately, [MDHWO7] provides a precise estimate on the number
of binary bits needed to encoded finite samples from a subspace-like distribution. In order to encode
the learned representation Z = [z, ..., z,,] up to a precision ¢, the total number of bits needed is
given by the following expression: £(Z,¢€) = (%) log det (I + mdéz zZZ T). This formula can be
derived either by packing e-balls into the space spanned by Z or by computing the number of bits
needed to quantize the SVD of Z subject to the precision, see [MDHWO7] for proofs. Therefore, the
compactness of learned features as a whole can be measured in terms of the average coding length
per sample (as the sample size m is large), a.k.a. the coding rate subject to the distortion e:

R(Z,¢) = % log det (I + niQZZT) . )

Rate distortion of data with a mixed distribution. In general, the features Z of multi-class data
may belong to multiple low-dimensional subspaces. To evaluate the rate distortion of such mixed
data more accurately, we may partition the data Z into multiple subsets: Z = Z; U --- U Zj,
with each in one low-dim subspace. So the above coding rate (4) is accurate for each subset. For
convenience, let IT = {II; € Rmx’"}f:l be a set of diagonal matrices whose diagonal entries
encode the membership of the m samples in the k classes. More specifically, the diagonal entry
IT; (4, ¢) of IT; indicates the probability of sample 4 belonging to subset j. Therefore IT lies in a
simplex: = {IT | IT; > 0, II; + --- 4 II; = I}. Then, according to [MDHWO7], with respect
to this partition, the average number of bits per sample (the coding rate) is

k

R(Z.e|T) =

Jj=1

tr(I1;)
2m

d
log det <I + 2Zl_[jZT> . 5)
€

tr(I;)

When Z is given, R°(Z, e | II) is a concave function of II. The function log det(-) in the above
expressions has been long known as an effective heuristic for rank minimization problems, with
guaranteed convergence to local minimum [FHBO3]. As it nicely characterizes the rate distortion of
Gaussian or subspace-like distributions, log det(-) can be very effective in clustering or classification
of mixed data [MDHWO07, WTL 08, KPCC15].

2.2 Principle of Maximal Coding Rate Reduction

On one hand, for learned features to be discriminative, features of different classes/clusters are
preferred to be maximally incoherent to each other. Hence they together should span a space of the
largest possible volume (or dimension) and the coding rate of the whole set Z should be as large as
possible. On the other hand, learned features of the same class/cluster should be highly correlated and



coherent. Hence, each class/cluster should only span a space (or subspace) of a very small volume
and the coding rate should be as small as possible. Therefore, a good representation Z of X is one
such that, given a partition II of Z, achieves a large difference between the coding rate for the whole
and that for all the subsets:

AR(Z,11,€) = R(Z,¢) — R°(Z, ¢ | TI). (6)

If we choose our feature mapping z = f(x, ) to be a deep neural network, the overall process of the
feature representation and the resulting rate reduction w.r.t. certain partition IT can be illustrated by
the following diagram:

=D, 7(0) 25 AR(Z(0), 1L, ). 7

X
Note that AR is monotonic in the scale of the features Z. So to make the amount of reduction
comparable between different representations, we need to normalize the scale of the learned features,
either by imposing the Frobenius norm of each class Z; to scale with the number of features in
Z; € R¥™i: || Z;||% = m; or by normalizing each feature to be on the unit sphere: z; € S~
This formulation offers a natural justification for the need of “batch normalization” in the practice of
training deep neural networks [IS15]. An alternative, arguably simpler, way to normalize the scale of

learned representations is to ensure that the mapping of each layer of the network is approximately
isometric [QYW120].

Once the representations are comparable, our goal becomes to learn a set of features Z(0) = f(X, 0)
and their partition II (if not given in advance) such that they maximize the reduction between the
coding rate of all features and that of the sum of features w.r.t. their classes:

%I%IX AR(Z(Q),I_LE) = R(Z(9)76) - RC(Z(9)76 ‘ H)> S.t. HZJ<9)||%‘ = my, e (8

We refer to this as the principle of maximal coding rate reduction (MCR?), an embodiment of
Aristotle’s famous quote: “the whole is greater than the sum of the parts.” Note that for the clustering
purpose alone, one may only care about the sign of AR for deciding whether to partition the data
or not, which leads to the greedy algorithm in [MDHWO7]. More specifically, in the context of
clustering finite samples, one needs to use the more precise measure of the coding length mentioned
earlier, see [MDHWO7] for more details. Here to seek or learn the best representation, we further
desire the whole is maximally greater than its parts.

Relationship to information gain. The maximal coding rate reduction can be viewed as a gener-
alization to Information Gain (IG), which aims to maximize the reduction of entropy of a random
variable, say z, with respect to an observed attribute, say 7: max, IG(z,7) = H(z) — H(z | 7),
i.e., the mutual information between z and 7 [CT06]. Maximal information gain has been widely
used in areas such as decision trees [Qui86]. However, MCR? is used differently in several ways:
1) One typical setting of MCR? is when the data class labels are given, i.e. IT is known, MCR?
focuses on learning representations z(6) rather than fitting labels. 2) In traditional settings of IG,
the number of attributes in z cannot be so large and their values are discrete (typically binary).
Here the “attributes” II represent the probability of a multi-class partition for all samples and their
values can even be continuous. 3) As mentioned before, entropy H (z) or mutual information I(z, )
[HFLM™ 18] is not well-defined for degenerate continuous distributions whereas the rate distortion
R(z,€) is and can be accurately and efficiently computed for (mixed) subspaces, at least.

2.3 Properties of the Rate Reduction Function

In theory, the MCR? principle (8) benefits from great generalizability and can be applied to represen-
tations Z of any distributions with any attributes IT as long as the rates R and R¢ for the distributions
can be accurately and efficiently evaluated. The optimal representation Z* and partition IT* should
have some interesting geometric and statistical properties. We here reveal nice properties of the
optimal representation with the special case of subspaces, which have many important use cases in
machine learning. When the desired representation for Z is multiple subspaces, the rates R and R€ in
(8) are given by (4) and (5), respectively. At the maximal rate reduction, MCR? achieves its optimal
representations, denoted as Z* = Z7 U---U Z; C R? with rank(Z;) < d;. One can show that Z*
has the following desired properties (see Appendix A for a formal statement and detailed proofs).
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Theorem 2.1 (Informal Statement). Suppose Z* = Z{ U ---U Z] is the optimal solution that
maximizes the rate reduction (8). We have:

e Between-class Discriminative: As long as the ambient space is adequately large (d >
Zle d;), the subspaces are all orthogonal to each other, i.e. (Zf)TZ;‘ = 0jfori # j.

e Maximally Diverse Representation: As long as the coding precision is adequately high, i.e.,

. 1 2 . . . . . .
et < min; %%}, each subspace achieves its maximal dimension, i.e. rank(Z;f) = d;.

In addition, the largest d; — 1 singular values of Z7 are equal.

In other words, in the case of subspaces, the
MCR? principle promotes embedding of data
into multiple independent subspaces, with fea-
tures distributed isotropically in each subspace
(except for possibly one dimension). In addition,
among all such discriminative representations,
it prefers the one with the highest dimensions in
the ambient space. This is substantially different S
from the objective of information bottleneck (2). val(Z)

vol(Z')

Comparison to the geometric OLE loss. To
encourage the learned features to be uncorre- Figure 2: Comparison of two learned representations
lated between classes, the work of [LQMS18] Z and Z' via reduced rates: R is the number of e-balls

has proposed to maximize the difference be- packed in the joint distribution and R is the sum of the

tween the nuclear norm of the whole Z and its numbers for all the subspaces (the green balls). AR is

subsets Z;, called the orthogonal low-rank em their difference (the number of blue balls). The MCR?
J> - -

bedding (OLE) loss: maxg OLE(Z(6), IT) = principle prefers Z (the left one).

