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Abstract

We study the problem of learning a policy in a Markov de-
cision process (MDP) based on observations of the actions
taken by multiple teachers. We assume that the teachers are
like-minded in that their reward functions — while different
from each other — are random perturbations of an underly-
ing reward function. Under this assumption, we demonstrate
that inverse reinforcement learning algorithms that satisfy a
certain property — that of matching feature expectations —
yield policies that are approximately optimal with respect to
the underlying reward function, and that no algorithm can do
better in the worst case. We also show how to efficiently re-
cover the optimal policy when the MDP has one state — a
setting that is akin to multi-armed bandits.

1 Introduction
A Markov decision process (MDP) is a formal specification
of a sequential decision making environment, which consists
of a set of states, a set of actions, a reward function, and a
stochastic transition function. Reinforcement learning (RL)
deals with learning a policy in an MDP — which specifies a
possibly randomized action that is taken in each state — to
maximize cumulative reward.

RL has long history in AI (Sutton and Barto 1998; Kael-
bling, Littman, and Moore 1996), as well as in many other
disciplines. But in recent years, interest in the area has ex-
ploded, in part due to breakthroughs in game playing (Mnih
et al. 2015; Silver et al. 2016) and fast-growing applications
to robotics (Kober, Bagnell, and Peters 2013). It is safe to
say that, nowadays, RL is widely considered to be one of
the basic building blocks in the construction of intelligent
agents.

While most work in the area focuses on maximizing a
given reward function, some settings require the AI system
to emulate the behavior of an expert or teacher (Ng and Rus-
sell 2000; Abbeel and Ng 2004) — this is known as inverse
reinforcement learning (IRL). The idea is to observe an agent
executing a policy in an MDP, where everything is known to
the learner except the reward function, and extract a reward
function that is most likely to be the one being optimized
by the agent. Using this reward function — and knowledge
of the other components of the MDP — the agent can easily
compute an optimal policy to follow.

Our point of departure is that we are interested in IRL
from multiple agents rather than a single agent. Specifically,
we observe n different agents executing policies that are op-
timal for their individual reward functions. Our approach is
to aggregate these observations into a single policy, by ap-
plying an inverse reinforcement learning algorithm to the set
of all observations.

However, if individual agents have wildly divergent re-
ward functions then the aggregate policy may not represent
coherent behavior. In addition, to formally reason about the
quality of the optimal policy, we need to relate it to some
notion of ground truth. For these reasons, we assume that
the agents are like-minded, in that individual reward func-
tions are nothing but noisy versions of an underlying reward
function.

In summary, our research challenge is this:
Given observations from policies that are optimal with
respect to different reward functions, each of which is
a perturbation of an underlying reward function, iden-
tify IRL algorithms that can recover a good policy with
respect to the underlying reward function.
We believe that this problem is both natural and general.

To further motivate it, though, let us briefly instantiate it
in the context of beneficial AI. One of the prominent ap-
proaches in this area is to align the values of the AI system
with the values of a human through IRL (Russell, Dewey,
and Tegmark 2015; Hadfield-Menell et al. 2016). Our ex-
tension to multiple agents would allow the alignment of the
system with the values of society.

A compelling aspect of this instantiation is that, if we
think of the underlying reward function as embodying a
common set of moral propositions, then our technical as-
sumption of like-minded agents can be justified through the
linguistic analogy, originally introduced by Rawls (1971).
It draws on the work of Chomsky (1965), who argued that
competent speakers have a set of grammatical principles in
mind, but their linguistic behavior is hampered by “gram-
matically irrelevant conditions such as memory limitations,
distractions, shifts of attention and interest, and errors.”
Analogously, Rawls claimed, humans have moral rules —
a common “moral grammar” — in our minds, but, due to
various limitations, our moral behavior is only an approx-
imation thereof. Interestingly, this theory lends itself to em-
pirical experimentation, and, indeed, it has been validated



through work in moral psychology (Mikhail 2011).

