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Abstract

We revisit the fundamental problem of predicting a binary ground truth based on independent binary judgments
provided by experts. When the accuracy levels of the experts are known, the problem can be solved easily through
maximum likelihood estimation. We consider, however, a setting in which we are given only a ranking of the ex-
perts by their accuracy. Motivated by the worst-case approach to handle the missing information, we consider three
objective functions and design efficient algorithms for optimizing them. In particular, the recently popular distortion
objective leads to an intuitive new rule. We show that our algorithms perform well empirically using real and synthetic
data in collaborative filtering and political prediction domains.

1 Introduction
Consider the task of predicting a binary ground truth G ∈ {0, 1} by aggregating independent binary judgments
provided by n experts. This models a wide range of real-world scenarios, where the judgments can be polls predicting
the outcome of an upcoming political or sports event, weather forecasts, or juror opinions of a defendant’s guilt.

The judgment of expert i, denoted Xi, is assumed to be a Bernoulli random variable, which coincides with the
ground truth with probability pi; this probability is referred to as the accuracy of the expert. If p = (p1, . . . , pn) is
known, then the classical maximum likelihood estimation approach chooses the ground truth estimate that maximizes
the likelihood of inducing the vector of expert judgments X = (X1, . . . , Xn), i.e., the value of y ∈ {0, 1} that
maximizes L[X|G = y,p] =

∏n
i=1 p

1[Xi=y]
i · (1− pi)1[Xi 6=y], where 1 is the indicator variable.

However, sometimes we may not know the exact values of p1, . . . , pn; instead, we may only know a ranking
of the expert judgments by accuracy. This may be the case when there is metadata available about the judgments
that is known to be correlated with accuracy, but the exact nature of the correlation is not known. For instance, if
a pollster conducts multiple polls over time, polls conducted closer to the date of the event being predicted may be
considered more accurate than the ones conducted earlier; the same reasoning applies to weather forecasts. Similarly,
polls conducted concurrently may be ranked by their sample sizes. Sometimes, experts may participate in a judgment
contest (such as the Good Judgment Project1), which may show their ranking by accuracy on the leaderboard.

Motivated by such settings, we address the following question in this work:

How should we aggregate n binary judgments ranked by accuracy in order to predict a binary ground
truth?

Note that the n binary judgments ordered by accuracy can be represented as a bit-string of length n. Thus, we
essentially study aggregation rules which take a bit-string as input and output a bit. Due to the fundamental nature of
this setting, the rules designed in this work may have applications in other domains (see Section 6).

1https://goodjudgment.com/
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1.1 Our Contribution
Recall that the likelihood functionL[X|G = y,p] depends on p1, . . . , pn, i.e., on the accuracy of the experts. However,
we are given only partial information about these values, namely, their ordering. To address this missing information,
we take a worst-case viewpoint. Specifically, let P denote the set of all p which are consistent with the given ordering;
we define the following three natural objectives that serve as proxies for the likelihood induced by a given estimate
y ∈ {0, 1}, and design algorithms to compute the estimate optimizing these objectives.

1. Distortion: supp∈P L[X|G = 1 − y,p]/L[X|G = y,p]. Note that this is worst-case ratio of the likelihood of
the estimate not chosen (1−y) to the likelihood of the estimate chosen (y). Our aim is to minimize this objective.

2. Optimistic likelihood: supp∈P L[X|G = y,p]. Maximizing this objective can be thought of as a natural exten-
sion of the maximum likelihood approach, where we make an inference about p together with one about the
estimate y.

3. Pessimistic likelihood: infp∈P L[X|G = y,p]. Maximizing this objective can be thought of as maximizing the
worst-case likelihood.

In Section 3, we characterize the rules which optimize these objectives, and show that they can be implemented
in polynomial time. In particular, the rules optimizing the first two objectives are novel and elegant. In Section 4, we
restrict our attention to a natural family of rules, which we refer to as scoring rules. These rules assign monotonic
weights to judgments (i.e. judgments ranked higher by accuracy receive no less weight than those ranked lower),
and return the estimate with the highest total weight. We characterize the scoring rules that optimize the three afore-
mentioned objectives among all scoring rules. In the appendix, we also consider three other approaches, namely, an
axiomatic approach (Appendix A), a Bayesian approach (Appendix B), and a randomized approach (Appendix C).

Finally, in Section 5, we empirically evaluate the performance of the rules designed in this work against some
baselines. The experiments use synthetic and real data in the domain of collaborative filtering, and real data in the
domain of political predictions. Overall, given their low information requirements, our rules do remarkably well.

1.2 Related Work
Our paper contributes to a large body of work in computational social choice [6]. A central feature that separates our
setting from the vast majority of papers in the area is that the judgments (or opinions, or preferences) that are being
aggregated are typically assumed to be anonymous, in the sense that individuals are indistinguishable. However, it has
been noted that there are important contexts where anonymity leads to bad outcomes [12].

Our setting is related to judgment aggregation [9], an area that also aggregates binary judgments. However, that
literature focuses on problems arising from the aggregation of several logically related issues simultaneously, and does
not typically assume a ground truth.

In statistics there is influential work on the problem of estimating the common mean of multiple normal distribu-
tions [8, 11], where the unknown variance of each distribution can be seen as a measure of (in)accuracy. Our setting
is more closely related to the work of Ghosh, Kale, and McAfee [10], who, like us, consider a binary ground truth
(for each “item”), and binary judgments, each of which is correct with some probability that depends on the expert’s
unknown accuracy. The central idea that distinguishes our work from these papers is that we assume a known ranking
of the experts by accuracy. This assumption also guides our choice of (worst-case) optimization objectives, which are
different from the statistical estimation problems considered in previous work.

Some of our main results pertain to the distortion objective. This objective was conceived in the context of social-
welfare maximization in voting settings [14, 5, 7, 2], but several paper have applied the idea to other problems such as
matching, facility location, and even traveling salesperson [3, 1, 4].

Our aggregation rules can be viewed as simple games [16] where the experts are players, and winning coalitions
correspond to sets of experts such that when all these experts report 1, then so does the aggregation rule. The simple
games literature has also studied linear simple games, which correspond to games with ranked players. This literature
includes characterization results for weighted simple games [15], which correspond to what we call scoring rules.

2



2 Model
For k ∈ N, let us denote [k] = {1, . . . , k}. Let G ∈ {0, 1} denote an unknown binary ground truth. Let N = [n]
denote a set of experts. Each expert i ∈ N provides a binary judgment Xi ∈ {0, 1}, which is a Bernoulli random
variable that is correct with probability pi, i.e., Pr[Xi = G] = pi. We refer to X = (X1, . . . , Xn) as the judgment
profile and p = (p1, . . . , pn) as the accuracy profile.

In this work, we make two crucial assumptions regarding X and p. First, we assume that the expert judgments (i.e.
X1, . . . , Xn) are independent. Second, we assume that each expert is at least as accurate as a coin toss, i.e., pi > 1/2
for each i ∈ N . For a discussion about relaxing these assumptions, see Section 6.

For y ∈ {0, 1}, the likelihood of observing X when the ground truth is G = y can now be written as

L[X;G = y,p] =
∏n
i=1 p

1[Xi=y]
i · (1− pi)1[Xi 6=y],

where 1 denotes the indicator variable. If the accuracy profile p is known, then a classical approach to aggregat-
ing the expert judgments would be to return the maximum likelihood estimate (MLE) of the ground truth given by
argmaxy∈{0,1} L[X;G = y,p].

In this work, we assume that we do not know p. Instead, we are given a ranking of the experts by their accuracy, and
we are interested in aggregating the expert judgments subject to this ordinal information. Without loss of generality,
assume that p1 > p2 > . . . > pn. Thus, expert 1 is the most accurate, while expert n is the least accurate. Let Pn =
{p : 1 > p1 > . . . > pn > 1/2} denote the set of feasible accuracy profiles. Note that Pn contains the accuracy profile
p = (1, . . . , 1), under which the likelihood of any non-unanimous judgment profile X is zero, regardless of the esti-
mate y. This makes some of our objectives not well-defined or uninteresting. Of course, in practice, no judgment is per-
fectly accurate. To circumvent this hypothetical inconsistency, we define Pεn = {p : 1− ε > p1 > . . . > pn > 1/2},
analyze the aggregation rules optimizing our objectives defined with respect to Pεn, and then take the limit ε → 0. In
the limit, these rules “converge”, in the sense that they become fixed once ε is small enough. When the objective is
well-defined directly with respect to Pn, we avoid taking this longer route.

Formally, our input is the bit-string X ∈ {0, 1}n, where we refer toX1 as the most accurate bit andXn as the least
accurate. An aggregation function is denoted f : {0, 1}n → {0, 1,⊥}, where ⊥ denotes a tie.2 We will alternatively
represent a tie as the function returning {0, 1} instead of ⊥.

