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ABSTRACT

The growing demand for an ever-increasing number of cloud ser-
vices is profoundly transforming the Internet’s interconnection or
peering ecosystem, and one example is the emergence of “virtual
private interconnections (VPIs)". However, due to the underlying
technologies, these VPIs are not publicly visible and traffic travers-
ing them remains largely hidden as it bypasses the public Internet.
In particular, existing techniques for inferring Internet intercon-
nections are unable to detect these VPIs and are also incapable of
mapping them to the physical facility or geographic region where
they are established.

In this paper, we present a third-party measurement study aimed
at revealing all the peerings between Amazon and the rest of the
Internet. We describe our technique for inferring these peering
links and pay special attention to inferring the VPIs associated
with this largest cloud provider. We also present and evaluate a
new method for pinning (i.e., geo-locating) each end of the inferred
interconnections or peering links. Our study provides a first look
at Amazon’s peering fabric. In particular, by grouping Amazon’s
peerings based on their key features, we illustrate the specific role
that each group plays in how Amazon peers with other networks.
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1 INTRODUCTION

A myriad of new cloud service offerings made possible by modern-
day cloud computing is fundamentally changing how business is
conducted in all segments of the private and public sectors. This, in
turn, has transformed the way these companies connect to major
cloud service providers to utilize these services. In particular, many
companies prefer to bypass the public Internet and directly connect
to major cloud service providers at a close-by colocation (or colo)
facility to experience better performance when using these cloud
services. In response to these demands, some of the major colo
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facilities have started to deploy and operate new switching infras-
tructure called cloud exchanges [23, 25]. Importantly, in conjunction
with this new infrastructure, these colo providers have also intro-
duced a new interconnection service offering called “virtual private
interconnection (VPI)" [3, 43, 58]. By purchasing a single port on
the cloud exchange switching fabric in a given facility, VPIs en-
able enterprises that are either natively deployed in that facility or
“brought” into the facility by their upstream providers to establish
direct peering to any number of cloud service providers that are
present on that exchange.

The implications of this transformation for the Internet’s inter-
connection ecosystem have been profound. First, the on-demand
nature of VPIs introduces a degree of dynamism into the Internet
interconnection fabric that has been missing in the past where set-
ting up traditional interconnections of the public or private peering
types took days or weeks. Second, once the growing volume of an
enterprise’s traffic enters an existing VPI to a cloud provider, it is
handled entirely by that cloud provider’s private infrastructure (i.e.,
the cloud provider’s private backbone that interconnects its own
datacenters) and completely bypasses the public Internet. Finally,
none of these VPIs are visible to existing methods and tools that
have been specifically designed to infer and/or map the intercon-
nections in today’s Internet [2, 55, 57, 62].

Among the reasons for this shortcoming of the existing inference
or mapping tools is the fact that, due to their traceroute-based
nature and their reliance on conventional measurement platforms,
they lack cloud-centric vantage points (e.g., Virtual Machines (VMs)
running in Amazon AWS). A second and more important reason
is that the existing techniques for inferring interconnections are,
in general, incapable of revealing the connectivity at the newly
emerging switching fabrics (e.g., cloud exchanges), mainly because
of these fabrics’ reliance on layer-2 technologies. In short, from an
Internet measurement perspective, not only are VPIs by and large
invisible to existing methods for Internet connectivity discovery, but
any traffic traversing these VPIs is only visible to the corresponding
cloud provider and can therefore no longer be accounted for by
traditional traffic monitoring or traffic estimation efforts.

This paper’s main contribution consists of presenting a third-
party, cloud-centric measurement study aimed at discovering and
characterizing the unique peerings (along with their types) of Ama-
zon, the largest cloud service provider in the US and worldwide.
Each peering typically consists of one or multiple (unique) intercon-
nections between Amazon and a neighboring Autonomous System
(AS) that are typically established at different colocation facilities
around the globe. Our study only utilizes publicly available infor-
mation and data (i.e., no Amazon-proprietary data is used) and is
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therefore also applicable for discovering the peerings of other large
cloud providers.!

We start by presenting the required background on Amazon’s
serving infrastructure, including the different types of peerings an
enterprise network can establish with Amazon at a colo facility. We
also provide a summary of prior work in this area in § 2. § 3 describes
the first round of our data collection; that is, launching cloud-centric
traceroute probes from different regions of Amazon’s infrastructure
toward all the /24 (IPv4) prefixes to infer a subset of Amazon’s
peerings. We present our methodology for inferring Amazon’s
peerings across the captured traceroutes in § 4.1. Our second round
of data collection consists of using traceroute probes that target the
prefixes around the peerings discovered in the first round and are
intended to identify all the remaining (IPv4) peerings of Amazon
(§ 4.2). In § 5, we present a number of heuristics to resolve the
inherent ambiguity in inferring the specific traceroute segment
that is associated with a peering. We further confirm our inferred
peerings by assessing the consistency of border interfaces at both
the Amazon side and client side of an inferred interconnection.

Pinning (or geo-locating) each end of individual interconnections
associated with Amazon’s peerings at the metro level forms another
contribution of this study (§ 6). To this end, we develop a number of
methods to identify border interfaces that have a reliable location
and which we refer to as anchors. Next, we establish a set of co-
presence rules to conservatively propagate the location of anchors
to other close-by interfaces. We then identify the main factors that
limit our ability to pin all border interfaces at the metro level and
present ways to pin most of the interfaces at the regional level.
Finally, we evaluate the accuracy and coverage of our pinning
technique and characterize the pinned interconnections.

The final contribution of this paper is a new method for inferring
the client border interface that is associated with that client’s VPI
with Amazon. In particular, by examining the reachability of a given
client border interface from a number of other cloud providers (§ 7)
and identifying overlapping interfaces between Amazon and those
other cloud providers, our method provides a lower bound on the
number of Amazon’s VPIs. We then assign all inferred Amazon
peerings to different groups based on their key attributes such as
being public or private, visible or not visible in BGP, and physical or
virtual. We then carefully examine these groups of peerings to infer
their purpose and explore hybrid peering scenarios. In particular, we
show that one-third of Amazon’s inferred peerings are either virtual
or not visible in BGP and thus hidden from public measurement.
Finally, we characterize the inferred Amazon connectivity graph as
a whole.

Overall, our analysis of Amazon’s peering fabric highlights how
(e.g., using virtual and non-BGP peerings) and where (e.g., at which
metro) Amazon’s cloud traffic “goes hiding"; that is, bypasses the
public Internet. In particular, we show that as large cloud providers
such as Amazon aggressively pursue new connect locations closer
to the Internet’s edge, VPIs are an attractive interconnection option
as they (i) create shortcuts between enterprises at the edge of the
network and the large cloud providers (i.e., further contributing
to the flattening of the Internet) and (ii) ensure that cloud-related
traffic is primarily carried over the large cloud providers’ private

1 As long as the cloud provider does not filter traceroute probes.
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Figure 1: Overview of Amazon’s peering fabric. Native
routers of Amazon & Microsoft (orange & blue) establishing
private interconnections (ASs - yellow router), public peer-
ing through IXP switch (AS; - red router), and virtual pri-
vate interconnections through cloud exchange switch (AS;,
ASz, and ASs - green routers) with other networks. Remote
peering (ASs) as well as connectivity to non-ASN businesses
through layer-2 tunnels (dashed lines) happens through con-
nectivity partners.

backbones (i.e., not exposed to the unpredictability of the best-effort
public Internet).

2 BACKGROUND AND RELATED WORK

Amazon’s Ecosystem. The focus of our study of peerings in to-
day’s Internet is Amazon, arguably the largest cloud service provider
in the US and worldwide. Amazon operates several data centers
worldwide. While these data centers’ street addresses are not ex-
plicitly published by Amazon, their geographic locations have been
reported elsewhere [14, 24, 60, 68, 79, 80]. Each data center hosts a
large number of Amazon servers that, in turn, host user VMs as well
as other services (e.g., Lambda). Amazon’s data center locations
are divided into independent and distinct geographic regions to
achieve fault tolerance/stability. Specifically, each region has multi-
ple, isolated availability zones (AZs) that provide redundancy and
offer high availability in case of failures. AZs are virtual and their
mapping to a specific location within their region is not known [8].
As of 2018, Amazon had 18 regions (55 AZs) across the world, with
five of them (four public + one US government cloud) located in the
US. For our study, we were not able to utilize three of these regions.
Two of them are located in China, are not offered on Amazon’s
AWS portal, and require approval requests by Amazon staff. The
third region is assigned to the US government and is not offered to
the public.
Peering with Amazon at Colo Facilities. Clients can connect to
Amazon through a specific set of colo facilities. Amazon is consid-
ered a native tenant in these facilities, and their locations are pub-
licly announced by Amazon [4]. Amazon is also reachable through
a number of other colo facilities via layer-2 connectivity offered by
third-party providers (e.g., Megaport).2

Figure 1 depicts an example of different types of peerings offered
by cloud providers at two colo facilities. Both Amazon (AWS) and
Microsoft (Azure) are native (i.e., house their border routers) in the
CoreSite LA1 colo facility and are both present at that facility’s IXP

2These entities are called “AWS Direct Connect Partners" at a particular facility and
are listed online along with their points of presence [6].
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and cloud exchange. (Open) cloud exchanges are switching fabrics
specifically designed to facilitate interconnections among network
providers, cloud providers, and enterprises in ways that provide
the scalability and elasticity essential for cloud-based services and
applications (e.g., see [23, 34]). Major colo facility providers (e.g.,
Equinix and CoreSite) also offer a new interconnection service
option called “virtual private interconnection (VPI).” VPIs enable
local enterprises (that may or may not own an ASN) to connect
to multiple cloud providers that are present at the cloud exchange
switching fabric by means of purchasing a single port on that switch.
In addition, VPIs provide their customers access to a programmable,
real-time cloud interconnection management portal. Through this
portal, the operators of these new switching fabrics make it possible
for individual enterprises to establish their VPIs in a highly-flexible,
on-demand, and near real-time manner. This portal also enables
enterprises to monitor in real-time the performance of their cloud-
related traffic that traverses these VPIs.