Our Model and Results. We start from a common IRL
setup: each reward function is associated with a weight vec-
tor w, such that the reward for taking a given action in a
given state is the dot product of the weight vector and the
feature vector of that state-action pair. The twist is that there
is an underlying reward function represented by a weight
vector w?, and each of the agents is associated with a weight
vector wi, which induces an optimal policy πi. We observe
a trajectory from each πi.

In Section 3, we focus on competing with a uniform mix-
ture over the optimal policies of the agents, π1, . . . , πn (for
reasons that we explicate momentarily). We can do this be-
cause the observed trajectories are “similar” to the uniform
mixture, in the sense that their feature vectors — the dis-
counted frequencies of the features associated with the ob-
served state-action pairs — are close to that of the uniform
mixture policy. Therefore, due to the linearity of the re-
ward function, any policy whose feature expectations ap-
proximately match those of the observed trajectories must
be close to the uniform mixture with respect to w?. We for-
malize this idea in Theorem 3.2, which gives a lower bound
on the number of agents and length of observed trajectories
such that any policy that ε/3-matches feature expectations
is ε-close to the uniform mixture. Furthermore, we iden-
tify two well-known IRL algorithms, Apprenticeship Learn-
ing (Abbeel and Ng 2004) and Max Entropy (Ziebart et al.
2008), which indeed output policies that match the feature
expectations of the observed trajectories, and therefore en-
joy the guarantees provided by this theorem.

Needless to say, competing with the uniform mixture is
only useful insofar as this benchmark exhibits “good” per-
formance. We show that this is indeed the case in Section 4,
assuming (as stated earlier) that each weight vector wi is a
noisy perturbation of w?. Specifically, we first establish that,
under relatively weak assumptions on the noise, it is possi-
ble to bound the difference between the reward of the uni-
form mixture and that of the optimal policy (Theorem 4.1).
More surprisingly, Theorem 4.3 asserts that in the worst case
it is impossible to outperform the uniform mixture, by con-
structing an MDP where the optimal policy cannot be iden-
tified — even if we had an infinite number of agents and
infinitely long trajectories! Putting all of these results to-
gether, we conclude that directly running an IRL algorithm
that matches feature expectations on the observed trajecto-
ries is a sensible approach to our problem.

Nevertheless, it is natural to ask whether it is possible to
outperform the uniform mixture in typical instances. In Sec-
tion 5 we show that this is indeed the case; in fact, we are
able to recover the optimal policy whenever it is identifiable,
albeit under stringent assumptions — most importantly, that
the MDP has only one state. This leads to a challenge that we
call the inverse multi-armed bandit problem. To the best of
our knowledge, this problem is novel; its study contributes
to the (relatively limited) understanding of scenarios where
it is possible to outperform teacher demonstrations.

Related work. The most closely related work deals with
IRL when the observations come from an agent who acts

according to multiple intentions, each associated with a dif-
ferent reward function (Babeş-Vroman et al. 2011; Choi and
Kim 2012). The main challenge stems from the need to clus-
ter the observations — the observations in each cluster are
treated as originating from the same policy (or intention). By
contrast, clustering is a nonissue in our framework. More-
over, our assumption that each wi is a noisy perturbation of
w? allows us to provide theoretical guarantees.

Further afield, there is a body of work on robust RL
and IRL under reward uncertainty (Givan, Leach, and
Dean 2000; Regan and Boutilier 2009, 2010), noisy re-
wards (Zheng, Liu, and Ni 2014), and corrupted re-
wards (Everitt et al. 2017). Of these papers the closest to
ours is that of Zheng, Liu, and Ni (2014), who design robust
IRL algorithms under sparse noise, in the sense that only a
small fraction of the observations are anomalous; they do not
provide theoretical guarantees. Our setting is quite different,
as very few observations would typically be associated with
a near-perfect policy.

2 MDP Terminology
We assume the environment is modeled as an MDP
{S,A, T, γ,D} with an unknown reward function. S is a fi-
nite set of states; A is a finite set of actions; T (s, a, s′) is the
state transition probability of reaching state s′ from state s
when action a is taken; γ ∈ [0, 1) is the discount factor; and
D the initial-state distribution, from which the start state s0
is drawn for every trajectory.