1Z(0)|« — Z§:1 | Z;(0)||«, added as a regularizer to the cross-entropy loss (1). The nuclear norm
| - ||« is @ nonsmooth convex surrogate for low-rankness and the nonsmoothness potentially poses
additional difficulties in using this loss to learn features via gradient descent, whereas log det(-) is
smooth concave instead. Unlike the rate reduction AR, OLE is always negative and achieves the
maximal value 0 when the subspaces are orthogonal, regardless of their dimensions. So in contrast
to AR, this loss serves as a geometric heuristic and does not promote diverse representations. In
fact, OLE typically promotes learning one-dim representations per class, whereas MCR? encourages
learning subspaces with maximal dimensions (Figure 7 of [LQMS18] versus our Figure 6).

Relation to contrastive learning. If samples are evenly drawn from k classes, a randomly chosen
pair (x;, ;) is of high probability belonging to difference classes if k is large. For example, when
k > 100, a random pair is of probability 99% belonging to different classes. We may view the learned
features of two samples together with their augmentations Z; and Z; as two classes. Then the rate
reduction AR;; = R(Z; U Zj,€) — 1(R(Z;,¢) + R(Zj, €)) gives a “distance” measure for how far
the two sample sets are. We may try to further “expand” pairs that likely belong to different classes.
From Theorem 2.1, the (averaged) rate reduction AR;; is maximized when features from different
samples are uncorrelated Z;' Z; = 0 (see Figure 2) and features Z; from the same sample are highly
correlated. Hence, when applied to sample pairs, MCR? naturally conducts the so-called contrastive
learning [HCL06, OLV18, HFW*19]. But MCR? is not limited to expand (or compress) pairs of
samples and can uniformly conduct “contrastive learning” for a subset with any number of samples
as long as we know they likely belong to different (or the same) classes, say by randomly sampling
subsets from a large number of classes or with a good clustering method.

3 Experiments with Instantiations of MCR?

Our theoretical analysis above shows how the maximal coding rate reduction (MCR?) is a principled
measure for learning discriminative and diverse representations for mixed data. In this section, we
demonstrate experimentally how this principle alone, without any other heuristics, is adequate to
learning good representations in the supervised, self-supervised, and unsupervised learning settings
in a unified fashion. Our goal here is to validate effectiveness of this principle through its most basic
usage and fair comparison with existing frameworks. More implementation details and experiments
are given in Appendix B. The code can be found in https://github.com/ryanchankh/mcr2.
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Figure 4: Evolution of rates R, R°, AR of MCR? during training with corrupted labels.

3.1 Supervised Learning of Robust Discriminative Features

Supervised learning via rate reduction. When class labels are provided during training, we assign
the membership (diagonal) matrix IT = {II; }?zl as follows: for each sample x; with label j, set

IT;(i,%) = 1 and IT;(¢,4) = 0, VI # j. Then the mapping f(-, #) can be learned by optimizing (8),
where IT remains constant. We apply stochastic gradient descent to optimize MCR?, and for each

iteration we use mini-batch data {(x;, y;)}™; to approximate the MCR? loss.

Evaluation via classification. As we will see, in the supervised setting, the learned representation has
very clear subspace structures. So to evaluate the learned representations, we consider a natural nearest
subspace classifier. For each class of learned features Z;, let 1; € RP be its mean and U; € RP*"
be the first r; principal components for Z;, where r; is the estimated dimension of class j. The

predicted label of a test data @’ is given by j' = argmin ey [[( - U;U ) (f(2',0) — uy)lI3.

Experiments on real data. We consider CIFAR10 dataset [Kri09] and ResNet-18 [HZRS16] for
f(-,8). We replace the last linear layer of ResNet-18 by a two-layer fully connected network with
ReLU activation function such that the output dimension is 128. We set the mini-batch size as
m = 1,000 and the precision parameter ¢2 = 0.5. More results can be found in Appendix B.3.2.

Figure 3(a) illustrates how the two rates and their difference (for both training and test data) evolves
over epochs of training: After an initial phase, R gradually increases while R decreases, indicating
that features Z are expanding as a whole while each class Z; is being compressed. Figure 3(c) shows
the distribution of singular values per Z; and Figure 1 (right) shows the angles of features sorted by
class. Compared to the geometric loss [LQMS18], our features are not only orthogonal but also of
much higher dimension. We compare the singular values of representations, both overall data and
individual classes, learned by using cross-entropy and MCR? in Figure 6 and Figure 7 in Appendix
B.3.1. We find that the representations learned by using MCR? loss are much more diverse than
the ones learned by using cross-entropy loss. In addition, we find that we are able to select diverse
images from the same class according to the “principal” components of the learned features (see
Figure 8 and Figure 9 in Appendix B.3.1).

Robustness to corrupted labels. Because MCR? by design encourages richer representations that
preserves intrinsic structures from the data X, training relies less on class labels than traditional loss
such as cross-entropy (CE). To verify this, we train the same network using both CE and MCR? with



certain ratios of randomly corrupted training labels. Figure 4 illustrates the learning process: for
different levels of corruption, while the rate for the whole set always converges to the same value,
the rates for the classes are inversely proportional to the ratio of corruption, indicating our method
only compresses samples with valid labels. The classification results are summarized in Table 1. By
applying exact the same training parameters, MCR? is significantly more robust than CE, especially
with higher ratio of corrupted labels. This can be an advantage in the settings of self-supervised
learning or constrastive learning when the grouping information can be very noisy. More detailed
comparison between MCR? and OLE [LQMS18], Large Margin Deep Networks [EKM* 18], and
ITLM [SS19] on learning from noisy labels can be found in Appendix B.4 (Table 7).

Table 1: Classification results with features learned with labels corrupted at different levels.

‘ RATIO=0.1 RAT1I0=0.2 RATIO=0.3 RATIO=0.4 RATIO=0.5

CE TRAINING 90.91% 86.12% 79.15% 72.45% 60.37%
MCR? TRAINING 91.16 % 89.70 % 88.18% 86.66 % 84.30%

3.2 Self-supervised Learning of Invariant Features

Learning invariant features via rate reduction. Motivated by self-supervised learning algo-
rithms [LHB04, KRFL09, OLV18, HFW'19, WXYL18], we use the MCR? principle to learn
representations that are invariant to certain class of transformations/augmentations, say 7 with a
distribution P7. Given a mini-batch of data {x;} ?:1’ we augment each sample x; with n transfor-
mations/augmentations {7;(-)}_, randomly drawn from P7. We simply label all the augmented
samples X; = [ri(x;),...,To(x;)] of ; as the j-th class, and Z; the corresponding learned
features. Using this self-labeled data, we train our feature mapping f(-,6) the same way as the
supervised setting above. For every mini-batch, the total number of samples for training is m = kn.

Evaluation via clustering. To learn invariant features, our formulation itself does not require the
original samples x; come from a fixed number of classes. For evaluation, we may train on a
few classes and observe how the learned features facilitate classification or clustering of the data.
A common method to evaluate learned features is to train an additional linear classifier [OLV18,
HFW™ 19], with ground truth labels. But for our purpose, because we explicitly verify whether the
so-learned invariant features have good subspace structures when the samples come from k classes,
we use an off-the-shelf subspace clustering algorithm EnSC [YLRV16], which is computationally
efficient and is provably correct for data with well-structured subspaces. We also use K-Means
on the original data X as our baseline for comparison. We use normalized mutual information
(NMI), clustering accuracy (ACC), and adjusted rand index (ARI) for our evaluation metrics, see
Appendix B.4.2 for their detailed definitions.

