
District-Fair Participatory Budgeting

D. Ellis Hershkowitz,1 Anson Kahng,1 Dominik Peters,2 Ariel D. Procaccia2

1 Carnegie Mellon University
2 Harvard University

dhershko@cs.cmu.edu, akahng@cs.cmu.edu, dpeters@seas.harvard.edu, arielpro@seas.harvard.edu

Abstract

Participatory budgeting is a method used by city governments
to select public projects to fund based on residents’ votes.
Many cities use participatory budgeting at a district level.
Typically, a budget is divided among districts proportionally
to their population, and each district holds an election over
local projects and then uses its budget to fund the projects
most preferred by its voters. However, district-level partic-
ipatory budgeting can yield poor social welfare because it
does not necessarily fund projects supported across multiple
districts. On the other hand, decision making that only takes
global social welfare into account can be unfair to districts:
A social-welfare-maximizing solution might not fund any of
the projects preferred by a district, despite the fact that its
constituents pay taxes to the city. Thus, we study how to fairly
maximize social welfare in a participatory budgeting setting
with a single city-wide election. We propose a notion of fair-
ness that guarantees each district at least as much welfare as it
would have received in a district-level election. We show that,
although optimizing social welfare subject to this notion of
fairness is NP-hard, we can efficiently construct a lottery over
welfare-optimal outcomes that is fair in expectation. More-
over, we show that, when we are allowed to slightly relax
fairness, we can efficiently compute a fair solution that is
welfare-maximizing, but which may overspend the budget.

1 Introduction
Participatory budgeting is a democratic approach to the
allocation of public funds. In the participatory budgeting
paradigm, city governments fund public projects based
on constituents’ votes. In contrast to budget committees,
which operate behind closed doors, participatory budgeting
promises to directly take the voices of the community into
account. Since 2014, Paris has allocated more than e100
million per year using constituents’ votes. Many other cities
around the globe — including Porto Alegre, New York City,
Boston, Chicago, San Francisco, Lisbon, Madrid, Seoul,
Chengdu, and Toronto — employ participatory budgeting
(Cabannes 2004, 2014; Aziz and Shah 2020).

Typically, participatory budgeting is used at a district-level.
Each district of the city is allotted a budget proportional to its
size. Constituents living in a given district vote on projects
such as park, road or school improvements local to the district,
using some version of approval voting. Then, the district’s
budget is spent according to these votes. For instance, in

Paris a participatory budget is split between 20 districts (a.k.a.
arrondissements), constituents vote and then each district runs
a greedy algorithm to maximize the total social welfare — i.e.,
the total number of votes — of the funded projects.1

Having separate elections for each district leads to several
problems. Foremost, projects that are not local to a single
district cannot be accommodated. For this reason, Paris must
run an additional election for city-wide projects. However,
this splits the available budget for participatory budgeting
between district-level and city-wide elections in an ad hoc
manner, which is not informed by votes.2 Further, people
may have interests in multiple districts, such as those who
live and work in different districts. For this reason, Paris has
to allow residents to choose the district in which they vote.
Lastly, a project that only benefits voters at the edge of a
district may receive a number of votes that is not proportional
to the number of potential beneficiaries.

A simple solution to these problems is a single city-wide
election. However, such a voting scheme may result in unfair
outcomes. For instance, if votes are aggregated to maximize
social welfare (i.e., as is presently done in Paris on the district
level) then it is possible that some districts might have none
of their preferred projects funded despite deserving a large
proportion of the budget. Such outcomes are likely when
some districts are much more populous than others, in which
case projects local to small districts cannot gather sufficiently
many votes. Ideally, we would like a system that balances
the tradeoff between social welfare and fairness without an
arbitrary, pre-determined split between district-specific and
city-wide funding. This motivates our central research ques-
tion:

How can we maximize social welfare in a way that is
fair to all districts?

Intuitively, a solution that is fair to all districts should
somehow represent each districts’ constituents. One way to
formalize this intuition is to stipulate that no district should
be able to obtain higher utility by purchasing projects with its
proportional share of the budget. In particular, each district
should receive at least as much utility as it would have re-

1More specifically, projects are selected in descending order of
vote count until the budget runs out.

2In 2016, this split in Paris was e64.3 million for district elec-
tions and e30 million for city-wide elections (Cabannes 2017).



ceived had it held a district-level election with its proportional
share of the budget. We call this guarantee district fairness.3
A district-fair allocation of funds always exists, since an out-
come obtained by holding separate district elections is district
fair. We aim to find district-fair outcomes that maximize so-
cial welfare. Such an outcome will be a Pareto-improvement
on the status quo of district-level participatory budgeting, in
the sense that each district’s welfare has increased.

Our Results. In our model we think of (utilitarian) social
welfare as induced by a given value assigned by each district
to each project; our goal is to maximize the sum of these
values over districts and selected projects. Note that this
model captures the setting of approval votes, where each
voter decides on a collection of projects to vote for; the social
welfare of a district for a project would then be interpreted as
the project’s overall number of approvals from voters in that
district. This observation is important because some variant
of approval voting is used in most real-world participatory
budgeting elections, including in Paris.

We also assume that each district is endowed with an ar-
bitrary fraction of the total budget. Clearly this captures, as
a special case, the common setting where the endowment of
each district is proportional to its size. Moreover, the reason-
ing behind the existence of district-fair outcomes immediately
applies to the more general setting.

We first show that it is NP-complete to compute an allo-
cation that is welfare-maximizing subject to district fairness.
This result holds even for the case of approval votes and pro-
portional budgets, and therefore the generality of our model
only strengthens our positive (algorithmic) results without
weakening the main negative (hardness) result. We also show
that the natural linear program (LP) formulation of the prob-
lem has an unbounded integrality gap. Since participatory
budgeting elections can be large — hundreds of projects are
proposed and hundreds of thousands of votes are cast in
Paris — computational complexity can become a problem
in practice. Thus, we seek polynomial-time solutions with
reasonable approximation guarantees.

There are several ways one might relax our problem or
trade-off between parameters in our problem. In this work,
we design polynomial-time algorithms that work when we
relax or approximate some of the following: (1) the achieved
social welfare; (2) the spent budget; (3) the fairness of the
solution; and (4) the absence of randomization.

We first relax (4) by considering distributions over out-
comes, a.k.a. “lotteries”. We show that using a multiplicative-
weights-type algorithm, one can efficiently find a lottery that
guarantees budget feasibility (ex post), optimum social wel-
fare (ex post), and district-fairness in expectation up to an ε
(ex ante). Since the fairness guarantee only holds in expec-
tation, some districts may be underserved once the lottery
is realized. However, since participatory budgeting typically
happens repeatedly (e.g., annually), such districts could be
compensated in the next election, for example by increasing
their share of the budget in the next year.

3Our notion of district fairness can be thought of as a form of
individual rationality where every district is seen as an “individual.”