While cloud exchanges rely on switching fabrics that are similar
to those used by IXPs, there are two important differences. For
one, cloud exchanges enable each customer to establish virtualized
peerings with multiple cloud providers through a single port. More-
over, they provide exclusive client connectivity to cloud providers
without requiring a client to use its pre-allocated IP addresses. Op-
erationally, a cloud customer establishes VPIs using either public
or private IP addresses depending on the set of cloud services that
this customer is trying to reach through these interconnections.
On the one hand, VPIs relying on private addresses are limited to
the customer’s virtual private cloud (VPC) through VLAN isolation.
On the other hand, VPIs with public addresses can reach compute
resources in addition to other AWS offerings such as S3 and Dy-
namoDB [5]. Given the isolation of network paths for VPIs with
private addresses, any peerings associated with these VPIs are not
visible to the probes from VMs owned by other Amazon customers.
This makes it, in practice, impossible to discover established VPIs
that rely on private addresses. In Figure 1, the different colors of the
client routers indicate the type of their peerings; e.g., public peer-
ing through the IXP (for AS,), direct physical interconnection (also
called “cross-connect") (for AS3), private virtual peerings that are ei-
ther local (for AS; and AS3) or remote (for ASs). Here, a local virtual
private peering (e.g., AS2) could be associated with an enterprise
that is brought to the cloud exchange by its access network (e.g.,
Comcast) using layer-2 technology; based on traceroute measure-
ments, such a peering would appear to be between Amazon and the
access network. In contrast, a remote private virtual peering could
be established by an enterprise (e.g., ASs) that is present at a colo
facility (e.g., Databank in Salt Lake City in Figure 1) where Amazon
is not native but that houses an “AWS Direct Connect Partner" (e.g.,
Megaport) which in turn provides layer-2 connectivity to AWS.
Related Work. Discovering the AS-level topology of the Internet
has been of interest to the networking community for decades [20,
27, 29, 30, 40, 51, 52, 70]. Another body of work focuses on provid-
ing a physical map of the Internet infrastructure (e.g., colocation
facilities, fiber-optic cables). Commonly-used techniques in this
domain include parsing of DNS names to extract details about
infrastructure and geography [19, 46, 61, 66, 75-77], performing
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extensive web searches [31, 33], relying on geolocation informa-
tion [35, 36, 45, 48, 65, 69, 78, 82], and leveraging RTT-based esti-
mation techniques [17, 18, 40].

Recent studies have limited their focus to identifying intercon-
nections and sub-structures of the Internet such as identifying
POPs [9, 76], elucidating public peerings at Internet Exchange
Points (IXPs) [1, 10, 21, 42, 71, 83], enhancing connectivity dis-
covery using hybrid approaches [32], and identifying interconnec-
tions [51, 55, 57]. Other studies in this area focus on how IXPs
are reshaping the Internet’s AS-level topology from a pronounced
hierarchical construct to a more mesh-like network [26, 39]. Yet
other efforts are expanded to develop different alias resolution
techniques to enhance the accuracy of inferred router-level topolo-
gies [12, 49, 50, 73, 74]. Our work is complementary to these studies
and describes the yet largely unknown contributions of the largest
cloud providers to the connectivity fabric of today’s Internet.

Our work is closely related to recent studies that concern the
serving infrastructures and especially the peering fabrics of the
large content providers in today’s Internet. While [72, 84] provide
only a qualitative description of Google’s and Facebook’s peering
fabrics, [81] reports on a detailed analysis of proprietary data to
identify the full set of peerings leveraged by Akamai to serve con-
tent to its end users. Our work is also concerned with identifying all
peerings between a provider and the rest of the Internet, but in our
case, the provider of interest is the largest cloud service provider
(i.e., Amazon) and not a large CDN (i.e., Akamai), and instead of re-
lying on proprietary data, our study only utilizes publicly available
information.

In terms of methodology, our effort is similar to recent work
described in [2, 55, 57, 62] which aims at developing techniques
and tools for inferring inter-AS connections by solely relying on
data-plane measurements in the form of traceroutes. Among the
resulting tools, MAP-IT and bdrmapIT were developed as generic
topology discovery tools, but as stated by the authors of [2, 57],
these tools are not applicable within settings where layer-2 switch-
ing fabrics (not counting IXPs) are employed at the network borders.
Since this assumption does not hold for cloud exchanges where
today’s VPIs are established, the tools cannot be used for our pur-
pose. A third tool described in [55] is called bdrmap and appears
to be directly applicable to our setting as it attempts to identify
all inter-AS connections between a single network and the rest
of the Internet. However, upon closer examination, we find that
bdrmap is prone to produce inconsistent inference results (see § 8).
Finally, mi? is a new technique for inferring all interconnections at
a given colocation facility and geo-locating them to the inside (or
outside) of that facility [62]. However, because of the technique’s
inability to deal with layer-2 fabrics like cloud exchanges, the tool is
not suitable for inferring cloud-specific interconnections. In other
closely related work (e.g., see Chiu et al. [22]), cloud-centric probes
were used to aid the discovery of AS paths and their length. In
contrast, in this paper, we rely on cloud-centric probes to discover
the peering fabric of the largest cloud provider and classify the
identified peerings by their type, paying special attention to VPIs.
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A recent study [41] casts pinning as a constrained facility search
(CFS) problem and leverages various data sources (including tar-
geted traceroute probes) to create sufficient constraints to pin an in-
ferred interconnection to a single facility. Constrained-based search
is certainly feasible for narrowing down possible colos for pin-
ning Amazon’s interconnections. However, the limited visibility
of Amazon’s peering in BGP (as we show in § 7) makes further
probing by CFS-like approaches problematic. Furthermore, no code
or implementation of CFS that is applicable to the pinning problem
considered in this paper is available.

3 DATA COLLECTION & PROCESSING

To infer all peerings between Amazon and the rest of the Inter-
net, we perform traceroute campaigns from Amazon’s 15 avail-
able global regions to a .1 in each /24 prefix of the IPv4 address
space.® To this end, we create a t2-micro instance VM within each
of the 15 regions and break down the IPv4 address space into /24
prefixes. While we exclude broadcast and multicast prefixes, we
deliberately consider addresses that are associated with private and
shared address spaces since these addresses can be used internally
in Amazon’s own network. This process resulted in 15.6M target
IPv4 addresses.

To probe these target IPs from our VMs, we use the SCAMPER
tool [53] with UDP probes as they provide the highest visibility (i.e.,
response rate). Individual probes are terminated upon encountering
five consecutive unresponsive hops in order to limit the overall
measurement time while reaching Amazon’s border routers. We
empirically set our probing rate to 300pps to prevent blacklisting
or rate control of our probe packets by Amazon. With this probing
rate, our traceroute campaign took nearly 16 days to complete (from
08/03/2018 to 08/19/2018). Each collected traceroute is associated
with a status flag indicating how the probe was terminated. We
observed that the total number of completed traceroutes across
different regions is fairly consistent but rather small (mean 7.7%
and std 5 * 107%) which suggests a limited yield. However, since our
main objective is to identify Amazon interconnections and not to
maximize traceroute yield, we consider any traceroute that leaves
Amazon’s network (i.e., reaches an IP outside of Amazon’s network)
as a candidate for revealing the presence of an interconnection, and
the percentage of these traceroutes is about 77%.