As is standard in the literature (Abbeel and Ng 2004),
we assume that there is a function φ : S × A → Rd that
maps state-action pairs to their real-valued features. We also
overload notation, and say that the feature vector of a tra-
jectory τ = {(s0, a0), (s1, a1), . . . , (sL, aL)} is defined as
φ(τ) =

∑L
t=0 γ

tφ(st, at).
We make the standard assumption that the immediate re-

ward of executing action a from state s is linear in the fea-
tures of the state-action pair, i.e. rw(s, a) = wᵀφ(s, a). This
has a natural interpretation: φ represents the different fac-
tors, and w weighs them in varying degrees.

Let µ denote the feature expectation of policy π, that is,
µ(π) = E[

∑∞
t=0 γ

tφ(st, at)|π], where π defines the action
at taken from state st, and the expectation is taken over the
transition probabilities T (st, at, st+1). Hence, the cumula-
tive reward of a policy π under weight w can be rewritten
as:

Rw(π) = Es0∼D[V π(s0)]

= E

[ ∞∑
t=0

γtrw(st, at)

∣∣∣∣π
]

= wᵀ · E

[ ∞∑
t=0

γtφ(st, a)

∣∣∣∣π
]

= wᵀµ(π).

Let Pπ(s, t) denote the probability of getting to state s at
time t under policy π. Then, the cumulative reward Rw is

Rw(π) =

∞∑
t=0

γt
∑
s∈S

Pπ(s, t)rw(s, π(s)).
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3 Approximating the Uniform Mixture
We consider an environment with n agentsN = {1, . . . , n}.
Furthermore, the reward function of each agent i ∈ N is
associated with a weight vector wi, and, therefore, with a
reward function rwi . This determines the optimal policy πi
executed by agent i, from which we observe the trajectory
τi, which consists of L steps. We observe such a trajectory
for each i ∈ N , giving us trajectories {τ1, ..., τn}.

As we discussed in Section 1, we assume that the re-
ward function associated with each agent is a noisy version
of an underlying reward function. Specifically, we assume
that there exists a ground truth weight vector w?, and for
each agent i ∈ N we let wi = w? + ηi, where ηi is
the corresponding noise vector; we assume throughout that
η1, . . . ,ηn are i.i.d. Following Abbeel and Ng (2004), we
also assume in some of our results (when stated explicitly)
that ‖w?‖2 ≤ 1 and ‖φ(s, a)‖∞ ≤ 1.

Let us denote by πu the uniform mixture over the policies
π1, . . . , πn, that is, the (randomized) policy that, in each tra-
jectory, selects one of these policies uniformly at random
and executes it throughout the trajectory.

Our goal in this section is to “approximate” the uniform
mixture (and we will justify this choice in subsequent sec-
tions). To do so, we focus on IRL algorithms that “match
feature expectations.” Informally, the property of interest is
that the feature expectations of the policy match the (dis-
counted) feature vectors of observed trajectories. This idea
is already present in the IRL literature, but it is helpful to
define it formally, as it allows us to identify specific IRL al-
gorithms that work well in our setting.

Definition 3.1. Given n trajectories τ1, ..., τn, a (possibly
randomized) policy π ε-matches their feature expectations
if and only if ‖µ(π)− 1

n

∑n
i=1 φ(τi)‖2 ≤ ε.

In a nutshell, due to the linearity of the reward function,
two policies that have the same feature expectations have the
same reward. Therefore, if the observed trajectories closely
mimic the feature expectations of πu, and a policy π̃ matches
the feature expectations of the observed trajectories, then the
reward of π̃ would be almost identical to that of πu. This is
formalized in the following theorem, whose proof is rele-
gated to Appendix B.

Theorem 3.2. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈
S, a ∈ A. Let w? such that ‖w?‖2 ≤ 1, fix any w1, . . . ,wn,
and, for all i ∈ N , let τi be a trajectory of length L sam-
pled by executing πi. Let π̃ be a policy that ε/3−matches
the feature expectation of these trajectories. If

n ≥
72 ln

(
2
δ

)
d

ε2(1− γ)2
and L ≥ log1/γ

3
√
d

(1− γ)ε

then, with probability at least 1 − δ, it holds that∣∣Rw?(π̃)−Rw?(πu)
∣∣ ≤ ε.