We next consider what sort of deterministic guarantees
are achievable. To this end, we show how to use techniques
from submodular optimization to find an outcome that is
district fair “up to one project” and which achieves optimum
social welfare with the caveat that the outcome may need to
spend 64.7% more money than was originally budgeted. We
also give a randomized algorithm with the same guarantees
but which overshoots the budget by only a 1/e (≈ 37%)
fraction with high probability. Additionally, as a corollary
of these results, we give both deterministic and randomized
algorithms that achieve weaker utility and fairness guarantees
but do not overspend the available budget.

Related Work. The social choice literature on participa-
tory budgeting has both studied the voting rules used in prac-
tice, and designed original voting schemes. Goel et al. (2019)
study knapsack voting, used for example in Madrid (Ca-
bannes 2014), where voters cannot approve more projects
than fit into the budget constraint. Talmon and Faliszewski
(2019) axiomatically study a variety of approval-based rules
that maximize social welfare, both greedy and optimal ones.

The unit cost case (where all projects have the same cost)
is best-studied, as multi-winner or committee elections (Fal-
iszewski et al. 2017). For example, this setting models the
election of a parliament. A main focus of that literature is
the computational complexity of the winner determination
of various voting rules. More relevant for our purposes are
fairness axioms used in this setting. The most prominent such
axioms are variants of justified representation (Aziz et al.
2017). These axioms are formulated for approval votes, and
require that arbitrary subgroups of the electorate need to be
represented in the outcome if they are cohesive, in the sense
that there are a sufficient number of projects that are approved
by every member of the subgroup. Several voting rules are
known to satisfy these conditions, including Phragmén’s rule
and Thiele’s Proportional Approval Voting (Janson 2016;
Sánchez-Fernández et al. 2017; Brill et al. 2017; Aziz et al.
2018). By contrast, district-fairness gives guarantees to a spe-
cific selection of subgroups (i.e., disjoint districts) but does
not require these groups to be cohesive.

A very strong fairness axiom that is sometimes discussed
in the context of committee elections and participatory bud-
geting is the core (Fain, Goel, and Munagala 2016; Aziz et al.
2017; Fain, Munagala, and Shah 2018). It insists that every
subgroup (or coalition) must be represented (in the sense
that it should not be possible for the subgroup to propose an
alternative use of their proportional share of the budget that
each group member prefers to the chosen outcome), without a
cohesiveness requirement. For approval-based elections, it is
a major open question whether there always exists a core out-
come. For general additive utilities, there are instance where
no core outcome exists (Fain, Munagala, and Shah 2018),
but several researchers have proved the existence of approxi-
mations to the core (Jiang, Munagala, and Wang 2020; Fain,
Munagala, and Shah 2018; Cheng et al. 2019; Peters and
Skowron 2020). A district-fair outcome is, in a sense, in the
core: no subgroup which coincides with a district can block
the outcome. Thus, our work shows that for general utilities, a
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core-like outcome exists if we only allow a specific collection
of (disjoint) coalitions to block.

The problem of knapsack sharing (Brown 1979) has a
similar motivation to our problem. The knapsack sharing
problem supposes that the projects are separated into districts
(instead of, in our case, the voters), and each project comes
with a cost and a value. The aim is to find a budget-feasible
set of projects that maximize the minimum total value of
the projects in a district. Note that in this formulation all
districts are treated equally (there is no weighting by district
population) and that there is no notion of the value of a
project to a specific district. The literature contains a variety
of algorithms for solving this NP-hard problem (e.g., Yamada
and Futakawa 1997; Yamada, Futakawa, and Kataoka 1998;
Hifi, M’Halla, and Sadfi 2005; Fujimoto and Yamada 2006).

2 Formal Problem, Notation and Definitions
Formally, the setting we consider is as follows. We are
given a budget b ∈ Z>1. There are m possible projects
P = {x1, . . . , xm} with associated nonnegative costs c :
P → Z>0. We refer to a subset W ⊆ P as an outcome. The
cost of an outcome W is c(W ) :=

∑
xj∈W c(xj). We say

that a subset W is budget-feasible if c(W ) 6 b.
There are k districts d1, . . . , dk. The social welfare (or

utility) that project xj provides to district di is swi(xj) ∈
Z>0. We assume that utilities are additive; i.e., the utility that
an outcome W ⊆ P provides to district di is swi(W ) :=∑

xj∈W swi(xj). Furthermore, the total social welfare of
W ⊆ P is sw(W ) :=

∑
i∈[k] swi(W ).

Throughout this work we assume that sw(xj) and c(xj)
are both poly(k,m) for each j. (A function f is poly(x, y) if
there exists a k > 0 such that f = O((xy)k).) We can relax
this assumption using well-known bucketing techniques at
the cost of an arbitrarily small ε in the guarantees of our
algorithms. See the fully polynomial time approximation
scheme for the knapsack problem (Chekuri and Khanna 2005)
for an example of this technique.

To model the participatory budgeting setting, we assume
that each district deserves some portion of the budget and, in
turn, deserves at least the utility it could achieve if it spent
its budget on its most preferred projects. Specifically, each
district di deserves some budget bi > 0 where

∑
i bi = b.

District di deserves utility fi := swi(Wi), where Wi :=
arg maxW :c(W )6bi swi(W ) is di’s favorite outcome costing
at most bi.

Definition 1 (District-Fair Outcome). We say that an out-
come W is district-fair (DF) if swi(W ) > fi for all i.

Computing fi is precisely an instance of the knapsack prob-
lem; by our assumption that utilities and costs are polynomi-
ally bounded, this knapsack instance is solvable in polyno-
mial time (Chekuri and Khanna 2005). Thus, we will assume
fi is known.

Note that the outcome
⋃

iWi is both budget-feasible and
district-fair, so an outcome with both properties always exists.
Our goal is to find a budget-feasible and district-fair outcome
W which maximizes social welfare sw(W ). We call our
problem district-fair welfare maximization. Throughout this

paper, we let W ∗ := arg maxW sw(W ) be some optimal
solution, where the argmax is taken over budget-feasible and
district-fair solutions. Similarly, we let OPT := sw(W ∗).

We consider two relaxations of district fairness. The first
relaxation extends the concept to lotteries over outcomes.
We require that each district only needs to be approximately
satisfied in expectation. We give an efficient algorithm to
compute optimal district-fair lotteries in Section 4.

Definition 2 (ε-District-Fair Lottery). Given ε > 0,
we say that a probability distribution W over outcomes
of cost at most b is an ε-district-fair (ε-DF) lottery if
EW∼W [swi(W )] > fi − ε for every district di.

The second relaxation is district-fairness up to one good
(DF1). Intuitively, an allocation is DF1 if each district would
be satisfied if one additional project was funded.

Definition 3 (DF1). An outcome W is DF1 if for every di,

swi(W ) + max
xj∈(P\W )

swi(xj) > fi.

