
Preference Elicitation as Average-Case Sorting

Dominik Peters and Ariel D. Procaccia
Harvard University

{dpeters, arielpro}@seas.harvard.edu

Abstract

Many decision making systems require users to indicate their
preferences via a ranking. It is common to elicit such rankings
through pairwise comparison queries. By using sorting algo-
rithms, this can be achieved by asking at most O(m logm)
adaptive comparison queries. However, in many cases we have
some advance (probabilistic) information about the user’s
preferences, for instance if we have a learnt model of the
user’s preferences or if we expect the user’s preferences to
be correlated with those of previous users. For these cases,
we design elicitation algorithms that ask fewer questions in
expectation, by building on results for average-case sorting.
If the user’s preference are drawn from a Mallows phi model,
O(m) queries are enough; for a mixture of k Mallows models,
log k +O(m) queries are enough; for Plackett–Luce models,
the answer varies with the alternative weights. Our results
match information-theoretic lower bounds. We also provide
empirical evidence for the benefits of our approach.

1 Introduction
A sizable body of literature deals with the problem of elic-
iting a decision maker’s preferences, represented as a rank-
ing over a set of m alternatives, via pairwise comparison
queries (“which of these is better: x or y?”). In its most basic
form, this is just the standard sorting problem, which requires
Θ(m logm) queries in the worst case.

Our point of departure is that we assume access to some
probabilistic information about the ranking. Suppose we
know (or suspect) that the ranking is drawn from some dis-
tribution D over all m! possible rankings. We can then use
this prior to guide our queries, potentially resulting in an
average-case number of queries that is significantly lower
than the worst-case bound. Specifically, we ask:

Given a “typical” distribution D over rankings, what is
the expected number of pairwise comparisons queries
needed to identify a ranking drawn from D?

From this viewpoint, preference elicitation becomes
closely intertwined with average-case sorting, and we will
indeed show that the connection is technically fruitful. But
first, let us motivate the research question by describing two
domains in which it is potentially possible to apply informed
elicitation schemes, which rely on knowledge ofD to achieve
lower query complexity.

A better UI for eliciting rankings Social choice practition-
ers have implemented a number of web tools that allow
users to set up polls that are run using the best voting meth-
ods taken from the literature. To use these tools, each user
needs to input a ranking of the alternatives. Typically, the
user interfaces of these tools allow this either by presenting
a random ranking and letting the user to correct it via Drag
and Drop (e.g., RoboVote, Pnyx, or OPRA) or by present-
ing a list of alternatives and asking the user to click on
them in order of preference, thereby building the ranking
(e.g., Whale). A version of the latter method is also used
in Australian elections for the House of Representatives,
where voters number candidates (1, 2, 3, . . .) in order of
preference on a paper ballot. All these methods require sig-
nificant effort, something like Θ(m2) mental operations,
because the list of alternatives needs to be scanned re-
peatedly. But we know that we can do it using any of the
common sorting algorithms in O(m logm) queries!
In larger elections, we could obtain a prior via polls or early
votes. Using informed elicitation schemes, this should, on
average, lead to a reduction in the number of queries.

Virtual democracy In some situations, a collection of de-
cision makers need to repeatedly make similar decisions.
Running a vote on each occasion may be tedious. Instead,
the emerging paradigm of virtual democracy proposes
that for each decision maker, we train a machine learn-
ing model of their preferences (for example by learning
personalized weights of various attributes). When a new
decision needs to be made, we use these models to pre-
dict each voter’s preference ranking, and then use a voting
rule to make a decision. Variants of this scheme have been
proposed for ethical decision making in self-driving cars
(Noothigattu et al. 2018) and for prioritization decision
in kidney exchange (Freedman et al. 2020). It has been
deployed in practice at a Pittsburgh charity that transports
food donations to nonprofits (Lee et al. 2019).
While decision makers may be happy to outsource prefer-
ence determination to the model most of the time, there
may be instances of increased importance to a voter, when
they may wish to vote themselves or check the quality of
the model output. An informed elicitation scheme can help
speed up this process, since we already have a probabilistic
model of what the voter is going to say.

Our Approach and Results The first decision we must
make is how to represent the prior D over rankings. We
consider the most common preference models — also known
as cultures (Regenwetter et al. 2006) or as random noise
models — namely Mallows φ model, a mixture of Mallows
models, and the Plackett–Luce model. Although these models
may be seen as stylized, the Mallows model has been argued
to be a particularly good fit for virtual democracy applications
(Kahng et al. 2019), and so our results should be directly
applicable in that domain. In addition, as we shall see in
Section 6, some of these models are realistic enough to lead
to significant gains in practice.

For our main results we present adaptive elicitation
schemes that use a minimum number of queries in the aver-
age case (taken with respect to D). These elicitation schemes
are based on insertion sort together with a binary search that
is biased using information fromD. This method matches the
information-theoretic lower bound; in particular by a result of
Moran and Yehudayoff (2016), we use at most H(D) + 2m
queries, where H(D) is the Shannon entropy of D. For each
of the models D we study, we estimate this entropy, and find
that often O(m) queries are enough in expectation, improv-
ing upon the lower bound of Ω(m logm) queries if we do not
have prior information. Notably, a linear number of queries is
enough even for mixtures of Mallows models; so our positive
results apply to a very flexible class of distributions.

In is worth noting that we are able to obtain strikingly
decisive answers to our research question by building on
the literature on average-case sorting. These techniques, and
more broadly approaches based on entropy, have not played a
role in computational social choice before (to the best of our
knowledge), and so we view these connections as a central
part of our technical contribution.

At the end of the paper, we test the utility of our schemes
on real-world preference data from PrefLib. Conveniently,
given a profile of rankings, we can simulate query answers
from each voter, and thus easily count how many queries we
would have asked had the rankings be elicited by our method.
In our experiments, we put voters in a random sequence, and
elicit one-by-one. Before eliciting the next ranking, we fit a
Mallows or Plackett–Luce model to the set of rankings we
have already elicited, and use the resulting model to guide
the next elicitation. We find that this method saves 10.1%
of queries on average over all datasets compared to eliciting
with an uninformative prior (impartial culture).

Related Work Average-case sorting has predominantly
been studied with respect to the uniform distribution over
all rankings. The canonical treatment is Knuth’s (1998, Sec-
tion 5.3.1). The main focus is to find exactly optimum sort-
ing algorithm for small m, which are now known up to
m = 10 (Knuth 1998; Césary 1968; Kollár 1986; AbouEisha,
Chikalov, and Moshkov 2016). Finding optimal algorithms
for other distributions and small m could be interesting.

The field of adaptive sorting designs sorting algorithms
with good worst-case performance under the assumption that
the input string is partially “presorted”. The literature is sur-
veyed by Estivill-Castro and Wood (1992), and has stud-

ied a large variety of notions of presortedness. For most of
these notions, algorithms are known whose worst-case per-
formance asymptotically matches the information-theoretic
lower bound, and some of the algorithms are universal in
the sense of matching the lower bound for several types of
presorted input. Using adaptive sorting algorithms for the
Kendall-tau distance, we can obtain an alternative proof that
a Mallows model can be elicited in O(m) queries: One can
show that the expected Kendall-tau distance to the reference
ranking of a Mallows model is O(m) (Fligner and Verducci
1986, Eq. 3.2), and there are many sorting algorithms whose
number of queries does not exceed O(m+ KT), where KT
is the distance to being sorted. However, adaptive sorting
algorithms are not immediately useful for richer classes of
random noise models, such as mixtures of Mallows models
or Plackett–Luce models.