Controlling dynamics of expansion and compression. By directly optimizing the rate reduction
AR = R — R¢, we achieve 0.570 clustering accuracy on CIFAR10 dataset, which is the second best
result compared with previous methods. More details can be found in Appendix B.4.1. Empirically,
we observe that, without class labels, the overall coding rate R expands quickly and the MCR?
loss saturates (at a local maximum), see Fig 5(a). Our experience suggests that learning a good
representation from unlabeled data might be too ambitious when directly optimizing the original
AR. Nonetheless, from the geometric meaning of R and R, one can design a different learning
strategy by controlling the dynamics of expansion and compression differently during training. For

instance, we may re-scale the rate by replacing R(Z, €) with R(Z, ¢) = i log det(I + %ZZT).
With v; = v = k, the learning dynamics change from Fig 5(a) to Fig 5(b): All features are first
compressed then gradually expand. We denote the controlled MCR? training by MCR2-cTRL.

Experiments on real data. Similar to the supervised learning setting, we train exactly the same
ResNet-18 network on the CIFAR10, CIFAR100, and STL10 [CNL11] datasets. We set the mini-
batch size as k = 20, number of augmentations for each sample as » = 50 and the precision parameter
as €2 = 0.5. Table 2 shows the results of the proposed MCR2-cTRL in comparison with methods
JULE [YPB16], RTM [NMM 9], DEC [XGF16], DAC [CWM™17], and DCCM [WLW*19] that
have achieved the best results on these datasets. Surprisingly, without utilizing any inter-class or
inter-sample information and heuristics on the data, the invariant features learned by our method with
augmentations alone achieves a better performance over other highly engineered clustering methods.
More comparisons and ablation studies can be found in Appendix B.4.2.
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Figure 5: Evolution of the rates of (left) MCR? and (right) MCR?-CTRL in the training process in the self-
supervised setting on CIFAR10 dataset.

Table 2: Clustering results on CIFAR10, CIFAR100, and STL10 datasets.

DATASET ~ METRIC | K-MEANsS JULE RTM DEC DAC DCCM MCR’-Crre

NMI 0.087 0.192  0.197 0.257 0.395 0.496 0.630
CIFAR10 ACC 0.229 0.272  0.309 0.301 0.521 0.623 0.684
ARI 0.049 0.138 0.115 0.161 0.305 0.408 0.508
NMI 0.084 0.103 - 0.136 0.185  0.285 0.387
CIFAR100 ACC 0.130 0.137 - 0.185 0.237  0.327 0.375
ARI 0.028 0.033 - 0.050 0.087 0.173 0.178
NMI 0.124 0.182 - 0.276 0.365 0.376 0.446
STL10 ACC 0.192 0.182 - 0.359 0.470  0.482 0.491
ARI 0.061 0.164 - 0.186 0.256  0.262 0.290

Nevertheless, compared to the representations learned in the supervised setting where the optimal
partition IT in (8) is initialized by correct class information, the representations here learned with self-
supervised classes are far from being optimal. It remains wide open how to design better optimization
strategies and dynamics to learn from unlabelled or partially-labelled data better representations (and
the associated partitions) close to the global maxima of the MCR? objective (8).

4 Conclusion and Future Work

This work provides rigorous theoretical justifications and clear empirical evidences for why the
maximal coding rate reduction (MCR?) is a fundamental principle for learning discriminative low-dim
representations in almost all learning settings. It unifies and explains existing effective frameworks
and heuristics widely practiced in the (deep) learning literature. It remains open why MCR? is robust
to label noises in the supervised setting, why self-learned features with MCR? alone are effective for
clustering, and how in future practice instantiations of this principle can be systematically harnessed
to further improve clustering or classification tasks.

We believe that MCR? gives a principled and practical objective for (deep) learning and can potentially
lead to better design operators and architectures of a deep network. A potential direction is to monitor
quantitatively the amount of rate reduction AR gained through every layer of the deep network. By
optimizing the rate reduction through the network layers, it is no longer engineered as a “black box.”

On the learning theoretical aspect, although this work has demonstrated only with mixed subspaces,
this principle applies to any mixed distributions or structures, for which configurations that achieve
maximal rate reduction are of independent theoretical interest. Another interesting note is that the
MCR? formulation goes beyond the supervised multi-class learning setting often studied through
empirical risk minimization (ERM) [DSBDSS15]. It is more related to the expectation maximization
(EMX) framework [BDHM™ 17], in which the notion of “compression” plays a crucial role for purely
theoretical analysis. We hope this work provides a good connection between machine learning theory
and its practice.



Broader Impact

The principle proposed in this work aims to maximally capture the intrinsic structures of the data that
justify meaningful classification of clustering of real-world data. Our framework discourages models
from learning by only fitting or overfitting the labeled data with a black box, enables us to identify
the intrinsic structures of the data hence the true causes for meaningful classification or clustering.

This methodology also allows us to maximally reduce the effects of bias or even mistakes that might
be introduced in the labeled data. We believe this is the basis for truly interpretable (deep) learning,
and hence the basis for developing truly robust and fair machine learning algorithms and systems,
with clear performance guarantees.
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Appendices

A Properties of the Rate Reduction Function

This section is organized as follows. We present background and preliminary results for the log det(-)
function and the coding rate function in Section A.1. Then, Section A.2 and A.3 provide technical
lemmas for bounding the coding rate and coding rate reduction functions, respectively. Such lemmas
are key results for proving our main theoretical results, which are stated informally in Theorem 2.1
and formally in Section A.4. Finally, proof of our main theoretical results is provided in Section A.5.

Notations Throughout this section, we use Sff_ +» Ry and Z, | to denote the set of symmetric
positive definite matrices of size d x d, nonnegative real numbers and positive integers, respectively.

A.1 Preliminaries

Properties of the log det(-) function.

Lemma A.1. The function logdet(-) : S4 — R is strictly concave. That is,
logdet((1 — @)Z1 + aZs)) > (1 — a)logdet(Z1) + alog det(Zs)
forany o € (0,1) and {Zy, Z>} C S, with equality holds if and only if Z1 = Z».

Proof. Consider an arbitrary line given by Z = Z, + tAZ where Z, and AZ # 0 are symmetric
matrices of size d x d. Let f(t) = logdet(Zy + tAZ) be a function defined on an interval of values
of ¢t for which Zy + tAZ € S‘i .. Following the same argument as in [BV04], we may assume
Zy € S‘L_ and get

d

f(t) = logdet Zy + Z log(1 4+ tX;),

i=1

where {\; }¢_, are eigenvalues of Z, > AZ Z, *. The second order derivative of f(t) is given by

Therefore, f(t) is strictly concave along the line Z = Z, + tAZ. By definition, we conclude that
log det(-) is strictly concave. O

Properties of the coding rate function. The following properties, also known as the Sylvester’s
determinant theorem, for the coding rate function are known in the paper [MDHWO7].