We are also interested in a natural family of aggregation functions that we refer to as scoring rules. A scoring rule
fw is parametrized by a weight vector w = (w1, . . . , wn) ∈ Rn>0, where wi is the weight associated with the i-th most
accurate bit. Given input X , fw returns the bit with the highest total weight, i.e., argmaxy∈{0,1}

∑n
i=1 wi ·1[Xi = y].

This definition is novel in our setting of binary judgments, but it is inspired by that of a prominent family of voting
rules called positional scoring rules, which includes well-known rules such as plurality and Borda count.

3 Worst-Case Optimal Aggregation Rules
Given incomplete information about the accuracy profile p, we cannot compute the MLE, since different accuracy
profiles p consistent with the given ordinal information may induce different likelihoods. Our approach is to define
an objective function that summarizes the likelihoods induced by all feasible p and optimize it; we consider three
proposals.

3.1 Distortion
Informally, given an objective function and ordinal information about cardinal inputs to the function, the distortion
approach selects an outcome minimizing the ratio between the optimal objective value and the objective value under
the selected outcome, in the worst case over all cardinal inputs consistent with the given ordinal information. The
objective we are interested in is the likelihood function L, and we are given ordinal information about p (specifically,

2Allowing ties does not significantly alter most of our results; we discuss some of the implications of ties in later sections.

3



that p ∈ Pn). Given a judgment profile X , the distortion of ground truth estimate y ∈ {0, 1} is then defined as

dist(y;X) = sup
p∈Pn

max (L[X;G = 0,p],L[X;G = 1,p])

L[X;G = y,p]
= sup

p∈Pn

L[X;G = 1− y,p]
L[X;G = y,p]

.

Here, the second equality is due to the fact that with G = y, the ratio is always 1, which can also be achieved with
G = 1 − y at p1 = . . . = pn = 1/2 (which makes the likelihoods given both possible ground truths equal). Hence,
the worst case is achieved with G = 1 − y in the numerator. Given this definition, the distortion-optimal estimate is
y∗ ∈ argmaxy∈{0,1} dist(y;X).

This objective requires attention to the technicality mentioned in Section 2. Consider X in which some two judg-
ments disagree. Then, under p = (1, . . . , 1) ∈ Pn, we have dist(0;X) = dist(1;X) = 0, making distortion
undefined. Hence, we use Pεn = {p : 1− ε > p1 > . . . > pn > 1/2} to redefine the distortion as

distε(y;X) = sup
p∈Pεn

L[X;G = 1− y,p]
L[X;G = y,p]

.

The distortion-optimal rule fdist is defined as fdist(X) = limε→0 argminy∈{0,1} dist
ε(y;X). Interestingly, we show

that the estimate y minimizing distε(y;X) is independent of ε, making the limit unnecessary. First, we define a
quantity that we will later show to be closely related to distortion.

Definition 1. Given X ∈ {0, 1}n, the strength sX(y) of estimate y is the maximum difference between the number
of occurrences of y and that of 1− y in any prefix of X , i.e.,

sX(y) = max
k∈[n]∪{0}

∑k
i=1 {1[Xi = y]− 1[Xi = 1− y]} .

Lemma 1. For ε ∈ (0, 1/2), n ∈ N, X ∈ {0, 1}n, and y ∈ {0, 1}, we have distε(y;X) =
(
1−ε
ε

)sX(1−y)
.

Proof. Fix y ∈ {0, 1}. Given a sequence p, we say that it has a jump at i ∈ [n− 1] if pi > pi+1.
We first show that in the definition of distε(y;X), the supremum over p is achieved at an accuracy profile with

at most one jump. Let p be a vector with the minimum jumps at which the supremum is achieved. Suppose for
contradiction that it has at least two jumps, and let k and j be indices such that pk > pk+1 = . . . = pj > pj+1.

Define p1 and p2 such that p1i = p2i = pi for i ∈ [n] \ {k + 1, . . . , j}, p1i = pk for i ∈ {k + 1, . . . , j}, and
p2i = pj+1 for i ∈ {k + 1, . . . , j}. That is, in p1, we shift the block (pk+1, . . . , pj) up and make it equal to pk, and in
p2, we shift it down and make it equal to pj+1.

We show that at least one of these two vectors must yields an approximation ratio no better than that at p, and is
therefore also a point where the supremum is achieved; this is a contradiction because they both have one fewer jump
than p. To see why the claim is true, let a = pk, b = pk+1 = . . . = pj , and c = pj+1. Thus, a > b > c. Denoting
S = {k + 1, . . . , j}, we have that

L[X;G = 1− y,p]
L[X;G = y,p]

=
∏

i∈[n]\S

p
1[Xi=1−y]
i · (1− pi)1[Xi=y]

p
1[Xi=y]
i · (1− pi)1[Xi=1−y]

×
∏
i∈S

b1[Xi=1−y] · (1− b)1[Xi=y]

b1[Xi=y] · (1− b)1[Xi=1−y]

=
∏

i∈[n]\S

p
1[Xi=1−y]
i · (1− pi)1[Xi=y]

p
1[Xi=y]
i · (1− pi)1[Xi=1−y]

×
(

b

1− b

)∑
i∈S(1[Xi=1−y]−1[Xi=y])

.

In the last expression, if the exponent of b/(1 − b) is non-positive, then decreasing b to c does not decrease the
expression, and the expression changes from the approximation ratio at p to that at p2. Similarly, if the exponent is non-
negative, then increasing b to a does not decrease the expression, and the expression changes from the approximation
ratio at p to that at p1. Hence, at least one of p1 and p2 achieves a ratio at least as high as p, as desired.

We have established that the supremum is achieved at some p which has at most one jump. Then, there exist
a, b ∈ [1/2, 1− ε] with a > b and an index k ∈ [n] ∪ {0} such that pi = a for all i 6 k and pi = b for all i > k. Note
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that allowing k = 0 and k = n permits zero jumps. We show that we can let a = 1 − ε and b = 1/2 without loss of
generality. The approximation ratio at this p is given by(

a

1− a

)∑k
i=1(1[Xi=1−y]−1[Xi=y])

×
(

b

1− b

)∑n
i=k+1(1[Xi=1−y]−1[Xi=y])

.

The exponent of a/(1− a) must be non-negative (otherwise decreasing a to b would strictly increase the approxi-
mation ratio). Hence, increasing a to 1− ε does not decrease the approximation ratio. Similarly, we can let b = 1/2.

We have thus established that the supremum is achieved at p such that for some k ∈ [n] ∪ {0}, pi = 1 − ε for
i 6 k and pi = 1/2 for i > k. Thus, the distortion of y given X is

distε(y;X) = max
k∈[n]∪{0}

(
1− ε
ε

)∑k
i=1(1[Xi=1−y]−1[Xi=y])

,

which is
(
1−ε
ε

)sX(1−y)
, as desired.

We can immediately obtain a characterization of the distortion-optimal estimate y∗ ∈ {0, 1} by observing that
argminy∈{0,1} sX(1 − y) = argmaxy∈{0,1} sX(y) and applying Lemma 1: The distortion-optimal estimate is the
estimate with the greatest strength in X .

Theorem 1. For any ε ∈ (0, 1/2), n ∈ N, and X ∈ {0, 1}n,

fdist(X) = argmin
y∈{0,1}

distε(y;X) = argmax
y∈{0,1}

sX(y),

where fdist is the distortion-optimal rule. Further, this can be computed in linear time.

Note that in case of both estimates having equal strength, the result also implies that their distortion will be equal.
A notable property of fdist is that if more than n/3 most accurate judgments or more than 2n/3 least accurate

judgments are identical, then that will be the output of fdist, regardless of the remaining judgments.

3.2 Other Objectives
We now turn our attention to two other objectives, namely maximization of optimistic and pessimistic likelihoods.
Recall that the reason we cannot directly compute the MLE argmaxy∈{0,1} L[X;G = y,p] is because we do not
know the exact accuracy profile p. Instead, we know that p ∈ Pn. Given this, we define the optimistic and pessimistic
likelihoods by taking the best case and the worst case over the choice of p, respectively.

The optimistic likelihood L↑ of observing X when the ground truth is G = y is

L↑[X;G = y] = sup
p∈Pn

L[X;G = y,p].

The optimistic MLE rule which maximizes this objective, denoted fMLE↑, is given by

fMLE↑(X) = argmax
y∈{0,1}

L↑[X;G = y].

We can view fMLE↑ as simply performing a joint maximum likelihood estimation over (y,p) ∈ {0, 1} × Pn, and
returning the y component of the resulting estimate.3 On the other hand, we can view fMLE↓ as inspired by worst-case
analysis. Further, it is easy to see that maximizing the optimistic (resp. pessimistic) likelihood of the chosen estimate is
equivalent to minimizing the optimistic (resp. pessimistic) likelihood of the unchosen estimate; thus, we can also view
fMLE↑ and fMLE↓ as minimizing the optimistic and pessimistic likelihoods of the unchosen estimate, respectively.
This connection holds only because we are looking for the optimal rule within the family of all possible rules; in

3This is also equivalent to computing the maximum a posteriori estimate (MAP) when we are given a uniform prior over p. For computing MAP
given other priors, see Appendix B.
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Section 4.1, we will see that when we look for the optimal rule within the family of scoring rules, we have to consider
four — not two — objectives.