DF1 is inspired by the well-studied notion of EF1 (envy-
freeness up to one good) from the private goods setting (Bud-
ish 2011). This relaxation is mild, and unlike relaxations
that require district-fairness to hold on average over districts,
it is a uniform relaxation which provides guarantees for all
districts. We study DF1 outcomes in Section 5.

3 NP-Hardness
Our first result shows that the problem of optimizing social
welfare subject to district-fairness is NP-hard even in the
restricted setting of approval votes (i.e., voters provide binary
yes/no opinions over projects) and budgets proportional to
district sizes. In fact, our problem remains NP-hard in this
restricted setting even when each district contains only one
voter and projects have unit costs.

We reduce from exact 3-cover (X3C), which is known to
be NP-hard (Garey and Johnson 1979). The idea of our re-
duction is as follows. Given an instance of X3C, we define
a district for each of the elements in the universe, and then
add a large amount of dummy districts. We then define a
project for each set in our problem instance which gives one
utility to the districts corresponding to the elements which it
covers. We also define a large set of dummy projects that are
approved by all dummy districts. We then ask whether there
exists a district-fair outcome that attains high social welfare.
An optimal solution for our district-fair welfare maximization
problem, then, will first try to solve the X3C instance as effi-
ciently as possible so that it can spend as much of its budget
as possible on high-utility dummy projects. We formalize
this idea in the following proof.

Theorem 1. It is NP-complete to decide, given an instance of
district-fair welfare maximization and an integer M , whether
there exists a budget-feasible and district-fair outcome W
such that sw(W ) > M . NP-hardness holds even in the re-
stricted setting of approval votes and budgets proportional to
district sizes, and when each district contains one voter and
all projects have unit cost.
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Proof. The stated problem is trivially in NP. For NP-hardness
we reduce from X3C. In an instance of X3C, we are given a
universe U = {e1, . . . , e3n} and a collection {S1, . . . , Sm}
of 3-element subsets of U . It is a “yes”-instance if there exists
a selection Sj1 , . . . , Sjn such that Sj1 ∪ · · · ∪ Sjn = U .

Given an instance of X3C, we construct an instance of
our problem as follows. Let M = 3mn + 1. We have
3n + M districts, D ∪ D′. Let D = {d1, . . . , d3n}, where
each di in D corresponds to element ei. Additionally, let
D′ = {d3n+1, . . . d3n+M}, where each di ∈ D′ is a dummy
district. We have m + 2n + M projects, X ∪ X ′. Let
X = {x1, . . . , xm}, where xj ∈ X corresponds to set Sj ,
and let X ′ = {xm+1, . . . , xm+2n+M}, where each xj ∈M ′
is a dummy project. Utilities are as follows: every dummy
district approves every dummy project, so swi(xj) = 1 for
each i > 3n+1 and xj ∈ X ′. Also, each non-dummy district
approves of non-dummy sets to reflect the structure of the
X3C instance: that is, for each i 6 3n we have swi(xj) = 1
if xj ∈ X and ei ∈ Sj . All other utilities are 0: that is,
swi(xj) = 0 for all other i and j. Each project has cost 1,
and our budget is b = 3n+M . We assume all districts con-
tain 1 voter, so bi = 1 for every district di. Clearly, fi = 1 for
each i. We ask whether there exists a district fair committee
with social welfare at least 3n+ (2n+M)M .

If there exists a solution Sj1 , . . . , Sjn to the X3C instance,
then W = {xj1 , . . . , xjn} ∪ X ′ is an outcome with cost
n + (2n + M) = 3n + M = b. Clearly, W is district-fair,
and its social welfare is 3n+ (2n+M)M , so this is a “yes”-
instance for the district-fair welfare-maximization problem.

Conversely suppose that there exists a district-fair budget-
feasible outcome W with social welfare at least 3n+ (2n+
M)M . Note that all projects in X together give overall wel-
fare at most 3mn < M . Thus, we must have X ′ ⊆W since
otherwise the total welfare of W is less than (2n + M)M .
Hence |X ∩ W | 6 n. By district-fairness, for each i =
1, . . . , 3n, there must be some xj ∈ W such that ei ∈ Sj .
These two facts together imply that {Sj : xj ∈ W} is a
solution to the X3C instance.

This NP-hardness result holds even if each district consists
of a single voter and all projects have unit cost. As we show
in Appendix A in the supplementary material, this special
case admits a polynomial-time 1

2 -approximation. Our algo-
rithm is based on a greedy algorithm and a combinatorial
argument which “matches away” high utility goods of the op-
timal solution. One might hope to achieve an approximation
result for the general case. A natural approach would be to
round the optimal solution to the LP relaxation of the natural
ILP formulation of our problem. However, a simple example
in Appendix B in the supplementary material shows that the
integrality gap of that formulation is unboundedly large, so
this approach will not work.

4 Optimal District-Fair Lottery
In this section, we allow randomness and consider lotteries
over outcomes. Our main result for the lottery setting is
an ε-DF lottery which always achieves the optimal social
welfare subject to district fairness. The welfare guarantee
is ex post, so that every outcome in the lottery’s support

achieves optimal welfare. For the remainder of this section
we let ε > 0 refer to the ε in the ε-DF definition.

Theorem 2. There is an algorithm which, in poly
(
m, k, 1ε

)
time, returns an ε-DF lotteryW such that for all outcomes
W in the support ofW , we have sw(W ) > OPT.

The intuition for our algorithm is as follows. We begin by
showing that our problem is polynomial-time solvable if the
number of districts k is constant. Such an algorithm is useful
because we can artificially make the number of districts con-
stant by convexly combining all districts into a single district
d̃. We can, then, compute as our solution a utility-optimal out-
come W which is fair for d̃ but not necessarily fair for each
di individually. However, we can bias our solution to try and
satisfy fairness for certain districts by increasing the weights
of these districts in our convex combination. Thus, if W is
not fair for di, we might naturally increase the proportional
share of di in the convex combination and recompute W in
the hopes that the new outcome we compute will be fair for
di. We obtain our lottery by repeatedly increasing the weight
of districts that do not have their fairness constraint satis-
fied, and then take a uniform distribution over the resulting
outcomes.

Turning to the proof, we begin by describing how to solve
our problem in polynomial time when k is a constant. Our al-
gorithm will solve the natural dynamic program (DP). Specif-
ically, consider the true/false value R(sw(1), . . . , sw(k), j, b)
which is the answer to the question, “Does there exists an out-
come of cost at most b using projects x1, x2, . . . , xj wherein
district di achieves social welfare at least sw(i)?” If the an-
swer to this question is yes, then either the desired utilities are
possible with the stated budget without using xj or there is an
outcome which uses at most b−c(xj) budget that doesn’t use
xj in which every district gets at least its specified utility mi-
nus how much it values xj . Thus,R(sw(1), . . . , sw(k), j, b) is
true if and only if either R(sw(1), . . . , sw(k), j − 1, b) is true
orR(sw(1)−sw1(xj), . . . , sw(k)−swk(xj), j−1, b−c(xj))
is true, giving us a definition by recurrence.