Surprisingly little work in computational social choice has
explicitly studied preference elicitation via pairwise compar-
isons. An influential counterexample is a paper by Conitzer
(2009), which shows that one can beat O(m logm) queries
if preferences are known to have additional structure. Specifi-
cally, Conitzer (2009) shows that when preferences are single-
peaked, there exists an adaptive elicitation protocol that re-
quires O(m) queries in the worst case; under certain condi-
tions O(m) queries suffice even if one does not know the
underlying positions of alternatives. When preferences are
known to be one-dimensional Euclidean (a stronger assump-
tion than single-peakedness), Conitzer (2009) shows that
O(logm) queries are enough, since one can find the voter’s
position by a binary search. Jamieson and Nowak (2011)
show that one can elicit d-dimensional Euclidean preferences
in O(d logm) queries on average, under a uniform distribu-
tion. Worst-case query complexity results have been obtained
for several other kinds of structured preferences (Dey and
Misra 2016a,b; see also Elkind, Lackner, and Peters 2017).

If preferences of several decision-makers are elicited with
the goal of using a voting rule to make a decision, we may not
need to elicit every voter’s entire preference ranking. Thus,
fewer than O(nm logm) queries may suffice. For example,
in a plurality election we only need to know each voter’s top
choice, doable in O(nm) queries. Boutilier and Rosenschein
(2016) survey work on various elicitation schemes, often
using queries other than pairwise comparisons. Using com-
munication complexity, Conitzer and Sandholm (2005) give
lower bounds for many voting rules on the number of queries
required by any elicitation scheme. They also give a proto-
col using pairwise comparison queries to find a Condorcet
winner in O(nm) queries (see also Procaccia 2008).

In statistics and machine learning there is a significant
body of work on learning and estimation from pairwise com-
parisons; see, for example, the surveys by Marden (1996),
Catelan (2012) and Xia (2019). With few exceptions (Xia
2019, Chapter 6), this literature focuses on estimating a
ground-truth model (parametric or non-parametric) using
given non-adaptive samples, with the goal of having the es-
timate converge to the ground truth as quickly as possible.
By contrast, we aim to precisely recover the ground-truth
ranking using adaptive queries.

2

2 Distribution-Aware Insertion Sort
We begin our discussion by describing a variant of inser-
tion sort due to Moran and Yehudayoff (2016) which can be
instantiated for any distribution over rankings, and almost
achieves the information-theoretic lower bound.

We write [i] = {1, . . . , i}. Let A = {c1, . . . , cm} be a
set of alternatives, and write A! for the set of rankings of
A. Given a ranking, we write ci � cj if ci is ranked higher
than cj . LetD be a probability distribution overA!. Now con-
sider Algorithm 1. Its task is to recover an unknown ranking
σ ∈ A! by asking pairwise comparison queries, i.e. queries
of the form “is ci ranked higher than cj in σ?”. The algorithm
builds up the correct ranking step-by-step: after having found
the correct ranking of the alternatives c1, . . . , ci, it then de-
termines where ci+1 needs to be inserted. It discovers this
position using a binary search over the possible positions, but
this binary search is biased according to the distribution D.
Specifically, the algorithm calculates, for each of the i + 1
possible insertion positions of ci+1, the probability that D
assigns to this position conditional on the already-discovered
ranking of c1, . . . , ci. It then partitions the interval [0, 1] into
i+ 1 pieces whose lengths correspond to those probabilities,
and then runs binary search on [0, 1].

LetH(D) = −
∑
σ∈A!D(σ) logD(σ) be the Shannon en-

tropy of D. (All logarithms in this paper are base 2.) As is
well-known, no algorithm asking only binary queries can suc-
ceed using fewer than H(D) queries in expectation (even al-
lowing fully general binary queries, not just pairwise compar-
isons). Remarkably, Algorithm 1 matches this lower bound
up to an additive term of 2(m− 1).
Theorem 1 (Moran and Yehudayoff 2016). Suppose a rank-
ing σ is drawn from D. Algorithm 1 correctly elicits σ, using
at most H(D) + 2(m− 1) queries in expectation.

Since there are distributions D over A! with H(D) =
Θ(m logm) (for example the uniform distribution), this addi-
tive term is quite small, and we will see later that Algorithm 1
comes very close to the H(D) optimum for the distributions
we care about here. The proof idea behind Theorem 1 is that
H(D) is the sum of the entropies of the conditional distribu-
tions over insertion positions. The probability-based binary
search on distribution p needs at most H(p) + 2 queries. As
we run the binary search m− 1 times, the result follows.

In order to apply Algorithm 1 in our setting, there are two
things we need to do. First, to understand the algorithm’s
guarantees we must bound the entropy of the distributions we
are interested in. Second, we need some way of calculating
the conditional insertion probabilities for a given distribution.
The latter task can always be done by iterating through all
m! rankings and filtering out those that are compatible with
the comparisons we have already elicited. However, this is
extremely time-consuming, so it will be important to identify
more computationally efficient procedures for this task that
work for specific families of distributions. The two tasks will
be our focus in the next sections.

3 Mallows φ Model
Mallows (1957) introduced an influential family of distri-
butions over rankings, one that is particularly appropriate

Algorithm 1 Distribution-Aware Insertion Sort

σ ← (c1), initialize sorted sequence
for i = 2, . . . ,m do

// insert ci into σ
For j ∈ [i], calculate the probability pj that ci needs to
be inserted in position j, by conditioning D on σ
For j ∈ [i], let mj =

∑j−1
t=1 pt + pj/2

L← 0, R← 1
while |{j ∈ [i] : L 6 mj 6 R}| > 1 do
M ← (L+R)/2, j∗ ← max{j ∈ [i] : mj 6M}
query ci vs. cj∗
if ci � cj∗ then
R←M

else
L←M

Insert ci into σ so that ci is in position j, where j ∈ [i]
is the unique choice for which L 6 mj 6 R

return σ

in cases where there exists an underlying ground truth. A
Mallows model (aka Mallows φ model) is specified by a
reference ranking, which we take as c1 � c2 � · · · � cm
for convenience, and a dispersion parameter φ ∈ (0, 1]. For
a given ranking σ ∈ A!, we write KT(σ) = |{ci, cj ∈ A :
i < j but cj �σ ci}| for the Kendall-tau distance between σ
and the reference ranking (that is, the number of alternative
pairs on which the two rankings disagree). Then the Mallows
model Dφ is the distribution with

Dφ(σ) = 1
Zφ

KT(σ) for every σ ∈ A!,

where Z = (1 + φ)(1 + φ + φ2) · · · (1 + φ + · · · + φm−1)
is a normalization constant. Thus, the probability of seeing a
ranking σ in the Mallows model is exponentially decreasing
with its Kendall-tau distance to the reference ranking, which
in itself is the most likely ranking. For smaller φ, the model
is more concentrated around the reference, and for φ = 1, the
Mallows model becomes the uniform distribution over A!.

