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Abstract

The design of voting rules is traditionally guided by desirable axioms. Recent work
shows that, surprisingly, the axiomatic approach can also support the generation
of explanations for voting outcomes. However, no bounds on the size of these
explanations is given; for all we know, they may be unbearably tedious. We prove,
however, that outcomes of the important Borda rule can be explained using O(m?)
steps, where m is the number of alternatives. Our main technical result is a general
lower bound that, in particular, implies that the foregoing bound is asymptotically
tight. We discuss the significance of our results for Al and machine learning,
including their potential to bolster an emerging paradigm of automated decision
making called virtual democracy.

1 Introduction

Voting plays a foundational role in many settings and guises, such as when electing leaders, when ag-
gregating expert recommendations, or when merging the outputs of statistical models. Unfortunately,
the voting method that is the most popular is also the worst: plurality voting, which simply selects
the alternative that is the favorite of the highest number of voters (or experts, models). This method
is bad because it routinely selects low-quality options [Merrill, 1984, Bordley, 1983] and because
it distorts incentives [e.g., Tideman, 1987]. This makes it the least popular rule in surveys among
voting theorists [Laslier, 2012].

Researchers and practitioners have developed alternative voting schemes that produce higher-quality
decisions, by eliciting not just each voter’s top choice, but a ranking of all options. While theoretically
superior, these methods have seen limited uptake in user-facing systems. One reason is that these
rules can be opaque and abstract. Rules are typically “explained” to users through pseudocode, and
often, the only explanation of the voting outcome that is provided to users (if any!) is a trace of the
algorithm’s execution. Sure, this allows voters to verify that the algorithm was applied correctly, but
it is unlikely to fill them with confidence in the quality of the public decision. Our aim is to develop
methods that can provide an explanation of the decision that is not merely procedural, but based on
intuitively compelling principles that characterize good decision making.

Applications Voting is often a component of machine learning systems, such as in ensemble
learning (where a combination rule is used to merge the labels of different models) or in the emerging
paradigm of virtual democracy, an approach to automated decision making. The idea of the latter
approach is to collect preference data from a group of voters, and use it to learn models of their
preferences over a (possibly infinite) set of alternatives. At runtime, when a specific set of alternatives
is presented, the system makes a decision by applying a voting rule to the predicted preferences
of the voters over the current alternatives. This approach has led to proof-of-concept systems that



automate moral decisions faced by autonomous vehicles [Noothigattu et al., 2018] and kidney
exchanges [Freedman et al., 2018]. Most notably, virtual democracy is the foundation of a pilot
recommendation system used to allocate food donations to recipient organizations [Lee et al., 2019].

The voting rule implemented in most virtual democracy applications is the Borda rule, in part
because it was shown to be robust to the type of prediction errors that arise when using preference
models [Kahng et al., 2019]. Under the Borda rule — which dates back to the 18th Century — each
voter gives m — k points to the alternative she ranks in the k" place, where m is the number of
alternatives; winning alternatives maximize the overall score. Since it is widely used, we focus on
this rule, but our framework applies to other rules (notably, approval voting) as well.

Our Approach For classifiers, techniques for computing explanations have advanced rapidly,
making classification more transparent. However, those techniques are not enough for systems that
combine outputs from many models, such as virtual democracy. To explain these composed systems,
we not only need to explain the individual models, but must also explain how we merged their outputs
to obtain a final decision.

An immediate difficulty for our task is that most of the principles we might like to use in our
explanations are too weak. For example, the unanimity axiom says that if each voter ranks a in
top position, then a should win. This is uncontroversial, but in practice we almost never see such
profiles, making it useless for explanations. However, there is another class of principles that are
more powerful: consistency axioms, which constrain the voting rule to make compatible decisions in
different situations. For example, the reinforcement axiom requires that if @ wins when aggregating
the first half of the votes, and a also wins when aggregating the other half of the votes, then a should
win when aggregating all votes simultaneously.

While the reinforcement axiom alone is not powerful enough to explain Borda outcomes, Cailloux
and Endriss [2016] suggest that a chain of axioms would do the trick. Given a preference profile,
intraprofile axioms that pertain to a single profile (like unanimity) can be applied to convince a
human of the outcome on certain profiles; and interprofile axioms that connect several profiles (like
reinforcement) can be used to relate the outcome on these profiles to the outcome on other profiles, in
a way that ultimately yields the desired outcome on the profile at hand.

For example, consider a trivial preference profile that only includes one voter with the ranking (a, b, c).
Since a has unanimous support, the unanimity axiom designates it as the winner. Another profile
has two voters associated with the rankings (a, b, ¢) and (c, b, a) (notice that the latter ranking is the
reverse of the former); by an intraprofile axiom called cancellation, all alternatives must be tied under
this profile. Now, due to reinforcement, the winner on the combined profile (that contains all three
voters) must be the intersection of the two sets of winners, namely a. This is, in fact, the alternative
chosen by the Borda rule. Therefore, we can explain the outcome of Borda on the combined profile by
chaining three axioms together. Notice that this reasoning is essentially given in natural language, and
it is clearly possible to automatically transform it into an explanation that a layperson can understand.

Cailloux and Endriss [2016] prove that for any profile, the outcome under Borda can be explained
through a chain of axioms involving six different axioms. This is an inspiring result — but it is unclear
whether it is practical, as the length of the explanation is unknown. An explanation with a thousand
steps is not something a user will sit through. Our research challenge, therefore, is to generate
the shortest possible explanations of voting outcomes — and analyze the required length — while
extending the approach of Cailloux and Endriss [2016] beyond the Borda rule.

We expect explainable voting to help with the broader adoption of automated decision making systems.
Whether virtual democracy systems directly make decisions or merely support decisions by making
recommendations, they must be trusted by stakeholders in order to be adopted. Lee et al. [2019]
provide evidence that the participatory nature of voting-based systems inherently encourages trust.
Still, the capability to provide meaningful explanations of decisions or recommendations obtained
via voting would amplify that trust. Taking a broader perspective, explainable voting is applicable to
the myriad environments where voting is employed, from ensemble learning through online services
like RoboVote. org all the way to— dare we say it? — political elections.

Our Results We propose giving multi-step explanations of voting outcomes. Mathematically,
it is convenient to model these explanations as formal proofs in an axiom system consisting
of the voting principles we are interested in. Written in formal logic, these explanations look



Step 1 In the two profiles below, we Step 2 In the left profile, the best Step 3 Combining the bottom profiles of Step 1 (which

should declare a complete tie, since candidate is {a}, and in the right pro-  is a complete tie) and of Step 2 (where {a} wins), we
these profiles are symmetric: file the best candidates are {a, ¢}: get a profile where {a} should win:
4 4 4 4 4 4 4 4 8 8 4 4 8 4 4 4 8 4 4 4 8 4 4
a b ¢ d a b ¢ d a a c a a a a a b b ¢ ¢ d d
b d a c d ¢ a b b d c a b b ¢c d d ¢ d a a b c
d c b a b a d ¢ c ¢ b d c d b b ¢c a ¢ b d c a
c a d b c d b a d b d b d ¢ d ¢ b d a d b a b
If we combine the two profiles, we Combining these, we get a profile Now consider the input profile, and copy each voter 16
should still declare a complete tie: where the winners should be {a}: times, which should not change the winners:
4 4 4 4 4 4 4 4 8 4 8 4 16 16 16 16 16 16 16 16
a a b b ¢ ¢ d d a a a c a b b b ¢ ¢ ¢ d
c d a a b c b ¢ d d a a d a a d a
d b a ¢ b d ¢ a ¢c b ¢ d b ¢ d ¢ b d a c
¢c ¢ d a d b a b d d b c d ¢ a d b b b

The above profiles are equivalent restricted to each pair
So they should have the same winners, so {a} wins in
the original profile, which agrees with the Borda rule.