We begin by presenting an algorithm that calculates the optimistic likelihood of an estimate y ∈ {0, 1} given a
judgment profile X . The algorithm repeatedly identifies a prefix of X with the highest density of y, and imputes that
the accuracies of judgments in that prefix are equal to this density.

Algorithm 1: OPT-LIKELIHOOD

Input: Judgment profile X ∈ {0, 1}n, y ∈ {0, 1}
Output: Optimistic likelihood L↑[X;G = y]
if n = 1 then

return 11[X1=y] · (1/2)1[X1 6=y]

end
[Find the prefix of X with the highest density of y]
i← index maximizing (1/i) ·

∑i
j=1 1[Xj = y], breaking ties in favor of larger indices

d← (1/i) ·
∑i
j=1 1[Xj = y]

r ← max {d, 1/2}
L← OPT-LIKELIHOOD((Xi+1, . . . , Xn), y)

return
(
rd(1− r)1−d

)i · L
Theorem 2. Algorithm 1 calculates the optimistic likelihood L↑[X;G = y] in polynomial time. Thus, the aggregation
rule fMLE↑ can be implemented in polynomial time.

It is clear that Algorithm 1 runs in polynomial time. Here we prove the claim that for any X and answer y, the
probability vector

p∗ := arg max
p∈Pn

L[X|G = y,p]

can be found iteratively by identifying the index iwhich maximizes the density r(Xi) of y over all prefixes Xi := (X1, . . . , Xi),
taking p∗1, . . . p

∗
i = max{r(Xi), 1/2}, and recursing on the suffix X

i
:= (Xi+1, . . . , Xn). We show that p∗ takes

this form for p ∈ Pn and only remark that the analogous structure emerges in maximizing over the larger set
Qn := {p : 1 > p1 > . . . > pn > 0}.

We begin with two observations. First, that for a given run of experts which share a pi, the maximizing value of
these pi is the density of the answer y in this run:

Lemma 2. If p1 = p2 = . . . pn then p = argmaxp∈Qn L↑[X|G = y] is given by r(X) = ||1[Xi=y]||1
n .

Proof. Given that p := p1 = p2 = . . . pn, the likelihood is

L[X|G = y,p] = p||1[Xi=y]||1(1− p)||1[Xi 6=y]||1 .

Taking derivatives shows that this is concave with respect to p, with unique maximum over [0, 1] at p = r(X).

Next, if multiple vectors of experts have likelihoods maximized by compatible probability vectors, then the con-
catenation of these probability vectors maximizes the likelihood of the concatenated expert vectors:

Lemma 3. If p1 = argmaxp∈Pn1
L[X1|G = y,p], . . . ,pk = argmaxp∈Pnk L[Xk|G = y,p] and p > p′ for all

p ∈ pj , p′ ∈ pj+1 and for all j, then
p = arg max

p∈Pn
L[X|G = y,p],

where p := (p1|. . . |pk) and X := (X1|. . . |Xk) and n :=
∑i
i=1 ni.

Proof. In short, this is because Pn ⊂ Pn1
× . . .× Pnk and because

L[(X1|. . . |Xk)|G = y, (p1|. . . |pk)] = L[X1|G = y,p1]× . . .× L[Xk|G = y,pk]. (1)
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Since the pi maximize the (nonnegative) terms L[Xi|G = y,pi] individually, they maximize the product over the
larger space Pn1 × . . . × Pnk . The compatibility of the pi implies that in fact p ∈ Pn; therefore it maximizes
L[X|G = y,p] over Pn also.

Next, it will be useful to view each p as inducing a decomposition of X into chunks X = (C1|. . . |Ck) within
which all pi are equal. Let q1 . . . qk be the values of the pi within each of the chunks, and let r1 . . . rk be the chunk
densities rj := r(Cj).

We now tackle a special case of Theorem 2.

Lemma 4. If r(Xi) is maximized by i = n then the optimal p∗ is p∗1, . . . p
∗
n = max{r(Xn), 1/2}.

Proof. To see this, let p∗ = argmaxp∈Pn . If r := r(Xi) then there are two cases to consider. First if r > 1/2 then,

since r1 6 r and
∑k
j=1

|Cj |
n rj = r, it follows that either r1 = . . . = rk = r or there is some j for which rj 6 rj+1.

But since p∗ is decreasing, qj > qj+1. Therefore by Lemma 2 either L[Cj |G = y, (qj , . . . , qj)] or L[Cj+1|G =
y, (qj+1, . . . , qj+1)] can be increased by either lowering qj towards rj or raising qj+1 towards rj+1. In either case
q1, . . . , qk remain nonincreasing and by Equation (1) the likelihood L[X|G = y,p∗] increases also, contradicting
the optimality of p∗. Therefore r1 = . . . = rk = r, in which case by Lemma 2 and Lemma 3 L[X|G = y,p∗] is
maximized by p∗1 = . . . = p∗n = r.

Finally consider r 6 1/2. Since r is the maximum density, r1 6 1/2 also. And since p ∈ Pn we have that
q1, . . . qk > 1/2. If q1 > 1/2 then since r1 6 1/2 we have by Lemma 2 that L[C1|G = y, (q1, . . . , q1)] is increased
by lowering q1 to the value of q2. By Equation (1) this increases L[X|G = y,p∗], contradicting the optimality of p∗.
Therefore q1 = 1/2, and so q1, . . . qk = 1/2, as desired.

We finally prove Theorem 2 by induction.

Proof of Theorem 2. For the base case take n = 1. By Lemma 4 it is of the desired form.
Next suppose that for all X ′ such that |X ′|< n, the optimal probability vector has the desired form. Given some X

of length n, let i be the index maximizing the prefix density r(Xi) of y in X , and call this maximum density r. Splitting
it into X = (Xi|Xi

), by Lemma 4 we have that Xi has likelihood maximized by p∗ for which p∗1 = . . . = p∗i = r.
By the inductive hypothesis, we also know that the p∗ maximizing likelihood for X

i
) is of the desired form. Therefore

(p∗|p∗) is of the desired form also.
It remains to show that (p∗|p∗) is nonincreasing and maximizes L[X|G = y, p]. Clearly for all p ∈ p∗ we have

p = r the maximum prefix density for X . If r′ is the maximum prefix density for X
i
, then by hypothesis p′ 6 r′ for

all p′ ∈ p∗. But r > r′, since otherwise Xi together with the prefix of X
i

witnessing r′ would be a prefix of X with
a density larger than r, a contradiction. Therefore (p∗|p∗) is nonincreasing, and so by Lemma 3 it also maximizes
L[X|G = y,p].

We illustrate Algorithm 1 by an example.

Example 1. Let us consider running OPT-LIKELIHOOD with X = (0, 1, 1, 1, 0, 1, 1, 0, 0, 1) and y = 1.
The first iteration selects i = 4 (i.e. prefix (0, 1, 1, 1)) because the density of y = 1 in this prefix is 3/4, and this is

the highest density in any prefix. This leads to d = r = 3/4. The second iteration selects i = 3 (i.e. prefix (0, 1, 1)),
leading to d = r = 2/3. The final iteration selects the remaining string, and sets d = 1/3 but r = 1/2.

Thus, p = (3/4, 3/4, 3/4, 3/4, 2/3, 2/3, 2/3, 1/3, 1/3, 1/3) is the accuracy profile leading to the optimistic likelihood of(
3

4

3
4

· 1
4

1
4

)4

·

(
2

3

2
3

· 1
3

1
3

)3

·

(
1

2

1
3

· 1
2

2
3

)3

.

We now turn our attention to maximizing the pessimistic likelihood L↓. If we define it as L↓[X;G = y] =
infp∈Pn L[X;G = y,p], then we run into the issue discussed in Section 2: the pessimistic likelihood of any non-
unanimous X becomes 0 under both values of y due to the accuracy profile p = (1, . . . , 1) ∈ Pn, leading to unneces-
sary ties. Hence, we again consider Pεn instead of Pn, define Lε↓[X;G = y] = infp∈Pεn L[X;G = y,p], and define
the pessimistic MLE rule, denoted fMLE↓, as fMLE↓(X) = limε→0 argmaxy∈{0,1} Lε↓[X;G = y]. Unlike in the case

7



of distortion, the choice of y does not turn out to be independent of ε, but as we see in the proof of Theorem 3, the rule
converges once ε < 2−n.

The next result identifies fMLE↓ analytically. This is possible because the accuracy profile resulting in the pes-
simistic likelihood always consists of only 1 − ε and 1/2. This is in contrast to the one leading to the optimistic
likelihood, which, as Example 1 demonstrates, can be more complex.