It turns out that the Mallows model is a particularly good
fit for the insertion sort algorithm we discussed, because
a closed form for the conditional insertion probabilities is
known. Doignon, Pekeč, and Regenwetter (2004) established
that every Mallows model can be described as a Repeated
Insertion Model, which in particular means that if in Algo-
rithm 1 we insert the alternatives in order of the reference
ranking (c1 then c2 then c3 etc.), then the insertion proba-
bilities for ci+1 are independent of the ordering of previous
alternatives! Indeed, the probabilities are

p1 = 1
W φi, p2 = 1

W φi−1, . . . , pi+1 = 1
W φ0,

where W = 1 + φ+ · · ·+ φi is a normalization constant.
This formula not only allows us to run Algorithm 1 very

efficiently, but it also allows us to better estimate the expected
number of comparison queries, by estimating the entropy of
a Mallows model. The first step is to estimate the entropy of
the insertion probabilities above. For notational convenience,
for a vector x ∈ Rn>0, let us write H(x) for the Shannon
entropy of the normalized vector x/‖x‖, where ‖x‖ is the

3

��� ��� ��� ��� ��� ���
�

�

�

�

�

Γφ

φ

Figure 1: The function Γφ, defined in Lemma 2, which is
an upper bound on the per-alternative entropy of a Mallows
model with dispersion φ. It diverges to infinity as φ→ 1.

sum of the entries of x. The following result can be obtained
using well-known formulas for geometric progressions.
Lemma 2. Let φ ∈ (0, 1) and let x = (1, φ, φ2, . . . , φj−1)
for some j. Then

H(x) = log

(
1− φj

1− φ

)
−
(

φ

1− φ
− jφj

1− φj

)
log(φ)

6
1

1− φ
H(φ, 1− φ) =: Γφ.

Proof. The following identity is well-known:

1 + φ+ · · ·+ φj−1 =
1− φj

1− φ
. (1)

Differentiating and multiplying by φ, we deduce

φ+2φ2+· · ·+(j−1)φj−1 =
(j − 1)φj+1 − jφj + φ

(1− φ)2
. (2)

Now, using properties of logarithms,

H(x) = −
j−1∑
i=0

φi

1−φj
1−φ

log

(
φi

1−φj
1−φ

)

= log

(
1− φj

1− φ

)
− (1− φ)

1− φj
j−1∑
i=0

φi log
(
φi
)

= log

(
1− φj

1− φ

)
− (1− φ) log(φ)

1− φj
j−1∑
i=0

i · φi

(2)
= log

(
1− φj

1− φ

)
− (j − 1)φj+1 − jφj + φ

(1− φ) (1− φj)
log(φ)

= log

(
1− φj

1− φ

)
−
(

φ

1− φ
− jφj

1− φj

)
log(φ).

Next, we check that this value is increasing as j increases.
Clearly, the first summand is increasing (see (1)). Since
log(φ) is negative, we now need to check that

φ

1− φ
− jφj+1

1− φj+1
>

φ

1− φ
− jφj

1− φj
,

0

5

10

15

20

25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0φ

queries m = 10

m = 9

m = 8

m = 7

m = 6

m = 5

m = 4

Figure 2: For each m = 1, . . . , 10 and each φ ∈ (0, 1) (in
multiples of 0.05), we evaluate the number of queries used
by Algorithm 1 when tested on rankings sampled from Dφ;
these are plotted as colored lines. For each of these parameter
values, we also calculate the entropy H(Dφ) and plot is as a
gray line (which is a lower bound for the colored line).

which follows because x 7→ x
1−x is increasing on (0, 1), its

derivative being 1
(1−x)2 > 0. The bound H(x) 6 Γφ now

follows by letting j →∞ in our expression for H(x).

The upper bound Γφ is plotted in Figure 1. For φ = 1,
we have H(x) = log j, and thus there cannot be a constant
upper bound, hence Γφ →∞ as φ→ 1. One can check that
Γ0.5 = 2 exactly, and as we will see in Figure 2 below, there
appears to be a regime change at φ = 0.5 in the performance
of insertion sort on Mallows models.

As developed in the paper of Moran and Yehudayoff
(2016), the entropy of a distribution over rankings is just
the sum over i of the conditional insertion probabilities at
step i. Hence, Lemma 2 immediately implies an estimate for
the entropy of a Mallows model. In particular, if we treat
φ < 1 as a constant, then its entropy is linear in m.

Theorem 3. Let Dφ be Mallows distribution with φ ∈ (0, 1).
Then H(Dφ) 6 Γφ ·m = O(m).

Figure 2 shows the actual performance of Algorithm 1
when run using a Mallows model Dφ and evaluated by re-
peatedly sampling rankings from Dφ and calculating the av-
erage number of queries. The figure shows that for φ > 0.5,
Algorithm 1 gets extremely close to the entropy lower bound,
except for a sudden uptick at φ = 1. For φ 6 0.5, the gap
to entropy grows; one can check that as φ→ 0, Algorithm 1
makes about m queries, while the entropy goes to 0.

4 Mixture of Mallows Models
The Mallows model is concentrated around a single reference
ranking, which is a somewhat plausible assumption when
there is a ground truth ranking which the voter has noisy
access to. But there is a much broader range of situations
where voters come in different types, such that different ref-
erence rankings are appropriate for the different types. For
example, in a polarized political election, there might be a

4

typical ranking of the candidates for a right-wing voter, and
a different typical ranking for a left-wing voter.

To capture these situations, it makes sense to consider a
mixture of Mallows models. Suppose that D1, . . . ,Dk are
Mallows models with reference rankings σ1, . . . , σk and dis-
persion parameters φ1, . . . , φk. Let α1, . . . , αk > 0 with∑k
i=1 αi = 1 be weights. Then D = α1D1 + · · ·+ αkDk is

a mixture of Mallows models.
Such mixtures are often used to generate synthetic datasets

for experimental evaluation of preference-based systems.
They are also used as a flexible model for learning to rank
(Lu and Boutilier 2014; Awasthi et al. 2014; Chierichetti et al.
2015; Liu and Moitra 2018).

To estimate the entropy of a mixture of Mallows model,
we need to recall some elementary properties of entropy.
An intuitive statement of the first property is via a two-step
random processes. Suppose we first flip a biased coin with
probability p of coming up heads. If it comes up heads, we
then take a sample from distribution q1; otherwise we take
a sample from distribution q2. We assume that q1 and q2

are defined on disjoint supports. What is the entropy of this
process? It is H(p, 1−p) +pH(q1) + (1−p)H(q2), that is,
the entropy of the coin flip, plus the p-weighted average of
the entropies of q1 and q2. Here is a formal and more general
statement for k-sided coins.

Fact 4. Let x1, . . . ,xk be vectors of non-negative numbers,
and let x be the concatenation of these vectors. Then

H(x) = H(‖x1‖, . . . , ‖xk‖) +
k∑
i=1

‖xi‖
‖x‖

H(xi).

This property was one of the defining characteristics of the
entropy function in the derivation of Shannon (1948); see
also Ash (1965, pp. 5–8) who calls it the grouping axiom.

A second intuitive fact says that entropy decreases if we
merge outcomes: if we throw away information, entropy
ought to go down. The formal statement below follows im-
mediately from the concavity of log.

Fact 5. Let x = (x1, . . . , xn) ∈ Rn>0, and consider x′ =

(x1 + x2, x3, . . . , xn). Then H(x) > H(x′).