Figure 1: An explanation of the Borda outcome on an example profile. The column header shows
how many voters submit each ranking.

impenetrable. Written in natural language, they are accessible and easy to follow, since the
axioms have been optimized for intuitive appeal. We show an example output of the sys-
tem in Figure 1 to explain that Borda selects a as the unique winner in the eight-voter pro-
file (a,d, b, c), (b,a,c,d), (b,a,d,c), (b,d,c,a),(c,a,b,d),(c,a,d,b),(c,d, a,b),(d a,cb). In Ap-
pendix A we provide an additional example based on election data from the 2009 mayoral election in
Burlington, Vermont, with more than 3,000 voters; notably, the resulting explanation is barely longer
than the one shown in Figure 1.

In Section 3 we focus on the Borda rule, which— as we mentioned above — has special significance.
Building on the work of Cailloux and Endriss [2016], we introduce seven natural axioms that
characterize Borda. We then prove (Theorem 1) that, in this framework, Borda outcomes can always
be explained in O(m?) steps, where m is the number of alternatives. This result gives an algorithm
for automatically generating explanations like in Figure 1. It is practical in settings with a small to
moderate number of alternatives.

In Section 4 we lay the groundwork for, and prove, our main result: a general lower bound on the
length of explanations. The key idea behind our approach is to embed voting rules into linear spaces,
which allows us to apply linear algebra machinery. For example, Borda outcomes can be determined
purely from the fraction of voters who prefer o?% alternative to another for every pair of alternatives,
and therefore Borda can be embedded into Q 2). The lower bound, Theorem 2, depends on the
dimension of the linear space A notable aspect of this result is that it holds not just in the worst case,
but for almost every profile. As corollaries we get asymptotically tight lower bounds for Borda as
well as two other rules, plurality and approval. Our lower bounds guide the way towards voting rules
whose outcomes can be easily explained even when there are many alternatives — a point that we
discuss in Section 5.

2 Preliminaries

In this section we provide some social choice terminology, and describe the framework of Cailloux
and Endriss [2016] for the explanation of voting outcomes.

2.1 Basic Terminology

Let A be a finite set of alternatives and denote m = |.A|. Let Py(.A) be the set of non-empty subsets
of A. Preferences of voters are given by (strict) rankings over A; let A! be the set of strict rankings.
A preference profile (or simply profile) is a function R : Al — N that specifies how many voters



report each possible ranking.' Let R be the set of all non-empty profiles, that is, all profiles except
the one that maps all m! rankings to zero. A voting rule f : R — Py(.A) maps each profile R € R
to a non-empty subset of A, the set of tied winners for R.. For two profiles R; and R, we define
R1 @ R as the sum of the two profiles (that is, the multiplicity of each ranking is the sum of its
multiplicities in the two profiles). For k € Z ., we define kR as the sum of k copies of R.

We will pay special attention to the Borda rule. As mentioned in Section 1, under Borda each voter
awards m — k points to the alternative ranked in the kth position; the winner set consists of all
alternatives with maximum score. For example, if the votes are a > b > ¢ > d,d > b > ¢ > a, and
(again) d > b > ¢ > a, then the winner set would be {b, d}, as both alternatives have 6 points.

2.2 Explainability Framework

We will produce explanations as proofs in a language of propositional logic over propositional
variables (or atomic formulae) {[R — A] : R € R, A € Py(.A)}. The language L is the set of all
formulae that can be formed using these variables and logical connectives —, A, V, —.

A voting rule f induces a truth assignment v to the propositional variables which assigns value frue
to atom [R — A] if f(R) = A and value false otherwise. By standard semantics of propositional
connectives, this truth assignment extends to all formulae of £. A truth assignment v satisfies a set of
formulae if v assigns true to all formulae in the set.

We can translate familiar axioms for voting rules in social choice theory into the language £. An
L-axiom is a set of formulae, each of which we call an axiom instance. For example, the unanimity
axiom can be written as {[R — {a}] : a € A, R € R and every voter in R ranks a top}.

A basic axiom is FUNC which requires that f assigns exactly one set A to each profile R. Thus,
FUNC consists of the formulae \/ ycp, 4y [R — Al and A 4 4, 7[R = Ai] V 2[R = Ay] for

each R € R. As a background assumption, we will usually not explicitly mention FUNC.

A voting rule f satisfies an L-axiom X if v satisfies X (recall that an L-axiom is a set of formulae).
An L-axiomatization is a set S of L-axioms. With a slight abuse of terminology, a voting rule f
satisfies an L-axiomatization S if f satisfies every axiom in S. Finally, S characterizes a voting rule
fif and only if f is the only voting rule satisfying every axiom in S.

Let S be an L-axiomatization. An explanation of an outcome A for profile R in terms of S is a
formal proof of the formula [R — A] in a suitable proof system for propositional logic, using axioms
in S as assumptions. Any sound and complete proof system will work, but for concreteness let us
define a proof of formula @ assuming S to be a sequence 1, . . ., o, = @ of propositional formulae
such that for each i = 1,...r, we have that either (i) ; is an instance of an axiom in S, or (ii) ¢;
is an instance of an axiom in FUNC, or (iii) ¢; is a tautology (a formula that is satisfied by every
variable assignment), or (iv) there exist j, k& < ¢ such that ¢}, = ¢; — ¢; (modus ponens). The
length of the proof is the number r of formulae in the sequence. For ease of exposition, when writing
down proofs in this system, we will often skip steps that use only propositional reasoning.

3 An Upper Bound for Borda

In this section we present our upper bound on the length of explanations required by the Borda rule
using a particular, natural axiomatization. Specifically, we show that an explanation of length O(m?)
suffices; as we will see in Section 4, our main result implies that this is optimal.

We start by defining families of profiles that are useful in producing short proofs. The first family
consists of elementary profiles Ré‘l‘em, for each non-empty A C A, which have two voters. Let
A={x,...,zptand A\ A ={y1,...,Ym—r}. The first voter has preferences z1 = a9 > --- >
Tp > Y1 > -+ > Ym—k. Lhe second voter has preferences zy, > - -+ > 1 > Ym—k > -+ > y1. For

example, the elementary profile Rgz;f V. when A = {a, b, c,d}, has two votes: a > b > ¢ > d and
b= a = d > c. Intuitively, in the profile R4, the alternatives in A are similar to each other (since
the preferences over A ‘cancel’), and stronger than the other alternatives, so a sensible voting rule

should select the alternatives in A. The second family consists of cyclic profiles ngc, where T is

!This definition makes our setting anonymous, so that nothing depends on the identity of specific voters.
Most of our results apply without this restriction, but we adopt it for ease of exposition.



an m-cycle over alternatives, which is composed of all rankings generated by 7'. For example, the
cyclic profile Ré‘ylc’b’c’@ contains the rankings (a, b, ¢), (b, ¢, a) and (c, a, b). Intuitively, by symmetry,

a sensible voting rule should declare a tie between all alternatives in a cyclic profile.

We also require the notion of the delta vector § Rofa profile R, which is a vector with (ZL) coordinates,
where 6}}) is the number of voters who prefer alternative a to alternative b minus the number of voters
who prefer b to a. The delta vector consists of the majority margins of the profile R. For example, if
SR > 0, then a majority of voters prefers a to b.

An important observation is that the delta vector is a sufficient statistic for computing the outcome
under Borda. Indeed, for an alternative a € A, one can check that the Borda score of a is equal to
% Y bea 6B + n(m — 1)/2, where n is the total number of voters in R. In any fixed R, the second
term is constant, and so we can find Borda scores and winners by inspecting only the delta vector.

We are now ready to define the axioms we need for our upper bound. We use the axiomatization
proposed by Cailloux and Endriss [2016]. The first three axioms give single-step proofs for “base
profiles.” These are the intraprofile axioms.

elem? elem

1. ELEM: For an elementary profile Rz, , the set of winners should be A. Formally, [R,,, — A].
2. CYCL: For a cyclic profile RZ, the set of winners should be all of .A. Formally, [RCZ;C — A} .

cyc?

3. CANC: If for all a, b € A, the same number of voters prefer a to b as prefer b to a, then the set
of winners is .A. Formally, VR such that Va,b € A, 55}) =0, [ R+— A

The remaining axioms are interprofile axioms, linking outcomes between different profiles. The first
axiom captures reinforcement. The others capture consequences of reinforcement; making them
separate axioms gives us convenient shortcuts in the generated explanations.