Lemma A.2 (Commutative property [MDHWO7]). For any Z € RY*™ we have
1 d 1 d
R(Z,e)= ~logdet (I + —=ZZ" | = -logdet (I + —Z"Z ).
2 me2 2 me2

Lemma A.3 (Invariant property [MDHWO7]). For any Z € R**™ and any orthogonal matrices
U € R™ and V € R™*™ we have

R(Z,e)=RUZV ' ).
A.2 Lower and Upper Bounds for Coding Rate
The following result provides an upper and a lower bound on the coding rate of Z as a function of the
coding rate for its components {Z; }*_, . The lower bound is tight when all the components { Z;}*_,

have the same covariance (assuming that they have zero mean). The upper bound is tight when the
components {Z }§:1 are pair-wise orthogonal.
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Lemma A4. For any {Z; € R™*™i}¥_ and any e > 0, let Z = [Z1,--- , Zy] € RY™ with
m= Zle m;. We have

k
d d
E logdet ( + 2ZjZJ—-l—> < mlogdet <I+ 2ZZT>
mje 2 me

9)
d
<Z—logdet (I—i— ZZT>
Jj=1
where the first equality holds if and only if
AV B Z,Z, o Z,.Z]
my ms omy

and the second equality holds if and only iijT1 Zj, =0foralll <j; <js <k

Proof. By Lemma A.1, log det(-) is strictly concave. Therefore,

k

k
log det (Zajsj) Za] log det(.S;), for all {a; > 0}] 1,204] =1land {S; € S¢ +}?:1,
Jj=1 j=1

where equality holds if and only if §1 = Sy = --- = S}, Take a; = % and S; =1 + #ZJZJT,
we get
m d b d
— log det (I+ 2ZZT> > § J log det <I+ — Z, ZT)
2 me =
Z.2,]

. . . o Z1Z]
with equality holds if and only if #11 == . This proves the lower bound in (9).

We now prove the upper bound. By the strict concavity of log det(-), we have

log det(Q) < logdet(S) + (Vlogdet(S), Q — S), forall {Q,S} C ST,

where equallty holds if and only if @ = S. Plugging in V log det(S) = S~! (see e.g., [BV04]) and
Sl = (8717 gives
log det(Q) < logdet(S) +tr(S71Q) — m. (10)
We now take
Z7Z, Z]Z, - Z]Z,
d d ZTZ1 ZTZQ ZTZQ
Q=1+-——52"2-1+—— ? 2 277 and (11)
me : : t. :
z'z, Z]Z, - Z]Z,
Z!z, 0o - 0
d 0 Z)Z, -- 0
S=1+ — 2. . .
me : : - :
0 o - Zl'z,

From the property of determinant for block diagonal matrix, we have

d
log det(S Zlog det (I+ ZTZ > (12)
Jj=1
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Also, note that

tr(S7'Q)
_(I + rn€2 ZlTZl) (I + ms2 ZlTZl) T (I + m€2 ZlTZl) (I + 7n52 ZlTZk)
=tr : . :
_(I+ prog Z;Zk) (I+ — Z,:Zl) (I+ — Z;Zk) 5 L Zy)
7 - %
=1tr S, =m (13)
R

where “*” denotes nonzero quantities that are irrelevant for the purpose of computing the trace.
Plugging (12) and (13) back in (10) gives
k

m d o+ m d _+

Elogdet <I+ WZ Z) < ]; 510gdet (I+ sz Zj> ,
where the equality holds if and only if @ = S, which by the formulation in (11), holds if and only if
ZJ»T1 Z;, = 0forall 1 < j; < jg < k. Further using the result in Lemma A.2 gives

m d " om d

T T

Elogdet <I+ WZZ ) < ; ?logdet <I+ ijZj > ,

which produces the upper bound in (9). O

A.3 An Upper Bound on Coding Rate Reduction

We may now provide an upper bound on the coding rate reduction AR(Z,II, €) (defined in (8)) in
terms of its individual components {Z;}%_,

Lemma A.5. Forany Z € R&*™ IT € Q and e > 0, let Z; € R4X™j pe Z11; with zero columns
removed. We have

k 2, T
1 det™ (I + 54,7,
AR(Z,11,¢e) < Z — log " )
j=1 2m det™ (I + 7771?62 Zj ZJT)

with equality holds if and only iijT1 Zj, =0foralll < j; <js <k

) (14)

Proof. From (4), (5) and (6), we have
AR(Z,11,¢)
= R(Z,e) — R°(Z,e | II)

= d 7 tr(IT;) Zn,z7
. T
L d m; yA A
—1 I 7ZZT _ m; 1 I iZ;
2 Og<det< T )) ;{2 og <det< +dmj€2 ))}
k i :
1 a T mj Z;Z]
jz::l ilog <det <I+ wZJZj )) z::l {mlog (det <I+dmj€2

J
k k T
1 d 1 Z
S o (v (14 o)) £ s (14425

"1 det™ (I + -4 Z;Z])
L 1og
=om T \det™ (1++4,2,2] )

IA

mye2

where the inequality follows from the upper bound in Lemma A .4, and that the equality holds if and
onlyiijTIZ]é:Oforalllgjl < jo < k. O
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A.4 Main Results: Properties of Maximal Coding Rate Reduction

We now present our main theoretical results. The following theorem states that for any fixed encoding
of the partition IT, the coding rate reduction is maximized by data Z that is maximally discriminative
between different classes and is diverse within each of the classes. This result holds provided that the
sum of rank for different classes is small relative to the ambient dimension, and that € is small.

Theorem A.6. Let IT = {I1; € R™*™}*_ with {II; > O}s_, and TI; +---+ 1l = I be a
given set of diagonal matrices whose diagonal entries encode the membership of the m samples in

the k classes. Given any ¢ > 0, d > 0 and {d > d; > O}?Zl, consider the optimization problem
Z* cargmax AR(Z,11,¢)
ZcRIxX™ (15)

s.t. || ZT0L; |3 = tr(I1), rank(ZTL;) < dj, Vj € {1,...,k}.
Under the conditions

e (Large ambient dimension) d > Zle d;, and
e (High coding precision) e* < minge(1, . k) {@% }
J

the optimal solution Z* satisfies

e (Between-class discriminative) (Z;fl)—'—Z;f2 =0foralll1 <j1 <jo <k ie, Z; and Z7,
lie in orthogonal subspaces, and '

e (Within-class diverse) For each j € {1,...,k}, the rank of Z7 is equal to d; and either all
singular values of Z7 are equal to tr(dij)
equal and have value larger than tr(dij)
J

, or the d; — 1 largest singular values of Z are

where Z j* € RV denotes Z *I1; with zero columns removed.

A.5 Proof of Main Results

We start with presenting a lemma that will be used in the proof to Theorem A.6.

Lemma A.7. Given any twice differentiable f : R, — R, integer r € Z 4 and c € Ry, consider
the optimization problem

max Z flzp)
! (16)
st.x=[ry,...,x.] ERL, 2y > 29 > >, and pr:c.
p=1
Let x* be an arbitrary global solution to (16). If the conditions
o f1(0) < f'(x) forall z >0,

o There exists xr > 0 such that f'(x) is strictly increasing in [0, x 1] and strictly decreasing
in [xr,0),

o (%) <0 (equivalently, ¢ > xr),
are satisfied, then we have either

o xf =] <

R ], or

o x* =[xy,...,vy,xL] for some xy € (£, 5) and xp, > 0.

Proof. The result holds trivially if » = 1. Throughout the proof we consider the case where r > 1.
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We consider the optimization problem with the inequality constraint 1 > --- > x,. in (16) removed:

max T s.t. T, = C. (17
L > s Z :

p=1
We need to show that any global solution * = [27,...,x}] to (17) is either x* = [£,..., %] or
x* = [ry,...,vy,xr] - P forsome xy > £, 21 > 0 and permutation matrix P € R™*". Let

A) :Zf(fﬂp)*)\()' (prc> fZApxp

be the Lagragian function for (17) where A = [Ag, A1, ..., A.] is the Lagragian multiplier. By the
first order optimality conditions (i.e., the Karush—Kuhn—-Tucker (KKT) conditions, see, e.g., [NWO06,

Theorem 12.1]), there exists A* = [AJ, A}, ..., A¥] such that
sz =g, (13)
1
ry; >0, Vge{l,...,r}, (19)
Ao >0, Vg€ {1,...,r}, (20)
Ay 2y =0,VYge{l,...,r}, and (21)
[f/(xi)vaf( )] [/\Ova)‘O] P‘Taa/\ﬂ (22)

By using the KKT conditions, we first show that all entries of * are strictly positive. To prove by
contradiction, suppose that * has ry nonzero entries and r — rg zero entries for some 1 < ry < r.
Note that g > 1 since an all zero vector * does not satisfy the equality constraint (18).