Using these two facts, we can show that a mixture of k
distributions has entropy that is at most log k higher than the
highest-entropy component. Thus, we can bound the entropy
of a mixture of Mallows models.

Theorem 6. Let D = α1D1 + · · ·+αkDk be a mixture of k
Mallows models, so

∑k
i=1 αi = 1 and each Di is a Mallows

distribution with some reference ranking σi and dispersion
parameter φ < 1. Then H(D) 6 log k +O(m).

Proof. Consider the distribution D+ over [k] × A! defined
byD+(i, σ) = αi ·Di(σ). ThusD+ is like the mixture distri-
bution D, except that we are told the extra information from
which Di the ranking was drawn. From Fact 5, we know that
H(D) 6 H(D+). But from Fact 4, we see that H(D+) =

H(α1, . . . , αk) +
∑k
i=1 αiH(Di) 6 log k + O(m), where

the inequality follows because the maximum entropy of a
length-k vector is log k and from Theorem 3.

This result is very encouraging. It implies that Algorithm 1
can elicit a ranking drawn from a mixture model almost as
cheaply as from a single Mallows model. Strikingly, even
if we mix 2m different Mallows models (with bounded φ
parameters), a linear number of queries is still enough.

An interesting example of such a mixture arises from
single-peaked preferences. Suppose we know that the alterna-
tive set has a natural one-dimensional structure, so we expect
rankings to be single-peaked. There may be slight deviations
from single-peakedness, but it is likely that the ranking is
within a few swaps of being single-peaked. Since there are
only 2m−1 rankings that are single-peaked, we can model this
by mixing 2m−1 Mallows models, where each single-peaked
ranking is the reference ranking of one of these models. Even
after allowing noise around single-peakedness, the entropy
estimate suggests we can elicit in O(m) comparison queries,
asymptotically identical to the O(m) query elicitation proce-
dure of Conitzer (2009) for noiseless single-peaked rankings,
though the latter bound holds even in the worst case.

However, there is an obstacle to implementing the promise
of Theorem 6: a mixture of Mallows models is not a Ran-
dom Insertion Model anymore, and we do not have a closed
form for the conditional insertion probabilities. Suppose Al-
gorithm 1 has inserted c1, . . . , ci−1, and we now need to
calculate the conditional insertion probabilities for ci, which
is obtained by mixing the insertion probabilities of the Mal-
lows components. The reference rankings of most of these
components will not start with c1, . . . , ci−1, and hence the
insertion probabilities 1, φ, . . . , φi−1 are not valid.

Here is a way to obtain the correct probabilities. For a par-
tial linear order of the alternatives ci1 � · · · � cir , suppose
we had a way to compute the probability

PrDφ(�) =
∑

σ∈A! : σ extends�

Dφ(σ).

Then we could generate all i + 1 partial linear order ob-
tained by inserting ci into the already-ranked alternatives
c1 . . . , ci−1, and compute their probabilities, then normalize.
Thus, we have obtained conditional insertion probabilities.
We would do this for each Mallows model in the mixture,
then take a weighted average.

Unfortunately, calculating the probability a Mallows model
assigns to an arbitrary partial order is #P-hard (Lu and
Boutilier 2014, Prop. 10). While there are known polynomial-
time solvable classes of partial orders (Kenig et al. 2018),
partial linear orders are not among them, so it is unclear how
to run Algorithm 1 for Mallows mixtures.

A naı̈ve way to sidestep this problem is to just elicit each
of the Mallows components separately: run k instantiations
of Algorithm 1 simultaneously, one for each component of
the mixture, by interleaving the operations of the algorithm
runs. In this way, by the analysis of Section 3, we can elicit
a Mallows mixture in O(km) queries, which is linear if we
treat k as a constant.

However, we can do better, and match the promise of
Theorem 6 in practice. Specifically, we can adapt some tech-
niques of Lu and Boutilier (2014) to get a good estimate of
the conditional insertion probabilities by using an efficient

5

Algorithm 2 Approximate Mallows Posterior (AMP)

Input: a Mallows model with parameter φ, a partial order �
Output: a random ranking ρ that extends �
σ ← (c1)
multiplier← 1
for i = 2, . . . ,m do

Determine all positions j1, . . . , j` ∈ [i] into which ci
could be inserted while keeping σ compatible with �
Choose one of these positions j∗ at random, where jt
should be chosen with probability proportional to φi−jt
Insert ci into position j∗ in σ
multiplier← multiplier · φj1+···+φj`

1+φ+···+φi−1

return σ, multiplier

sampler. Their Approximate Mallows Posterior (AMP) Algo-
rithm operates on a Mallows model with reference ranking
c1 � · · · � cm and dispersion parameter φ, and is given a
partial order� onA. The algorithm returns a random ranking
that extends � (i.e., whenever a � b then a is ranked higher
than b in the returned ranking). The algorithm is designed so
that a ranking extending � is returned with approximately
the same probability as it would be returned by the Mallows
model, conditioned on �.

We now discuss the AMP algorithm in detail, and show
how it can be adjusted to output probability estimates. Using
this algorithm, we can approximate the required insertion
probabilities for each Mallows component. Additionally we
can use it to calculate the likelihoods needed to find pos-
teriors for the weights α1, . . . , αk for mixing the insertion
probabilities.

The AMP algorithm is simple: it builds the output ranking
up alternative-by-alternative, at each step inserting alterna-
tives into positions with probabilities as suggested by the
Random Insertion Model formulation of Mallows models.
However, it restricts (conditions) this distribution over inser-
tion positions to only those positions that do not conflict with
the partial order �. Because partial orders are transitive, it
is easy to check that the set of allowed positions is always
an interval, and that all rankings consistent with � can be
obtained in this manner.

Unfortunately, the sampler does not output rankings with
the same probabilities as a conditioned Mallows model.

Example (Lu and Boutilier 2014, Example 2). Suppose φ =
1 (so the Mallows model is a uniform distribution over A!),
and let � be the partial linear order c2 � c3 � · · · � cm.
The Mallows model conditional on � is the uniform distri-
bution over the m ways to insert c1 into �, but Algorithm 2
places c1 in position i with probability 1/2i and position m
with probability 1/2m+1.

Conveniently, one can write down a formula for the fac-
tor by which the probability of a ranking produced by the
AMP algorithm differs from the true Mallows probability.
Algorithm 2 calculates this as the multiplier. It is obtained by
keeping track of the relative probability mass of the allowed
insertion positions at each step.

We can now see how to use Algorithm 2 to approximate

the conditional insertion probabilities we need to run Algo-
rithm 1. We initialize q1, . . . , qi ← 0. We run the AMP algo-
rithm many times, conditioned on the partial linear order on
{c1, . . . , ci−1} that we have already elicited. For each output
σ,multiplier), we make a note of the position t of ci among
{c1, . . . , ci−1} in the ranking σ, and set qt ← qt+multiplier.
By our discussion, once we normalize q1, . . . , qi, we obtain
an approximation of the conditional insertion probabilities.

Lu and Boutilier (2014) report that in experiments, the
AMP algorithm performs very well, and in our version with
the multiplier, it converges to the correct distribution with
sufficiently many samples. The example above shows that
exponentially many samples may be needed in the worst case;
but this should not be a problem in practice. In particular,
the experimental results of Lu and Boutilier (2014) suggest
that the AMP algorithm will perform much better than naı̈ve
rejection sampling. In a real-world implementation, we could
run the AMP algorithm while waiting for the user to reply
to our query, and interrupt the sampling when we need to
produce the next query.