4. REINF: For any two profiles Ry and Ry, and any two subsets of alternatives A; and As with
AN A # (0, it holds that ([Rl — Al] A\ [RQ — Ag]) — [Rl @RQ — AN AQ]

5. REINF-SUB: Subtracting a profile with a full winner set does not change the outcome. Formally,
forall R, R/, (ROR’ — A A [R' — A]) — [R — A.

6. SIMP: A profile that is a repetition of some sub-profile should have the same set of winners as
the sub-profile. Formally, Vk € Z, [kR — A] — [R — A].

7. MULT: If a profile R has winner set A, then the profile that repeats R & times has the same
winner set. Formally, Vk € Z, [R — A] — [kR — A].

The last axiom is not used by Cailloux and Endriss [2016]; we add it for convenience. Let us refer to
the L-axiomatization consisting of Axioms 1-7 listed above as Sgoraa- Cailloux and Endriss [2016]
show that Spgg, characterizes the Borda rule (based on a result of Young [1974]) and that for any
profile R, the outcome of Borda can be explained using Spyda (and no other outcome can be so
explained). Technically, this means that given a profile R, it is possible to give a proof that the atomic
formula ¢ = [R — f(R)] is such that v;(y) = true for all voting rules f satisfying Sporda (and
Borda is the only such rule). Our first theorem strengthens this existence result by bounding the
length of the required explanation. We only give a rough proof sketch here to outline the strategy, and
leave the details to Appendix C.1.

Theorem 1. For any profile R with m alternatives, the outcome of the Borda rule can be explained
in O(m?) steps assuming the L-axiomatization Sporda.

Proof sketch. The linear space Q(?) of delta vectors is spanned by the delta vectors induced by
elementary and cyclic profiles. Given a profile R, we can find another profile R’ which is a linear
combination of at most O(m?) different elementary and cyclic profiles, satisfying k6® = SR’ for
some k € Z. . By the latter equality, R and R’ have the same set of Borda winners. Using ELEM,
CYCL, and interprofile axioms, we can show that f must elect the Borda winners at R’. Using
CANC and interprofile axioms, we can show that since k6% = §®', we must have f(R) = f(R/),
which together gives an explanation of the Borda outcome at R. The length of the explanation is
determined by the length of the decomposition of R/, which is in O(m?). O



4 A General Lower Bound

In this section we prove our main result: a general lower bound on the required explanation length,
which applies to a broad class of axiomatizations. Detailed proofs appear in Appendix B, where, in
fact, we prove a stronger version which enriches the model with axioms based on linear predicates.
This extra power is not needed for the Borda rule but is helpful to capture other voting rules.

4.1 Mathematical Framework

The Borda rule depends only on the delta vector, and the explanations constructed in Theorem 1
exploit the linear algebra of delta vectors. Our result applies more generally to voting rules that can
be embedded into a linear space, and axiomatizations based on the embedding. (All definitions in
this section are novel, to the best of our knowledge.)

Definition 1. A voting rule f : R — Py(A) can be embedded into a linear space V over Q via
h:R — Vandg:V — Py(A) if the following properties are satisfied:

I (R@R) = h(R) + h(R'), VR, R € R.2
2. f(R)=g(h(R)),VR € R.
3. {h(R): R € R} spans V.

We say that g admits the operation o : Py(A) x Py(A) = P(A) if g(v +v') = g(v) o g(v') for all
v,v" € V such that g(v) o g(v") # (.

For example, any (anonymous) voting rule f can be trivially embedded into a linear space of
dimension m!: the vector h(R) shows how often each preference ranking appears in R, and ¢

maps each possible such vector to a set of winners. The Borda rule can be embedded into (@(Z) by
h(R) = 6™ and g(6) = argmax,c 4 >, 4 0ab. One could also embed the Borda rule into Q™,
with h returning the vector of Borda scores, and g selecting the alternatives with highest score.

Intuitively, the operation o describes how to combine two voting outcomes. For the examples above,
if the rule f satisfies reinforcement, then the embedding admits the operation N.

We now describe an L£-axiomatization for an embedded voting rule. This axiomatization has several
abstract components, which we will discuss further after the definition.

Definition 2. Let f be a voting rule that can be embedded into a linear space V by h and g, and
assume that g admits operation o, which is commutative. Let S C R be a set of base profiles, such
that S can be written as a finite union of sets of profiles, S = U,szl S;, for some N, where each
Si C R is a possibly infinite set of profiles, and h(S;) lies in a one-dimensional subspace of V. Then
the L-axiomatization S(f, h, g,0,V,S) consists of the following three axioms:

1. ADD:VR{,R; € R,A; 0 Ay ?é 0,
[Rl — Al] A\ [RQ — Ag] — [R1®R2 — A OAQ].

2. EMB: VRl, Ry € R such that h(Rl) = h(Rg),
[R1 — A1] = [Ra — As).

3. INIT: VR € S, [R — f(R)].

If o = N then ADD is simply reinforcement. The INIT axioms are intraprofile axioms that prescribe
the outcome on the set .S of base profiles; this is similar to the intraprofile axioms we saw for Borda,
where S would consist of elementary, cyclic, and cancellation profiles. EMB encodes the fact that if
a voting rule f is embedded into V' by an embedding £, g, then f must have the same outcome on R;
and Ry if h(Ry) = h(Rz). For example, when embedding Borda using delta vectors, this axiom
would say that two profiles with the same delta vector must yield the same outcome.

Axiomatizations like the one we gave for Borda in Section 3 do not follow the format of Definition 2
precisely. To apply our results, the following relaxation is helpful. It generalizes the axiomatizations
of Definition 2, and our lower bounds still apply.

2 All results in this section still hold when we replace the operation @ with any binary operation R x R — R.



Definition 3. An axiomatization S of a voting rule f is asymptotically weaker than Semp =
S(f,h,g,0,V,S) ifthere is ¢ > 1 such that for every axiom instance @ in S, there exists a proof of
© assuming Semp that uses at most ¢ axiom instances of form INIT, as well as an unlimited number
of ADD and EMB axiom instances.

For example, for any k € Z_, S could include the axiom

[R— A = |[kFR— AoAo...0 A
—_—

k times

since it can be deduced by repeatedly using ADD.

4.2 Theorem Statement and Proof

In this section we give a lower bound on the length of explanation required for random profiles.
Specifically, assume that the preferences of voters are independent, and each voter picks their ranking
over all m! possibilities uniformly at random. This common assumption is known as the impartial
culture assumption in social choice theory [Tsetlin et al., 2003]. Let R™ denote the random profile
generated this way for the case of n voters. When we say that R"™ satisfies a property “with high
probability,” we mean that the probability converges to 1 as n goes to infinity.

Theorem 2. Let f be a voting rule that can be embedded into a linear space V' of finite dimension d by
h and g. Consider an axiomatization S of f that is asymptotically weaker than some axiomatization
S(f,h,g,0,V,S) based on operation o and base profiles S satisfying the conditions of Definition 2.
Then, with high probability, every explanation of the outcome f(R™) at the random profile R™ using
S consists of )(d) steps.

The impartial culture assumption is debatable as a model of voter preferences, but in our case that
objection is not relevant: because the theorem’s conclusion holds with high probability, it provides a
lower bound with respect to almost every profile. Moreover, the proof can be adapted to work for any
D over R such that h(supp(D)) spans V'; we focus on impartial culture for ease of exposition.

The high-level idea of the theorem’s proof is as follows. We are going to show that for large enough
n, if we only use a set B, |B| = d — 1, of axioms from INIT (and as many axioms as we want
from ADD and EMB) in the explanation of [R™ — f(R™)], then with high probability, for every
such B there is another voting rule f’, which satisfies all axioms in ADD, EMB, and in B, such
that f” disagrees with f on R", i.e. f'(R™) # f(R"™). This, in turn, implies that =[R™ — f(R")]
satisfies ADD, EMB, and 5, which is a contradiction to the soundness of propositional logic. Thus,
any proof of [R™ — f(R™)] using the axiomatization Serp = S(f, h, g,0,V, S) will use at least
d axiom instances of type INIT. Now, any proof of [R™ — f(R")] in an asymptotically weaker
axiomatization can be translated into a proof in Semp With at most a constant factor blow-up in length.
Thus, the proof using the asymptotically weaker axiomatization must have length £2(d).