Theorem 3. The pessimistic MLE rule fMLE↓, given a judgment profile X , outputs the majority judgment; if tied, it
outputs the opposite of the least accurate judgment (i.e. 1−Xn).

Proof. Fix ε ∈ (0, 1/2). First, we demonstrate that if p? ∈ argminp∈Pεn L[X;G = y,p], then p?i ∈ {1− ε, 1/2} for
all i ∈ [n]. Suppose for contradiction that this is not the case. Let S = {k, . . . , j} be a maximal contiguous block of
indices of p? with some value a /∈ {1− ε, 1/2}. Note that the contribution of this block to L[X;G = y,p?] is equal
to a

∑
i∈S 1[Xi=y] · (1− a)

∑
i∈S 1[Xi 6=y]. It is easy to check that this is a convex function of a in [0, 1].

Define p?0 = 1 − ε and p?n+1 = 1/2. Then, we have that p?k−1 > a > p?j+1 and a /∈ {1− ε, 1/2}. Hence, it is
feasible to increase or decrease a slightly. Since one of these two operations must reduce the likelihood, we have a
contradiction.

Thus, in computing Lε↓[X;G = y], it is sufficient to minimize over p which consist of only 1− ε and 1/2. Hence,
we have that Lε↓[X;G = y] is equal to

min
k∈[n]∪{0}

(1− ε)
∑k
i=1 1[Xi=y] · ε

∑k
i=1 1[Xi 6=y] · (1/2)n−k.

Note that the estimate y∗ maximizing this objective can be found in linear time. We now study the value of y∗ as
ε→ 0.

When ε 6 2−n, the ε term in the equation dominates; that is, the pessimistic likelihood is achieved by maximizing
the exponent of ε, and subject to that, maximizing the exponent of 1/2. Thus, if y appears more often then 1− y, then
Lε↓[X;G = 1 − y] will have a higher exponent of ε (and therefore, will be lower) than Lε↓[X;G = y]. In this case,
the rule will return y. Finally, suppose that both 0 and 1 appear exactly n/2 times. If X ends with k occurrences of y,
then we will have Lε↓[X;G = y] = (1− ε)n/2−k · (ε)n/2 · (1/2)k whereas Lε↓[X;G = 1− y] = (1− ε)n/2 · (ε)n/2,
leading the rule to return 1− y, as desired.

4 Optimal Scoring Rules
We now turn our attention to a natural class of aggregation rules, scoring rules. Specifically, we are interested in
how well we can optimize certain objectives when we are restricted to this class of functions. There are two clear
ambiguities about scoring rules that we must take into account. First, it is often unlikely that a scoring rule can be
instance optimal for a given objective and rules can often be incomparable, one rule achieving a better objective value
on a judgment string while worse on another. To handle this, we change our goal slightly and instead choose scoring
rules that are optimal in the worst case. Next, is the issue of ties. In this case we’ll take a pessimistic view (in line with
our worst case objective goals) and say that when a scoring rule outputs a tie, the value of the objective in this instance
will be the worse of the two outcomes.

Theorem 4. For any ε ∈ (0, 1/2) and n ∈ N, the scoring rule given by w∗ = (1, . . . , 1, 0, . . . , 0) with exactly
2bn/3c + 1 ones minimizes the worst case distortion maxX∈{0,1}n dist

ε(fw(X);X) over all possible scoring rules
parametrized by w ∈ Rn>0.

Proof. Fix ε ∈ (0, 1/2) and n ∈ N. Recall that minimizing the distortion, distε(y;X) is equivalent to minimizing the
strength of the unchosen judgment, sX(1− y).

First, we’ll show that no rule f (scoring or otherwise) can guarantee sX(1− f(X)) < bn/3c for all X ∈ {0, 1}n.
This will imply maxX∈{0,1}n sX(1− fw(X)) > bn/3c for all w ∈ Rn>0. To see this, we construct X ∈ {0, 1}n such
that both sX(0) and sX(1) are at least bn/3c. Consider the judgment profile Xs = (1, . . . , 1, 0, . . . , 0) with bn/3c ones
and n − bn/3c zeros. On the prefix of the first bn/3c judgments, there are bn/3c more 1s than there are 0s. Thus, the
strength of 1 is at least bn/3c. On the other hand, on the entire profile, there are (n−bn/3c)−bn/3c > n− 2n

3 > bn/3c
more 0s then 1s. Hence, the strength of 0 is at least bn/3c, as desired.
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Next, we show that sX(1 − fw∗(X)) 6 bn/3c for all judgment profiles X ∈ {0, 1}n. Qualitatively, fw∗ simply
picks the majority bit of the first 2bn/3c+ 1 bits. Note that since 2bn/3c+ 1 is odd, there is always a majority bit and
thus fw∗ will never output a tie.

Let X ∈ {0, 1}n and, without loss of generality, suppose fw∗(X) = 1. We show that sX(0) 6 bn/3c. Since fw∗

chose 1, there cannot be a majority of 0s in the first 2bn/3c+ 1 bits. Hence, 0 occurs at most bn/3c times in this prefix.
This implies that for k 6 2bn/3c + 1,

∑k
i=1 {1[Xi = 0]− 1[Xi = 1]} 6 bn/3c. Next, since 1 has a majority among

the first 2bn/3c+ 1 bits,
∑2bn/3c+1
i=1 {1[Xi = 0]− 1[Xi = 1]} 6 −1. or k > 2bn/3c+ 1,∑k

i=1 {1[Xi = 0]− 1[Xi = 1]} 6
∑k
i=2bn/3c+2 {1[Xi = 0]− 1[Xi = 1]} − 1

6 k − (2bn/3c+ 1)− 1

6 n− (2bn/3c+ 1)− 1

= n− (3bn/3c+ 2) + bn/3c
6 n− n+ bn/3c = bn/3c.

So, for all k ∈ {0} ∪ [n],
∑k
i=1 {1[Xi = 0]− 1[Xi = 1]} 6 bn/3c, and hence sX(0) 6 bn/3c as desired.

4.1 Other Objectives
We also investigate optimal scoring rules with respect to the optimistic and pessimistic MLE rules fMLE↑ and fMLE↓.
Section 3.2 posits that fMLE↑ and fMLE↓ can equivalently be viewed as either maximizing their respective likelihoods
for the chosen estimate or as minimizing their respective likelihoods for the unchosen estimate. However when it
comes to identifying the worst-case optimal scoring rule across judgment profiles, this equivalence ceases to hold.
Thus, we need to derive an optimal scoring rule for each case.

Definition 2. We define optimal scores w↑◦,w
↑
×,w

↓
◦,w

↓
× as

• w↑◦ ∈ argmaxw∈Rn>0
minX L↑[X;G = fw(X)]

• w↑× ∈ argminw∈Rn>0
maxX L↑[X;G = 1− fw(X)]

• w↓◦ ∈ argmaxw∈Rn>0
minX L↓[X;G = fw(X)]

• w↓× ∈ argminw∈Rn>0
maxX L↓[X;G = 1− fw(X)].

For example, w↑◦ maximizes the optimistic likelihood of its chosen answer in the worst case. For this rule it suffices
to always choose the most accurate expert’s judgment:

Theorem 5. The score w↑◦ = (1, 0, . . . , 0) is optimal.

Proof. Consider the even and odd length alternating judgment vectors Xe := (0, 1, 0, 1, . . . , 0, 1) and Xo := (0, 1, 0, 1, . . . , 0, 1, 0).
For any fixed ε > 0, observe that by Theorem 2 for both Xalt = Xe,Xo we have that L↑[Xalt;G = 1] = 2−n,
and L↑[Xalt;G = 0] = (1− ε)2−n+1. These judgment vectors are noteworthy because no matter how fw breaks
ties, it must choose either 0 or 1 and incur either 2−n or (1 − ε)2−n+1 as its maximum likelihood for Xalt. If
Q(w) := minX L↑[X;G = fw(X)] is the objective we seek to maximize, then for all w we therefore have that
Q(w) 6 (1− ε)2−n+1.

Now consider the score w∗ = (1, 0, . . . , 0). For any judgment vector X , the scoring rule chooses fw∗(X) = X1.
Then taking p = (1− ε, 1/2, . . . , 1/2) we see that L↑[X; fw∗(X)] > L[X;G = X1, p] = (1− ε)2−n+1. Minimiz-
ing over all X yields Q(w∗) > (1− ε)2−n+1, and so w∗ is optimal.

For the cases based on pessimistic likelihood (both maximizing it for the chosen answer and minimizing it for the
unchosen answer), characterizing the optimum scoring rule is easy, since the optimum rule we identified in Theorem 3
can be represented as a scoring rule.
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Theorem 6. Scores w↓◦ = w↓× = (1, . . . , 1, 1/2) are optimal for ε 6 2−n, and coincide with the rule of Theorem 3.

The remaining case, w↑×, that is minimizing the optimistic likelihood of the unchosen answer, is less straightfor-
ward. Using a linear program, we have obtained optimal scores w↑× for n 6 20; these are cataloged in Appendix D.
For general n, w↑× is unknown, but we show that there exists an optimal scoring rule that is nonincreasing, for all n.