5 Plackett–Luce Models
Another popular ranking model is the Plackett–Luce Model,
introduced by Plackett (1975) and Luce (1977), but going
back as far as Zermelo (1929) and Bradley and Terry (1952).
Xia (2019) provides an excellent overview of recent work on
this model, with a focus on learning its parameters.

In the Plackett–Luce model, each alternative ci is assigned
a weight wi. Given these weights, a ranking is constructed
using the following random process: repeatedly and without
replacement, draw an alternative that is not yet ranked, with
probability proportional to its weight, and place it at the
bottom of the partial ranking. Hence, for the weight vector
w = (w1, . . . , wm), Plackett–Luce induces distribution Dw,
where for each σ ∈ A! with σ = ci1 � · · · � cim we have

Dw(σ) =
wi1

wi2 + · · ·+ wim
· wi2
wi3 + · · ·+ wim

· · · wim
wim

.

A useful property of the Plackett–Luce model is that it
satisfies what is known as Luce’s choice axiom.
Fact 7. Consider a Plackett–Luce modelDw with weights w.
Let A′ ⊆ A. Then the induced distribution on rankings of A′
is a Plackett–Luce model with weights w|A′ .
Luce’s choice axiom gives us a simple way to calculate condi-
tional insertion probabilities. Suppose we have already placed
c1, . . . , ci−1, and now need to place ci. By Luce’s choice ax-
iom, the induced ranking on {c1, . . . , ci} itself follows a
Plackett–Luce distribution. For the i + 1 possible rankings
obtained by inserting ci, we can calculate their probability in
the restricted Plackett–Luce model, and then just normalize
these probabilities to obtain insertion probabilities.

Let us now try to estimate the entropy of Plackett–Luce
models for some classes of weights. Normalize w so that∑m
i=1 wi = 1. We can directly apply Fact 4 to the Plackett–

Luce process, and find that
H(Dw) = H(w) +

∑m
i=1 wiH(Dw|A\{ci}). (3)

For example, from this formula, it immediately follows that if
w = (1, 1, . . . , 1), thenH(Dw) = Θ(m logm) (as expected

6

since Dw is in fact the uniform distribution over A!). It turns
out that the entropy of the Plackett–Luce model stays high
even for weights that are linearly increasing, such as w =
(1, 2, . . . ,m). First, we need a lemma.

Lemma 8. Let w ∈ Rn>0 satisfy maxw 6 C · minw for
some constant C > 1, then H(w) > 1

C log n
C = Ω(log n).

Moreover, for such w, H(Dw) = Ω(m logm).

Proof. Note that 1
Cn ·maxw 6 ‖w‖ 6 nC ·minw. Now

H(w) =
∑
i

wi
‖w‖

log
‖w‖
wi

>
∑
i

minw

nC ·minw
log

1
Cn ·maxw

maxw
=

1

C
log

n

C
,

which proves the first part. Next, note that if w satisfies
the condition of the statement, then so does any vector
obtained from w by deleting elements (since deleting el-
ements decreases the maximum and increases the mini-
mum). Thus, we can apply (3) inductively, and find that
H(Dw) >

∑m
j=1 Ω(log(j)) = Ω(log(m!)).

Theorem 9. Let w = (1, 2, . . . ,m). Then H(Dw) =
Ω(m logm).

Proof. Consider the distribution of the middle half of alterna-
tives. By Luce’s choice axiom, this is a Plackett–Luce distri-
bution on w′ = (d 14me, . . . , b

3
4mc). By Lemma 8 with C =

3, H(µw′) = Ω(m logm). By Fact 5, throwing away infor-
mation decreases entropy, and so H(Dw) > H(Dw′).

The same proof applies to any w that is an arithmetic
progression, since for w = (p+q, p+2q, . . . , p+mq) we can
again consider the middle half w = (p+ 1

4mq, . . . , p+ 3
4mq)

and apply Lemma 8 with C = 3 + 4p/q. Thus, to have any
hope of finding Plackett–Luce models with lower entropy
(and therefore ones that can be elicited faster), we need to use
weights w that grow faster, or in other words are more uneven.
We can show that an exponentially increasing w gives rise to
a Plackett–Luce model with O(m) entropy. Again, we need
to establish some properties of entropy first.

Lemma 10. Consider x = (x1, . . . , xn) ∈ Rn>0 with ‖x‖ =

1, and let x′ = (x2, . . . , xn). Suppose y ∈ (0, 1) is such that
H(x) 6 H(y, 1− y)/y and x1 6 y. Then H(x′) 6 H(x).

Proof. Using the grouping axiom (Fact 4), we have

H(x) = H(x1, 1− x1) + (1− x1)H(x′).

Rearranging,

H(x′) =
H(x)−H(x1, 1− x1)

1− x1
.

The right-hand side is at most H(x) iff H(x) 6 H(x1, 1−
x1)/x1. By our assumption, H(x) 6 H(y, 1 − y)/y. But
the function t 7→ H(t, 1− t)/t is decreasing on (0, 1), so if
x1 6 y1, then H(x) 6 H(y, 1− y)/y 6 H(x1, 1− x1)/x1.
This implies H(x′) 6 H(x), as desired.

Lemma 11. Let φ ∈ (0, 12], and let w = (1, φ, . . . , φj).
Suppose w′ is obtained from w by removing a number of
entries. Then H(w′) 6 H(w).

Proof. From Lemma 2,H(w) 6 H(φ, 1−φ)/(1−φ). Thus,
by Lemma 10, removing any entry whose value is at most
1 − φ from w decreases its entropy. However, since φ 6
1
2 , this is true for all entries of w except 1. Since entropy
decreases, we can repeatedly apply Lemma 2 to find that for
all sublists w′ of w that contain 1, we have H(w′) 6 H(w).

Now suppose that w′ = (φi1 , . . . , φit) is a sublist that
does not contain 1 (so 1 6 i1 < · · · < it 6 j). Notice
that the function H satisfies H(αx) = H(x) for any scalar
α > 0. Hence H(w′) = H(φ−i1w′) 6 H(w), where the
inequality follows because φ−i1w′ is a sublist of w that
contains 1. This proves the statement.

We can now show that the entropy of a Plackett–Luce model
is linear if each weight is at most half the next higher weight.

Theorem 12. Let φ ∈ (0, 12] be a constant, and let w =

(1, φ, . . . , φm−1). Then H(Dw) = O(m).

Proof. From Lemma 2, H(w) 6 Γφ, a constant. From
Lemma 11, all weight vectors that we will encounter in the
Plackett–Luce process will have entropy at most Γφ. Apply-
ing (3) repeatedly, we find H(Dw) 6 Γφ ·m = O(m).

We conjecture that the result remains true for all φ ∈ (0, 1).

6 Experiments
Suppose we need to elicit the preferences of many decision-
makers, all over the same set of alternatives. This will be the
case when our aim is to use a voting rule, or to otherwise
aggregate the preferences. If we imagine that voters log on to
a website to input their preferences, then we can model this as
a sequential process where voters vote one after another.1 If
we plan to elicit rankings via adaptive pairwise comparisons,
the sequential nature allows us to apply the results of this
paper: After a voter finishes submitting preferences, we fit
a preference model (such as Mallows) to the collection of
all votes elicited thus far. When the next voter arrives, we
elicit their vote using Algorithm 1 under the assumption that
this vote is drawn from the model we have learned. In many
cases (especially those with a ground truth), this will be a
reasonable assumption, and we can thus expect to save on
the number of queries by employing this procedure.