4.3 Implications for Prominent Voting Rules

In this section, we apply the general bound of Theorem 2 to several existing axiomatizations of
important voting rules. We start with the axiomatization of the Borda rule that we used in Theorem 1.
There, we showed that the outcome of the Borda rule at any profile can be explained in O(m?) steps.
We can now show that this is asymptotically tight.

Corollary 1. With high probability, the outcome of the Borda rule on a random profile R"™ requires
Q(m?) steps to explain assuming the L-axiomatization Spoqa-

Proof sketch. Let S(f,h,g,0,V,S) be the L- axiomatization of the Borda rule, where V' = Q(?),
h(R) = 6% and g(6) = argmax,c 4 > yc 4 Sab- Because Borda satisfies reinforcement, g admits
intersection. We let S be the set consisting of elementary profiles, of cyclic profiles (as defined in
Section 3), and of cancellation profiles: a cancellation profile is one in which for each pair a, b, there
is an equal number of voters preferring a to b, and preferring b to a. Note that .S is made up of a finite
number of elementary and cyclic profiles, plus an infinite number of cancellation profiles which are
all mapped to the all-zero delta vector by h. Hence, S satisfies the condition of being a finite union of
sets whose image under h is contained in a one-dimensional subspace.

We need to show that this axiomatization is asymptotically weaker than the axiomatization described
in Section 3. Then Theorem 2 implies the desired result, since the dimension of V is ©(m?).



Each ELEM, CYCL, and CANC axiom is an INIT axiom. Each REINF axiom is an ADD axiom.
Each MULT axiom can be deduced by repeatedly applying an ADD axiom. Each REINF-SUB
axiom can be inferred by combining several ADD axioms using propositional reasoning; similarly
SIMP axioms can be inferred from ADD axioms. The details are in Appendix C.2. O

Next, we consider the plurality rule. Under this rule, the winning alternatives are those that are ranked
in first position by the largest number of voters. Sekiguchi [2012] has given a characterization of this
rule (based on an earlier result of Yeh [2008]), using the axioms anonymity, neutrality, reinforcement,
faithfulness, and tops-only. Inspecting the proof, we see that the full neutrality axiom is not needed,
and only the orbit axiom[Brandt and Geist, 2016] is required; this axiom stipulates that symmetric
alternatives must either be all winning or all losing. Faithfulness requires that if there is only one
voter, then the only winning alternative is the top choice of that voter. Tops-only requires that if in
two different profiles R, and Ry defined on the same voters, each voter ranks the same alternative as
top choice in both profiles, then f(R;) = f(Rsz). Using appropriate fomalizations of the axioms,
is possible to translate Sekiguchi’s [2012] proof into an explanation of the plurality outcome in our
propositional language, and the resulting proofs will be of length O(m). Using Theorem 2, we can
show that this is tight. The proof of the following corollary can be found in Appendix D.

Corollary 2. With high probability, the outcome of plurality rule on a random profile R™ requires
Q(m) steps to explain, under the axioms anonymity, reinforcement, orbit, faithfulness, and tops-only.

Throughout this paper, we have discussed voting rules whose input is specified by profiles of rankings.
An alternative paradigm is used by approval voting [Brams and Fishburn, 2007], which allows voters
to indicate, for each alternative, whether they approve or disapprove it. Then, formally, the input to
the voting rule is a profile of subsets (of approved alternatives), rather than rankings. Approval voting
declares that those alternatives that have been approved by the highest number of voters are winners.
This rule has been axiomatically characterized among voting rules with this input format by Fishburn
[1978, 1979]. He gives two axiomatizations, both using axioms similar to previous examples. After
redefining the set R of profiles to use approval ballots, our general lower bound (Theorem 2) can
be proven verbatim, and implies an €2(m) lower bound for explanations of approval voting obtained
using Fishburn’s axiomatizations; details are relegated to Appendix E.

Corollary 3. With high probability, the outcome of approval voting on a random profile R™ of
approval ballots requires )(m) steps to explain, under the axioms of anonymity, reinforcement, orbit,
faithfulness, disjoint equality, cancellation.

5 Discussion

We wrap up with a discussion of the practical implications of our theoretical results.

First, we wish to emphasize that our main result, Theorem 2, holds with respect to almost every
profile. Focusing on Borda as an example, this means that the (computationally-efficient) explanation-
generating algorithm given by Theorem 1 not only constructs the (asymptotically) shortest possible
explanations in the worst case — it constructs the (asymptotically) shortest possible explanation with
respect to almost every profile. That said, since these results are asymptotic, there might be some
benefit in designing a search algorithm that computes the absolutely shortest explanation for any
given profile. This appears to be a very difficult computational problem; preliminary experiments
suggest that standard heuristic search or mathematical programming techniques cannot be used to
directly tackle it.

Second, whether our results should be seen as positive or negative depends on the application. Most
group decisions — such as those made through online services like Robovote . org — involve only
a few alternatives: restaurants, movies, vacation spots, best paper awards (from a shortlist), or
even prototypes to develop. In these cases, an explanation of linear or quadratic length is perfectly
reasonable, so our results should be viewed in a positive light.

By contrast, some settings involve many alternatives. For example, in the work of Lee et al. [2019] —
where the Borda rule is used to aggregate predicted preferences — the set of alternatives consists of
hundreds of nonprofit organizations that may receive an incoming food donation. In this case, an
explanation of quadratic length is a nonstarter, although linear-length explanations (such as those
available for plurality and approval) may be viable. The good news is that Theorem 2 can help



identify new axiomatizations that lead to short explanations, by providing necessary conditions; to
explain Borda outcomes when there are hundreds of alternatives, we must find a new axiomatization
that does not take the form of the axioms in Section 4.1. Our hope is that these insights will lead to
new results in social choice theory, which could, in turn, be used to design explainable Al systems
that are currently beyond reach.

Broader Impact

Our work is motivated by societal applications of voting and virtual democracy, as we discuss in
Sections 1 and 5. We expect our work to ultimately make these applications more transparent and
trustworthy.

We do not foresee negative consequences for our work. It is particularly noteworthy that our
explanation approach is not influenced by biases in data, as it builds purely on uncontroversial
axiomatic properties rather than deriving explanations from data.

That said, we acknowledge that the virtual democracy approach itself (which is outside the scope
of this paper) faces many ethical challenges, including questions about who gets to participate and
whether participants’ biases influence preference models, thereby negatively affecting aggregate
decisions or recommendations made by the system.
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A Explaining the 2009 Burlington Mayoral Election Outcome

The following input profile is derived from election data of the 2009 mayoral election in Burlington,
Vermont, which is known to exhibit interesting voting theoretic properties.’ Five candidates were
running. One of them, James Simpson for the Green Party, gathered almost no votes (35 first-place
votes compared to 1,306 first-place votes for the next-lowest candidate), so we ignore this candidate
for convenience. The other four candidates are

K =BobKiss M = Andy Montroll H = Dan Smith W = Kurt Wright.

The resulting profile consists of the following 3,352 votes.

143 37 139 87 48 112 200 55 432 131 50 72 198

H H H H H H K K K K K K M

K K M M W W H H M M W W H

M W K W K M M W H W H M K

w M W K M K W M W H M H W
129 211 89 151 82 114 324 66 89 288 105
M M M M M W W W W W W
H K K W W H H K K M M
w H W H K K M H M H K
K W H K H M K M H K H

Step 1

In each of the following profiles, we should declare a complete tie.

9% 96 96 96 56 56 56 56 160 160 160 160

H K M W H K M W H K
w M H K K M W H K
K H W M M W H K W
M W K H w H K M M H W K

If we combine all of the above profiles, we should still declare a complete tie.