Annotating Traceroute Data. To identify any Amazon intercon-
nection traversed by our traceroutes, we annotate every IP hop
with the following information: (i) its corresponding ASN, (ii) its
organization (ORG), and (iii) whether it belongs to an IXP prefix.
To map each IP address to its ASN, we rely on BGP snapshots from
RouteViews and RIPE RIS (taken at the same time as our traceroute
campaign). For ORG, we rely on CAIDA’s AS-to-ORG dataset [47]
and map the inferred ASN of each hop from the previous step to
its unique ORG identifier. ORG information allows us to correctly
identify the border interface of a customer in cases where tracer-
oute traverses through hops in multiple Amazon ASes prior to
reaching a customer network?. Finally, to determine if an IP hop

3We observed a negligible difference in the visibility of interconnections across probes
from different AZs in each region. Therefore, we only consider a single AZ from each
region.

4We observed AS7224, AS16509, AS19047, AS14618, AS38895, AS39111, AS8987, and
AS9059 for Amazon.
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Figure 2: Illustrating potential error in detecting the inter-
connection segment between Amazon and a client when
Amazon provides the IP addresses for both ends of the phys-
ical interconnection.

is part of an IX prefix, we rely on PeeringDB [67], Packet Clearing
House (PCH) [64], and CAIDA’s IXP dataset [16] to obtain prefixes
assigned to IXPs.

In our traceroutes, we observe IP hops that do not map to any
ASN. These IPs can be divided into two groups. The first group
consists of the IPs that belong to either a private or a shared address
space (20.3%); we set the ASN of these IPs to 0. The second group
consists of all the IPs that belong to the public address space but
were not announced by any AS during our traceroute campaign
(7%); for these IPs, we infer the AS owner by relying on WHOIS-
provided information (i.e., name or ASN of the entity/company
assigned by an RIR).

4 INFERRING INTERCONNECTIONS

In this section, we describe our basic inference strategy for identi-
fying an Amazon-related interconnection segment across a given
traceroute probe (§ 4.1) and discuss the potential ambiguity in the
output of this strategy. We then discuss the extra steps we take to
leverage these identified segments in an effort to efficiently expand
the number of discovered Amazon-related interconnections (§ 4.2).

4.1 Basic Inference Strategy

Given the ASN-annotated traceroute data, we start from the source
and sequentially examine each hop until we detect a hop that be-
longs to an organization other than Amazon (i.e., its ORG number
is neither 0 nor 7224, which is Amazon). We refer to this hop as
customer border hop and to its IP as a Customer Border Interface (CBI).
The presence of a CBI indicates that the traceroute has exited Ama-
zon’s network; that is, the traceroute hop right before a CBI is the
Amazon Border Interface (ABI), and the corresponding traceroute
probe thus must have traversed an Amazon-related interconnection
segment. For the remainder of our analysis, we only consider these
initial portions of traceroutes between a source and an encountered
CBI.> Next, for each CBI, we check to confirm that the AS owners
of all the downstream hops in each traceroute does not include any
ASN owned by Amazon (i.e., a sanity check that the traceroute does
not re-enter Amazon); all of our traceroutes meet this condition. Fi-
nally, because of their unreliable nature, we exclude all traceroutes
that contain either an (IP-level) loop, unresponsive hop(s) prior to
Amazon’s border, a CBI as the destination of a traceroute [11], or
duplicate hops before Amazon’s border. The first two rows of Table
1 summarize the number of ABIs and CBIs that we identified in our

5In fact, we only need the CBI and the prior two ABIs.
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Table 1: Number of unique ABIs and CBIs along with their
fraction with various meta data, prior (rows 2-3) and after
(rows 4-5) /24 expansion probing.

All BGP% Whois% IXP%
ABI 3.68k 38.4% 61.6% -
CBI 21.73k 54.74% 24.8% 20.46%
eABI 3.78k 38.85% 61.15% -
eCBI 24.75k 79.82% 2.32% 17.86%

traceroute data, along with the fraction of interfaces in each group
for which we have BGP, Whois, and IXP-association information.
Ambiguity of Interconnection Segments. In certain cases, our
basic strategy may not identify the correct Amazon-related inter-
connection segment on a given traceroute. To illustrate, consider
traceroute probes that reveal the linear topology of three routers
depicted in Figure 2. Suppose the physical link IP,» — IP;, between
the left two routers represents the interconnection link. The as-
signed IP addresses for the interfaces y and y” should be from the
same (/30 or /31) prefix that is provided either by the client (top) or
Amazon (bottom). This is known as address sharing.® The color of
observed interfaces (and routers) in Figure 2 indicates the inferred
AS owner by our basic strategy (§ 4.1) in these two cases. Given
that our traceroutes are always launched from Amazon to a client’s
network, this figure clearly shows that when Amazon provides
addresses for the physical interconnection, our strategy incorrectly
identifies the next downstream segment as an interconnection [5].

In summary, the described method always reveals the presence of an
Amazon-related interconnection segment in a traceroute. The actual
Amazon-specific interconnection segment is either the one between
the identified ABI and CBI or the immediately preceding segment.
Because of this ambiguity in accurately inferring the Amazon-specific
interconnection segments, we refer to them as candidate intercon-
nection segments. In § 5, we present techniques for a more precise
determination of these inferred candidate interconnection segments.

4.2 Second Round of Probing to Expand
Coverage

We perform our traceroute probes from each Amazon’s region
in two rounds. First, as described in § 4.1, we target .1 in each
/24 prefix of the IPv4 address space (§ 3) and identify the pool of
candidate interconnection segments. However, it is unlikely that our
traceroute probes in this first round traverse through all the Amazon
interconnections. Therefore, to increase the number of discovered
interconnections, in a second round, we launch traceroutes from
each region towards all other IP addresses in the /24 prefixes that
are associated with each CBI that we discovered in the first round.
Our reasoning for this “expansion probing" is that the IPs in these
prefixes have a better chance to be allocated to CBIs than the IPs
in other prefixes. Similar to round one, we annotate the resulting
traceroutes and identify their interconnection segments (and the
corresponding ABIs and CBIs). The bottom two rows in Table 1
show the total number of identified ABIs and CBIs after processing
the collected expansion probes. In particular, while the first column

©This address sharing makes it even more difficult to accurately detect an interconnec-
tion segment between two ASNs in the middle of a traceroute [55].
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Figure 3: Illustration of a hybrid interface (a) that has both
Amazon and client-owned interfaces as next hop.

of Table 1 shows a significant increase in the number of discovered
CBIs (from 21.73k to 24.99k) and even some increase in the number
of peering ASNs (from 3.52k to 3.55k) as a result of the expansion
probing, the number of ABIs remains relatively constant.

5 VERIFYING INTERCONNECTIONS

To address the potential ambiguity in identifying the correct Amazon-
specific segment of each inferred interconnection (§ 4.1), we first
check these interconnections against three different heuristics (§ 5.1)
and then rely on the router-level connectivity among border routers
(§ 5.2) to verify (and possibly correct) the inferred ABIs and CBIs.

5.1 Checking Against Heuristics

We develop a few heuristics to check the aforementioned ambiguity
of our approach with respect to inferring the correct interconnec-
tion segment. Since the actual interconnection segment could be the
segment prior to the identified candidate segment (i.e., we might
have to shift the interconnection to the previous segment), our
heuristics basically check for specific pieces of evidence to decide
whether an inferred ABI is correct or should be changed to its cor-
responding CBI. Once an ABI is confirmed, all of its corresponding
CBIs are also confirmed. The heuristics are described below and
are ordered (high to low) based on our level of confidence in their
outcome.

IXP-Client. An IP address that is part of an IXP prefix always
belongs to a specific IXP member. Therefore, if the IP address for a
CBI in a candidate interconnection segment is part of an IXP prefix,
then that CBI and its corresponding ABI are correctly identified
[63].

Hybrid IPs. We observe ABI interfaces with hybrid connectivity.
For example, in Figure 3, interface a represents such an interface
with hybrid connectivity; it appears prior to the client interface b
in one traceroute and prior to the Amazon interface ¢ in another
traceroute. Even if we are uncertain about the owner of an interface
c (i.e., it may belong to the same or different Amazon client), we
can reliably conclude that interface a has hybrid connectivity and
must be an ABI.

Interface Reachability. Our empirical examination of traceroutes
revealed that while ABIs are generally reachable from their cor-
responding clients, for security reasons, they are often not visi-
ble/reachable from the public Internet (e.g., a campus or residential
networks). However, depending on the client configuration, CBIs
may or may not be publicly reachable. Based on this empirical
observation, we apply a heuristic that probes all candidate ABIs
and CBIs from a vantage point in the public Internet (i.e., a node
at the University of Oregon). Reachability (or unreachability) of a
candidate CBI (or ABIs) from the public Internet offers independent
evidence in support of our inference.
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Table 2: Number of candidate ABIs (and corresponding CBIs)
that are confirmed by individual (first row) and cumulative
(second row) heuristics.