How can we estimate the magnitude of the speed-up in
practice? Well, if we are given any dataset consisting of a
collection of preference rankings, we can simulate the se-
quential voting process described above: We place the voters
in a random order, and then elicit their preferences by simu-
lating their responses to pairwise comparison queries, which
we can do because we already know their entire ranking.

We apply this idea to all datasets from PrefLib (Mattei and
Walsh 2013) that contain complete strict rankings. For each
dataset, we remove all votes that contain indifferences, and
use the resulting profile if the number of remaining votes is

1In practice, several voters may submit their votes simultane-
ously, but everything that follows can be adapted to allow for this.

7

Dataset |A| |N | IC Mallows P–L

Dublin North 12 4259 30.98 27.99 28.38
Dublin West 9 4810 19.85 17.64 17.97
Meath 14 3166 38.95 35.56 35.84
Debian 2003 5 399 7.48 5.80 5.81
Debian 2005 7 377 13.50 10.56 10.92
Debian 2006 8 323 16.38 12.34 13.09
Debian 2007 9 335 19.84 17.53 17.24
Debian 2010 5 377 7.46 6.29 5.85
Burlington 2006 6 2603 10.69 7.71 7.92
Burlington 2009 6 2853 10.52 7.53 7.90
AGH 2003 9 146 19.91 17.05 17.75
AGH 2004 7 153 13.64 10.75 10.97
Sushi 10 5000 23.41 20.96 21.05
Aspen Mayor 5 1183 7.05 5.72 5.67
Jester Jokes 19 8169 59.47 55.03 54.55

Table 1: Performance of Algorithm 1 on estimated distribu-
tions on PrefLib datasets, showing the average number of
queries per voter. Each row averages 10 runs with random
voter orderings. IC = Impartial Culture, P–L = Plackett–Luce.

at least 10 · |A| and if |A| > 5. (Thus, we skip small profiles
and profiles with few rankings over large alternative spaces
where we do not have a good opportunity to learn a model.)
This leaves 68 preference profiles. In addition, we use the
Jester dataset (Goldberg et al. 2001) of numerical ratings of
jokes; we take the 19 jokes rated most frequently and obtain
rankings from the 8169 users who rated all of them.

We make 10 copies of each dataset and in each copy we
randomly shuffle its votes. We initialize D as the uniform
distribution over A!. Then we elicit votes using Algorithm 1,
and after each step update D with a maximum likelihood
estimate (MLE) of either a Mallows model or a Plackett–
Luce model.2 We count the average number of queries per
voter needed under either the Mallows or the Plackett–Luce
regime, and compare it to the number of queries used by
Algorithm 1 if run using the uniform distribution (impartial
culture) throughout. For Plackett–Luce, since estimation of
the MLE is very slow, we only elicit the first 250 votes in the
first shuffle for our experiments. In each run, we elicit the
first 10 voters using the uniform distribution and only start
using the learned model for the 11th voter onwards, to avoid
overfitting at the beginning.

Table 1 shows results for a selection of datasets. In all
datasets, Mallows and Plackett–Luce outperform impartial
culture. The two types of models perform roughly similarly
well, though the Plackett–Luce data need to be interpreted
with some care, since these are based on fewer data points
due to computational limitations. Appendix A shows results
for all datasets from PrefLib. There, we also give the standard
deviation of the number of queries asked under Impartial Cul-

2We use Gurobi to calculate the Kemeny ranking needed for
a Mallows MLE (Young 1995) using a standard ILP formulation
(Conitzer, Davenport, and Kalagnanam 2006), and scipy to calculate
the best-fit φ parameter. We calculate Plackett–Luce MLEs using
the choix package (https://github.com/lucasmaystre/choix).

0%

20%

40%

60%

80%

100%

Burlington‘09 Aspen Mayor AGH‘03 Sushi Jester

Impartial Culture Mallows Plackett–Luce

Figure 3: Chart of selected datasets, normalizing the average
queries asked under impartial culture to 100%.

ture and under Mallows. We find that the number of queries
varies more across voters under the Mallows scheme; intu-
itively, some voters are unlucky and have preferences far
away from the reference ranking, and those voters need to
answer many queries.

Figure 3 gives another view of the data, focusing on 5
representative datasets and showing the improvement com-
pared to impartial culture, which we normalize to 100%. As
this figure makes clear, our approach is more successful on
some datasets than others, but this is to be expected. Indeed,
real preferences and opinions do not necessarily conform to
theoretical noise models (Mao, Procaccia, and Chen 2013);
the better the fit, the greater the improvement we would ex-
pect from using our approach. While none of the datasets we
consider has a ground truth, we would expect some datasets
to exhibit a greater degree of consensus among voters and
less polarization. Such datasets would have a good fit to
a Mallows model with a low dispersion parameter or to a
Plackett–Luce model with fast-increasing weights, and so, by
our theoretical analysis, would lead to low query complexity.
In Figure 4, we show the relationship between the dispersion
of the MLE of Mallows and the number of queries we asked
when eliciting based on the Mallows model. As expected,
these are positively correlated.

7 Discussion
Our work draws connections between preference elicitation,
average-case sorting, and learning to rank. Using our method,
improvements in the latter fields can be used directly to im-
prove preference elicitation. In particular, as we develop bet-
ter ways to learn and predict users’ preferences, preference
elicitation can directly benefit from such advancements.

With any system that includes predictions about the user,
there are worries that the user would “go along” with the
prediction to save effort. In our case, it could become apparent
from the queries what preferences the system is expecting us
to have (e.g., because we insert alternatives in order of the
learned reference ranking), and this could bias respondents to
report preferences that are closer to the reference ranking than
they would otherwise have reported. It would be worthwhile
to study whether this effect occurs in a lab study.

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Average number of queries per alternative

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Figure 4: A scatterplot, where each dataset is shown as a
point, where the vertical axis corresponds to the dispersion
parameter φ of the MLE of a Mallows model fit to the entire
dataset, and the horizontal axis shows the average number of
queries per alternative that were asked during elicitation. The
least-squares fit gives an R2 of 0.447.

Technically, some open questions are raised by our work,
such as a more complete characterization of the entropy of the
Plackett–Luce model as a function of the weight vector, and
the extension of our method to other preference distributions.

References
AbouEisha, H.; Chikalov, I.; and Moshkov, M. 2016. De-
cision trees with minimum average depth for sorting eight
elements. Discrete Applied Mathematics 204: 203–207.

Ash, R. B. 1965. Information Theory. Interscience Tracts in
Pure and Applied Mathematics. John Wiley & Sons.

Awasthi, P.; Blum, A.; Sheffet, O.; and Vijayaraghavan, A.
2014. Learning mixtures of ranking models. In Advances in
Neural Information Processing Systems, 2609–2617.

Boutilier, C.; and Rosenschein, J. 2016. Incomplete Informa-
tion and Communication in Voting. In Brandt, F.; Conitzer,
V.; Endriss, U.; Lang, J.; and Procaccia, A. D., eds., Hand-
book of Computational Social Choice, chapter 10. Cambridge
University Press.