By our assumption that all costs and utilities are polynomi-
ally bounded, we can easily solve the dynamic program (DP)
for the above recurrence, giving the following result.

Lemma 3. There is an algorithm that finds a budget-feasible
district-fair outcome W with sw(W ) = OPT in mO(k) time.

Proof. Our algorithm simply fills in the DP table and returns
the outcome corresponding to the entry in our DP table which
is true, satisfies sw(i) > fi for all i and which maximizes∑

i sw(i). The recurrence is correct by the above reasoning.
To see why we can fill in the DP table in the stated

time, note that we can trivially solve our base case,
R(sw(1), . . . , sw(k), j, 1), for each j and possible value for
each sw(i) in polynomial time. Since maxi,j swi(xj) is poly-
nomially bounded in m, we need only check polynomially-
many in m values for each sw(i). Lastly, since j and b are
bounded by a polynomial in m, we conclude that our DP
table has mO(k) entries, giving the desired runtime.
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We now describe our multiplicative-weights-type algo-
rithm to produce our lottery using the above algorithm.4 We
let w(t)

i > 0 be the “weight” of district i in iteration t and let
w(t) :=

∑
i w

(t)
i be the total weight in iteration t. Initially,

our weights are uniform: w(1)
i = 1 for all i.

For any iteration t and district di we let p(t)i :=
w

(t)
i

w(t) be
the proportion of the weight that district i has in iteration t.
These p(t)i will induce our convex combination over districts;
in particular we let d̃(t) be a district which values project xj
to extent s̃w(t)(xj) :=

∑
i p

(t)
i · swi(xj) and which deserves

f̃ (t) :=
∑

i p
(t)
i · fi utility. Also, let swmax be the maximum

welfare of an outcome.
With the above notation in hand, we can give our instanti-

ation of multiplicative weights where T := 4 ln k
ε2 · sw2

max is
the number of iterations of our algorithm.

1. For all iterations t ∈ [T ]:
(a) Let Wt be an outcome that maximizes sw(Wt) subject

to s̃w(t)(Wt) > f̃ (t) and c(Wt) 6 b. We can compute
Wt using Lemma 3.

(b) Letm(t)
i := swi(Wt)−fi be our “mistakes”, indicating

how far off a district was from getting what it deserved.

(c) Update weights: w(t+1)
i ← w

(t)
i · exp(−εm(t)

i ).
2. Return lotteryW , the uniform distribution over {Wt}t.

We now restate the usual multiplicative weights guaran-
tee in terms of our algorithm. This lemma guarantees that,
on average, the multiplicative weights strategy is competi-
tive with the best “expert.” In the following 〈p(t),m(t)〉 :=∑

i p
(t)
i ·m

(t)
i is the usual inner product.

Lemma 4 (Arora, Hazan, and Kale 2012). For all i we have
1

T

∑
t6T

〈p(t),m(t)〉 6 ε+
1

T

∑
t6T

m
(t)
i .

We can use this lemma to show the desired guarantees.

Proof of Theorem 2. We use the algorithm described above.
Our algorithm is polynomial time since it runs for

polynomially-many iterations and in each iteration we com-
pute a solution for a problem on only one district which is
solvable in polynomial time by Lemma 3. Also, note that by
Lemma 3 we know that c(Wt) 6 b for all t, so all outcomes
in the lottery are budget-feasible.

We now argue that the above lottery is utility-optimal. Fix
an iteration t. Notice that since W ∗ is fair for all districts
then it is fair for d̃(t). In particular,

s̃w(t)(W ∗) =
∑
i

pi · swi(W
∗) >

∑
i

pifi = f̃ (t)

Thus, W ∗ is a budget-feasible solution for the problem of
finding a max-utility outcome which is fair for d̃(t). Thus,

4We will only need to invoke the above algorithm for the case
k = 1. This amounts to solving the knapsack problem with a
single covering constraint, which to our knowledge is not one of the
standard variants of the knapsack problem.

sw(Wt) can only be larger than sw(W ∗), meaning that
sw(Wt) > OPT.

We now argue that the above lottery is ε-DF in expectation.
Fix a district di. By Lemma 4 we know that

1

T

∑
t6T

〈p(t),m(t)〉 6 ε+
1

T

∑
t6T

m
(t)
i . (1)

Now notice that by definition of m(t)
i and since our lottery

is uniform over all Wt we know that the right-hand-side of
Equation (1) is

ε+
1

T

∑
t6T

m
(t)
i = ε+

1

T

∑
t

(swi(Wt)− fi)

= ε− fi +
1

T

∑
t

swi(Wt)

= ε− fi + E
W∼W

[swi(W )]

Thus, to show that fi − ε 6 EW∼W [swi(W )], it suffices
to show that the left-hand side of Equation (1) is at least 0.
That is, we must show 0 6 1

T

∑
t6T 〈p(t),m(t)〉. However,

this amounts to simply showing that Wt is fair for d̃(t); in
particular, we have that the left-hand-side is

1

T

∑
t6T

〈p(t),m(t)〉 =
1

T

∑
t6T

∑
i

p
(t)
i · (swi(Wt)− fi)

=
1

T

∑
t6T

s̃w(t)(Wt)− f̃ (t).

It holds that s̃w(t)(Wt)− f̃ (t) > 0 since we always choose
a solution which is fair for d̃(t), and so we conclude that the
left-hand-side of Equation (1) is at least 0.

5 Optimal DF1 Outcome with Extra Budget
We now study how well we can do if we allow ourselves
to overspend the available budget. Certainly it is possible
to achieve district fairness and optimal fairness-constrained
utility OPT if the algorithm can spend double the available
budget: we can compute an outcome W1 with c(W1) 6
b that is welfare-maximizing without attempting to satisfy
district-fairness, and we can compute some outcomeW2 with
c(W2) 6 b that is district-fair (see Section 2); then W1 ∪W2

satisfies district fairness and we clearly have c(W1 ∪W2) 6
2b and sw(W1 ∪W2) > OPT. In this section, we show that
we can find a solution that requires less than twice the budget,
if we slightly relax the district fairness requirement to DF1.
Our main result for the DF1 setting shows that, under DF1
fairness, there is a deterministic algorithm which achieves
DF1 and optimal social welfare if one overspends a 0.647
fraction of the budget.