3For instance, the plurality winner (W) is different from the winner under Instant Runoff Voting rule (K)
which Burlington used, and both are different from the Condorcet winner (M). See https://en.wikipedia.
org/wiki/2009_Burlington_mayoral_election.
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56 160 96 96 56 160 160 96 56 56 96 160

H H H K K K M M M W W W

K K W M M W H H W H K M

M W K H W M K W H K M H

w M M W H H W K K M H K
Step 2

In the following profile, the selected winners should be { M }.

948 948
M M
K W
H H
w K

In the following profile, the selected winners should be { M, H'}.

160 160
H M
M H
w K
K W

In the following profile, the selected winners should be {M, H, K'}.

260 260
K M
H H
M K
w W

Combining the above two profiles, we get that in the following, the winners should be { M }.

160 260 420 948 948

H K M M M

M H H K W

w M K H H

K w w W K
Step 3

Combining the profile of Step 1b (resulting in a complete tie) and the last profile in Step 2 (with
winners { M }), we get that in the following profile, the winners should be { M }.
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56 160 160 96 260 96 56 160 580 96 948 1004

H H H H K K K K M M M M
K K M W H M M W H H K W
H
K

160

M w W K M H W M K W H
w M K M W W H H W K W

SESEEI o
mERE| K
NEES

Now consider the input profile, and copy each voter 4 times. This gives

572 148 556 348 192 448 800 220 1728 524 200 288 792
H H H H H H K K K K K K M
K K M M W W H H M M W W H
M W K W K M M W H W H M K
w M W K M K W M W H M H W

516 844 356 604 328 456 1296 264 356 1152 420

M M M M M W W W W W W
H K K W W H H K K M M
w H W H K K M H M H K
K W H K H M K M H K H

These two profiles have the same weighted majority margins. Hence the winners of the original
profile must be { M}, which is the output of the Borda rule.

B Proof of Theorem 2

Before we give the proof, we first introduce a generalization of our framework as presented in
Section 4.1: we allow an additional family of axioms (called PRED) which is parameterized by a
family T of linear functions.

Definition 4. Let f be a voting rule that can be embedded into a linear space V by h and g, and
assume that g admits operation o, which is commutative. Let S C R be a set of base profiles, such
that S can be written as a finite union of sets of profiles, S = Ui\[:l Si, for some N, where each
Si C R is a possibly infinite set of profiles, and h(S;) lies in a one-dimensional subspace of V. Let
T be a (possibly infinite) set of linear functions from V to Q; we refer to these functions as linear
predicates. Then the L-axiomatization S(f, h, g,0,V,S,T) consists of the following four axioms:

1. ADD:VR{,Ry € R, A0 Ay 7& @,
[R1 — Al] A\ [RQ — Ag] — [R1®R2 — A1 OAQ].

2. EMB: YRy, R, € R such that h(Ry) = h(Rs),
[Rl — Al] — [R2 — AQ]

3. INIT: VR € S, [R — f(R)].

4. PRED:VR c R,t; € T,
ti(h(R)) =0 =V acyk i) IR = A, where K(t;) is the kernel of t;.

The PRED axiom is an intraprofile axiom which does not have an analogue among the axioms
discussed in Section 3. We include it to give our framework more expressive power, especially for
encoding neutrality-type axioms (which require that similar alternatives need to be treated identically).
PRED encodes the fact that if a profile satisfies some condition (given by ¢;) then its outcome should
reflect it. For example, if f is the Borda rule embedded into V' = Q™ by its scoring function, we
canlet T' = {t;; : t;;(v) = v; — v;}, where v; is the score of alternative ¢. Then K(¢;;) is the set of
vectors v with v; = v;, and thus g(/C(t;;)) is the set of voting outcomes A which satisfy i € A if and
only if j € A. In other words, PRED would require that any two alternatives with the same Borda
score are either both winners or both losers.

In Section 4.1, we stated our lower bound in terms of the dimension of the space V. In the enriched
model, we state the lower bound in terms of dim V' as well as a complexity measure of the set 7" of
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linear predicates. The definition of that measure is admittedly unwieldy, but directly related to the
length of explanations.

Definition 5. An outcome A is uniquely determined by a subset of linear predicates T' C T if there is
a set of rational numbers C' C Q such that A = (", g(t; M (ci)), wheret; ' (c;) = {v: t;(v) = ¢}
and ¢; € C. The sensitivity of g with respect to T, sen(g,T), is the minimum size of T' C T
such that there is an outcome A (of f) that is uniquely determined by T'. If there is no such T,
sen(g,T) = +oo.

For the embedding of Borda into Q™ with T' = {¢;; : t;;(v) = v; — v, }, we can take the winner
set A = A. The function ¢ outputs .4 only for vectors v with v = vy for all k, . Now, ti_jl((])
is the set of vectors v with v; = v;. Thus, the smallest set 7" such that (), <7 g(t;71(0)) = Ais

T = {t12,t13, ..., t1m}. It follows that sen(g,T) = m — 1.

Theorem 3. Let f be a voting rule that can be embedded into a linear space V' of finite dimension d by
h and g. Consider an axiomatization S of f that is asymptotically weaker than some axiomatization
S(f,h,g,0,V,S,T) based on operation o, base profiles S, and linear predicates T, satisfying the
conditions of Definition 2. Then, with high probability, every explanation of the outcome f(R™) at
the random profile R™ using S consists of Q(min(d,sen(g,T'))) steps.

Define the random vector &; = h(R;), where R; is the ranking (or single-voter profile) associated
with the i voter (which is selected independently and uniformly at random from all m! possible
rankings). Fix an arbitrary basis B C V, and let cg(v) be the coordinates of a vector v under B.
Define X; = cp(b)Tcp(&;), for some arbitrary non-zero vector b € V. X1,..., X, are i.i.d. random

variables with mean p and variance o2.

Lemma 1. For any vector b # 0, the random variable cg(b)Tcp(&;) has non-zero mean or non-zero
variance.

Proof. We prove that if ¢ (b)Tcp(&;) is a random variable with zero mean then it cannot be determin-
istically zero (and thus has non-zero variance). Towards a contradiction, Prcp(b)Tcp (&) = 0] =1
implies that cg(b)Teg(h(R)) = 0 for every R € R. But, by the definition of an embedding,
{h(R) : R € R} spans V. Therefore cp(b) must be the all zeros vector; a contradiction. O

Lemma 2. For any non-zero vector b it holds that cg(b)Tcg(h(R™)) # 0 with high probability.

Proof. To prove the lemma we need to show that Y| X; # 0 with high probability. By Lemma 1
either p # 0 or o # 0. If 0 = 0, then the X;’s are identical non-zero constants (note that this does
not imply that the &, = h(R;) is a constant vector). We trivially get that Pr[Y """ | X; = 0] = 0, for
all n. If o # 0 then the central limit theorem gives us that

Pr[\/ﬁ<Z?ani—u) gz}—cb(z)’_o.

g

lim sup
n—roo 2€R

Therefore, for any given € > 0, we have

iXi < e] - (i;ﬁl;n) % (_i/_ﬁ:n) +o(1)

1 [le—nn)/ (Vo)

Pr

_ —2%/2
= — e dz + o(1)
V21 J(—e—pn)/(vro)
(e—un)/ (/7o)

\/1 /

Si

27 J(—e—pun) /(o)
2
€ to(l), (1)

1dz + o(1)

ov2nmn

For any 6 > 0 we can pick € small enough, and n large enough, so that both terms on the right hand
side of Equation (1) are smaller than /2. It then holds that

5> PriY, Xil <d > PrlY), X =0, 0

Lemma 3. With high probability h(R™) does not lie in the subspace spanned by any d — 1 elements
in h(S).
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Proof. We can assume that h(S) spans V, since otherwise we can add vectors from V' to make it so
(and the lemma still holds). We start by proving the lemma for finite 2(.S). We are going to show that,
with high probability, the coordinates of h(R™) under any basis B’ C h(S) of V have no zero entries.
This implies that A(R™) is not in any subspace spanned by d — 1 elements in h(S). To see why this
is the case, notice that if h(R") lay in the space spanned by some B’ C h(S), with |B’| =d — 1,
we could add one more v € V to B’ and make it a basis for V. Then the coordinates of h(R™) with
respect to v under this basis would be zero, leading to a contradiction; thus, such a B’ cannot exist.