Theorem 7. For each n, there is a choice of w↑× that is nonincreasing.

Proof. We proceed by arguing that for any score with an increasing pair of entries, the score which flips these entries
to be decreasing performs at least as well with respect to the objective. By applying this repeatedly we find that there
is a decreasing optimal scoring rule.

To see this, consider a score w with increasing pair of indices i < j for which wi < wj , and take w′ to
be this score which flips these two entries; that is, w′i = wj , w′i = wj , and w′k = wk for all k 6= i, j. Again let
Q(w) := maxX L↑[X;G = 1− fw(X)] be the objective quantity which our optimal scoring rule w↑× minimizes;
we argue that Q(w′) 6 Q(w).

Let X ′ be any vector of expert judgments, and let y := fw(X
′) denote the estimate chosen by w for judg-

ment vector X ′. We will construct an X for which L↑[X ′;G = 1− fw′(X ′)] 6 L↑[X;G = 1− fw(X)]. First, if
fw′(X

′) = y then take X = X ′. This is the case if X ′i = X ′j , since w · 1[X ′k = y] = w′ · 1[X ′k = y]. If X ′i = y and
X ′j = 1− y then w′ · 1[X ′k = y] > w · 1[X ′k = y] and so fw′(X ′) = y also.

Therefore when fw′(X ′) = 1 − y we have that X ′i = 1 − y and X ′j = y. In this case let X be X ′ with Xi and
Xj flipped; that is, Xi := X ′j = y and Xj := X ′i = 1− y and Xk := X ′k otherwise. Note that fw(X) = fw′(X

′) =
1− y, since the scores are identical; w · 1[Xk = 1− y] = w′ · 1[X ′k = 1− y]. Let p′ be the probability vector which
witnesses L↑[X ′;G = 1− fw′(X ′)] = L↑[X ′;G = y], so that it equals

(1− p′i) · p′j ·
∏

X′k=1−y;k 6=i,j

p′k
∏

X′k=y;k 6=i,j

(1− p′k).

Then since it is a maximum we have that L↑[X;G = 1− fw(X)] > L[X;G = y,p′], which equals

p′i · (1− p′j) ·
∏

X′k=1−y;k 6=i,j

p′k
∏

X′k=y;k 6=i,j

(1− p′k).

But since p′i > p′j and (1 − p′j) > (1 − p′i), this is itself greater than or equal to L↑[X ′;G = y]. Therefore for every
X ′ there is some X such that L↑[X ′;G = 1− fw′(X ′)] 6 L↑[X;G = 1− fw(X)]. Taking the max over all X then
yields Q(w′) 6 Q(w), as desired.

Since every score can be made decreasing by applying finitely many such flips, we have that for every score w
there is a decreasing score w∗ for whichQ(w∗) 6 Q(w). Therefore there is an optimal score which is decreasing.

5 Experiments
In this section we assess through computer simulations the quality of decisions made by our aggregation functions in
the context of two example applications.

5.1 Collaborative Filtering
Consider a set of agents N , a set of issues I , and a partially observed binary matrix (xij)i∈N,j∈I . We interpret an
entry xij ∈ {0, 1} as the decision of agent i on issue j (for example, reviewer i bids on paper j). In each run of
the experiment, we randomly select an entry of the matrix, hide it, and use several algorithms to guess its value. An
algorithm is successful if it guesses correctly. We repeat the experiment 1,000 times to assess the average accuracy of
the algorithms.

We use our aggregation functions to predict hidden values in a matrix as follows. For an agent i ∈ N , let R(i)
be the set of issues j such that the entry xij is observed. Given a hidden entry xij∗ we first identify the set of agents
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k ∈ N for which the value xkj∗ is observed. Second, we rank those agents by their their similarity to i. Formally, we
define the similarity score of two agents i and k as sim(i, k) = |{j ∈ R(k)∩R(i):xij = xkj}|/|R(k)∩R(i)|, that is
the fraction of issues on which i and k agreed among all issues for which we have data from both agents. We rank the
agents k in the descending order of their similarity score with i. Thus, we assume that more similar agents are better
predictors of the hidden decision xij∗ of agent i. We truncate the list of agents to the first half (we use this heuristic
since our algorithms where designed for the case where p > 1/2). The ranked decisions by agents on issue j∗ then
form the input to the aggregation functions from Sections 3 and 4 and to the Bayesian algorithm from Appendix B
(with a prior estimated from the data).

We compare our algorithms with three standard Recommender Systems algorithms for matrix completion, imple-
mented in the fancyimpute python library4: MatrixFactorization (MF), Iterative SVD (ISVD), and Soft Impute (SI).
We evaluate the rules on two datasets from the PrefLib library [13], and on a synthetic dataset.

Sushi. This dataset contains information about individuals’ preferences on various types of sushi. There are 100 types
of sushi, and each individual assigns scores from {1, . . . , 4} to 10 randomly selected sushi sets. We filter only
those individuals who assigned 4 different scores to the sets (there are 2737 such agents), and convert their
preferences to binary judgments as follows. For a fixed value of d ∈ {3, 4} we set the decision of an agent i for
sushi j to 1 if i assigns to j the score at least equal to d; the decision is 0 if the corresponding score is lower than
d. Note that only 10% of entries of this matrix are observed.

Conference Biding (CONF). This dataset contains reviewers’ bids on papers at a major computer science conference.
We convert the reviewers’ bids to their binary judgments over papers by setting the decision to one if they bid
“yes” for a paper (d = Y) or by setting it to one if they bid “yes” or “maybe” for a paper (d = M). Additionally,
we hide an h fraction of randomly selected entries in the matrix (h ∈ {0.5, 0.8, 0.9}).

Synthetic Model (SYNT) Each agent and each issue is represented by a d-dimensional vector of attributes (d ∈
{5, 10}). For each agent and each issue we sample the value of each attribute independently and uniformly from
[−1, 1]. An agent i decides 1 on an issue j if the dot product of their corresponding attribute vectors is positive.
Otherwise i decides 0. We hide an h fraction of randomly selected entries in the matrix (h ∈ {0.5, 0.8, 0.9}).

fdist fMLE↑ fMLE↓ sc (w∗) sc (w↑×) sc (w↑◦) Bayesian MT ISVD SI

SUSHI (d = 3) 65.3 66.6 65.2 65.5 62.4 57.0 48.8 50.1 57.5 49.5
SUSHI (d = 4) 68.6 69.4 67.2 70.1 67.9 63.3 57.6 60.4 63.3 66.7

CONF (d = M, h = 0.5) 94.8 94.8 94.8 94.8 90.3 94.8 94.8 96.5 94.5 96.8
CONF (d = M, h = 0.8) 95.3 95.2 95.3 95.3 92.0 95.3 95.2 93.0 91.0 93.5
CONF (d = M, h = 0.9) 95.1 94.6 95.2 95.2 92.3 91.9 90.5 92.0 94.6 95.6

SYNT (h = 0.8, d = 10) 76.5 73.4 73.7 68.1 64.6 74.2 77.1 46.0 87.0 73.5
SYNT (h = 0.8, d = 5) 85.4 84.0 83.4 81.5 78.8 85.5 90.1 49.0 91.5 89.0
SYNT (h = 0.5, d = 5) 89.9 91.2 88.9 87.7 86.7 89.9 92.4 94.0 94.1 92.0

CLINTON-ALL 83.3 82.4 74.5 86.3 52.9 78.4 84.3 − − −
JOHNSON-ALL 68.4 79.6 51.0 79.6 73.5 55.1 85.7 − − −
TRUMP-ALL 90.2 92.2 82.4 90.2 53.9 90.2 94.1 − − −
CLINTON-OCT 86.3 82.4 88.2 86.3 52.9 78.4 72.5 − − −
JOHNSON-OCT 80.6 81.6 77.6 71.4 73.5 55.1 71.4 − − −
TRUMP-OCT 92.2 92.2 92.2 92.2 53.9 90.2 98.0 − − −

Table 1: Summary of the experiments comparing accuracies (given as percentages) of aggregation functions. In each
row, the best performing algorithms are bolded; those that perform within 1 and 2 percentage points of the best algo-
rithm are shaded green and blue, respectively. Simulations for parameter values omitted in the table led to qualitatively
similar conclusions.

4https://github.com/iskandr/fancyimpute
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5.2 Political Predictions
We use a dataset from FiveThirtyEight of polling data from the 2016 US Presidential Election. We convert this data
into a binary format by choosing a threshold, the mean of the number of votes the candidate received over all polls in
that state, then reporting 1 if the poll was above this threshold and 0 if it was below. In addition, we assume that polls’
accuracies are sorted by their recency, that is later polls are more accurate than earlier ones.