Note that the required number of agents n may be signif-
icant; fortunately, we can expect access to data from many
agents in applications of interest. For example, Noothigattu
et al. (2018) built a system that decides ethical dilemmas
based on data collected from 1.3 million people.

To apply Theorem 3.2, we need to use IRL algorithms that
match feature expectations. We have identified two algo-
rithms that satisfy this property: the Apprenticeship Learn-
ing algorithm of Abbeel and Ng (2004), and the Max En-
tropy algorithm of Ziebart et al. (2008). For completeness
we present these algorithms, and formally state their feature-
matching guarantees, in Appendix A.

4 How Good is the Uniform Mixture?
In Section 3 we showed that it is possible to (essentially)
match the performance of the uniform mixture with respect
to the ground truth reward function. In this section we jus-
tify the idea of competing with the uniform mixture in two
ways: first, we show that the uniform mixture approximates
the optimal policy under certain assumptions on the noise,
and, second, we prove that in the worst case it is actually
impossible to outperform the uniform mixture.

4.1 The Uniform Mixture Approximates the
Optimal Policy

Recall that for all i ∈ n, wi = w? + ηi. It is clear that
without imposing some structure on the noise vectors ηi, no
algorithm would be able to recover a policy that does well
with respect to w?.

Let us assume, then, that the noise vectors ηi are such
that the ηik are independent and each η2ik is sub-exponential.
Formally, a random variable X with mean u = E[X] is sub-
exponential if there are non-negative parameters (ν, b) such
that E [exp (λ(X − u))] ≤ exp (ν2λ2/2) for all |λ| < 1/b.
This flexible definition simply means that the moment gen-
erating function of the random variableX is bounded by that
of a Gaussian in a neighborhood of 0. Note that if a random
variable is sub-Gaussian, then its square is sub-exponential.
Hence, our assumption is strictly weaker than assuming that
each ηik is sub-Gaussian.

Despite our assumption about the noise, it is a priori un-
clear that the uniform mixture would do well. The challenge
is that the noise operates on the coordinates of the individual
weight vectors, which in turn determine individual rewards,
but, at first glance, it seems plausible that relatively small
perturbations of rewards would lead to severely suboptimal
policies. Our result shows that this is not the case: πu is ap-
proximately optimal with respect to Rw? , in expectation.

Theorem 4.1. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈
S, a ∈ A. Let w? such that ‖w?‖2 ≤ 1, and suppose
that w1, ...,wn are drawn from i.i.d. noise around w?, i.e.,
wi = w? + ηi, where each of its coordinates is such that
η2ik is an independent sub-exponential random variable with
parameters (ν, b). Then

E[Rw?(πu)] ≥ Rw?(π?)−O

(
d
√
u+ ν

√
d

u
+

b√
u

)
,

where u = 1
d

∑d
k=1 E

[
η2ik
]
, and the expectation is taken

over the noise.

The exact expression defining the gap between
E[Rw?(πu)] and Rw?(π?) can be found in the proof
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of Theorem 4.1, which appears in Appendix C; we give the
asymptotic expression in the theorem’s statement because it
is easier to interpret. As one might expect, this gap increases
as ν or b is increased (and, in a linear fashion). This is
intuitive because a smaller ν or b imposes a strictly stronger
assumption on the sub-exponential random variable (and its
tails).

To gain more insight, we analyze the upper bound on
the gap when ηik follows a Gaussian distribution, that is,
ηik ∼ N (0, σ2). Note that this implies that η2ik follows a χ2

1
distribution scaled by σ2; a χ2

1 distributed random variable
is known to be sub-exponential with parameters (2, 4), and
hence this implies that η2ik is sub-exponential with param-
eters (2σ2, 4σ2). Further, in this case, u = E

[
η2ik
]

= σ2.
Plugging these quantities into the upper bound of Theo-
rem 4.1 shows that the gap is bounded by O(dσ).