Recall that we have already fixed one a basis for V, the basis B. For every basis B’ C h(S), there is
a unique non-singular matrix Pps such that B = B’ Pg/, and for any v € V, cp/(v) = Pgrcg(v).
Thus, it is sufficient to prove that for every basis B’ C h(S) all entries of Pgcg(h(R™)) are
non-zero with high probability.

For any B’, by the union bound, the probability that P cg(h(R™)) has a zero entry is at most
Z?:l Pr[PL,cp(h(R™)) = 0], where P}, is the i™ row of Pg/. Due to its non-singularity, each
row of Pp must be non-zero. By Lemma 2 it holds that Pr[P%, c(h(R™)) = 0] converges to zero
as n goes to infinity. By applying the union bound again, we conclude that with high probability
Pgreg(h(R™)) has no zero entries for every basis B’ C h(.S). This concludes the proof for finite
h(S).

When h(S) is infinite, we use that ~(.S) is a union of finitely many one-dimensional subsets, (S) =
ngl h(S;). Pick an arbitrary non-zero vector b; from each h(.S;) and let B* = Uﬁzl{bi}. Notice

that B* spans V, since each h(S;) is one dimensional. Therefore, we can use the finite version of this
lemma for B* and get that h(R") does not lie in the subspace spanned by any d — 1 elements in B*.

We claim that h(R™) does not lie in the subspace spanned by any d — 1 elements in h(.S) either.
Towards a contradiction, assume that h(R™) lies in the subspace spanned by B’ C h(S), with
|B’| = d — 1. Without loss of generality we assume that the vectors in B’ are linearly independent.
Then, every element of B’ must come from a different h(.S;) (since each h(S;) is one-dimensional).

r_ / ny _ \d—1 gy ;- )
Let B" = {t},b;,,...,b;, ,}and h(R") = 3 °""; ¢;b; where b is an element of 1(S;,), and the

117 7120 ' g —1 J=1
c; are rational numbers. Since each h(S;) is one dimensional, bgj = ¢i;b;; where g;; is rational

and b;; is the vector we included in B*. We immediately have that A(R") = Ej: ¢jqi;bi;» which
implies that A(R"™) lies in a subspace spanned by d — 1 elements in B* — a contradiction. O

We are now ready to complete the theorem’s proof.

Proof of Theorem 2. Let B C S, |B| = d — 1, be a set of INIT axiom instance and let C, |C| =
sen(g,T) — 1, be a set of PRED axiom instances. We show that there exists no proof of [R™ —
f(R™)] using the axiomatization Sempy = S(f, h, g,0,V, S, T) that uses only INIT axiom instances
in B and only PRED axiom instance in C.

Slightly abusing notation, let A(B) = {v1,va,...,v4—1}, and assume without loss of generality
that these d — 1 vectors are linearly independent. Also assume that 4(R™) is not in any subspace
spanned by d — 1 elements of ~(S), which happens with high probability by Lemma 3. There-
fore, {v1,v2,...,v4_1, (R™)} forms a linear basis of V.* Furthermore, since there are at most
sen(g,T) — 1 linear predicates in C, by the definition of sensitivity, no winning set A of f can be
uniquely determined by the linear predicates in the axioms of C. Thus, we can find a vector b such
that ¢;(b) = ¢;(h(R™)) for all ¢; € C and ¢g(b) # g(h(R™)).

For a profile R we can write h(R) = kyvy + kava + -+ + kg—1v4—1 + kqh(R™), for rational
k1, ..., kq. Define anew embedding b’ : R — V by i/ (R) = kyvy +kavo + -+ -+ kg_1v4—1 + kab,
where b is as above. Due to the uniqueness of this decomposition, i’ is well-defined.

Now consider the voting rule f’ that outputs g(h’'(R)) on a profile R. First, notice that f and f’
disagree on R™, as f'(R™) = g(W'(R™)) = g(b) # f(R™) by the choice of b. Second, for each
profile R in B, we have h(R) = h'(R), and therefore f'(R) = f(R). Third, for two profiles
R1, Ry such that h(R;) = h(Rz2) we have h'(R1) = h/(Rg), which implies f'(R1) = f'(Rz).

*In the case that h(S) spans V’ C V, the vectors in h(3) cannot be linearly independent. But, we can still
create a basis for V' that includes a maximal subset of linearly independent vectors from h(5), h(R"™) and other
vectors from V.
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Fourth, if f'(R)o f/(R’) # 0 then f/(RPR') = g(h'(R) + ' (R')) = f'(R) o f/(R’). Finally,
t;(h(R)) = 0 implies ¢,(h'(R)) = 0.

The above facts imply that the new rule f’ satisfies ADD, EMB, B and C, but that f(R"™) # f'(R™).
Thus, by the consistency of £ and the soundness of propositional logic, R™’s outcome cannot
be explained assuming S, Without using INIT axioms outside B or PRED axioms outside C.
Since this holds for any B and C, every explanation of f(R") assuming Sem, must contain at least
min(d, sen(g, T)) axiom instances of type INIT and PRED.

Consider a proof of [R" — f(R™)] assuming S of length r, which is formally a sequence ¢1, . . ., @,
of formulae. By assumption, S is asymptotically weaker than Semp. Thus, for each ¢; in the proof
which is an axiom instance of S, we can replace y; by a proof of ¢; assuming Senp. After these
replacements, we have obtained a proof of [R™ — f(R™)] assuming Semp; let s be the number
of intraprofile axiom instances (INIT and PRED) in this proof. Because we have obtained this
proof by performing at most r replacements, each time introducing at most ¢ intraprofile axiom
instances, we have s < ¢ - r. From above, we know that s > min(d,sen(g,T)). Thus, r >
1 min(d, sen(g, T)). Hence, any explanation of the outcome f(R") using the axiomatization S
requires 2(min(d, sen(g,T))) steps. O

C Details for Borda

C.1 Proof of Theorem 1

It will be useful to define the beta score of an alternative a in profile R as SF = 2b, - m —m(m — 1)
where b, is the Borda score of a. The beta score is a monotonically increasing linear function of the
Borda score. Therefore, selecting the top alternatives based on beta scores or Borda scores defines
the same voting rule. For any profile R the beta vector & maps alternatives to their beta score. Note

that SR is a linear transformation of 6®. More precisely, define /3’(5R) as the following beta vector:
B(0™)a = Xpea\{a) Oop-

We begin by establishing two lemmas that relate the length of a explanation in a profile R to the
length of the explanation in a profile with a similar delta vector. Recall that delta vectors are a
sufficient statistic to compute Borda outcomes. Therefore, if two profiles R, and R have identical
delta vectors then they have the same set of winners under Borda. The following lemma shows that
given such profiles R, and R, and the set of winners of one of the two, we can produce a proof of
constant length that the other profile has the same set of winners.

Lemma 4. Let R and Ry be two profiles with the same delta vector. Given that [Rq — A], then
[R2 — A] can be explained by CANC, REINF and REINF-SUB in O(1) steps.

Proof. Let R be the profile with the same voters as Ry, but reversed preferences. Clearly, for all

alternatives a,b € A, J0' = —651. We have the following explanation:

I. [Ry — A]

2. [Ra @R, — A] (CANC)

3. (1) A (2) = [RoDR; @R, — A] (REINF)

Ry PR, PR, — A] (propositional reasoning from 1-3)
[R; @R, — A] (CANC)

(4) A (5) = [Ry — A] (REINF-SUB)

N o ok

[R2 — A] (propositional reasoning from 4-6) O

The next lemma shows a similar fact about sums of profiles.