IXP Hybrid Reachable
Individual  0.83k (13.66k) 2.05k (14.44k) 2.8k (15.14k)
Cumulative 0.83k (13.66k)  2.26k (15.14k)  3.31k (24.23K)

Table 2 summarizes the fraction of identified ABIs (and thus their
corresponding CBIs) that are confirmed by our individual (first row)
and combined (second row) heuristics, respectively. We observe
that our heuristics collectively confirmed 87.8% of all the inferred
ABIs and thus 96.96% of the CBIs. The remaining 0.37k (or 9.81%)
ABIs that do not match with any heuristic are interconnected with
one (or multiple) CBIs that belong to a single organization. The
resulting low rate of error in detecting the correct interconnection
segments implies high confidence in the correctness of our inferred
Amazon peerings.

5.2 Verifying Against Alias Sets

To further improve our ability to eliminate possible ambiguities in
inferring the correct interconnection segments, we infer the router-
level topology associated with all the candidate interconnections
segments and determine the AS owner of individual routers. We
consider any inferred interconnection segment to be correct if its
ABI is on an Amazon router and its CBI is on a client router. In turn,
for any incorrect segment, we first adjust the ownership of its cor-
responding ABI and CBI so as to be consistent with the determined
router ownership and then identify the correct interconnection
segment.

To this end, we utilize MIDAR [12] to perform alias resolution
from VMs in all the regions where all the candidate ABIs and CBIs
were observed. Each instance of this alias resolution effort outputs
a set of (two or more) interfaces that reside on a single router.
Given the potentially limited visibility of routers from different
regions, we combine the alias sets from different regions that have
any overlapping interfaces. Overall, we identify 2.64k alias sets
containing 8.68k (2.31k ABI plus 6.37k CBI) interfaces and their
sizes have a skewed distribution.

The direction of our traceroute probes (from Amazon towards
client networks) and the fact that each router typically responds
with the incoming interface suggest that the observed interfaces of
individual Amazon (or client) border routers in our traceroute (i.e.,
IPs in each alias set) should typically belong to the same AS. This
implies that there should be a majority AS owner among interfaces
in an alias set. To identify the AS owner of each router, we simply
examine the AS owner of individual IPs in the corresponding alias
set. The AS that owns a clear majority of interfaces in an alias set
is considered as the owner of the corresponding router and all the
interfaces in the alias set.” We observe that for more than 94% (92%)
of all alias sets, there is a single AS that owns >50% (100%) of all of
an alias set’s interfaces. The remaining 6% of alias sets comprises

"We also examined router ownership at the organization level by considering all ASNs
that belong to a single organization. This strategy allows us to group all Amazon/client
interfaces regardless of their ASN to accurately detect the AS owner. However, since
we observed one ASN per ORG in 99% of the identified alias sets, we present here only
the owner AS of each router.
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343 interfaces with a median set size of 2. We consider the majority
AS owner of each alias set as the AS owner of (all interfaces for)
that router. Using this information, we check all of the inferred ABIs
and CBIs to ensure that they are on a router owned by Amazon and
the corresponding client, respectively. Otherwise, we change their
labels. This consistency check results in changing the status of only
45 interfaces (i.e., 18, 2, and 25 change from ABI — CBI, CBI — ABI,
and CBI — CBE, respectively). These changes ultimately result in
3.77k ABIs and 24.76k CBIs associated with 4.02k unique ASes.

6 PINNING INTERFACES

In this section, we first explore techniques to pin (i.e., geo-locate)
each end of the inferred Amazon peerings (i.e., all ABIs and CBIs)
to a specific colo facility, metro area, or a region and then evaluate
our pinning methodology.

6.1 Methodology for Pinning

Our method for pinning individual interfaces to specific locations
involves two basic steps. In a first step, we identify a set of border
interfaces with known locations that we call anchors. Then, in a
second step, we establish two co-presence rules to iteratively infer
the location of individual unpinned interfaces based on the location
of co-located anchors or other already pinned interfaces. That is,
in each iteration, we propagate the location of pinned interfaces to
their co-located unpinned neighbors.

Identifying Anchors. For ABIs or CBIs to serve as anchors for
pinning other interfaces, we leverage the following four sources of
information and consider them as reliable indicators of interface-
specific locations.

DNS Information (CBIs): A CBI° with specific location infor-
mation embedded in its DNS name can be pinned to the corre-
sponding colo or metro area. For example, a DNS name such as
ae-4.amazon.atlnga®5.us.bb.gin.ntt.net indicates that the
CBI associated with NTT interconnects with Amazon in Atlanta,
GA (atlnga). We use DNS parsing tools such as DRoP [46] along
with a collection of hand-crafted rules to extract the location in-
formation (using 3-letter airport codes and full city names) from
the DNS names of identified CBIs. In the absence of any ground
truth, we check the inferred geolocation against the footprint of
the corresponding AS from its PeeringDB listings or information
on its webpage. Furthermore, we perform an RTT-constraint check
using the measured RTTs from different Amazon regions to en-
sure that the inferred geolocation is feasible. This check, similar
to DRoP [46], conservatively excludes 0.87k CBIs for which their
inferred locations do not satisfy this RTT constraint.

IXP Association (CBIs): CBIs that are part of an IXP prefix can
be pinned to the colo(s) in a metro area where the IXP is present.
In total we have identified 671 IXPs within 471 (117) unique cities
(countries) but exclude 10 IXPs (and their corresponding 366 CBIs)
that are present in multiple metro areas as they cannot be pinned to
a specific colo or metro area. Furthermore, we exclude all interfaces
belonging to members that peer remotely. To determine those mem-
bers, we first identified min[XRegion, the closest Amazon region
to each IXP. We did this by measuring minIXRTT, the minimum

8This simply implies that the CBI interface belongs to another client.
“None of the ABIs had a reverse domain name associated with them.
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Figure 4: (a) Distribution of min-RTT for ABIs from the clos-
est Amazon region, and (b) Distribution of min-RTT differ-
ence between ABI and CBI for individual peering links.

RTT between the various regions and all interfaces that are part of
the IXP and selecting min[XRegion as the Amazon region where
minIXRTT is attained. Then we measure the minimum RTT be-
tween all interfaces and minIXRegion and label an interface as
“local” if its RTT value is no more than 2ms higher than minIXRTT.
We note that for about 80% of IXPs, the measured minIXRTT is less
than 1.5ms (i.e., most IXPs are in very close proximity to at least
one AWS region). This effort results in labeling about 2k out of the
encountered 3.5k IXP interfaces in our measurements as “local”
Conversely, there are some 1.5k interfaces belonging to members
that peer remotely.

Single Colo/Metro Footprint (CBIs): CBIs of an AS that are present
only at a single colo or at multiple colos in a given metro area can
be pinned to that metro area. To identify those ASes that are only
present in a single colo or a single metro area, we collect the list of
all tenant ASes for 2.6k colo facilities from PeeringDB [52] as well
as the list of all IXP participants from PeeringDB and PCH.

Native Amazon Colos (ABIs): Intuitively, ABIs that are located
at colo facilities where Amazon is native (i.e., facilities that house
Amazon’s main border routers) must exhibit the shortest RTT from
the VM in the corresponding region. To examine this intuition,
we use two data sources for RTT measurements: (i) RTT values
obtained through active probing 1° of CBIs and ABIs; and (ii) RTT
values collected as part of the traceroute campaign. Figure 4a shows
the distribution of the minimum RTT between VMs in different
regions of Amazon and individual ABIs. We observe a clear knee at
2ms where around 40% of all the ABIs exhibit shorter RTT from a
single VM. Given that all Amazon peerings have to be established
through colo facilities where Amazon is native, we pin all these
ABIs to the native colo closest to the corresponding VM. In some
metro areas where Amazon has more than one native colo, we
conservatively pinned the ABIs to the corresponding metro area
rather than to a specific native colo.

Consistency Checking of Anchors. We perform two sets of con-
sistency checks on the identified anchors. First, we check whether
the inferred locations are consistent for those interfaces (i.e., 1.1k
in total) that satisfy more than one of the four indicators we used to
classify them as anchors. Second, we check for consistency across
the inferred geolocation of different interfaces in any given alias
set. These checks flagged a total of 66 (48 and 18) interfaces that
had inconsistent geolocations and that we therefore excluded from

19This probing was done for a full day and used exclusively ICMP echo reply messages
that can only be generated by intermediate hops and not by the target itself.
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Table 3: The exclusive and cumulative number of anchor in-
terfaces by each type of evidence and pinned interfaces by
our co-presence rules.

Anchor Interface Pinned Interface
DNS IXP Metro Native | Alias min-RTT
Exc. 531k 2.0k 1.66k 1.42k 0.65k 5.38k
Cum. | 531k 6.73k  7.22k 8.64k 9.21k 14.37k

our anchor list. These checks also highlight the conservative na-
ture of our approach. In particular, by removing any anchors with
inconsistent locations, we avoid the propagation of unreliable lo-
cation information in our subsequent iterative pinning procedure
(see below). The middle part of Table 3 presents the exclusive and
cumulative numbers of CBI and ABI anchors (excluding the flagged
ones) that resulted from leveraging the four utilized source of in-
formation.