Without loss of generality, we may assume that z,, > 0 for p < r¢ and z;, = 0 otherwise. By (21),
we have
Al=-=X,=0
Plugging it into (22), we get
fl@)) == fal,) = X

From (22) and noting that z,,11 = 0 we get

f/(O) f (1‘70+1) - /\0 + /\70+1

Finally, from (20), we have

T0+1 2 0.
Combining the last three equations above gives f/(0) — f/(x}) > 0, contradicting the assumption
that f/(0) < f’(z) for all z > 0. This shows that o = r, i.e., all entries of x* are strictly positive.

Using this fact and (21) gives
A, =0 forallpe{1,...,r}.
Combining this with (22) gives

fl@]) = =f'@a}) = Aq. (23)
It follows from the fact that f’(x) is strictly unimodal that
Jag > 2 >0 st {zy )y C{rr,2m}. (24)

That is, the set {I;}£=1 may contain no more than two values. To see why this is true, suppose
that there exists three distinct values for {x}7_;. Without loss of generality we may assume that
0 <] <aj <3 Ifz; <zp (recall 27 := argmaxg>o I (x), then by using the fact that'f’.(x)
is strictly increasing in [0, z7], we must have f'(z7) < f’(x3) which contradicts (23). A similar
contradiction is arrived by considering f’(x3) and f'(z3) for the case where x5 > .

There are two possible cases as a consequence of (24). First, if v, = z, then we have 2] = - - = 2.
By further using (18) we get

c
] =-=xr=—.
T



It remains to consider the case where xz, < x . First, by the unimodality of f/(z), we must have
rr < x7 < xp, therefore

f”(.’EL) > (0 and f”(mH) < 0. (25)
Let ¢ := |{p : &, = x1}| be the number of entries of «* that are equal to xy, and h := r — £. We
show that it is necessary to have £ = 1 and i = r — 1. To prove by contradiction, assume that £ > 1
and h < r — 1. Without loss of generality we may assume {z; = ;vH};}:l and {z; = zr})_j 41
By (25), we have

f"(z;) > 0forallp > h.

In particular, by using h < r — 1 we have
" (zf_;) > 0and f"’(z) > 0. (26)

On the other hand, by using the second order necessary conditions for constraint optimization (see,
e.g., [INWO06, Theorem 12.5]), the following result holds

UTVME(:E*,)\*)U <0, forall {v : <Vm (Z T, — c) ,v> = 0}
p=1

r , 27
= Zf”(:c;) -vy <0, forall {v = [v1,..., 0] va = O} .
p=1 p=1
Take v to be such that v; = --- = v,_9 = 0 and v,,_; = —v, # 0. Plugging it into (27) gives
f@i )+ f"(@7) <0,
which contradicts (26). Therefore, we may conclude that £ = 1. That is, * is given by
x* = |xy,...,xH,21], where xgy > xp > 0.
By using the condition in (18), we may further show that
(r—=Dazg+zr=c = xg = p—] —é < Tx_Ll,
(r—lazg+zr=c = (r—l)zg+ayg>c = xg > ;,
which completes our proof. O

Proof of Theorem A.6. Without loss of generality, let Z* = [Z7, ..., Z}] be the optimal solution of
problem (15).

To show that Z7, j € {1,...,k} are pairwise orthogonal, suppose for the purpose of arriving at a

contradiction that (Z]* YT Z% # 0 forsome 1 < j; < jo < k. By using Lemma A.5, the strict

inequality in (14) holds for tflze optimal solution Z*. That is,

k m d * *\ T
1 det™ (I + ;% Z3(Z;
AR(Z*,Te) <) -—log U+ 5aZi(Z))
= \det™ (14 545 23(2)7)

mje?

(28)

On the other hand, since Zle dj < d, there exists {U] € R™% }*_, such that the columns of the
matrix [U7, ..., Uj] are orthonormal. Denote Z¥ = UX%(V;*) " the compact SVD of Z, and let

Z'=[Z1,..., 2], where Z; =U/S5(V;)".

It follows that
(2,)7 2}, = Vi %5, (U) UL E5,(V;) T = V25,085, (V)T =0 forall 1< ji < ja < .
That is, the matrices Z7, ..., Z,, are pairwise orthogonal. Applying Lemma A.5 for Z’ gives
k m d l INT
1 det™ (I + Z'(Z!
AR(Z'\TLe) =Y —log (I+522(2))
Jj=1 2m det™ (I + m({le2 Z;(Z;)T)
‘]
(29)
k m d * *
L g (A 5 Z(Z))
o 2m det™ (I + s Zj(Z}‘)T)



where the second equality follows from Lemma A.3. Comparing (28) and (29) gives AR(Z’,I1, €) >
AR(Z*,1I, €), which contradicts the optimality of Z*. Therefore, we must have

(Z;)"'Z;, =0forall 1 < j; < jo <k

Moreover, from Lemma A.3 we have

k det™ (I Z:(Z;
AR(Z*TLe) =3 log | — I+ 5e2,Z))
= 2m 7\ qetms (I+ . Z5(Z3)T )

me?

(30)

mje?
We now prove the result concerning the singular values of Z7. To start with, we claim that the
following result holds:

det™ (I+ 4 Z;Z])

st. || Z;||F = my, rank(Z;) < dj. (1)
detmf <I+ WZJZJ )

Z; € arg mz%X log

To see why (31) holds, suppose that there exists Zj such that ||Z]||% =m;, rank(Zj) <d; and

det™ ( 2] ) det™ (I + 4 2:(Z5)7)

> log
det™ (1+ P Z:(Z;)" )

log (32)

det™ (I + 1.7 ZJ.T)

Denote Zj = ﬁj flj ‘7jT the compact SVD of Zj and let

Z' = Zi.....Z;_,,

Z,,Z},,,...,Z}), where Z :=US;V, .

Note that ||Z§H% = my, rank(Z;) < d; and (ZJ’-)TZJ’S = 0 for all j/ # j. It follows that Z’ is a
feasible solution to (15) and that the components of Z’ are pairwise orthogonal. By using Lemma A.5,
Lemma A.3 and (32) we have

AR(Z',I1,¢)
_ L det™ (I + 5 2Z(Z))T) Y ilog det™ (I + ;% Z3(Z;)7)
2 det™ (I+ m;e> Z/(ZI) ) J'#i 2m det™’ (I+ m; /€2Z (Z]*’) )
R det™ (I+ #Z»(%)T) 3 L g det™ (I+-52%(Z5)7)
2 det™ (I+:952;(Z,)7) ) 5z ®m " \det™ (I+ mdéz z;(2;)7)
det™ (I Z:(Z; det™ (I 5(Z:)T
>—log e ( +m52 ( ) ) +Zilog € ( + ( ) )
2 det™ (I+ w25 (Z5)7 ) i 2\ det™ <I+ mffea z;(z;)" )
Mo det™ (I+;:%25(Z)7)
= — log
j=1 2m det™ (I + ™, 52 Z*(Z*) )

Combining it with (30) shows AR(Z’,I1,€) > AR(Z*, 11, €), contradicting the optimality of Z*.
Therefore, the result in (31) holds.