Lemma 5. Let R, Ry and R¢ be profiles such that k0% = ko602 @R for integers k1, ko, and
assume that [Rg — A] and [R¢ — A]. Then [R — A] can be explained in O(1) steps.
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Proof. The explanation works as follows.

l. [Rg — 4]

[Rc — Al

(1) A (2) — [Rz @ Re — A] (REINF)

RePRc — Al — [k2(Re PRe) — A] (MULT)
[k2(Rg @ Re) — A] (propositional reasoning from 1-4)
[k1R — A] (5 and Lemma 4)

k1R — A] — [R — A] (SIMP)

[

® N ok »D

R +— A] (propositional reasoning from 6-7)
where the sixth step contains the constant length explanation of Lemma 4. O

The remainder of the proof focuses on the following task: given a profile R with A the set of Borda
winners, construct and explain two profiles Ry and R such that (1) k;0® = ky0%# DRc (2)
[Rg — A], and (3) [R¢ — A]. Specifically, Rg will be a sum of elementary profiles whose winner
sets have a non-empty intersection, and R will be a sum of cyclic profiles. Our approach borrows
ideas and facts from the analysis of the algorithm Borda-expl presented by Cailloux and Endriss
[2016].

To construct R, label the alternatives as aq, ao, ..., a,, in order of decreasing beta scores, so

BR > ... > B’ | Let

where

elem 7.+ 1
A : _
Relem if ﬂ a; H— 1 =0.

Note that beta scores are always even, so (S5 — S

R _gR
R,{ﬁal Ba +1R{ﬂ17 i} ifﬁ 51{ >0
i =

1) /2 is a non-negative integer.

Lemma 6. [Rg — A] can be explained in O(m) steps.

Proof. 1f B = B, foralli=1,.. — 1, then Rz is composed of copies of the profile R4
Hence by MULT and ELEM, we obtam [RE — AJ, as required, since in this case A = A.

Otherwise, let k be the smallest index with i — B¢ ., > 0. Foreachi = 1,...,m, an ELEM
axiom gives

elem*

{R{al’ e H{al,...,ai}} .

elem

It BR 5a i, > 0, by MULT we have

Bax

9 elem

az+1 Rlotmaid {a17...7ai}] :

Note that {ay,...,a;} C {a1,...,a;+1} C A. Therefore we can inductively apply REINF to
combine the first i terms and the (i + 1)® term in the §)-summation in the definition of R .

Thus, the outcome of Rg is

m {a1,...,a;} ={a1,..., a1}

i ﬁR ﬂR;+1
By choice of k, the selected outcome {a, ..., ax} is the set of alternatives with the highest beta
scores, i.e. the set of Borda winners A. O
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A useful fact, following from the discussion of Young [1974], is that R and mR have the same
beta scores.

Lemma 7 (Young 1974). For all alternatives a € A, = = gmR,

It remains to construct R, and bound the length of its explanation. Lemma 7 implies that
(6R2 — mo®) € K(B), where K(3) is the kernel space of the linear map /3 defined above. Cailloux

and Endriss [2016] show that the set of delta vectors of all cyclic profiles spans /C(53).

m—1

Lemma 8 (Cailloux and Endriss 2016). There exists a set of m-cycles S,|S| = ( 5

p= {(5R§vf : S € 8} spans K(B).

), such that

We now have the machinery in place to prove that the profile R has the desired properties.

Lemma 9. There exists a profile R¢ such that 08¢ = k (5RE — méR), for some integer k, and
R is the sum of cyclic profiles. Furthermore, [R¢ + A] can be explained in O(m?) steps.

Proof. By Lemma 8, there exists a basis p for IC(B) Let 6% be the i™ base vector in p, with R;; its
corresponding cyclic profile (¢ € [(m; 1)}), where a profile R, that corresponds to 5% is guaranteed
to exist by Lemma 8.> One can therefore decompose the target delta vector as

e —me® = > ™,
i€[(")]

where the coefficients ¢; are all rationals (since the delta vectors are integer vectors). If there is

a negative ¢; in this decomposition, we can substitute R; by R;, the profile where every voter’s

preference is reversed; the delta vector changes sign and therefore ;0% = —ciéﬁi. Thus, without
loss of generality, we can assume that all ¢; are non-negative.

Next, because all the coefficients are rational, there must be an integer k£ such that k - ¢; is a
non-negative integer for all i € [(";")]. Let

m—1

("))
RC: @ k-CiRi.
i=1

We can see that 67¢ = k (672 — mé®) as desired.

Towards bounding the length of the explanation, since the profiles R; are all cyclic, we can use
CYCL and MULT to show [k¢;R; +— AJ, fori € [(") 1)] We can then apply REINF O(m?) times,
in any order, to combine these profiles. We conclude that R can be explained in O(m?) steps. [

Theorem 1 now follows directly from Lemmas 5, 6 and 9. O

C.2  Proof of Corollary 1

We finish our proof that the £-axiomatization in the proof is asymptotically weaker than Sgorda-

For convenience, in the following proofs we use the deduction theorem, which can be easily proved
for this system: if we have given a proof of (5 using (1 as an assumption, then the deduction theorem
states that there exists a proof of (o1 — @2) [see Ben-Ari, 2012, Thm. 3.14].

Let R,R’ be profiles and let A C A. Consider the REINF-SUB axiom instance
(RPR' — A AR/ — A]) — [R — A]. We show that this axiom instance can be proven using
ADD axioms:

1. R R’ +— A] (assumption)

2. [R’ — A] (assumption)

3. For each B C A where B # A:

3The proof of Cailloux and Endriss [2016] gives an explicit construction of p, thus we can find the profiles
R, by solving a linear system.
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@ (R B]A[R — A]) > [ROR' — B] (ADD)

(b) [R— B] —» [R@ R’ — BJ (propositional reasoning from 2 and (a))
© “[ROR' — AV -[RR’ — B] (FUNC)

(d) - [RE@ R’ — B] (propositional reasoning from 1 and (c))

(e) —[R — B] (propositional reasoning from (b) and (d))

4. Veep,a) R — C] (FUNC)
5. [R + A] (propositional reasoning from 3(e) and 4)
6. (RBR' — AJA[R'— A]) — [R — A] (deduction theorem from 1, 2, 5)
Let R be a profile, let k£ € Z., and consider the SIMP axiom instance [kR — A] — [R — A]. We
prove that this axiom can be proven using the MULT axiom, which is easy to deduce from ADD.
1. [kR — A] (assumption)
2. For each B C A where B # A:
(a) [R+— B] — [kR — B] (MULT)
() —~[kR — A] V —[kR > B] (FUNC)
(c) —[kR — B] (propositional reasoning from 1 and (b))
(d) —[R — B] (propositional reasoning from (a) and (c))
3. Veep,(a) [R = C] (FUNC)

4. [R — A] (propositional reasoning from 2(d) and 3)
5. [kR — A] — [R — A] (deduction theorem from 1 and 4)

D Details for Plurality

D.1 An Upper Bound for Plurality

There are multiple ways of rendering Sekiguchi’s [2012] proof in our formal system, where the details
depend on the exact formal axioms used. Here we give an axiomatization that leads to particularly
simple explanations.

We define a family of base profiles for our axiomatization, consisting of lollipop profiles R, for each
non-empty A C A, which has |A| voters. Write A = {z1,...,zx} and A\ A = {y1,.. ., Ym—r}-
The first voter has preferences ©1 > x9 = --- > T > y1 > -+ > Ym—k, the second voter has
preferences o > x3 > -+ > X > 1 > Y1 > -+ > Ym—k, and so on. For example, the profile
R0} for A = {a,b, ¢, d, e} has three votes: @ = b = ¢ = d = e,b = ¢ = a > d > e and
¢ = a = b= d = e. Intuitively, in the profile R{3;, the alternatives in A are symmetric under the
cyclic permutation (1 x5 ... ), and are all stronger than the other alternatives. Thus, a symmetric
and efficient voting rule should select the alternatives in A. Note that in R}, the alternatives in A
each have plurality score 1, and other alternatives have plurality score 0.

‘We now define our axioms.

1. LOLLI: For a lollipop profile Rfy;;, the set of winners should be A. Formally, Vk € Z,
[kR{; — Al

2. TOPS: If the plurality score vectors of two profiles are same, they should select the same winners.
Formally, for any profiles Ry, Ry with ot = o2, [R; — A] — [Ra — A].