Inferring Co-located Interfaces. We use two co-presence rules
to infer whether two interfaces are co-located in the same facility
or same metro area. (i) Rule 1 (Alias sets): This rule states that all
interfaces in an alias set must be co-located in the same facility.
Therefore, if an alias set contains one (or more) anchor(s), all in-
terfaces in that set can be pinned to the location of that (those)
anchor(s). (ii) Rule 2 (Interconnections in a Single Metro Area): An
Amazon peering is established between an Amazon border router
and a client border router, and these routers are either in the same
or in different colo/metro areas. Therefore, a small RTT between
the two ends of an interconnection segment is an indication of
their co-presence in at least the same metro area. The key issue is
to determine a proper threshold for RTT delay to identify these
co-located pairs. To this end, Figure 4b shows the distribution of
the min-RTT differences between the two ends of all the inferred
Amazon interconnection segments. While the min-RTT difference
varies widely across all interconnection segments, the distribution
exhibits a pronounced knee at 2ms, with approximately half of
the inferred interconnection segments having min-RTT values less
than this threshold. We use this threshold to separate interconnec-
tion segments that reside within a metro area (i.e., both ends are
in the metro area) from those that extend beyond the metro area.
Therefore, if one end of such a “short" interconnection segment is
pinned, its other end can be pinned to the same metro area.
Iterative Pinning. Given a set of initial anchors at known loca-
tions as input, we identify and pin the following two groups of
interfaces in an iterative fashion: (i) all unpinned alias sets that
contain one (or more) anchor(s), and (ii) the unpinned end of all the
short interconnection segments that have only one end pinned. For
both steps, we extend our pinning knowledge to other interfaces
only if all anchors unanimously agree with the geolocation of the
unpinned interface 1. This iterative process ends when there is
no more interface that meets our co-presence rules. Our pinning
process requires only four rounds to complete. The right-hand side
of Table 3 summarizes the exclusive and cumulative number of in-
terfaces pinned by each co-presence rule. Including all the anchors,
we are able to pin 45.05% (75.87%) of all the inferred CBIs (ABIs), and
50.21% of all border interfaces associated with Amazon’s peerings.

e observed such a conflict in the propagation of pinning information only for 179
(1.2%) interfaces
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Figure 5: Distribution of the ratio of two lowest min-RTT
from different Amazon regions to individual unpinned bor-
der interfaces.

Pinning at a Coarser Resolution. To better understand the rea-
sons for being able to map only about half of all inferred interfaces
associated with Amazon at the metro level, we next explore whether
the remaining (14.21k) unpinned interfaces can be associated with
a specific Amazon region based on their relative RTT distance. To
this end, we examine the ratio of the two smallest min-RTT values
for individual unpinned interfaces from each of the 15 Amazon
regions. 1.11k of these interfaces are only visible from a single re-
gion and therefore the aforementioned ratio is not defined for these
interfaces. We associate these interfaces to the only region from
which they are visible. Figure 5 depicts the CDF of the ratio for the
remaining (13.1k) unpinned interfaces that are reachable from at
least two regions and shows that for 57% of these interfaces the
ratio of two lowest min-RTT is larger than 1.5, i.e., the interface’s
RTT is 50% larger for one region. We map these interfaces to the re-
gion with the lowest delay. The relatively balanced min-RTT values
for the remaining 43% of interfaces is mainly caused by the limited
geographic separation of some regions. For example, the relatively
short distance between Virginia and Canada, or between neighbor-
ing European countries makes it difficult to reliably associate some
of the interfaces that are located between them using min-RTT
values. This coarser pinning strategy can map 8.67k (30.37%) of the
remaining interfaces (0.62k ABIs and 8.05k CBIs) to a specific region
which improves the overall coverage of the pinning process to a total
of 80.58%. However, because of the coarser nature of pinning, we do
not consider these 30.37% of interfaces for the rest of our analysis
and only focus on those 50.21% that we pinned at the metro (or
finer) level.

6.2 Evaluation of Pinning

Accuracy. Given the lack of ground truth information for the ex-
act location of Amazon’s peering interfaces, we perform cross-
validation on the set of identified anchors to enhance the confi-
dence in our pinning results. Specifically, we perform a 10-fold
stratified cross-validation with a 70-30 split for train-test samples.
We employ stratified sampling [28] to maintain the distribution of
anchors within each metro area and avoid cases where test sam-
ples are selected from metro areas with fewer anchors. We run our
pinning process over the training set and measure both the number
of pinned interfaces that match the test set (recall) and the number
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of pinned interfaces which agree geolocation-wise with the test
set (precision). The results across all rounds are very consistent,
with a mean value of 99.34% (57.21%) for precision (recall) and a
standard deviation of 1.6 %1073 (5.5%1073). The relatively low recall
can be attributed to the lack of known anchors in certain metro
areas that prevented pinning information from propagating. The
high precision attests to the conservative nature of our propagation
technique (i.e., inconsistent anchors are removed and interfaces are
only pinned when reliable (location) information is available) and
highlights the low false positive rate of our pinning approach.
Geographic Coverage. We examine the coverage of our pinning
results by comparing the cities where Amazon is known to be
present against the metros where we have pinned border interfaces.
Combining the reported list of served cities by Amazon [4] and the
list of PeeringDB-provided cities [67] where Amazon establishes
public or private peerings shows that Amazon is present in 74 metro
areas. Our pinning strategy has geo-located Amazon-related border
interfaces to 305 different metro areas across the world that cover
all but three metro areas from Amazon’s list, namely Bangalore
(India), Zhongwei (China), and Cape Town (South Africa). While
it is possible for some of our discovered, but unpinned CBIs to be
located in these metros, we lack anchors in these three metros to
reliably pin any interface to these locations. Finally, that our pinning
strategy results in a significantly larger number of observed metros
than the 74 metro areas reported by Amazon should not come as a
surprise in view of the many inferred remote peerings where we
have sufficient evidence to reliably pin the corresponding CBIs.

7 AMAZON’S PEERING FABRIC

In this section, we first present a method to detect whether an
inferred Amazon-related interconnection is virtual (§ 7.1). Then we
utilize various attributes of Amazon’s inferred peerings to group
them based on their type (§ 7.2) and reason about the differences in
peerings across the identified groups (§ 7.3). Finally, we characterize
the entire inferred Amazon connectivity graph (§ 7.4).

7.1 Detecting Virtual Interconnections

To identify private peerings that rely on virtual interconnections, we
recall that a VPI is associated with a single (CBI) port that is utilized
by a client to exchange traffic with one or more cloud providers (or
other networks) over a layer-2 switching fabric. Therefore, a CBI
that is common to two or more cloud providers must be associated
with a VPI. Motivated by this observation, our method for detecting
VPIs consists of the following three steps. First, we create a pool of
target IP addresses that is composed of all identified non-IXP CBIs
for Amazon, each of their +1 next IP address, and all the destination
IPs of those traceroutes that led to the discovery of individual unique
CBIs. Second, we probe each of these target IPs from a number of
major cloud providers other than Amazon and infer all the ABIs and
CBIs along with the probes that were launched from these other
cloud providers (using the methodology described in § 4). Finally, we
identify any overlapping CBIs that were visible from two (or more)
cloud providers and consider the corresponding interconnection to
be a VPI. Note that this method yields a lower bound for the number
of Amazon-related VPIs as it can only identify VPIs whose CBIs are
visible from the considered cloud service providers. Any VPI that
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Table 4: Number (and percentage) of Amazon’s VPIs. These are CBIs that are also observed by probes originated from Microsoft,

Google, IBM, and Oracle’s cloud networks.

Microsoft (%) Google (%) IBM (%) Oracle (%)
Pairwise 4.69k (18.93) 0.79k (3.17) 0.23k (0.94) 0 (0)
Cumulative 4.69k (18.93) 4.93k (19.91) 5.01k (20.23) 5.01k (20.23)

is not used for exchanging traffic with multiple cloud provider is
not identified by this method. Furthermore, we are only capable of
identifying VPIs which utilize public IP addresses for their CBIs [5].
VPIs utilizing private addresses are confined to the virtual private
cloud (VPC) of the customer and are not visible from anywhere
within or outside of Amazon’s network.

Applying this method, we probed nearly 327k IPs in our pool
of target IP addresses from VMs in all regions of each one of the
following four large cloud providers: Microsoft, Google, IBM, and
Oracle. The results are shown in Table 4 where the first row shows
the number of pairwise common CBIs between Amazon and other
cloud providers. The second row shows the cumulative number of
overlapping CBIs. From this table, we observe that roughly 20% of
Amazon’s CBIs are related to VPIs as they are visible from at least
one other of the four considered cloud provider. While roughly
19% of VPIs are common between Amazon and Microsoft, there
is no overlap in VPIs between Amazon and Oracle. Only 0.1% of
Amazon’s CBIs are common with Microsoft, Google and IBM.