Theorem 5. For any constant ε > 0, there is a poly(m, k)-
time algorithm which, given an instance of district-fair wel-
fare maximization, returns an outcome W such that W is
DF1, c(w) 6 (1.647 + ε) b, and sw(W ) > (1− ε) OPT.
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Overspending by 64.7% is a worst-case result, and the
algorithm may often overspend less. If the context does not
permit any overspending, one can run the same algorithm
with a reduced budget; then the output will be feasible for
the true budget, yet will satisfy weaker fairness and social
welfare guarantees. More precisely, given an instance I and
a multiplier β < 1, we define an instance I ′(β), which is
identical to I but in which each district di contributes only β ·
bi and thus deserves utility f ′i := swi(W

′
i ), where W ′i is di’s

favorite outcome which costs at most β · bi. Additionally, let
OPT′(β) represent the maximum achievable social welfare
over all district-fair solutions in I ′ using a budget of at most
b′ := β · b. Then, applying Theorem 5 to I ′(β) results in an
outcome which is DF1 and utility-optimal on this reduced
instance and does not overspend the original budget b.

Corollary 6. For any constant ε > 0, there is a poly(m, k)-
time algorithm which, given an instance I of district-fair
welfare maximization, returns an outcome W such that W
is DF1 for I ′( 1

1.647 ), c(W ) 6 (1 + ε) b, and sw(W ) >
(1− ε) OPT′( 1

1.647 ).

Our result uses a submodular optimization as a subroutine.
If one allows randomization in this subroutine, algorithms
with better approximation ratios are known. Thus, we can
prove a similar theorem (and corollary) with a randomized
algorithm which achieves DF1 and optimal social welfare
while overspending its budget by only a 1

e ≈ .37 fraction
of the budget, with high probability (i.e., with probability
1− 1

p(m,k) where p(m, k) is some polynomial in m and k).
We defer details of our randomized algorithm to Appendix C
in the supplementary material.

In the remainder of this section, we will prove Theorem 5.
Our main tool is a notion of the “coverage” of a partial out-
come. An outcome has high coverage if we do not need to
spend much more money to make it district-fair. On a high
level, our proof consists of two main steps. First, we show
how to complete an outcome with good coverage into a DF1
outcome. Second, we will show how to frame the problem
of finding a solution with good coverage and social welfare
as a submodular maximization problem subject to linear con-
straints, allowing us to use a result by Mizrachi et al. (2018).

We begin by formalizing the coverage of a solution.
Roughly, if we imagine that initially every district requires
its portion of the budget for fairness, then fractional coverage
captures how much less districts must spend to satisfy their
own fairness constraints. Thus, if we imagine that our algo-
rithm first spends its budget to satisfy fairness as efficiently
as possible, and then spends the remainder of its budget on
the highest utility projects, then the coverage of a collection
of projects is roughly how much budget this collection “frees
up” for the algorithm to spend on the highest utility projects.
More formally, we define coverage by way of the notions of
fractional outcomes and residual budget requirements.

Definition 4 (fractional outcomes). A fractional outcome
is a vector p ∈ Rm where 0 6 pj 6 1. We overload
notation and let the social welfare of p for district di be
swi(p) :=

∑
j swi(xj) · pj . Similarly the social welfare of p

is
∑

i swi(p). Lastly, we define the cost of p as
∑

j c(xj) · pj .

We now define the residual budget requirement of a district,
given an outcome, which can be understood as the minimum
amount of additional money that must be spent to satisfy the
district, if fractional outcomes are allowed.

Definition 5 (residi(W )). The residual budget requirement
of district di given (integral) outcomeW is the minimum cost
of a fractional outcome p such that swi(W ) + swi(p) > fi
and pj = 0 for all xj ∈W .

We can now define the coverage of an outcome for a par-
ticular district i in terms of the total amount of budget they
deserve and their residual budget requirement.

Definition 6 (coveri(W )). The coverage of an outcome W
for district di is the difference between the amount of bud-
get they deserve, bi, and their residual budget requirement:
coveri(W ) := bi − residi(W ).

Lastly, we define the coverage of an outcome.

Definition 7 (cover(W )). The overall coverage of an out-
come W is the sum over all districts di of the coverage W
affords di: coveri(W ) :=

∑
i coveri(W ).

Next, we establish a useful property of DF1 solutions.
In particular, given a set of projects that achieves relatively
good fairness on average, we can then buy a small subset of
projects that results in fairness up to one good for all districts.
In particular, given a collection of projects that covers a 1−β
fraction of all fairness constraints, we can use at most an
extra β fraction of our budget in order to complete this to a
DF1 solution. Moreover, this completion is quite intuitive:
purchase all projects whose total coverage exceed their cost,
until there are no such projects remaining.

Formally, we state the following DF1 completion lemma.

Lemma 7 (DF1 Completion). Given an outcome W with
cover(W ) = b − r, one can compute in polynomial time a
set W ′ ⊇W such that W ′ is DF1 and c(W ′) 6 c(W ) + r.

Proof. We first prove that for every non-DF1 outcome W ,
there exists a project that we can add to W which increases
its coverage by at least c(xj). Suppose that W is an outcome
that fails DF1, and let di be a district such that swi(W ) +
swi(xj) < fi for all xj 6∈W . Let p be the fractional outcome
witnessing residi(W ); thus swi(W ) + swi(p) > fi. We may
assume without loss of generality that all but at most one
project is integral in pj (because there is always some optimal
p with this property by additivity of swi). Since W fails DF1
for di, there is some xj 6∈ W such that p(xj) = 1. Then
residi(W ∪ {xj}) = residi(W ) − c(xj) (witnessed by the
fractional outcome obtained from p by removing xj from it).
Thus, from definitions, coveri(W ∪ {xj}) = coveri(W ) +
c(xj), and hence cover(W ∪ {xj}) > cover(W ) + c(xj).

Now suppose we are given an outcome W with
cover(W ) = b−r, which fails DF1. We can identify a project
xj as above, add it to W , and increase the coverage by at
least c(xj). We repeat this until the outcome is DF1. This
process must stop, since at each step the coverage increases
by c(xj) but by definition the coverage can never exceed b.
For the same reason, the cost of the projects we have added
to W cannot exceed r, and thus c(W ′) 6 c(W ) + r.
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With this lemma in hand, we now turn to the problem
of finding high-coverage outcomes with good welfare. Let
B > 0 be a lower bound on the social welfare we desire. We
rephrase our problem as an optimization problem in which
we maximize the coverage of an outcome subject to a linear
knapsack constraint and a linear covering constraint. The
knapsack constraint enforces budget feasibility, and the cov-
ering constraint encodes the requirement that the total utility
of the outcome is at least B.

max
W⊆P

cover(W )

s.t. sw(W ) > B,

c(W ) 6 b.

(DF1P)

The main tool we apply is a theorem on the maximization
of nondecreasing submodular functions of Mizrachi et al.
(2018). Recall that a set function is nondecreasing if its value
never decreases as elements are added to its input, and sub-
modular if it exhibits diminishing returns.