3. REINF: For any two profiles R; and R, and any two subsets of alternatives A; and Ay with
AN Ay #* (0, it holds that ([Rl — Al] A\ [RQ — Ag]) — [Rl @RQ — AN AQ]
Let us refer to the £-axiomatization consisting of Axioms 1 — 3 listed above as Spy.

Theorem 4. For any profile R with m alternatives, the outcome of the Plurality rule can be explained
in O(m) steps assuming the L-axiomatization Spy,.
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Proof. Suppose, without loss of generality, that o, < ap, < ... < a,,. Then R can be decomposed
into subprofiles as follows:
R-DR.
k=1

where R; is a profile in which alternatives b;, b1, ..., by, each have plurality score oy, — ap,_,
and the other alternatives have plurality score 0. Write A = {b;,b;+1,...,bm}. Then R,; has the
same plurality score vector as the profile (o, — s, , )R If ap, — aw,_, > 0, then by TOPS
and LOLLI we have [R; — {b;,b;11, ..., bn}]. By applying REINF repeatedly, we then obtain
[R — fp(R)]in O(m) steps. O

We can obtain other similar axiomatizations and upper bounds by replacing the LOLLI axiom by
other axioms that imply the LOLLI axiom. For instance, we can use ORB and

e EFF: for every profile R in which each voter ranks a higher than b, \/ 4 p, 4\ (1) [R — 4]

which says that a Pareto-dominated alternative should not be elected. It is easy to check that each
axiom instance of LOLLI can be deduced from ORB and EFF using a proof with O(m) steps.
Since the explanations in the proof of Theorem 4 contain O(m) instances of LOLLI, we can thus
produce an explanation of the plurality rule in O(m?) steps. Similarly, we can deduce instances
of LOLLI by using ORB, FAITH, and MULT (the latter as defined in Section 3), following the
arguments in Sekiguchi [2012, Lemmas 1 and 2]; this again takes O(m) steps per instance of LOLLI,
giving an overall explanation length of O(m?). Applying our framework gives a lower bound of
Q(m) on the proof length both for the axiomatization based on efficiency, and for the one based on
faithfulness. Thus, it is conceivable that a different strategy could give shorter explanations under
these axiomatizations.

D.2 Proof of Corollary 2

We prove the result with an additional axioms called equal support (this strengthens the lower bound),
which says that in a profile where each alternative has either plurality score 1 or 0, the alternatives
with score 1 are elected. First we formally define new axioms: orbit, faithfulness, equal support, and
tops-only. The plurality score ot of an alternative ¢ € A in profile R is the number of voters in R
who rank c in top position. For a bijection o : A — A and a strict order > € Al, write o(>-) for the
strict order obtained from - by relabeling alternatives according to o, so that o (a)o (>)o(b) if and
only if @ > b. Given a profile R, write o(R) for the profile with o(R)(c(>)) = R(>) obtained
from R by relabeling alternatives according to o. Then we say that a profile R is invariant under o if
R =0(R).

e ORB: If a profile R is invariant under a bijection o : A — A, and o(i) = j, we have
V sca, ; [R — A] where a; ; € Py(A) is the set of outcomes such that {i,j} C A or

{t,j}nA=0.
o FAITH: If a profile R contains only a single voter who ranks alternative a first, we have
R +— {a}].

e EQUAL: Let R be a profile in which ot € {0, 1} for all a € A. Then the alternatives with
score 1 are elected, so we have [R — {a € A: alt =1}].

e TOPS: If the plurality score vectors of two profiles are same, they should select the same
winners. Formally, for any profiles Ry, Ry with a®t = o®2, [R; — A] — [Rz — AJ.

Formally speaking, Corollary 2 claims a lower bound for the axiomatization consisting of REINF,
ORB, FAITH, EQUAL, and TOPS. Note that the axiomatization does not contain a formal version
of anonymity; that axiom is implicit in our formal setup and the definition of R.

Proof of Corollary 2. We embed profiles into the linear space V' = Q™, using i which maps a
profile R to the plurality score vector a® = (aaRrgae 4 and g = argmax. The set S consists of
all single-voter profiles and of all profiles with a* € {0,1} for each a € A. The set S is finite.
Further, we use predicates 7' = {t;; : t;;(v) = v; — v;}. With these predicates, a PRED instance

requires that in a profile R in which alternatives ¢ and j have the same plurality score, either both
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are winners or both are losers. Now assume that the profile R is invariant under the permutation o
with (i) = j. Then we automatically have ; = ;. Hence, each instance of ORB can be inferred
from an instance of PRED. To calculate the sensitivity sen(g, T') consider for instance the size of the
smallest 77 C T that uniquely identifies the outcome .4. Outcome A only occurs in profiles in which
all alternatives have the same plurality score. Note that t;jl (0) is the set of vectors v with v; = v;.
A smallest set 7" such that (), 7 g(t;71(0)) = {AYis T = {t12,t13, - - ., t1,m }. Similarly one can
show that at least m — 1 predicates are required to uniquely determine any other outcome. It follows
that sen(g,T") = m — 1. The axiomatization stated in the corollary is asymptotically weaker than
the axiomatization derived from the embedding: FAITH and EQUAL are implied by INIT, ORB is
implied by PRED, and TOPS is implied by EMB. O

Corollary 2 applies to the axiomatization Sy, used in Theorem 4, since EQUAL prescribes the output
at any lollipop profile, so any LOLLI axiom instance can be deduced from EQUAL and REINF.
Thus, Spiy is asymptotically weaker than the axiomatization in Corollary 2. Hence, explanations
using Spiu require ©(m) steps.

E Details for Approval Voting

E.1 Proof of Corollary 3

Let us redefine R to be the set of functions R : Py(A) — N of profiles of approval ballots; the
function R specifies how many voters submit a given set of approved candidates. With this alternative
definition, we can define notions like voting rules f : R — Py(.A) and our language L exactly as
before. Also, everything in Sections 4.1 and 4.2, and in particular the main lower bound of Theorem 2,
continues to apply with the new R. For the distribution over R used in the definition of “with high
probability” for Theorem 2, we can take any distribution D over R as long as h(supp(D)) spans
V', for example impartial culture for approval profiles (which selects each voter’s approval set i.i.d.
uniformly at random).

Now let us define axioms appropriate for the approval-based setting. Given a profile R, the approval
score of an alternative a is the number of voters who approve a.

1. REINF: For any two profiles R; and Rs, and any two subsets of alternatives A; and A, with
AN A, # @, it holds that ([Rl — Al] A [RQ — AQ]) — [Rl @ Ro— AN AQ] (Note that
this is identical to the previous definition for strict orders.)

2. ORB: If a profile R is invariant under a bijection ¢ : A — A, and o(i) = j, we have
Vsca, ; [R — A] where o; ; C Py(A) is the set of outcomes such that {3, j} C A or {3,j} N

A=10.
3. FAITH-AV: If a profile R contains only a single voter with approval set A, we have [R — A].

4. DE: If a profile R contains exactly two voters, one with approval set A and one with approval
set B where AN B = (), we have [R — AU B|.

5. CANC-AV: If in profile R all alternatives have the same approval score, then [R +— A].

The voting rule Approval Voting (AV) selects the set of alternatives with maximum approval score.
To prove our lower bound, similarly to plurality, we embed AV into V' = Q™ using h which maps a
profile R to the vector of approval scores, and g = arg max. The set S consists of all single-voter
profiles, all two-voter profiles with disjoint approval sets, and all profiles in which all alternatives
have the same approval score. Then S satisfies the conditions of Theorem 2, because the first two
parts are finite, and the third part maps to a one-dimensional subspace of V. For the set of predicates,
we again take T' = {t;; : t;;(v) = v; — v, } with sensitivity m — 1.

The axiomatization with axioms 1-5 above is asymptotically weaker than the axiomatization from
Theorem 2: REINF follows from ADD, ORB follows from PRED, and FAITH-AV, DE, CANC-AV
all follow from INIT.

To obtain an upper bound on the length of explanations for AV, one can follow the proofs by Brandl
and Peters [2019].
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