Note that our method incorrectly identifies a VPI if a customer’s
border router is directly connected to Amazon but responds to our
probe with a default or 3rd party interface. However, either of these
two scenarios is very unlikely. For one, recall (§ 4) that we use UDP
probes and do not consider a target interface as a CBI to avoid a
response by the default interface [11]. Furthermore, our method se-
lects +1IP addresses as traceroute targets (i.e., during the expansion
probing) to increase the likelihood that the corresponding tracer-
outes cross the same CBI without directly probing the CBI itself.
Also, the presence of a customer border router that responds with
a third party interface implies that the customer relies on the third
party for reaching Amazon while directly receiving downstream
traffic from Amazon. However, such a setting is very unlikely for
Amazon customers.

7.2 Grouping Amazon’s Peerings

To study Amazon’s inferred peering fabric, we first group all the
inferred peerings/interconnections based on the following three
key attributes: (i) whether the type of peering relationship is public
or private, (ii) whether the corresponding AS link is present in
public BGP feeds, and (iii) in the case of private peerings, whether
the corresponding interconnection is physical or virtual (VPI). A
peering is considered to be public (bi-lateral or multi-lateral) if
its CBI belongs to an IXP prefix. We also check whether the cor-
responding AS relationship is present in the public BGP data by
utilizing CAIDA’s AS Relationships dataset [15] corresponding to
the dates of our data collection. Although this dataset is widely
used for AS relationship information, its coverage is known to be
limited by the number and placement of BGP feed collectors (e.g.,
see [56] and references therein).

Table 5 gives the breakdown of all of Amazon’s inferred peer-
ings into six groups based on the aforementioned three attributes.

Table 5: Breakdown of all Amazon peerings based on their
key attributes.

Group ASes(%) CBIs(%) ABIs(%)
Pb-nB 2.52k (71) 3.93k (16) 0.79k (21)
Pb-B 0.20k (5) 0.56k (2) 0.56k (15)
Pb 2.69% (76) 4.46k (18) 0.83k (22)
Pr-nB-V 0.24k (7) 2.99k (12) 0.54k (14)
Pr-nB-nV 1.1k (31) 10.24k (41) 2.59Kk (69)
Pr-nB 1.18k (33) 13.24k (53) 2.68k (71)
Pr-B-nV 0.11k (3) 5.67k (23) 2.07k (55)
Pr-B-V 0.06k (2) 2.09k (8) 0.33k (9)
Pr-B 0.12k (3) 7.76k (31) 2.11k (56)

We use the labels Pr/Pb to denote private/public peerings, B/nB
for being visible/not visible in public BGP feeds, and V/nV for
virtual/non-virtual peerings (applies only in the case of private
interconnections). For example, Pr-nB-nV refers to the number
of Amazon’s (unique) inferred private peerings that are not seen
in public BGP feeds and are not virtual (e.g., cross connections).
Each row in Table 5 shows the number (and percentage) of unique
AS peers that establish certain types of peerings, along with the
number (and percentage) of corresponding CBIs and ABIs for those
peers. Since there are overlapping ASes and interfaces between
different groups, Table 5 also presents three rows (i.e., rows 3, 6,
and 9 with italic fonts) that aggregate the information for the two
closely related prior pair of rows/groups. These three aggregate
rows provide an overall view of Amazon’s inferred peering fabric
that highlight two points of general interest: (i) While 76% of Ama-
zon’s peers use Pb peering, only 33% of Amazon’s peers use Pr-nB
(virtual or physical) peerings, with the overlap of about 10% of peer
ASes relying on both Pr-nB and Pb peerings, and the fraction of
Pr-B peerings being very small (3%). (ii) The average number of
CBIs (and ABIs) for ASes that use Pr-B, Pr-nB and Pb peerings to
interconnect with Amazon is 65 (17), 11 (2), and 2 (0.3), respectively.
Hidden Peerings. Note that there are groups of Amazon’s inferred
peerings shown in Table 5 (together with their associated traffic)
that remain in general hidden from the measurement techniques
that are commonly used for inferring peerings (e.g., traceroute). One
such group consists of all the virtual peerings (Pr-*-V) since they are
used to exchange traffic between customer ASes of Amazon (or their
downstream ASes) and Amazon. The second group is made up of all
other non-virtual peerings that are not visible in BGP data, namely
Pr-nB-nV and even Pb-nB. The presence of these peerings cannot
be inferred from public BGP data and their associated traffic is only
visible along the short AS path to the customer AS. These hidden
peerings make up 33.29% of all of Amazon’s inferred peerings and
their associated traffic is carried over Amazon’s private backbone
and not over the public Internet.
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Table 6: Hybrid peering groups along with the number of
unique ASes for each group.

Different Types of Hybrid Peering #ASN
Pb-nB 2183
Pr-nB-nVvV 730
Pr-nB-nV; Pb-nB 207
Pb-B 117
Pr-nB-nV; Pr-nB-V 87
Pr-nB-nV; Pb-nB; Pr-nB-V 60
Pr-nB-V 45
Pb-nB; Pr-nB-V 41
Pr-B-nV 30
Pb-B; Pb-nB 27
Pb-B; Pr-B-nV 25
Pb-B; Pr-B-V; Pr-B-nV 24
Pr-B-nV; Pr-B-V 18
Pr-nB-nV; Pr-B-V; Pr-B-nV 5
Pb-B; Pr-B-V 4
Pr-B-V 4
Pb-B; Pr-B-V; Pr-B-nV; Pr-nB-nV 2
Pr-nB-nV; Pr-B-nV; Pr-nB-V 1
Pr-nB-nV; Pr-B-nV 1
Pb-B; Pr-B-nV; Pr-nB-nV 1
Pb-B; Pr-B-nV; Pr-nB-V; Pr-B-V; Pr-nB-nV 1

Hybrid Peering. Individual ASes may establish multiple peerings
of different types (referred to as “hybrid" peering) with Amazon;
that is, appear as a member of two (or more) groups in Table 5.
We group all ASes that establish such hybrid peering based on the
combination of peering types that are listed in Table 5 types and
that they maintain with Amazon. The following are two of the most
common hybrid peering scenarios we observe. Pr-nB-nV + Pb-
nB: With 207 ASes, this is the largest group of ASes which utilize
hybrid peering. Members of this group use both types of peerings
to exchange their own traffic with Amazon and include ASes such
as Akamai, Intercloud, Datapipe, Cloudnet, and Dell. Pr-nB-nV;
Pb-nB; Pr-nB-V: This group is similar to the first group one but
its members also utilize virtual peerings to exchange their own
traffic with Amazon. This group consists of 60 ASes that include
large providers such as Google, Microsoft, Facebook, and Limelight.
Table 6 gives a detailed breakdown of the observed hybrid (and
non-hybrid) peering groups and shows for each group the number
of ASes that use that peering group. Note that each AS is counted
only once in the group that has the most specific peering types.

7.3 Inferring the Purpose of Peerings

In an attempt to gain insight into how each of the six different
groups of Amazon’s peerings is being used in practice, we consider
a number of additional characteristics of the peers in each group
and depict those characteristics using stacked boxplots as shown
in Figure 6. In particular, starting with the top row in Figure 6, we
consider summary distributions of 12 (i) size of customer cone of
peering AS (i.e., number of /24 prefixes that are reachable through
the AS (labeled as "BGP /24"); (ii) number of /24 prefixes that are

12For ASes that utilize hybrid peering with Amazon, the reported information in each
group only includes peerings related to that group.
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reachable from Amazon through the identified CBIs associated with
each peering; (iii) number of ABIs for individual peering AS; (iv)
number of CBIs for individual peering AS; (v) min RTT difference
between both ends of individual peering; (vi) number of unique
metro areas that the CBIs of each peering AS have been pinned to
(see § 6).

For example, we view the number of /24 prefixes in the customer
cone of an AS to reflect the AS’s size/role (i.e., as tier-1 or tier-2
AS) in routing Internet traffic. Moreover, comparing the number
of /24 prefixes in the customer cone with the number of reachable
/24 prefixes through a specific peering for an AS reveals the pur-
pose of the corresponding peering to route traffic to/from Amazon
from/to its downstream networks. In the following, we discuss how
the combined information in Table 5 and Figure 6 sheds light on
Amazon’s global-scale peering fabric and illuminates the different
roles of the six groups of peering ASes.