Observe that the optimization problem in (31) depends on Z; only through its singular values. That

is, by letting o := [01,5, . - -, Omin(m, ,a),;] be the singular Values of Z;, we have
det™ (I + -42;Z] min{m;,d} m
log ( me2 ) _ Z IOg ( d g »J )m :
det™’ (I + #ZJZJT) p=1 (1 + m;e? JPJ-) !

also, we have
min{m;,d}

1Zjl|7= > op; and rank(Z;) = [|o;]o.
p=1
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Using these relations, (31) is equivalent to

min{m;,d} d 2 \m
1+ 507 .
max Z log ( ( mEQ Zj)m)
UjeRr:m{mj,d} = 1+ m 62 p]) j a3
min{m;,d}

st. Y op;=m;, and rank(Z;) = [|o;]lo

p=1
Leto} = [o7 j,..., 004 {(m;, d}J] be an optimal solution to (33). Without loss of generality we
assume that the entries of o7 are sorted in descending order. It follows that
0, ;=0 forall p> dj,
and

2 )m d;
* * . me2 Ip,j 2 _
(07 jo- 0, 5] = arg max g log o2 s.t. E o,; =mj. (34)
[Ul-,jv“'»"'dj ]]ER L p=1 m; 62 p] p=1
01,2204 j

Then we define

(1 dzx)m
;dv ) K =1 e 5
f(z;d,e,mj,m) = log ((1 miQ o

and rewrite (34) as

d;
Zf (xp;d,e,m;,m) s.t. pr =m;. (35)
=1

[Ih HTd ]€R+ p=1
x> >zd

We compute the first and second derivative for f with respect to x, which are given by
d?z(m —m;)

(dz + me?)(dz + m;e?)’

d*(m —m;)(mme* — d*z?)

(dx + me?)2(dz + m;e?)?

f/(l';d, €, m]7m) =

fl/(‘r; da €, My, m) =
Note that
e 0= f'(0) < f'(z) forall z > 0,
o f/(x)is Strictly increasing in [0, z7] and strictly decreasing in [z7,00), where 7 =
2 m m;

. .. . g2 ;
e by using the condition e* < Z2 9, we have (%) < 0.

2> d

Therefore, we may apply Lemma A.7 and conclude that the unique optimal solution to (35) is either

o ¥ = [?1,...7%],0r
o x*=|xp,... :cH733L]forsomexH€(d ,d &) and xz, > 0.

Equivalently, we have either

* _ mJ m;
o [0'17-]»7.. ],] = |:1/ 1/Tj],0r

my my
° [Uij,...,a;m} =[oyg,...,om,0r) forsome oy € (1 /(Tj’ djjl) and oy, > 0,

as claimed. O

21



B Additional Simulations and Experiments

B.1 Simulations - Verifying Diversity Promoting Properties of MCR?

As proved in Theorem A.6, the proposed MCR? objective promotes within-class diversity. In this
section, we use simulated data to verify the diversity promoting property of MCR2. As shown in
Table 3, we calculate our proposed MCR? objective on simulated data. We observe that orthogonal
subspaces with higher dimension achieve higher MCR? value, which is consistent with our theoretical
analysis in Theorem A.6.

Table 3: MCR? objective on simulated data. We evaluate the proposed MCR? objective defined in (8),
including R, R°, and AR, on simulated data. The output dimension d is set as 512, 256, and 128. We set the
batch size as m = 1000 and random assign the label of each sample from 0 to 9, i.e., 10 classes. We generate
two types of data: 1) (RANDOM GAUSSIAN) For comparison with data without structures, for each class we
generate random vectors sampled from Gaussian distribution (the dimension is set as the output dimension d)
and normalize each vector to be on the unit sphere. 2) (SUBSPACE) For each class, we generate vectors sampled
from its corresponding subspace with dimension d; and normalize each vector to be on the unit sphere. We
consider the subspaces from different classes are orthogonal/nonorthogonal to each other.

\ R R° AR ORTHOGONAL?  OUTPUT DIMENSION
RANDOM GAUSSIAN | 552.70 193.29 360.41 v 512
SUBSPACE (d; = 50) | 545.63 108.46 437.17 v 512
SUBSPACE (d; = 40) | 487.07 92.71 394.36 v 512
SUBSPACE (d; = 30) | 413.08 74.84  338.24 v 512
SUBSPACE (d;j = 20) | 318.52 54.48 264.04 v 512
SUBSPACE (d; = 10) | 195.46  30.97 164.49 v 512
SUBSPACE (d; = 1) 31.18 4.27 26.91 v 512
RANDOM GAUSSIAN | 292.71 154.13 138.57 v 256
SUBSPACE (d; = 25) | 288.65 56.34  232.31 v 256
SUBSPACE (d; = 20) | 253.51 47.58 205.92 v 256
SUBSPACE (d; = 15) | 211.97  38.04 173.93 v 256
SUBSPACE (d; = 10) | 161.87  27.52 134.35 v 256
SUBSPACE (d; = 5) 98.35 15.55 82.79 v 256
SUBSPACE (d; = 1) 27.73 3.92 23.80 v 256
RANDOM GAUSSIAN | 150.05 110.85 39.19 v 128
SUBSPACE (d; = 12) | 144.36  27.72  116.63 v 128
SUBSPACE (d; = 10) | 129.12  24.06 105.05 v 128
SUBSPACE (d; = 8) 112.01 20.18 91.83 v 128
SUBSPACE (d; = 6) 92.55 16.04 76.51 v 128
SUBSPACE (d; = 4) 69.57 11.51 58.06 v 128
SUBSPACE (d; = 2) 41.68 6.45 35.23 v 128
SUBSPACE (d; = 1) 24.28 3.57 20.70 v 128
SUBSPACE (d; = 50) | 145.60  75.31 70.29 X 128
SUBSPACE (d; = 40) | 142.69  65.68 77.01 X 128
SUBSPACE (dj = 30) | 135.42 54.27 81.15 X 128
SUBSPACE (d; = 20) | 120.98 40.71 80.27 X 128
SUBSPACE (d; =15) | 111.10  32.89 78.21 X 128
SUBSPACE (d; = 12) | 101.94  27.73 74.21 X 128

B.2 Implementation Details

Training Setting. We mainly use ResNet-18 [HZRS16] in our experiments, where we use 4 residual
blocks with layer widths [64, 128, 256, 512]. The implementation of network architectures used in
this paper are mainly based on this github repo.' For data augmentation in the supervised setting,
we apply the RandomCrop and RandomHorizontalFlip. For the supervised setting, we train the
models for 500 epochs and use stage-wise learning rate decay every 200 epochs (decay by a factor of
10). For the supervised setting, we train the models for 100 epochs and use stage-wise learning rate
decay at 20-th epoch and 40-th epoch (decay by a factor of 10).

"https://github.com/kuangliu/pytorch-cifar
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Evaluation Details. For the supervised setting, we set the number of principal components for
nearest subspace classifier r; = 30. We also study the effect of r; in Section B.3.2. For the CIFAR100
dataset, we consider 20 superclasses and set the cluster number as 20, which is the same setting as in
[CWM™T17, WXYLI18].

Datasets. We apply the default datasets in PyTorch, including CIFAR10, CIFAR100, and STL10.