Bradley, R. A.; and Terry, M. E. 1952. Rank analysis of in-
complete block designs: I. The method of paired comparisons.
Biometrika 39(3/4): 324–345.

Catelan, M. 2012. Models for paired comparison data: A
review with emphasis on dependent data. Statistical Science
27(3): 412–433.

Césary, Y. 1968. Questionnaire, codage et tris.

Chierichetti, F.; Dasgupta, A.; Kumar, R.; and Lattanzi, S.
2015. On learning mixture models for permutations. In
Proceedings of the 2015 Conference on Innovations in Theo-
retical Computer Science (ITCS), 85–92.

Conitzer, V. 2009. Eliciting single-peaked preferences us-
ing comparison queries. Journal of Artificial Intelligence
Research 35: 161–191.

Conitzer, V.; Davenport, A.; and Kalagnanam, J. 2006. Im-
proved Bounds for Computing Kemeny Rankings. In Pro-
ceedings of the 21st National Conference on Artificial Intelli-
gence (AAAI), 620–627.

Conitzer, V.; and Sandholm, T. 2005. Communication Com-
plexity of Common Voting Rules. In Proceedings of the
6th ACM Conference on Electronic Commerce (ACM EC),
78–87.

Dey, P.; and Misra, N. 2016a. Elicitation for Preferences Sin-
gle Peaked on Trees. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI), 215–221.

Dey, P.; and Misra, N. 2016b. Preference Elicitation for
Single Crossing Domain. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
222–228.

Doignon, J.-P.; Pekeč, A.; and Regenwetter, M. 2004. The
repeated insertion model for rankings: Missing link between
two subset choice models. Psychometrika 69(1): 33–54.

Elkind, E.; Lackner, M.; and Peters, D. 2017. Structured
Preferences. In Endriss, U., ed., Trends in Computational
Social Choice, chapter 10, 187–207. AI Access.

Estivill-Castro, V.; and Wood, D. 1992. A survey of adaptive
sorting algorithms. ACM Computing Surveys (CSUR) 24(4):
441–476.

Fligner, M. A.; and Verducci, J. S. 1986. Distance based
ranking models. Journal of the Royal Statistical Society:
Series B 48(3): 359–369.

Freedman, R.; Borg, J. S.; Sinnott-Armstrong, W.; Dickerson,
J. P.; and Conitzer, V. 2020. Adapting a kidney exchange
algorithm to align with human values. Artificial Intelligence
283.

Goldberg, K.; Roeder, T.; Gupta, D.; and Perkins, C. 2001.
Eigentaste: A constant time collaborative filtering algorithm.
information Retrieval 4(2): 133–151.

Jamieson, K. G.; and Nowak, R. 2011. Active ranking using
pairwise comparisons. In Advances in Neural Information
Processing Systems, 2240–2248.

Kahng, A.; Lee, M. K.; Noothigattu, R.; Procaccia, A.; and
Psomas, C.-A. 2019. Statistical foundations of virtual democ-
racy. In Proceedings of the 36th International Conference on
Machine Learning (ICML), 3173–3182.

Kenig, B.; Ilijasic, L.; Ping, H.; Kimelfeld, B.; and Stoy-
anovich, J. 2018. Probabilistic Inference Over Repeated In-
sertion Models. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI), 1897–1904.

Knuth, D. E. 1998. The Art of Computer Programming.
Volume 3: Sorting and Searching. Addison–Wesley.

Kollár, L. 1986. Optimal sorting of seven element sets. In
International Symposium on Mathematical Foundations of
Computer Science, 449–457. Springer.

9

Lee, M. K.; Kusbit, D.; Kahng, A.; Kim, J. T.; Yuan, X.;
Chan, A.; See, D.; Noothigattu, R.; Lee, S.; Psomas, A.; et al.
2019. WeBuildAI: Participatory framework for algorithmic
governance. Proceedings of the ACM on Human-Computer
Interaction CSCW: 1–35.
Liu, A.; and Moitra, A. 2018. Efficiently learning mixtures of
Mallows models. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), 627–638. IEEE.
Lu, T.; and Boutilier, C. 2014. Effective sampling and learn-
ing for Mallows models with pairwise-preference data. Jour-
nal of Machine Learning Research 15: 3783–3829.
Luce, R. D. 1977. The choice axiom after twenty years.
Journal of Mathematical Psychology 15(3): 215–233.
Mallows, C. L. 1957. Non-Null Ranking Models. Biometrika
44(1/2): 114–130.
Mao, A.; Procaccia, A. D.; and Chen, Y. 2013. Better Human
Computation Through Principled Voting. In Proceedings of
the 27th AAAI Conference on Artificial Intelligence (AAAI),
1142–1148.
Marden, J. I. 1996. Analyzing and Modeling Rank Data.
CRC Press.
Mattei, N.; and Walsh, T. 2013. PrefLib: A Library for
Preference Data. In Proceedings of the 3rd International
Conference on Algorithmic Decision Theory (ADT), 259–
270.
Moran, S.; and Yehudayoff, A. 2016. A note on average-case
sorting. Order 33(1): 23–28.
Noothigattu, R.; Gaikwad, S.; Awad, E.; Dsouza, S.; Rahwan,
I.; Ravikumar, P.; and Procaccia, A. 2018. A Voting-Based
System for Ethical Decision Making. Proceedings of the
32nd AAAI Conference on Artificial Intelligence (AAAI) 1587–
1594.
Plackett, R. L. 1975. The Analysis of Permutations. Journal
of the Royal Statistical Society. Series C (Applied Statistics)
24(2): 193–202.
Procaccia, A. 2008. A Note on the Query Complexity of the
Condorcet Winner. Information Processing Letters 108(6):
390–393.
Regenwetter, M.; Grofman, B.; Marley, A. A. J.; and Tsetlin,
I. M. 2006. Behavioral Social Choice: Probabilistic Models,
Statistical Inference, and Applications. Cambridge University
Press.
Shannon, C. E. 1948. A mathematical theory of communica-
tion. Bell System Technical Journal 27(3): 379–423.
Xia, L. 2019. Learning and decision-making from rank data.
Synthesis Lectures on Artificial Intelligence and Machine
Learning 13(1): 1–159.
Young, H. P. 1995. Optimal Voting Rules. Journal of Eco-
nomic Perspectives 9(1): 51–64.
Zermelo, E. 1929. Die Berechnung der Turnier-Ergebnisse
als ein Maximumproblem der Wahrscheinlichkeitsrechnung.
Mathematische Zeitschrift 29(1): 436–460.

10

A Data on all PrefLib datasets
Here, we give a expanded version of Table 1, showing results for all PrefLib datasets meeting our criteria. In the table, datasets
are identified by abbreviated PrefLib filenames (omitting redundant zeros). We also show standard deviations (“±0.80”) after
averages obtained for Impartial Culture and Mallows. (For Plackett–Luce, we do not show standard deviations because this data
is based on small runs only.) We see that the variance for elicitation using a Mallows prior is consistently higher than when using
Impartial Culture. Intuitively, this is because some votes are far away from the predicted reference ranking, and those voters will
need to answer more queries. One the other hand, for Impartial Culture, each candidate insertion runs a balanced binary search
which always induces roughly the same number of queries.