Definition 8. Given a finite set Ω, a set function f : Ω →
R>0 is nondecreasing and submodular if for every A,B ⊆ Ω
such that A ⊆ B we have f(A) 6 f(B) and f(A ∪ {x})−
f(A) > f(B ∪ {x})− f(B) for all x ∈ Ω \B.

The theorem we apply is as follows.

Theorem 8 (Mizrachi et al. 2018, Theorem 5). For each
constant ε > 0, there exists a deterministic algorithm for
maximizing a nondecreasing submodular function subject to
one packing constraint and one covering constraint that runs
in time O(nO(1)), where n = |Ω| is the size of the support
of the set function, satisfies the covering constraint up to a
factor of 1− ε and the packing constraint up to a factor of
1 + ε, and achieves an approximation ratio of 0.353.

We apply this theorem to find a solution that satisfies a
0.353 fraction of coverage and achieves optimal fairness-
constrained utility. Then, we apply Lemma 7 to augment our
solution using an additional 1−0.353+ε fraction of our bud-
get in order to obtain a final solution which satisfies full DF1.
However, in order to apply Theorem 8, we must first establish
that cover(W ) is a nondecreasing submodular function. In
particular, note that the coverage functions coveri(W ) for
each district are clearly nondecreasing and submodular. It
follows that their sum, cover(W ) is also nondecreasing and
submodular, yielding the following lemma.

Lemma 9. The function cover(W ) is nondecreasing and
submodular.

We are now ready to prove Theorem 5, which applies the
DF1 completion lemma to an approximately optimal solution
for the problem DF1P.

Proof of Theorem 5. Recall that we have assumed that the
maximum utility of an outcome is polynomially bounded in
m and k and that the maximum utility is integral. Thus, the
value of OPT falls in a polynomial range. For each value B
in this range, solve the problem DF1P using the algorithm
from Theorem 8. Now consider all values of B for which the
algorithm returned a solution with cover(W ) > 0.353b; such
a value must exist since we are guaranteed this condition

when B = OPT (since for this value, the optimum of prob-
lem (DF1P) is b). Among all solutions we found that satisfy
cover(W ) > 0.353b, take the one that maximizes sw(W ).
This solution provides social welfare at least (1− ε) OPT.

We have obtained an outcome W with

cover(W ) > 0.353b = b− 0.647b,

and sw(W ) > (1−ε) OPT and c(W ) 6 (1+ε)b. Now apply
Lemma 7 to W to obtain a DF1 outcome W ′ ⊇W with

c(W ′) 6 c(W ) + 0.647b 6 (1 + 0.647 + ε)b.

This outcome W ′ satisfies the requirements of Theorem 5.

6 Discussion
Our results extend to the special case of unit costs, also known
as committee selection. In committee selection, we elect a
committee to represent voters in a larger governmental body
such as a parliament. Often, to ensure local representation,
the electorate is split into voting districts, which elect their
representatives separately. The districts may be apportioned
different numbers of representatives, for example based on
district size. While this scheme guarantees each district rep-
resentation, it may well be possible to increase the welfare
of the voters in a district, for example by electing a diverse
array of candidates with expertise in various areas who can
gather votes from across the electorate. Thus, it is natural
for all districts to elect the committee together if we impose
district-fairness constraints. This way, we can maximize so-
cial welfare of the final committee while guaranteeing each
district fair representation. This gives a more holistic view of
committee selection in exactly the same way we addressed
participatory budgeting, only instead of pooling the budget
between districts, we now pool seats on a committee.

Our model implicitly treats districts as atoms, and so dis-
trict fairness is a kind of individual rationality property. In
turn, individual rationality is a type of strategyproofness: it
incentivizes districts not to leave the central election and
instead hold a separate one. Is it possible to design a vot-
ing scheme that is fully strategyproof for districts, so that
districts do not have incentives to misreport the utilities of
their residents? Unfortunately not: Peters (2018) proves an
impossibility theorem about committee elections which im-
plies that there does not exist a voting rule that is efficient,
district-fair, and also strategyproof. This result holds even for
approval votes.

Several open questions remain. Most obvious is the ques-
tion of whether can we achieve welfare maximization and
DF1 in polynomial time while guaranteeing to overspend the
budget by less than 1/e. More broadly, it would be interesting
to study our problem with more general utility functions such
as submodular or even general monotone valuation functions.
Additionally, it would be exciting to study approximation al-
gorithms which promise full district fairness. In Appendix B
in the supplementary material, we present an algorithm which
satisfies district fairness and provides a 1/2-approximation
to optimal district-fair social welfare in the special case of
unanimous districts; it would be interesting to extend this
result to the general case.
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A 1
2
-Approximation for Unanimous Districts

with Unit Costs
In this section we study approximation algorithms for the sim-
plest version of our problem which we know to be NP-hard:
when each districts consist of a single voter and every project
has unit cost. In fact, we will study a strictly more general
setting than each district consisting of a single voter; namely,
we study the setting where each district is “unanimous.” For-
mally, we study instances of district-fair welfare maximiza-
tion where c(xj) = 1 for all j and swi(xj) ∈ {0, |di|} for
all i where |di| is the number of voters in di. For this setting
we will give a 1

2 -approximation.
Our algorithm will make use of the following notion of

conditional coverage which builds on Definition 6.

Definition 9. The coverage of a project xj given an outcome
W is cover(xj |W ) :=

∑
i coveri(W ∪ {xj})− coveri(W ).

Notice that by our assumption of unit cost and unanimous
districts we have that cover(xj |W ) ∈ Z>0.

We now present our greedy algorithm that satisfies district
fairness and achieves a 1/2-approximation to the optimal
district-fair utility for the setting of unanimous districts and
unit costs. Formally, the algorithm, which we call the Unani-
mous Greedy Algorithm (UGA) proceeds as follows.

1. Given an instance I, initialize W0 ← ∅.
2. For j ∈ [b]:

(a) Let cj := maxxj cover(xj |Wj−1) be the max possible
coverage and let Xj := {xj : cover(xj |Wj−1) = cj}
be all projects which achieve this coverage.

(b) Let xj := arg maxxj∈Xj sw(xj) be the max covering
project with maximum utility.

(c) Update Wj ←Wj−1 ∪ {xj}.
3. Return Wb.

Theorem 10. Given an instance I consisting of unanimous
approval districts, UGA returns a solution which satisfies
district fairness and achieves a 1/2-approximation to the
optimal district-fair utility.

Proof. Let W represent the result of UGA, and let W ∗ rep-
resent the optimal district-fair outcome. Furthermore, let
N2, N1 and N0 be all projects purchased by UGA that had
conditional coverage at least 2, exactly 1 and exactly 0 when
purchased by UGA respectively. Clearly W is district-fair
and budget-feasible and so we need only argue that it achieves
at least sw(W ∗)/2 utility.