Pb-nB. The peers in this group are typically edge networks with
a small customer cone (including content, enterprise, and smaller
transit/access networks) that exchange traffic with Amazon through
a single CBI at an IXP. The corresponding routes are between Ama-
zon and these edge networks and are thus not announced in BGP.
Peers in this group include CDNs like Akamai, small transit/access
providers like Etisalat, BT, and Floridanet, and enterprises such
as Adobe, Cloudflare, Datapipe (Rackspace), Google, Symantec,
LinkedIn, and Yandex.

Pb-B. This group consists mostly of tier-2 transit networks with
moderate-sized customer cones. These networks are present at
a number of IXPs to connect their their downstream customer
networks to Amazon. The corresponding routes must be announced
to downstream ASes and are thus visible in BGP. Example peers in
this group are CW, DigitalOcean, Fastweb, Seabone, Shaw Cable,
Google Fiber, and Vodafone.

Pr-nB-V. The peers in this group are a combination of small transit
providers and some content and enterprise networks. They establish
VPIs at a single location to exchange either their own traffic or the
traffic of their downstream networks with Amazon through a VPI.
Therefore, their peering is not visible in BGP. About 85% of these
peers are visible from two cloud providers while the rest is visible
from more than two cloud providers. Examples of enterprise and
content networks in this group are Apple, UCSD, UIOWA, LG, and
Edgecast, and examples of transit networks are Rogers, Charter,
and CenturyLink.

Pr-nB-nV. These peers appear to establish physical interconnec-
tions (i.e., cross-connects) with Amazon since they are not reachable
from other cloud providers. However, given the earlier-mentioned
under-counting of VPIs by our method, we hypothesize that some
or all of these peerings could be associated with VPIs, similar to
the previous group. The composition of the peers in this group
is comparable to Pr-nB-V but includes a larger fraction of en-
terprise networks (i.e., main users of VPIs) which in turn is con-
sistent with our hypothesis. Examples of peers in this group are
enterprises such as Datapipe (Rackspace), Chevron, Vox-Media,
UToronto, and Georgia-Tech, CDNs such as Akamai and Lime-
light and transit/access providers like Comcast. To further examine
our hypothesis, we parse the DNS names of 4.85k CBIs associated
with peers in the Pr-nB group. 170 of these DNS names (100 from
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Figure 6: Key features of the six groups of Amazon’s peer-
ings (presented in Table 5) showing (from top to bottom):
the number of /24 prefixes within the customer cone of peer-
ing AS, the number of probed /24 prefixes that are reachable
through the CBIs of associated peerings of an AS, the num-
ber of ABIs and CBIs of associated of an AS, the difference
in RTT of both ends of associated peerings of an AS, and the
number of metro areas which the CBIs of each peering AS
have been pinned to.

Pr-nB-nV and 70 from Pr-nB-V interfaces) contain VLAN tags, in-
dicating the presence of a virtual private interconnection. We also
observe some commonly used (albeit not required) keywords [7]
such as dxvif (Amazon terminology for “direct connect virtual in-
terface"), dxcon, awsdx and aws-dx for 125 (out of 170) CBIs where
the “dx"-notation is synonymous with an interface’s use for “direct
interconnections". We consider the appearance of these keywords
in the DNS names of CBIs for this group of peerings (and only in
this group) as strong evidence that the interconnections in question
are indeed VPIs. Therefore, a subset of Pr-nB-nV interconnections
is likely to be virtual as well.

Pr-B-nV. The peers in this group are very large transit networks
that establish cross-connections at various locations (many CBIs
and ABIs) across the world). The large number of prefixes that are
reachable through them from Amazon and the visibility of the peer-
ings in BGP suggest that these peers simply provide connectivity
for their downstream clients to Amazon. Given the large size of
these transit networks, the visibility of these peerings in BGP is due
to the announcement of routes from Amazon to all of their down-
stream networks. Intuitively, given the volume of aggregate traffic
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exchanged between Amazon and these large transit networks, the
peers in this group have the largest number of CBIs, and these
CBIs are located at different metro areas across the world. Example
networks in this group are AT&T, Level3 (now CenturyLink), GTT,
Cogent, HE, XO, Zayo, and NTT.

Pr-B-V. This group consists mostly a subset of the very large transit
networks in Pr-B-nV and the peers in this group also establish a
few VPIs (at different locations) with Amazon. The small number of
prefixes that are reachable from Amazon through these peers along
with the large number of CBIs per peer indicates that these peers
bring specific Amazon clients (a provider or enterprise, perhaps
even without an ASN) to a colo facility to exchange traffic with
Amazon [6]. The presence of these peerings in BGP is due to the role
they play as transit networks in the Pr-B-nV group that is separate
from peers in this group using virtual peerings. Example networks
in this group are Cogent, Comcast, CW, GTT, CenturyLink, HE, and
TimeWarner, all of which are listed as Amazon cloud connectivity
partners [6, 44, 59]) and connect enterprises to Amazon. When
examining the min RTT difference between both ends of peerings
across different groups (row 5 in Figure 6), we observe that both
groups with virtual interconnections (Pr-B-V and Pr-nB-V) have
in general larger values than the other groups. This observation is
in agreement with the fact that many of these VPIs are associated
with enterprises that are brought to the cloud exchange by access
networks using layer-2 connections.

Coverage of Amazon’s Interconnections. Although the total
number of peerings that Amazon has with its customers is not
known, our goal here is to provide a baseline comparison between
Amazon’s peering fabric that is visible in public BGP data and
Amazon’s peering fabric as inferred by our approach. Using our
approach, we have identified 3.3k unique peerings for Amazon. In
contrast, there are only 250 unique Amazon peerings reported in
BGP, and 226 of them are also discovered by our approach. Upon
closer examination, for some of the 24 peerings that are seen in BGP
but not by our approach, we observed a sibling of the corresponding
peer ASes. This brings the total coverage of our method to about 93%
of all reported Amazon peerings in BGP. In addition, we report on
more than 3k unique Amazon peerings that are not visible in public
BGP data. These peerings with Amazon and their associated traffic
are not visible when relying on more conventional measurement
techniques.

7.4 Characterizing Amazon’s Connectivity
Graph

Having focused so far on groups of peerings of certain types or indi-
vidual AS peers, we next provide a more holistic view of Amazon’s
inferred peering graph and examine some of its basic characteristics.
We first produce the Interface Connectivity Graph (ICG) between
all the inferred border interfaces. ICG is a bipartite graph where
each node is a border interface (an ABI or a CBI) and each edge cor-
responds to the traceroute interconnection segment (ICS) between
an ABI and a CBI. We also annotate each edge with the difference
in the minimum RTT from the closest VM to each end of the ICS.!3
Intuitively, we expect the resulting ICG to have a separate partition

13We identify the VM that has the shortest RTT from an ABI and use the min-RTT of
the same VM from the corresponding CBI to determine the RTT of an ICS.
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Figure 7: Distribution of ABIs (log scale) and CBIs degree in
left and right figures accordingly.

that consists of interconnections associated with each region, i.e.,
ABIs of a region connecting to CBIs that are supported by them.
However, we observe that the ICG’s largest connected component
consists of the vast majority (92.3%) of all nodes. This implies that
there are links between ABIs in each Amazon region and CBIs in
several other regions. Upon closer examination of 57.85% of all
the peerings that have both of their ends pinned, we notice that a
majority of these peerings (98%) are indeed contained within indi-
vidual Amazon regions. However, we do encounter remote peerings
between regions that are a significant geographical distance apart.
For example, there are peerings between FR and KR, US-VA and SG,
AU and CA. The large fraction of peerings with only one end or no
end pinned (about 42%) suggests that the actual number of remote
peerings is likely to be much larger. These remote peerings are
the main reason for why the ICG’s largest connected component
contains more than 92% of all border interfaces.

To illustrate the basic connectivity features of the bi-partite
ICG, Figures 7a and 7b show the distributions of the number of
CBIs that are associated with each individual ABIs (degree of ABIs)
and the number of ABIs associated with individual CBIs (degree
of CBIs). We observe a skewed distribution for ABI degree where
30%, 70%, and 95% of ABIs are associated with 1, <10, and <100
CBIs, respectively. Roughly 50% (90%) of CBIs are associated with
a single (< 8) ABIs. A closer examination shows that high degree
CBIs are mainly associated with Amazon’s public peerings with
large transit networks (e.g., GTT, Cogent, NTT, CenturyLink). In
contrast, a majority of high degree ABIs is associated with private,
non-BGP, non-virtual peerings (see § 7).