We run an experiment for each US state and each candidate. The ground truth is taken to be whether the true
number of votes the candidate received in the general election was above or below the threshold. We then analyze
our algorithms: given the sorted binary polling data, do they correctly predict the ground truth? For each state and
candidate, algorithms get a score of 1 for getting the ground truth correctly, 0 for being incorrect, and 1/2 for a tie.
The algorithms’ overall scores are their average over all states. Note that for a few states, there is no polling data for
a certain candidate in which case the state was not included in the score. This is why the scores are not all multiples
of 1/50. Finally, since older data may be inaccurate and could even hurt accuracy, we compare two settings: using all
available polls and restricting the algorithms to polls conducted on or after October 1, 2016. The election took place
on November 8, 2016.

5.3 Results
Representative results of our experiments for selected values of the parameters are summarized in Table 1.

1. The scoring rules using vectors w↑× and w↑◦ are suboptimal: for most datasets the distortion-optimal rule
achieved better accuracies than these rules (the only exception is JOHNSON-ALL, where fdist performed worse
than w↑×). Similarly, fMLE↓ performed (slightly) better than fdist in only one dataset (CLINTON-OCT), and for
several datasets it produced significantly worse results.

2. fdist, fMLE↑, and the scoring rule using w∗ perform comparably well, though each excelled in different datasets.

3. For many datasets the Bayesian algorithm outperforms the rules with worst-case guarantees, yet there are in-
stances (such as SUSHI) where the Bayesian algorithm is much worse. If we could pick the best response out of
those produced by the Bayesian algorithm and fMLE↑ (or fdist), we would always obtain high-quality results.

4. For some datasets, notably SUSHI, our algorithms outperform standard algorithms for matrix completion. For
other datasets, the Bayesian algorithm is comparable to the matrix-completion algorithms. This is promising
since our algorithms use less information.

5. In the political domain our best rules produced considerably more accurate predictions than simply trusting the
most accurate (most recent) predictions (w↑◦).

6 Discussion
Our setting boils down to the design of Boolean functions that take a string of bits as input and output a single
bit — with the twist that the order of bits matters, in that earlier bits are given greater importance. We view this
as a fundamental problem, and there are many ways to approach it. In addition to the objectives and algorithms
described in Sections 3 and 4, we present three additional approaches in the appendix: axiomatic (Appendix A),
Bayesian (Appendix B), and randomized (Appendix C).

One might ask whether the assumption that pi > 1/2 for all i ∈ N can be relaxed. If the identities of experts with
pi < 1/2 are known, we can simply flip their judgments and reverse their order (as the flipped judgment of the least
accurate expert is now the most accurate). Interestingly, our problem now becomes that of aggregating two strings
of judgments, ordered by accuracy, into a single bit. This problem is potentially richer than ours because there is
no information on the relative accuracy of experts associated with two different strings. An even more general setup
simply provides a partial order of the experts by accuracy.

Another natural variant of our setting is one where, instead of binary judgments, experts provide real-valued judg-
ments in, say, [0, 1], and the goal is to aggregate them to return a single real number in [0, 1]. Interestingly, given a
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binary aggregation rule f from our work, one can compute the greatest value x ∈ [0, 1] such that converting expert
judgments to binary depending on whether they are at least x and feeding them to f gives output 1; this is well-defined
when f satisfies a natural monotonicity condition. We leave such directions for future work.
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Appendix

A Axiomatic Approach
The axiomatic approach to preference aggregation develops desirable properties and classifies different aggregation
rules by the axioms that they satisfy. Of particular interest are characterization theorems which, given a list of axioms,
describe exactly the class of aggregation rules that satisfy them. In our case, we are interested in aggregation rules that
transform an ordered list of bits into a bit.

In this appendix, we introduce a few simple axioms, and show that they characterize a set of three aggregation
rules. Our main axiom demands that if the rule gives the same output on two strings, then it also gives this output when
interleaving the two strings into one. Notably, the distortion-optimal rule we identified in Theorem 1 fails this axiom.
We work with aggregation rules f that are defined for any number n of experts; previously, we assumed n to be fixed.
Let us write {0, 1}+ = ∪n∈N {0, 1}n for the set of all finite-length bitstrings. We study rules f : {0, 1}+ → {0, 1,⊥},
where ⊥ represents a tie.

The following are four natural axioms that we may want such a rule to satisfy.

1. Resoluteness: f(x) 6= ⊥ for all X ∈ {0, 1}+. That is, f should never return a tie.

2. Foundation: f(1) = 1, f(0) = 0, f(10) ∈ {1,⊥}, and f(01) ∈ {0,⊥}. That is, if there is just one expert,
f should agree with the expert. In the case of two experts, f should either return either the judgment of the
more accurate expert, or a tie. Note that when resoluteness is also imposed, we have f(1) = f(10) = 1 and
f(0) = f(01) = 0.

3. Interleaving Consistency: For all X1,X2 ∈ {0, 1}+, if f(X1) = f(X2) ∈ {0, 1}, then f(X) = f(X1) =
f(X2) for all strings X that can be obtained by interleaving X1 and X2. Here, interleaving means combining
bits from the two strings in any way that maintains the order of the bits in each string. For example, if X1 = 1101
and X2 = 01, then X = 110011 is an interleaving of them, since it can be obtained by taking the first two bits
of X1, then the first bit of X2, then the third bit of X1, then the second bit of X2, and then the fourth bit of
X1. Intuitively, if we see two separate ranked sets of judgments, and in each case we are convinced of the same
ground truth estimate, then putting all judgments together and while preserving the accuracy rankings should
not change our estimate.

These three axioms together imply a neutrality property, which requires that f cannot be biased to either 0 or to 1.

4. Neutrality: For each X ∈ {0, 1}+, if f(X) ∈ {0, 1}, then f(X) = 1 − f(X); and if f(X) = ⊥, then
f(X) = ⊥. Here, X denotes the string where all the bits of X are flipped. Intuitively, the rule says that if labels
‘0’ and ‘1’ are swapped, then the answer should be relabeled accordingly.

Proposition 1. Resoluteness, foundation, and interleaving consistency imply neutrality.

Proof. Suppose f satisfies resoluteness, foundation, and interleaving consistency. Suppose for a contradiction that f
fails neutrality, and hence there is a string X ∈ {0, 1}+ such that f(X) = f(X) (using resoluteness). Without loss of
generality, assume that f(X) = f(X) = 1. By interleaving the strings X and X , we can obtain the string (01)|X|.
By interleaving consistency, f((01)|X|) = 1. On the other hand, foundation implies that f(01) = 0. By interleaving
|X| copies of 01, we obtain f((01)|X|) = 0 from interleaving consistency, a contradiction.

While resoluteness, foundation, and neutrality are relatively mild, interleaving consistency is a strong axiom. For
example, it implies a number of other intuitive consistency axioms listed below.

5. Addition Consistency: For all x ∈ {0, 1}+ and y ∈ {0, 1}, if f(x) = y, and x′ is obtained by inserting a y-bit
in x and possibly inserting a (1− y)-bit at a later position in x, then f(x′) = y.

6. Subtraction Consistency: For all x ∈ {0, 1}+ (with |x|> 2) and y ∈ {0, 1}, if f(x) = y, and x′ is obtained by
removing a (1− y)-bit from x and possibly removing a y-bit from a later position in x, then f(x′) = y.
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7. Swap Consistency: For all x ∈ {0, 1}+ and y ∈ {0, 1}, if f(x) = y, and x′ is obtained by replacing a (1−y)-bit
with a y-bit in x, then f(x′) = y.

8. Shift Consistency: For all x ∈ {0, 1}+ and y ∈ {0, 1}, if f(x) = y, and x′ is obtained by shifting a y-bit to the
left in x or shifting a (1− y)-bit to the right in x, then f(x′) = y.

Proposition 2. Foundation and interleaving consistency imply addition consistency, subtraction consistency, swap
consistency, and shift consistency.

Proof. Addition consistency simply requires interleaving strings 0, 1, 01, or 10 with x. Subtraction consistency is
equivalent to addition consistency. Swap consistency is implied by addition consistency and subtraction consistency
(e.g. swapping a 0 with a 1 can be seen as adding a 1 and subtracting a 0). The same goes for shift consistency (e.g.
changing x0zk to xz0k can be seen as first adding 10 to obtain x01z0k, and then subtracting 01 to obtain xz0k; both
operations must preserve the answer as 1 if it was originally 1).

In fact, interleaving consistency is so strong that (in the presence of the other axioms), it excludes all but three
aggregation rules.

Theorem 8. Rule f : {0, 1}+ → {0, 1,⊥} satisfies resoluteness, foundation, and interleaving consistency if and only
if f is one of the three following rules.

1. Rule f1: Output the first bit.

2. Rule f2: Output the more frequent bit. If there is a tie, output the first bit.

3. Rule f3: Output the more frequent bit. If there is a tie, output the negation of the last bit.

Proof. It is clear that f1, f2, and f3 satisfy our axioms. For the other direction, suppose that f is a rule satisfying the
axioms. By Proposition 2, we can assume that f also satisfies addition, subtraction, swap, and shift consistency. Note
that the smallest string on which our axioms do not directly provide an answer is 100 (or equivalently, 001). It turns
out that if f outputs the most accurate bit on this string (even though the two less accurate bits disagree with it), then
f must always output the first bit, i.e., be the rule f1.