Augmentations 7 used for the self-supervised setting. We apply the same data augmentation for
CIFAR10 dataset and CIFAR100 dataset and the pseudo-code is as follows.

import torchvision.transforms as transforms
TRANSFORM = transforms.Compose ([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.RandomApply ([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
transforms.RandomGrayscale (p=0.2),
transforms.ToTensor ()])

. J

The augmentations we use for STL10 dataset and the pseudo-code is as follows.

import torchvision.transforms as transforms
TRANSFORM = transforms.Compose ([
transforms.RandomResizedCrop(96) ,
transforms.RandomHorizontalFlip(),
transforms.RandomApply ([transforms.ColorJitter(0.8, 0.8, 0.8, 0.2)], p=0.8),
transforms.RandomGrayscale(p=0.2),
GaussianBlur (kernel_size=9),
transforms.ToTensor()])

Cross-entropy training details. For CE models presented in Table 1, Figure 6(d)-6(f), and Figure 7,
we use the same network architecture, ResNet-18 [HZRS16], for cross-entropy training on CIFAR10,
and set the output dimension as 10 for the last layer. We apply SGD, and set learning rate 1r=0.1,
momentum momentum=0.9, and weight decay wd= 5e-4. We set the total number of training epoch
as 400, and use stage-wise learning rate decay every 150 epochs (decay by a factor of 10).

B.3 Additional Experimental Results
B.3.1 PCA Results of MCR? Training versus Cross-Entropy Training

For comparison, similar to Figure 3(c), we calculate the principle components of representations
learned by MCR? training and cross-entropy training. For cross-entropy training, we take the output
of the second last layer as the learned representation. The results are summarized in Figure 6. We
also compare the cosine similarity between learned representations for both MCR? training and
cross-entropy training, and the results are presented in Figure 7.

As shown in Figure 6, we observe that representations learned by MCR? are much more diverse,
the dimension of learned features (each class) is around a dozen, and the dimension of the overall
features is nearly 120, and the output dimension is 128. In contrast, the dimension of the overall
features learned using entropy is slightly greater than 10, which is much smaller than that learned
by MCR2. From Figure 7, for MCR? training, we find that the features of different class are almost
orthogonal.

Visualize representative images selected from CIFAR10 dataset by using MCR2. As men-
tioned in Section 1, obtaining the properties of desired representation in the proposed MCR? principle
is equivalent to performing nonlinear generalized principle components on the given dataset. As
shown in Figure 6(a)-6(c), MCR? can indeed learn such diverse and discriminative representations.
In order to better interpret the representations learned by MCR?, we select images according to their
“principal” components (singular vectors using SVD) of the learned features. In Figure 8, we visualize
images selected from class-‘Bird’ and class-‘Ship’. For each class, we first compute top-10 singular
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Figure 6: Principal component analysis (PCA) of learned representations for the MCR? trained model (first
row) and the cross-entropy trained model (second row).
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Figure 7: Cosine similarity between learned features by using the MCR? objective (left) and CE loss (right).

vectors of the SVD of the learned features and then for each of the top singular vectors, we display
in each row the top-10 images whose corresponding features are closest to the singular vector. As
shown in Figure 8, we observe that images in the same row share many common characteristics such
as shapes, textures, patterns, and styles, whereas images in different rows are significantly different
from each other — suggesting our method captures all the different “modes” of the data even within
the same class. Notice that top rows are associated with components with larger singular values,
hence they are images that show up more frequently in the dataset.

In Figure 9(a), we visualize the 10 “principal” images selected from CIFAR10 for each of the 10
classes. That is, for each class, we display the 10 images whose corresponding features are most
coherent with the top-10 singular vectors. We observe that the selected images are much more diverse
and representative than those selected randomly from the dataset (displayed on the CIFAR official
website), indicating such principal images can be used as a good “summary” of the dataset.
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Figure 8: Visualization of principal components learned for class 2-‘Bird’ and class 8-‘Ship’. For each class 7,
we first compute the top-10 singular vectors of the SVD of the learned features Z;. Then for the [-th singular
vector of class j, ué—, and for the feature of the ¢-th image of class j, z;-, we calculate the absolute value of inner
product, |(z}, u})|, then we select the top-10 images according to |(z}, u’)| for each singular vector. In the
above two figures, each row corresponds to one singular vector (component C;). The rows are sorted based on
the magnitude of the associated singular values, from large to small.
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Figure 9: Visualization of top-10 “principal” images for each class in the CIFAR10 dataset. (a) For each class-7,
we first compute the top-10 singular vectors of the SVD of the learned features Z;. Then for the [-th singular
vector of class j, ué—, and for the feature of the ¢-th image of class j, z;-, we calculate the absolute value of inner
product, |(zj—7 ué-)|, then we select the largest one for each singular vector within class j. Each row corresponds
to one class, and each image corresponds to one singular vector, ordered by the value of the associated singular
value. (b) For each class, 10 images are randomly selected in the dataset. These images are the ones displayed in

the CIFAR dataset website [Kri09].

B.3.2 Experimental Results of MCR? in the Supervised Learning Setting.

Training details for mainline experiment. For the model presented in Figure 1 (Right) and
Figure 3, we use ResNet-18 to parameterize f(-,6), and we set the output dimension d = 128,
precision €2 = 0.5, mini-batch size m = 1,000. We use SGD in Pytorch [PGM* 19] as the optimizer,
and set the learning rate 1r=0.01, weight decay wd=5e-4, and momentum=0. 9.
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Experiments for studying the effect of hyperparameters and architectures. We present the
experimental results of MCR? training in the supervised setting by using various training hyperpa-
rameters and different network architectures. The results are summarized in Table 4. Besides the
ResNet architecture, we also consider VGG architecture [SZ15] and ResNext achitecture [XGD117].
From Table 4, we find that larger batch size m can lead to better performance. Also, models with
higher output dimension d require larger training batch size m.

Table 4: Experiments of MCR? in the supervised setting on the CIFAR10 dataset.

ARCH DiMd PRECISION €2 BATCHSIZE m LR ACC COMMENT
RESNET-18 128 0.5 1,000 0.01 92.20%  MAINLINE, FIG 3
RESNEXT-29 128 0.5 1,000 0.01 92.55%  DIFFERENT
VGG-11 128 0.5 1,000 0.01 90.76%  ARCHITECTURE
RESNET-18 512 0.5 1,000 0.01 88.60%  EFFECT OF
RESNET-18 256 0.5 1,000 0.01 92.10% OUTPUT
RESNET-18 64 0.5 1,000 0.01 92.21%  DIMENSION
RESNET-18 128 1.0 1,000 0.01 93.06% EFFECT OF
RESNET-18 128 0.4 1,000 0.01 91.93% PRECISION
RESNET-18 128 0.2 1,000 0.01 90.06%

RESNET-18 128 0.5 500 0.01 82.33%

RESNET-18 128 0.5 2,000 0.01 93.02% EFFECT OF
RESNET-18 128 0.5 4,000 0.01 92.59% BATCH SIZE
RESNET-18 512 0.5 2,000 0.01 92.47%

RESNET-18 512 0.5 4,000 0.01 92.17%

RESNET-18 128 0.5 1,000 0.05 86.02%

RESNET-18 128 0.5 1,000 0.005 92.39%  EFFECT OF LR
RESNET-18 128 0.5 1,000 0.001 92.23%

Effect of 7; on classification. Unless otherwise stated, we set the number of components r; = 30
for nearest subspace classification. We study the effect of r; when used for classification, and the
results are summarized in Table 5. We observe that the nearest subspace classification works for a
wide range of ;.

Table 5: Effect of number of components r; for nearest subspace classification in the supervised setting.