8 INFERRING PEERING WITH BDRMAP

As stated earlier in § 2, bdrmap [55]' is the only other existing
tool for inferring border routers of a given network from traceroute
data. With Amazon as the network of interest, our setting appears
to be a perfect fit for the type of target settings assumed by bdrmap.
However, there are two important differences between the cloud
service provider networks we are interested in (e.g., Amazon) and
the more traditional service provider network that bdrmap targets
(e.g., a large US Tier-1 network). First, not only can the visibility
of different prefixes vary widely across different Amazon regions,
but roughly one-third of Amazon’s peerings are not visible in BGP
and even some of the BGP-visible peerings of a network are related
to other instances of its peerings with Amazon (§ 7). At the same
time, bdrmap relies on peering relationships in BGP to determine

4 MAP-IT [57] and bdrmapIT [2] are not suitable for this setting since we have layer-2
devices at the border.

Yeganeh et al.

the targets for its traceroute probes and also uses them as input for
some of its heuristics. Therefore, bdrmap’s outcome is affected by
any inconsistent or missing peering relationship in BGP. Second, as
noted earlier, our traceroute probes reveal hybrid Amazon border
routers that have both Amazon and client routers as their next hop
and connect to them. This setting is not consistent with bdrmap’s
assumption that border routers should be situated exclusively in the
host or peering network. Given these differences, the comparison
below is intended as a guideline for how bdrmap could be improved
to apply in a cloud-centric setting.

Thanks to special efforts by the authors of bdrmap who modi-
fied their tool so it could be used for launching traceroutes from
cloud-based vantage points (i.e., VMs), we were able to run it in all
Amazon regions to compare the bdrmap-inferred border routers
with our inference results. bdrmap identified 4.83k ABIs and 9.65k
CBIs associated with 2.66k ASes from all global regions. 3.23k of
these CBIs belong to IXP prefixes and are associated with 1.81k
ASes. Given bdrmap’s customized probing strategy and its exten-
sive use of different heuristics, it is not feasible to identify the exact
reasons for all the observed differences between bdrmap’s and our
findings. However, we were able to identify the following three
major inconsistencies in bdrmap’s output.

First, bdrmap does not report an AS owner for 0.32k of its inferred
CBIs (i.e., owner is AS0). Second, instances of bdrmap that run in
different Amazon regions report different AS owners for more than
500 CBIs, sometimes as many as 4 or 5 different AS owners for an
interface. Third, running instances of bdrmap in different Amazon
regions results in inconsistent views of individual border router
interfaces; e.g., one and the same interface is inferred to be an ABI
from one region and a CBI from another region. We identified 872
interfaces that exhibit this inconsistency. Furthermore, the fact that
97% (846 out of 872) of the interfaces with this type of inconsistency
are advertised by Amazon’s ASNs indicates that the AS owner for
these interfaces have been inferred by bdrmap’s heuristics.

When comparing the findings of bdrmap against our methodol-
ogy in more detail, we observed that our methodology and bdrmap
have 1.85k, 5.48k, and 2k ABI, CBI, and ASes in common. However,
without access to ground truth, a full investigation into the various
points of disagreement is problematic. To make the problem more
tractable, we limit our investigation to the 0.65k ASes that were
exclusively identified by bdrmap and try to rely on other sources
of information to confirm or dismiss bdrmap’s findings. These ex-
clusive ASNs belong to 0.18k (0.49k) IXP (private) peerings. For
IXP peerings, we compare bdrmap’s findings against IP-to-ASN
mappings that are published by IXP operators or rely on embedded
information within DNS names. The inferences of bdrmap is only
aligned for 42 of these peers. For the 0.49k private peerings we focus
on inferences that were made by the thirdparty heuristic as it consti-
tutes the largest (62%) fraction of bdrmap-exclusive private peerings
(for details, see § 5.4 in [55]). These ASes are associated with 375
CBIs and we observe 66 (60 ASNs) of these interfaces in our data.
For each of these 66 CBIs, we calculate the set of reachable destina-
tion ASNs through these CBIs and determine the upstream provider
network for each one of these destination ASes using BGP data [15].
Observing more than one or no common provider network among
reachable destination ASes for individual CBIs would invalidate the
application of bdrmap’s thirdparty heuristic, i.e., bdrmap wouldn’t
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have applied this heuristic if it had done more extensive probing
that revealed an additional set of reachable destination ASes for
these CBIs. We find that 50 (44 ASNs) out of the 66 common CBIs
have more than one or no common providers for the target ASNs.
Note that this observation does not invalidate bdrmap’s thirdparty
heuristics but highlights its reliance on high-quality BGP snapshots
and AS-relationship information.

9 LIMITATIONS OF OUR STUDY

As a third-party measurement study of Amazon’s peering fabric
that makes no use of Amazon-proprietary data and only relies on
generally-available measurement techniques, there are inherent
limitations to our efforts aimed at inferring and geo-locating all
interconnections between Amazon and the rest of the Internet. This
section collects and organizes the key limitations in one place and
details their impact on our findings.

Inferring Interconnections. Border routers responding to tracer-
oute probes using a third-party address are a well-known cause for
artifacts in traceroute measurement output, and our IXP-client and
Hybrid-IP heuristics used in § 5.1 are not immune to this problem.
However, as reported in [54], the fraction of routers that respond
with their incoming interface is in general above 50% and typically
even higher in the U.S.

In contrast, because of the isolation of network paths for VPIs of

Amazon’s clients that use private addresses, any peerings associated
with these VPIs are not visible to probes from VMs owned by
other Amazon customers. As a result, our inference methodology
described in § 4 cannot discover established VPIs that leverage
private IP addresses.
Pinning Interconnections. In § 6, we reported being able to pin
only about half of all the inferred peering interfaces at the metro
level. In an attempt to understand what is limiting our ability to pin
the rest of the inferred interfaces, we identified two main reasons.
First, there is a lack of anchors in certain regions, and second,
there is the common use of remote peering. These two factors in
conjunction with our conservative iterative strategy for pinning
interfaces to the metro level make it difficult to provide enough and
sufficiently reliable indicators of interface-specific locations.

One way to overcome some of these limiting factors is by using
a coarser scale for pinning (e.g., regional level). In fact, as shown
in § 6, at the regional level, we are able to pin some 30% of the
remaining interfaces which improves the overall coverage of our
pinning strategy at the granularity of regions to about 80%.
Other Observations. Although our study does not consider IPv6
addresses, we argue that the proposed methodology only requires
minimal modifications (e.g., incorporating IPv6 target selection
techniques [13, 38]) to be applicable to infer IPv6 peerings. We will
explore IPv6 peerings as part of future work.

Like others before us, as third-party researchers, we found it chal-
lenging to validate our Amazon-specific findings. Like most of the
large commercial provider networks, Amazon makes little, if any,
ground truth data about its global-scale serving infrastructure pub-
licly available, and our attempts at obtaining peering-related ground
truth information from either Amazon, Amazon’s customers, op-
erators of colo facilities where Amazon is native, or AWS Direct
Connect Partners have been futile.
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Faced with the reality of a dearth of ground truth data, whenever
possible, we relied on extensive consistency-checking of our results
(e.g., see § 5, § 6). At the same time, many of our heuristics are con-
servative in nature, typically requiring agreement when provided
with input from multiple complementary sources of information.
As aresult, the reported quantities in this paper are in general lower
bounds but nevertheless demonstrate the existence of a substantial
number of Amazon-related peerings that are not visible to more
conventional measurement studies and/or inference techniques.

10 SUMMARY

In this paper, we present a measurement study of the intercon-
nection fabric that Amazon utilizes in the US to run its various
businesses, including AWS. We show that in addition to some 0.12k
private peerings and about 2.69k pubic peerings (i.e., bi-lateral
and multi-lateral peerings), Amazon also utilizes at least 0.24k (and
likely many more) virtual private interconnections or VPIs. VPIs are
a new and increasingly popular interconnection option for entities
such as enterprises that desire highly elastic and flexible connec-
tions to the cloud providers that offer the type of services that these
entities deem critical for running their business. Our study makes
no use of Amazon-proprietary data and can be used to map the
interconnection fabric of any large cloud provider, provided the
provider in question does not filter traceroute probes.

Our findings emphasize that new methods are needed to track
and study the type of “hybrid" connectivity that is in use today at
the Internet’s edge. This hybrid connectivity describes an emerging
strategy whereby one part of an Internet player’s traffic bypasses
the public Internet (i.e., cloud service-related traffic traversing cloud
exchange-provided VPIs), another part is handled by its upstream
ISP (i.e., traversing colo-provided private interconnections), and yet
another portion of its traffic is exchanged over a colo-owned and
colo-operated IXP. As the number of businesses investing in cloud
services is expected to continue to increase rapidly, multi-cloud
strategies are predicted to become mainstream, and the majority
of future workload-related traffic is anticipated to be handled by
cloud-enabled colos [37], tracking and studying this hybrid con-
nectivity will require significant research efforts on parts of the
networking community. Knowing the structure of this hybrid con-
nectivity, for instance, is a prerequisite for studying which types of
interconnections will handle the bulk of tomorrow’s Internet traffic,
and how much of that traffic will bypass the public Internet, with
implications on the role that traditional players such as Internet
transit providers and emerging players such as cloud-centric data
center providers may play in the future Internet.
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