Lemma 5. If f(011) = 0, then f = f1.

Proof. First, we show that f(01k) = 0 for all k > 2, by induction on k. The base case of k = 2 holds by assumption.
Suppose f(01k) = 0 for some k > 2. We want to show that f(01k+1) = 0. Suppose for a contradiction that this
is not the case. By resoluteness, this means f(01k+1) = 1. Then, by neutrality, f(10k+1) = 0. Let X1 = 01k and
X2 = 10k+1. Note that X = 100(10)k can be obtained by interleaving X1 and X2. Since f(X1) = f(X2) = 0, we
have f(X) = 0 by interleaving consistency. However, note that X can also be obtained by interleaving k copies of 10,
and one copy of 100. By foundation, we have f(10) = 1, and by neutrality and our assumption, we have f(100) = 1.
Hence, by interleaving consistency, we get f(X) = 1, which is a contradiction. Thus, f(01k) = 0 for all k.

We now show that f = f1. By neutrality, it is enough to show that f(0X) = 0 for all X ∈ {0, 1}+. Let
X ∈ {0, 1}+, and consider the string 01|X|. From above, we know that f(01|X|) = 0. By swap consistency, if we
replace 1’s with 0’s in the string, f continues to output 0. It follows that f(0X) = 0. This establishes that f = f1, as
desired.

It remains to consider the case where f(011) = 1. In this case, note that f is “going for quantity over quality”. We
show that f must then always output the more frequent bit. How ties are broken is decided by what f outputs on the
string 0110 (or 1001), which is the smallest string where both bits appear an equal number of times and the answer is
not trivially decided by our axioms.

Lemma 6. If f(011) = 1, then f = f2 if f(0110) = 0, and f = f3 if f(0110) = 1.
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Proof. First, we show that f(1k−10k) = 0 for all k > 2, by induction on k. Our assumption that f(011) = 1,
along with neutrality, already establishes this for k = 2. Suppose f(1k−10k) = 0 for some k > 2. We want to
prove that f(1k0k+1) = 0. Suppose for contradiction that this is not true. Then, by resoluteness, f(1k0k+1) = 1,
and by neutrality, f(0k1k+1) = 0. Let X1 = 1k−10k and X2 = 0k1k+1. The reader can check that the string
X = (10)5k−1011 can be obtained by interleaving two copies of X1 and three copies of X2. Hence, by interleaving
consistency, f(X) = 0. However, X can also be obtained by interleaving 5k−1 copies of 10 and one copy of 011, and
f(10) = f(011) = 1 by foundation and by assumption. Hence, by interleaving consistency, we also have f(X) = 1,
which is a contradiction.

Thus, we have established that f(1k−10k) = 0 (and therefore f(0k−11k) = 1) for all k > 2. This implies that
f(X) = 0 for any string X that contains strictly more 0’s than 1’s. This is because if X contains k 0’s, then we
can start with the string 1k−10k, and then subtract 1’s and shift 1’s to the right to obtain X; by subtraction and shift
consistency both operations preserve the answer as 0. Similarly, f(X) = 1 for any string X with strictly more 1’s
than 0’s.

It remains to deduce the output of f on balanced strings, i.e. those with equal number of 0’s and 1’s. Suppose first
that f(0110) = 0. In this case, we show that f = f2, so that on balanced strings, f returns the first bit. To do this,
we show, by strong induction on k, that f(01k0k−1) = 0 for all k > 2. We have already assumed the base case of
k = 2. For strong induction, suppose the hypothesis holds for all integers up to some k, but fails at k + 1. Thus, we
have f(01k0k−1) = 0 but f(01k+10k) = 1, and so by neutrality f(10k+11k) = 0. We now take X1 = 01k0k−1

and X2 = 10k+11k, and leave it to the reader to verify that X = (1001)(10)k−2(1001)(10)k−1 can be obtained by
interleaving X1 and X2. Hence, by interleaving consistency, f(X) = 0. However, f(10) = 1 by foundation, and
since f(0110) = 0, by neutrality f(1001) = 1. Since X can also be obtained by interleaving copies of these strings,
by interleaving consistency, f(X) = 1, which is a contradiction. Hence, we have established that f(01k0k−1) = 0
for all k > 2. Then, it follows immediately that f(X) = 0 for all strings X with an equal number of 0’s and 1’s with
the first bit being 0 as all such strings (with say k 0’s and k 1’s) can be obtained by starting from 01k0k−1 and shifting
some 1’s to the right (invoking shifting consistency). By neutrality, we get f(X) = 1 for all strings X with an equal
number of 0’s and 1’s with the first bit being 1. Thus, f = f2.

Finally, when f(0110) = 1, the proof that f = f3 proceeds very similarly by first arguing that f(0k−11k0) = 1
for all k > 2 using strong induction, and then shifting some 1’s to the left to obtain any string with an equal number
of 0’s and 1’s with the last bit being 0.

These lemmas prove the theorem.

Interestingly, all three rules characterized here are scoring rules (see Section 2). We have previously seen rule f3 un-
der the name fMLE↓ in Theorem 3, where we showed that it optimizes the pessimistic likelihood. We have also already
met f1 as an optimal scoring rule according to the optimistic likelihood objective (Theorem 5). On the other hand,
the distortion-optimal rule fdist from Theorem 1 is evidently not among the three rules characterized by Theorem 8.
One obvious reason is that it is not resolute (e.g. fdist(011) = ⊥). However, even if we drop resoluteness, this rule
violates interleaving consistency, even when interleaving two copies of the same string. To see this, we can check that
fdist(10

313) = 0. We can obtain the string 11(0313)2 by interleaving two copies of 10313, but fdist(11(0313)2) = 1.
All axioms in Theorem 8 are necessary. If resoluteness is dropped, the rule that outputs the more frequent bit

and a tie if the numbers of 0’s and 1’s are equal satisfies all axioms except resoluteness. The rule that outputs the
opposite of the first bit satisfies all axioms except foundation. Finally, fdist satisfies all axioms except interleaving
consistency. Additionally, one can check that fdist satisfies all the weakenings of interleaving consistency discussed in
Proposition 2, showing that we cannot weaken interleaving consistency to addition consistency in Theorem 8.

It would be interesting to obtain an analog of Theorem 8 without resoluteness, to allow us to capture the natural
rule that outputs the majority bit if it exists, and a tie otherwise. It would also be interesting the characterize the class
of rules that satisfy the axioms of Theorem 8 except with interleaving consistency weakened to addition consistency.
Finally, the distortion-optimal rule fdist is well-motivated by our likelihood analysis, and it seems like a natural binary
aggregation rule in its own right. Thus, it would be interesting to find an axiomatization of that rule, including the
axioms we have used here. Perhaps we could add an axiom capturing the particularly interesting property that fdist
follows the opinion of the most accurate third of experts should they all agree, and follows the opinion of the least
accurate two thirds of experts should those agree. Unfortunately, a preliminary exploration suggests that finding an
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axiomatization may be difficult: there are rules other than fdist satisfying all the axioms we have mentioned, and using
a SAT-solver-based analysis, we have found that even after adding many other properties of fdist to the mix, we still
have not ruled out all other rules.

B Bayesian Approach
In Sections 3 and 4 we took a conservative approach—our analysis was worst-case over the possible values of the
probabilities pi (the probabilities that Xi are correct). In this section we assume that for each variable Xi, probability
pi comes from a known prior distribution. We assume that for each i the distribution Xi is discrete with |Xi| possible
values5, Xi = {(xj , yj) | j ∈ [|Xi|]}. If (xj , yj) ∈ Xi then the probability that pi equals yj is xj . By X→i we denote
the set of possible values in Xi, i.e., X→i = {yj | (xj , yj) ∈ Xi}. Similarly as in the other parts of paper, we assume
that we additionally know that p1 > p2 > . . . > pn. Then, the expected maximum likelihood is defined as:

EL[X;G = g] =
1

γ
·
∑

(x1,p1)∈X1

x1
∑

(x2,p2)∈X2

p26p1

x2 . . .
∑

(xn,pn)∈Xn
pn6pn−1

xn · L[X;G = g,p = (p1, . . . , pn)],

where γ is a normalization factor. Note that in contrast to the definition of the likelihood function (cf. Section 2), the
above formula does not depend on the vector of probabilities p.

By substituting the formula for L[X;G = g,p = (p1, . . . , pn)], we get that:

EL[X;G = g] =
∑

(x1,p1)∈X1

x1
∑

(x2,p2)∈X2

p26p1

x2 . . .
∑

(xn,pn)∈Xn
pn6pn−1

xn ·
n∏
i=1

p
1[Xi=g]
i · (1− pi)1[Xi 6=g]

=
∑

(x1,p1)∈X1

x1p
1[X1=g]
1 (1− p1)1[X1 6=g] . . .