Now, consider the following subproblem, which we will
call I ′, which intuitively is our original instance I but where
all ofN2 is forced to be in a solution and no projects fromN0

are available. More formally, I ′ is I but where our budget
is changed to b′ := b− |N2| − |N0|, fi is changed to f ′i :=
max(fi − swi(N2), 0) for all i and the set of purchasable
projects is P ′ := P \N2. swi(xj) is the same for all i, j in
I ′ as in I. Notice that the coverage of any project in I ′ is
at most 1 but the total coverage required for fairness is b′,
meaning that every budget-feasible and district-fair solution
for I ′ has size exactly b′. Also notice that N1 is not only

feasible for I ′ but also attains the optimal utility among all
district-fair and budget-feasible solutions.

We claim that there exists a subset N∗1 ⊆W ∗ \N2 which
is district-fair and budget-feasible for I ′. To see this, note
that we can iteratively build N∗1 by initializing it to ∅ and
then repeatedly adding to it any xj ∈ W ∗ \ N∗1 \ N2 such
that cover(xj |N∗1 ) in I ′ is at least 1. After b′ such additions
we are guaranteed to have a district-fair and budget-feasible
solution for I ′ and such an xj always exists since W ∗ \N2

is district-fair for I ′. As noted above, any district-fair and
budget-feasible solution for I ′ has size b′ and so |N∗1 | = b′.

Thus, sinceN1 is optimal for I ′, we know thatN1 achieves
at least as high utility as N∗1 , i.e., |N1| = |N∗1 | = b′, and

sw(N∗1 ) 6 sw(N1). (2)

It remains to understand the utility of W ∗ \N∗1 . However,
note that at least half of the projects other than N1 must be
in the N0 phase. That is, |N0| > |N2|/2. Intuitively, this
means that UGA “frees up” at least b−b′

2 money to spend
on high-utility projects. Let P0 := P \ {N2 ∪ N1} be all
projects not in N2 or N1. We have that sw(N0) is the utility
of the top b−b′

2 projects in P0. On the other hand, consider
projects in W ∗ \N∗1 . We can divide these into projects which
are in N2 and N1 and those which are not. In particular, let
W ∗1,2 := W ∗\N∗1 ∩(N1∪N2) and letW ∗0 := W ∗\N∗1 ∩P0

so that W ∗1,2 ∪W ∗0 = W ∗ \N∗1 . Now notice that trivially

sw(W ∗1,2) 6 sw(N1) + sw(N2). (3)

On the other hand, |W ∗0 | = b − b′ − |W ∗1,2| 6 b − b′ and
W ∗0 ⊆ P0 and so sw(W ∗0 ) is at most the utility of the b− b′
highest utility projects in P0. Since our utilities are additive
and sw(N0) is the utility of the b−b′

2 highest utility projects
in P0, it follows that

sw(W ∗0 ) 6 2 · sw(N0). (4)

Since W ∗ = N∗1 ∪W ∗0 ∪W ∗1,2, we can combine the above
bounds to conclude our 1

2 -approximation. Namely, applying
the additivity of our utilities and combining Equations 2, 3
and 4 we have

sw(W ∗) = sw(N∗1 ) + sw(W ∗0 ) + sw(W ∗1,2)

6 2 · sw(N0) + 2 · sw(N1) + sw(N2)

6 2 · sw(W )

and so we conclude that sw(W ) > sw(W∗)
2 .

B Integrality Gap
Here, we investigate the integrality gap of the natural LP
for our problem. As a reminder, the integrality gap of an LP
measures how much better a fractional solution can do than
an integral solution. An unbounded integrality gap shows that
any analysis of an approximation algorithm which charges
the value of its integral solution to the value of the optimal
LP gives an unboundedely-bad approximation ratio. For this
reason integrality gaps are sometimes taken as evidence of
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hardness of approximation. For more details on the topic of
integrality gaps see Williamson and Shmoys (2011).

We will show that our LP has an unbounded integrality gap
which suggests that approximation algorithms which return
budget-feasible and district-fair solutions with nearly-optimal
social welfare may be difficult or impossible to attain for the
general case.

Formally our LP and its integrality gap are as follows. Our
LP has a variable yj for each project xj corresponding to the
extent to which we choose xj .

max
∑
j

yj · sw(xj)

s.t.
∑
j

yj · c(xj) 6 b

∑
j

yj · swi(xj) > fi ∀i

0 6 yj 6 1 ∀j

(DFLP)

We let DFLP (I) correspond to the polytope corresponding
to the above LP for an instance I of district-fair welfare
maximization.

The integrality gap of DFLP is defined as

min
I

maxy∈DFLP (I)∩Zm
∑

j yj · sw(xj)

maxy∈DFLP (I)
∑

j yj · sw(xj)
.

The basic idea of our integrality gap construction is as
follows. We will construct an instance of social-welfare maxi-
mization where the preferences of each district are “circular”.
In particular, each district will like two projects and every
project will be liked by exactly two districts. As in our NP-
hardness proof, we will also have a collection of dummy
projects which are given very high utility by dummy dis-
tricts which deserve no utility. An optimal fractional solution
will be able to choose each non-dummy project to extent
essentially 1

2 to satisfy district-fairness and then spend its
remaining budget on high-utility dummy projects. On the
other hand, the optimal integral solution will have to spend
its entire budget satisfying fairness.

Theorem 11. There does not exist a function f such that
the integrality gap of DFLP is at most 1

f(k,m) . Further, this
integrality gap holds even when all projects have unit cost.

Proof. Fix k ∈ Z>1 and a sufficiently small ε > 0. We define
our instance of social-welfare maximization on k districts
where d1, d2, . . . dk−1 will be non-dummy districts and the
district dk will be a dummy district. Similarly, we will have
2(k−1) projects where x1, x2, . . . , xk−1 will be non-dummy
projects and the remaining projects xk, . . . , x2(k−1) will be
dummy projects.

For each non-dummy district di we let bi = 1 and define
its utility for project xj as

swi(xj) :=


1 + ε if j = i

1 if j = (i+ 1 mod k − 1) + 1

0 otherwise

For the dummy district dk we let bk = 0 and define its
utility for project xj as

swk(xj) :=

{
B if xj is a dummy project
0 otherwise

for B sufficiently large to be chosen later. Notice that
sw(xj) = B for each dummy project xj . Lastly, we let our
budget b = k − 1 and we let c(xj) = 1 for all xj .

Now notice that each non-dummy district di has fi = 1+ε.
Consequently, any district-fair integral solution must include
all non-dummy projects, namely x1, x2, . . . , xk−1. However,
since b = k − 1, it follows that the only district-fair integral
solution is Wint := {x1, x2, . . . , xk−1} where sw(Wint) =
(2 + ε)(k − 1).