Name Filename |A| |N | Impartial Culture Mallows Plackett–Luce

Dublin North ED-01-01.toc 12 4259 30.98 ±0.99 27.99 ±2.44 1.67
Dublin West ED-01-02.toc 9 4810 19.85 ±0.64 17.64 ±1.80 0.93
Meath ED-01-03.toc 14 3166 38.95 ±1.05 35.56 ±3.22 2.83
Debian 2003 ED-02-02.toc 5 399 7.48 ±0.50 5.80 ±1.26 3.64
Debian 2005 ED-02-03.toc 7 377 13.50 ±0.50 10.56 ±2.43 7.24
Debian 2006 ED-02-04.toc 8 323 16.38 ±0.48 12.34 ±3.31 10.13
Debian 2007 ED-02-05.toc 9 335 19.84 ±0.66 17.53 ±2.12 12.87
Debian 2010 ED-02-06.toc 5 377 7.46 ±0.50 6.29 ±1.71 3.88
Burlington 2006 ED-05-01.toc 6 2603 10.69 ±0.46 7.71 ±1.83 0.76
Burlington 2009 ED-05-02.toc 6 2853 10.52 ±0.50 7.53 ±1.29 0.69
ERS ED-07-09.toc 13 184 35.00 ±1.05 33.22 ±1.68 33.13
ERS ED-07-10.toc 6 375 10.61 ±0.49 9.56 ±0.82 6.43
ERS ED-07-11.toc 7 333 13.52 ±0.50 12.07 ±1.73 8.81
ERS ED-07-13.toc 5 1809 7.63 ±0.48 6.70 ±1.11 0.93
ERS ED-07-14.toc 8 271 16.55 ±0.50 15.32 ±1.39 14.08
ERS ED-07-26.toc 5 50 7.61 ±0.49 7.19 ±0.85 7.24
ERS ED-07-31.toc 10 626 23.32 ±0.80 21.28 ±2.02 8.47
ERS ED-07-32.toc 13 149 34.98 ±1.13 32.61 ±3.00 32.94
ERS ED-07-33.toc 16 320 46.64 ±1.15 42.92 ±3.93 33.84
ERS ED-07-36.toc 10 131 23.55 ±0.85 21.95 ±1.63 21.95
ERS ED-07-37.toc 10 175 23.55 ±0.83 21.83 ±1.63 22.05
ERS ED-07-38.toc 11 163 27.06 ±0.98 25.13 ±2.11 25.56
ERS ED-07-42.toc 7 71 13.66 ±0.47 12.53 ±1.55 12.82
ERS ED-07-43.toc 7 298 13.56 ±0.50 12.38 ±1.07 10.44
ERS ED-07-44.toc 9 170 20.00 ±0.67 18.68 ±1.38 18.72
ERS ED-07-57.toc 8 229 16.61 ±0.49 14.70 ±2.18 14.79
ERS ED-07-59.toc 5 207 7.56 ±0.50 6.92 ±0.84 6.93
ERS ED-07-62.toc 5 130 7.64 ±0.48 6.78 ±1.50 6.72
ERS ED-07-67.toc 7 215 13.58 ±0.49 12.20 ±1.39 12.39
ERS ED-07-68.toc 11 217 26.87 ±0.92 24.60 ±2.25 24.51
ERS ED-07-71.toc 7 222 13.55 ±0.50 12.12 ±1.47 12.04
ERS ED-07-73.toc 5 139 7.49 ±0.50 6.92 ±0.92 6.88
ERS ED-07-76.toc 5 110 7.53 ±0.50 6.84 ±1.25 6.83
ERS ED-07-77.toc 12 1312 30.78 ±0.99 27.98 ±2.48 5.32
ERS ED-07-83.toc 7 160 13.58 ±0.49 12.58 ±0.99 12.49
ERS ED-07-84.toc 6 169 10.59 ±0.49 9.72 ±0.86 9.69
Glasgow ED-08-01.toc 9 593 19.90 ±0.64 18.19 ±1.46 7.74
Glasgow ED-08-02.toc 11 535 26.96 ±0.98 24.65 ±2.72 11.69
Glasgow ED-08-03.toc 10 363 23.56 ±0.86 21.67 ±2.10 15.08
Glasgow ED-08-04.toc 11 419 27.00 ±0.98 24.81 ±2.44 15.00
Glasgow ED-08-05.toc 10 718 23.30 ±0.89 21.45 ±2.20 7.49
Glasgow ED-08-06.toc 10 556 23.42 ±0.87 21.22 ±2.47 9.61
Glasgow ED-08-07.toc 13 284 34.95 ±1.08 31.80 ±3.30 28.30
Glasgow ED-08-08.toc 10 559 23.34 ±0.89 20.98 ±2.33 9.65
Glasgow ED-08-09.toc 11 411 27.11 ±0.96 24.74 ±2.74 15.19
Glasgow ED-08-10.toc 9 818 19.82 ±0.68 17.98 ±1.99 5.54

11

Name Filename |A| |N | Impartial Culture Mallows Plackett–Luce

Glasgow ED-08-11.toc 10 630 23.53 ±0.80 21.45 ±1.74 8.47
Glasgow ED-08-12.toc 8 1040 16.57 ±0.49 14.86 ±1.41 3.61
Glasgow ED-08-13.toc 11 494 26.91 ±0.97 24.84 ±2.30 12.68
Glasgow ED-08-14.toc 8 1071 16.61 ±0.49 14.91 ±1.26 3.52
Glasgow ED-08-15.toc 9 648 19.83 ±0.67 18.06 ±1.90 7.04
Glasgow ED-08-16.toc 10 690 23.33 ±0.89 20.94 ±2.63 7.79
Glasgow ED-08-17.toc 9 962 19.77 ±0.67 17.87 ±1.81 4.66
Glasgow ED-08-18.toc 9 767 19.90 ±0.65 18.37 ±1.55 6.05
Glasgow ED-08-19.toc 11 405 26.90 ±0.95 24.49 ±2.91 15.15
Glasgow ED-08-20.toc 9 726 19.84 ±0.71 18.28 ±1.67 6.35
Glasgow ED-08-21.toc 10 365 23.52 ±0.86 21.17 ±2.38 14.83
AGH ED-09-01.soc 9 146 19.91 ±0.59 17.05 ±3.13 17.75
AGH ED-09-01.soc 9 146 19.90 ±0.58 17.04 ±3.11 17.75
AGH ED-09-02.soc 7 153 13.64 ±0.48 10.75 ±2.71 10.86
AGH ED-09-02.soc 7 153 13.67 ±0.47 10.76 ±2.71 11.07
NES ED-13-07.toc 6 100 10.59 ±0.49 9.70 ±1.16 9.66
NES ED-13-13.toc 6 105 10.52 ±0.50 9.48 ±1.47 9.41
NES ED-13-14.toc 6 100 10.46 ±0.50 8.38 ±2.54 8.84
NES ED-13-15.toc 5 156 7.42 ±0.49 6.40 ±1.92 6.44
NES ED-13-17.toc 5 290 7.61 ±0.49 6.91 ±0.94 6.11
Sushi ED-14-01.soc 10 5000 23.41 ±0.82 20.96 ±1.97 1.05
Aspen ED-16-02.toc 5 1183 7.05 ±0.22 5.72 ±0.95 1.20

12