∑
(xn,pn)∈Xn
pn6pn−1

xnp
1[Xn=g]
n (1− pn)1[Xn 6=g].

Observe that EL[X;G = g] can be computed by a dynamic programing based on a backwards induction. We build
an array A, where for each i ∈ [n] and yi ∈ X→i the value A[i, yi] has the following meaning:

A[i, yi] =
∑

(xi,pi)∈Xi
pi6yi

xip
1[Xi=g]
i (1− pi)1[Xi 6=g]

∑
(xi+1,pi+1)∈Xi+1

pi+26pi+1

xi+1p
1[Xi+1=g]
i+1 (1− pi+1)

1[Xi+1 6=g]·

. . . ·
∑

(xn,pn)∈Xn
pn6pn−1

xnp
1[Xn=g]
n (1− pn)1[Xn 6=g].

The base step is:

A[n, yn] =
∑

(xn,pn)∈Xn
pn6yn

xnp
1[Xn=g]
n (1− pn)1[Xn 6=g],

the inductive step is:

A[i, yi] =
∑

(xi,pi)∈Xi
pi6yi

xip
1[Xi=g]
i (1− pi)1[Xi 6=g] max

yi+1∈X→i+1

yi+16pi

A[i+ 1, yi+1],

5This allows us to represent prior distributions concisely.
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and the final value is:

EL[X;G = g] = max
y1∈X→1

A[1, y1].

Note that in many contexts the prior distributions Xi can be estimated from available data. For example, in our
experiments for collaborative filtering, described in Section 5, we assumed that the prior for all the agents is the same,
|Xi|= X for all i ∈ N , and that it is estimated through the following simple procedure. Assume we want to predict
the decision of an agent i ∈ N for an issue j ∈ I . For each agent i′ 6= i we count how often (measured as a fraction)
the decisions of i and i′ coincide. We construct X by aggregating these fractions over all i′ ∈ N , i′ 6= i.

C Randomized Aggregation Rules
In this section, we consider randomized aggregation rules, which, given a judgment profile X , return 1 with some
probability θ ∈ [0, 1] and 0 with the remaining probability 1 − θ. Alternatively, we can think of the rule as simply
returning θ ∈ [0, 1] instead of an estimate in {0, 1} like deterministic aggregation rules. We first extend the definition
of distortion to real-valued estimates in [0, 1]. For ε ∈ (0, 1/2) and θ ∈ [0, 1], define

distε(θ;X) = sup
p∈Pεn

max (L[X|G = 0,p],L[X|G = 1,p])

(1− θ) · L[X|G = 0,p] + θ · L[X|G = 1,p]
.

Note that distε(0;X) (resp. distε(1;X)) still coincides with the definition of distortion from Section 3.1. The
distortion-optimal randomized estimate is then defined as argminθ∈[0,1] dist

ε(θ;X); for comparison, recall that the
distortion-optimal deterministic estimate was defined as argminθ∈{0,1} dist

ε(θ;X) in Section 3.1.
We are now ready to identify the distortion-optimal randomized estimate. Unfortunately, this is no longer indepen-

dent of the choice of ε.

Theorem 9. For ε ∈ (0, 1/2), n ∈ N, and X ∈ {0, 1}n, we have

argmin
θ∈[0,1]

distε(θ;X) =
1−

(
ε

1−ε

)sX(1)

2−
(

ε
1−ε

)sX(0)

−
(

ε
1−ε

)sX(1)
. (2)

Proof. Note that

distε(θ;X) = sup
p∈Pεn

max (L[X|G = 0,p],L[X|G = 1,p])

(1− θ) · L[X|G = 0,p] + θ · L[X|G = 1,p]

= max

(
sup
p∈Pεn

L[X|G = 0,p]

(1− θ) · L[X|G = 0,p] + θ · L[X|G = 1,p]
, sup
p∈Pεn

L[X|G = 1,p]

(1− θ) · L[X|G = 0,p] + θ · L[X|G = 1,p]

)

= max

(
1

(1− θ) · 1 + θ · infp∈Pεn
L[X|G=1,p]
L[X|G=0,p]

,
1

(1− θ) · infp∈Pεn
L[X|G=0,p]
L[X|G=1,p]

+ θ · 1

)

= max

(
1

(1− θ) · 1 + θ · 1
distε(1;X)

,
1

(1− θ) · 1
distε(0;X)

+ θ · 1

)

= max

 1

(1− θ) · 1 + θ ·
(

ε
1−ε

)sX (0)
,

1

(1− θ) ·
(

ε
1−ε

)sX (1)

+ θ · 1

 ,

where the last step follows from Lemma 1.
Our goal is to find the θ ∈ [0, 1], which minimizes this quantity. It is easy to show that this happens when both

terms inside the max become equal, which happens when θ achieves the value stated in the theorem statement.
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Some observations about the distortion-optimal randomized estimate are in order.

1. Note that sX(0) and sX(1) both cannot be 0 (the first bit has strength at least 1). Hence, the denominator in
Equation (2) is positive, and the ratio is thus well-defined.

2. If, for some y ∈ {0, 1}, sX(y) = 0 (i.e. 1 − y “weakly dominates” y in every prefix of X), then the rule
deterministically chooses 1− y.

3. When sX(0) > 0 and sX(1) > 0, we have that θ ∈
[
1
2
1−2ε
1−ε ,

1
2

1−ε
1−2ε

]
. In other words, when ε is small, θ will be

very close to 1/2 regardless of the judgment profile X , unless an estimate is chosen with certainty as in the edge
cases identified above.

D Optimal Scoring Rules

Section 4.1 characterizes optimal scores w↑◦ , w
↓
◦ , and w↓×, but the form of w↑× in general remains unknown. Table 2

and Table 3 catalog optimal scores w↑× for small numbers of experts n.
The scores in Table 2 are found by considering all X ∈ {0, 1}n ordered from large to small according to L↑[X|0],

and considering the longest possible prefix W of these X which does not contain both X and its complement. The w
are then computed by a linear program which enforces w ·X 6 1/2− 1/2j for all X ∈W and for the smallest j which
makes the program feasible. The w are scaled up to eliminate fractions.

The scores in Table 3 are optimal according to an approach to ties which is distinct from breaking them adversari-
ally: namely, vectors for which the scoring rule ties are disregarded in the evaluation of the maximum:

w↑× ∈ arg min
w∈Rn>0

max
X:w·X 6= 1

2

L↑[X;G = 1− fw(X)].

It follows that these scoring rules are also optimal under best-case, “optimistic” tiebreaking. These w are computed by
again ranking all vectors X ∈ {0, 1}n according to L↑[X|0] and using a linear program to enforce that w ·X 6 1/2
for as many X with the largest L↑[X|0] as possible. Finally the w are again scaled up to eliminate fractions.
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n w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

1 1
2 2 1
3 1 0 0
4 1 0 0 0
5 28 9 9 9 9
6 7 3 2 2 2 0
7 20 7 7 7 7 0 0
8 27 27 14 14 14 0 0 0
9 9 6 3 3 3 2 2 2 2

10 9 6 3 3 3 2 2 2 2 0
11 36 24 11 11 11 11 8 8 8 0 0
12 6 6 6 2 2 2 2 2 2 1 1 0
13 17 14 14 4 4 4 4 4 4 4 4 3 0
14 111 53 53 25 25 25 25 25 25 25 14 14 14 14
15 403 403 256 124 124 124 124 124 93 93 93 93 93 93 0
16 81 81 72 72 36 36 31 31 31 15 15 15 15 15 15 15
17 30 30 30 29 15 15 15 15 15 15 15 0 0 0 0 0 0
18 217 217 181 181 62 62 62 62 62 62 62 62 62 62 62 62 62 62
19 217 217 217 178 93 62 62 62 62 62 62 62 62 62 62 62 62 62 0
20 217 217 186 176 62 62 62 62 62 62 62 62 62 62 62 62 62 62 0 0

Table 2: Optimal scores w↑× for the first 20 values of n, with ties broken pessimistically.

n w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20

1 1
2 1 1
3 1 1 0
4 1 1 0 0
5 1 1 0 0 0
6 1 1 0 0 0 0
7 1 1 0 0 0 0 0
8 3 1 1 1 1 1 0 0
9 3 1 1 1 1 1 0 0 0

10 2 2 1 1 1 1 0 0 0 0
11 2 2 1 1 1 1 0 0 0 0 0
12 3 3 1 1 1 1 1 1 1 1 0 0
13 3 3 1 1 1 1 1 1 1 1 0 0 0
14 3 3 1 1 1 1 1 1 1 1 0 0 0 0
15 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0
16 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 0
17 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 0 0
18 4 3 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
19 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
20 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Table 3: Optimal scores w↑× for the first 20 values of n, with ties broken optimistically.
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