On the other hand, consider the following fractional so-
lution y. For each non-dummy project xj we let yj = 1+ε

2 .
For each dummy project xj we let yj be (1− 1+ε

2 ). Clearly∑
j yj 6 b. Moreover, notice that for each district di we

have
∑

j yj · swi(xj) = 1+ε
2 (2 + ε) > 1 + ε = fi and so

our solution is indeed in the polytope of DFLP. However,
since yj = (1− 1+ε

2 ) for each dummy project we have that∑
j yj · sw(xj) > B(k − 1)(1− 1+ε

2 ).
Thus, for the above instance we have that the ratio of the

optimal integral solution to the optimal fractional solution is
at most

(2 + ε)(k − 1)

B(k − 1)
(
1− 1+ε

2

) 6
10

B
.

Since B can be chosen independently of k and m, we have
that the above instance has integrality gap strictly less than

1
f(k,m) for any function f of k and m.

We note that the proof of the above result also rules out
any integrality gap which is which is larger than o( 1

c ) where
c is the total number of voters across all districts.

C Randomized Optimal DF1 Outcome with
Extra Budget

In this section we give our randomized analogues of The-
orem 5 and Corollary 6. We use the notation of Section 5
throughout this section. Whereas our deterministic algorithms
overspend budget by 64.7%, our randomized algorithms will
only overspend it by 1

e with high probability. Formally, we
show the following theorem.

Theorem 12. There is a poly(m, k)-time algorithm which,
given an instance of district-fair welfare maximization,
returns an outcome W such that W is DF1, c(W ) 6(
1 + 1

e + ε
)
b ≈ 1.37b with high probability, and sw(W ) >

(1− ε) OPT for any fixed constant ε > 0.

As with Corollary 6 for Theorem 5, we immediately have a
corollary which gives an algorithm which does not overspend
its budget.

Corollary 13. There is a poly(m, k)-time algorithm which,
given an instance of district-fair welfare maximization, re-
turns an outcome W such that W is DF1 for I ′

(
1

1+1/e

)
,

10



c(W ) 6 (1 + ε) b with high probability, and sw(W ) >

(1− ε) OPT′
(

1
1+1/e

)
for any fixed constant ε > 0.

On a high level, this proof will closely follow that of Theo-
rem 5. In particular, it uses the same submodular optimization
framing of the problem (i.e., DF1P). However, there are some
notable differences. In particular, we leverage the following
randomized result from Mizrachi et al. (2018) instead of the
previous deterministic result from Mizrachi et al. (2018).
Theorem 14 (Mizrachi et al. 2018, Theorem 1). For each
constant ε > 0, there exists a randomized algorithm for
maximizing a nondecreasing submodular function subject to
one packing constraint and one covering constraint that runs
in time O(|Ω|O(1)), satisfies the packing constraint, satisfies
the covering constraint up to a factor of 1− ε, and achieves
an expected approximation ratio of 1− 1

e − ε.
Additionally, we require Hoeffding’s inequality (Hoeffd-

ing 1963), which bounds the probability that the sum of a
sequence of independent random variables deviates from its
expectation; we restate it below.
Theorem 15 (Hoeffding’s Inequality). Given a sequence of
n independent random variables Y1, . . . , Yn, where each Yi
takes a value in the range [αi, βi], we have that

Pr

(
E

[
n∑

k=1

Yk

]
−

n∑
k=1

Yk > t

)
6 e
− 2t2∑n

i=1
(βi−αi)2 ,

where t > 0.
We now present the main lemma of the section, which

states that there exists a polynomial-time algorithm which,
given a guess of the optimal district-fair social welfare B 6
OPT, returns an outcome W that is DF1 fair, overspends
the budget by approximately b/e with high probability, and
achieves at least (1− ε)B social welfare.
Lemma 16. Given an instance of DF1P, there is an algo-
rithm that runs in polynomial time which returns an outcome
W such that W is DF1, c(W ) 6

(
1 + 1

e + ε
)
b with high

probability, and sw(W ) > (1 − ε)B, where ε > 0 is an
arbitrary constant and B 6 OPT.

Proof. Note that, by Lemma 7, it suffices to find an outcome
W ′ such that c(W ′) 6 b, cover(W ′) >

(
1− 1

e − ε
)
b, and

sw(W ′) > (1− ε)B, as we can complete this solution into a
DF1 solution with

(
1
e + ε

)
b more budget.

Let ε0 := ε/2. By Lemma 9, we may apply Theorem 14
in order to find a solution W such that cover(W ) > (1 −
ε0)(1−1/e) in expectation, sw(W ) > B, and c(W ) 6 b. We
now show how to transform this guarantee in expectation into
one with high probability by using Hoeffding’s inequality
and an averaging argument.

In order to apply Hoeffding’s inequality to our setting, let
Yj represent the coverage of the jth run of our application
of Theorem 14. We know that each run is independent, and
therefore the Yj’s are also independent. Let n = ω(log k/ε20),
and define a sequence of n independent random variables
Y1, . . . , Yn representing the coverage of n runs of the mecha-
nism. Furthermore, because coverage is bounded between 0
and b, we have that βi = b and αi = 0 for all i ∈ [n].

By Hoeffding, we have

Pr

E

 n∑
j=1

Yj

− n∑
j=1

Yj > ε0

(
1− 1

e

)
bn


6 exp

(
−

2(ε0
(
1− 1

e

)
bn)2∑n

i=1(βi − αi)2

)

= exp

(
−2ε20

(
1− 1

e

)2

n

)
.

Because we set n = ω(log k/ε20), this probability goes
to 0 polynomially quickly. Therefore, we know that, with
high probability, E

[∑n
j=1 Yj

]
−
∑n

j=1 Yj 6 ε0
(
1− 1

e

)
bn,

or
∑n

j=1 Yj > bn(1 − ε0)
(
1− 1

e

)
− ε0

(
1− 1

e

)
bn. By an

averaging argument, this means that, with high probability,
there exists a Yi such that Yi > (1 − ε0 − ε0)

(
1− 1

e

)
b =

(1− ε)
(
1− 1

e

)
b, as desired.

With this lemma in hand, we are ready to prove Theo-
rem 12.

Proof of Theorem 12. Recall that we have assumed that the
maximum utility of an outcome is polynomially bounded in
m and k and that the maximum utility is integral. Thus, the
value of OPT falls in a polynomial range. For each value
B in this range, run the procedure from Lemma 16. By a
union bound over these polynomially-many applications of
Lemma 16, we have that all applications of Lemma 16 with
B 6 OPT succeed with high probability, resulting in a col-
lection of solutions; one for each B. Now consider all val-
ues of B for which the algorithm returned a solution with
c(W ) 6 (1+ 1

e +ε)b; such a value must exist since with high
probability we are guaranteed this condition when B = OPT
and we know that, with high probability, all applications of
Lemma 16 succeed for all B 6 OPT. Among all solutions
we found that satisfy c(W ) 6 (1 + 1

e + ε)b, take the one
that maximizes sw(W ). This solution provides utility at least
OPT.
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