NUMBER OF COMPONENTS | ;=10 r; =20 r; =30 r;=40 1r; =250
MAINLINE (LABEL NOISE RATIO=0.0) \ 92.68% 92.53% 92.20% 92.32% 92.17%
LABEL NOISE RATIO=0.1 91.71% 91.73% 91.16% 91.83% 91.78%
LABEL NOISE RATI0=0.2 90.68% 90.61% 89.70% 90.62% 90.54%
LABEL NOISE RATIO=0.3 88.24% 87.97% 88.18% 88.15% 88.10%
LABEL NOISE RATI0=0.4 86.49% 86.67% 86.66% 86.71% 86.44%
LABEL NOISE RATIO=0.5 83.90% 84.18% 84.30% 84.18% 83.76%

Effect of ¢ on learning from corrupted labels. To further study the proposed MCR? on learning
from corrupted labels, we use different precision parameters, €2 = 0.75, 1.0, in addition to the one
shown in Table 1. Except for the precision parameter €2, all the other parameters are the same as the
mainline experiment (the first row in Table 4). The first row (2 = 0.5) in Table 6 is identical to the
MCR2 TRAINING in Table 2. Notice that with slightly different choices in €2, one might even see
slightly improved performance over the ones reported in the main body.

Table 6: Effect of Precision e on classification results with features learned with labels corrupted at different
levels by using MCR? training.

PRECISION ‘ RATIO=0.1 RATIO=0.2 RATIO=0.3 RATIO=0.4 RATI0=0.5

=05 91.16% 89.70% 88.18% 86.66% 84.30%
e =0.75 92.37% 90.82% 89.91% 87.67 % 83.69%
=10 91.93% 91.11% 89.60% 87.09% 84.53%
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B.4 Comparison with Related Work on Label Noise

We compare the proposed MCR? with OLE [LQMS18], Large Margin Deep Networks [EKM T 18],
and ITLM [SS19] in label noise robustness experiments on CIFAR10 dataset. In Table 7, we compare
MCR? with OLE [LQMS18] and Large Margin Deep Networks [EKM™* 18] on the corrupted label
task using the same network, MCR? achieves significant better performance. We compare MCR?
with ITLM [SS19] using the same network. MCR2 achieves better performance without any noise
ratio dependent hyperparameters as required by [SS19].

Table 7: Comparison with related work on learning from noisy labels.

RESNETI18 \ RATIO=0.1 RATIO=0.2 RATIO=0.3 RATIO=0.4 RATIO=0.5
OLE [LQMS18] 91.04% 86.01% 80.69% 71.79% 61.06%
LARGEMARGIN [EKM ™ 18] 90.10% 87.42% 83.77% 78.51% 72.48%
MCR? 91.16 % 89.70 % 88.18% 86.66 % 84.30%
WRN16 | RaTI0=0.1 RATIO=0.3 RATIO=0.5 RATIO=0.7

ITLM [SS19] 90.33% 88.23% 82.51% 64.74%

MCR? 91.55% 88.81% 84.25% 67.09 %

B.4.1 Experimental Results of MCR? in the Self-supervised Learning Setting

Training details of MCR?-cTrRL. For three datasets (CIFAR10, CIFAR100, and STL10), we use
ResNet-18 as in the supervised setting, and we set the output dimension d = 128, precision €2 = 0.5,
mini-batch size k£ = 20, number of augmentations n = 50, y; = 2 = 20. We observe that MCR2-
CTRL can achieve better clustering performance by using smaller s, i.e., 72 = 15, on CIFAR10 and
CIFAR100 datasets. We use SGD in Pytorch [PGM ™ 19] as the optimizer, and set the learning rate
1r=0.1, weight decay wd=5e-4, and momentum=0.9.

Training dynamic comparison between MCR? and MCR?-cTrL . In the self-supervised setting,

we compare the training process for MCR? and MCR?-cTrL in terms of R, é, R¢, and AR. For
MCR? training, the features first expand (for both R and R¢) then compress (for ). For MCR?-CTRL,

both R and R® first compress then R expands quickly and R® remains small, as we have seen in
Figure 5 in the main body.

Clustering results comparison. We compare the clustering performance between MCR? and
MCR?-ctrL in terms of NMI, ACC, and ARI. The clustering results are summarized in Table 8. We
find that MCR2-cTRL can achieve better performance for clustering.

Table 8: Clustering comparison between MCR? and MCR2-CTRL on CIFAR10 dataset.

| NMI  ACC  ARI

MCR? 0.544 0.570 0.399
MCR?-ctre | 0.630 0.684 0.508

B.4.2 Clustering Metrics and More Results

We first introduce the definitions of normalized mutual information (NMI) [SGO02], clustering accuracy
(ACC), and adjusted rand index (ARI) [HAS8S].

Normalized mutual information (NMI). Suppose Y is the ground truth partition and C is the
prediction partition. The NMI metric is defined as

k s m|Y;NC;|
2zt 2j=1 [YiN Cjllog ( Y1105 ] )

¢ (T, Wiltog (24)) (50, 165 1o (14
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NMI(Y, C) =




where Y; is the i-th cluster in Y and C} is the j-th cluster in C, and m is the total number of samples.

Clustering accuracy (ACC). Given m samples, {(x;, y;) }/~;. For the i-th sample z;, let y; be its
ground truth label, and let ¢; be its cluster label. The ACC metric is defined as
™ 1y, = o(e
ACC(Y, C) = max 2=t 1 = 0(e)}

ocES m

where S is the set includes all the one-to-one mappings from cluster to label, and Y = [y1, ..., Ym],
C=lei,...,cn)

Adjusted rand index (ARI). Suppose there are m samples, and let Y and C be two clustering of
these samples, where Y = {Y7,...,Y,} and C' = {C1, ..., Cs}. Let m;; denote the number of the
intersection between Y; and Cj, i.e., m;; = |Y; N C;|. The ARI metric is defined as

S () = (2 (52, () /()
@) +5,0)) - (i), 4) /()

where a; = Zj msj and b]’ = Zl mij.

ARI =

Comparison with [JHV19, HMT+17]. We compare MCR? with IIC [JHV19] and IM-
SAT [HMT™ 17] in Table 9. We find that MCR? outperforms IIC [JHV19] and IMSAT [HMT+17]
on both CIFAR10 and CIFAR100 by a large margin. For STL.10, [HMT™17] applied pretrained
ImageNet models and [JHV 19] used more data for training.

Table 9: Compare with [JHV19, HMT*17] on clustering.

DATASET ~ METRIC | IIC  IMSAT MCR?-CrrL

NMI - - 0.630
CIFAR10 ACC 0.617 0.456 0.684
ARI - - 0.508
NMI - - 0.387
CIFAR100 ACC 0.257 0.275 0.375
ARI - - 0.178

More experiments on the effect of hyperparameters of MCR?-cTrL. We provide more exper-
imental results of MCR2-cTrL training in the self-supervised setting by varying training hyperpa-
rameters on the STL10 dataset. The results are summarized in Table 10. Notice that the choice of
hyperparameters only has small effect on the performance with the MCR2-cTRL objective. We may
hypothesize that, in order to further improve the performance, one has to seek other, potentially better,
control of optimization dynamics or strategies. We leave those for future investigation.

Table 10: Experiments of MCR2-CTRL in the self-supervised setting on STL10 dataset.

ARCH PRECISION €2 LEARNING RATELR  NMI  ACC  ARI
RESNET-18 0.5 0.1 0.446 0.491 0.290
RESNET-18 0.75 0.1 0.450 0.484 0.288
RESNET-18 0.25 0.1 0.447 0.489 0.293
RESNET-18 0.5 0.2 0.477 0.473 0.295
RESNET-18 0.5 0.05 0.444 0.496 0.293
RESNET-18 0.25 0.05 0.454 0.489 0.294
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