Theorem 4.1 shows that the gap depends linearly on the
number of features d. An example given in Appendix D
shows that this upper bound is tight. Nevertheless, the tight-
ness holds in the worst case, and one would expect the prac-
tical performance of the uniform mixture to be very good.
To corroborate this intuition, we provide (unsurprising) ex-
perimental results in Appendix E.

4.2 It is Impossible to Outperform the Uniform
Mixture in the Worst Case

An ostensible weakness of Theorem 4.1 is that even as the
number of agents n goes to infinity, the reward of the uni-
form mixture may not approach that of the optimal policy,
that is, there is a persistent gap. The example given in Sec-
tion 4.1 shows the gap is not just an artifact of our analysis.
This is expected, because the data contains some agents with
suboptimal policies πi, and a uniform mixture over these
suboptimal policies must itself be suboptimal.

It is natural to ask, therefore, whether it is generally pos-
sible to achieve performance arbitrarily close to π? (at least
in the limit that n goes to infinity). The answer is negative.
In fact, we show that — in the spirit of minimax optimal-
ity (Hodges Jr and Lehmann 1950; Perron and Marchand
2002) — one cannot hope to perform better than πu itself in
the worst case. Intuitively, there exist scenarios where it is
impossible to tell good and bad policies apart by looking at
the data, which means that the algorithm’s performance de-
pends on what can be gleaned from the “average data”.

This follows from a surprising1 result that we think of as
“non-identifiability” of the optimal policy. To describe this
property, we introduce some more notation. The distribution
over the weight vector of each agent i, wi = w?+ηi, in turn
induces a distribution over the optimal policy πi executed by
each agent. Denote this distribution byP(w?).2 Hence, each
agent’s optimal policy πi is just a sample from this distribu-
tion P(w?). In particular, as the number of agents goes to
infinity, the empirical distribution of their optimal policies
would exactly converge to P(w?).

1At least it was surprising for us — we spent significant effort
trying to prove the opposite result!

2Note that this distribution does not depend on i itself since the
noise ηi is i.i.d. across the different agents.

For the rest of this section, we make minimal assump-
tions on the noise vector ηi. In particular, we merely as-
sume that ηi follows a continuous distribution and that each
of its coordinates is i.i.d. We are now ready to state our non-
identifiability lemma.

Lemma 4.2 (non-identifiability). For every continuous dis-
tribution D over R, if ηik is independently sampled from D
for all i ∈ N and k ∈ [d], then there exists an MDP and
weight vectors w?

a, w?
b with optimal policies π?a, π?b , respec-

tively, such that π?a 6= π?b but P(w?
a) = P(w?

b ).

Even if we had an infinite number of trajectories in our
data, and even if we knew the exact optimal policy played
by each player i, this information would amount to know-
ing P(w?). Hence, if there exist two weight vectors w?

a,
w?
b with optimal policies π?a, π?b such that π?a 6= π?b and
P(w?

a) = P(w?
b ), then we would not be able to identify

whether the optimal policy is π?a or π?b regardless of how
much data we had.

The proof of Lemma 4.2 is relegated to Appendix F. Here
we provide a proof sketch.

Proof sketch of Lemma 4.2. The intuition for the lemma
comes from the construction of an MDP with three possible
policies, all of which have probability 1/3 under P(w?),
even though one is better than the others. This MDP has
a single state s, and three actions {a, b, c} that lead back
to s. Denote the corresponding policies by πa, πb, πc. Let
the feature expectations be φ(s, a) = [0.5, 0.5], φ(s, b) =
[1,−δ/2], φ(s, c) = [−δ/2, 1], where δ > 0 is a parameter.
Let the ground truth weight vector be w? = (vo, vo), where
vo is such that the noised weight vector w = w? + η has
probability strictly more than 1/3 of lying in the first quad-
rant; such a value always exists for any noise distribution
that is continuous and i.i.d. across coordinates.

Let us look at weight vectors w for which each of the
three policies πa, πb and πc are optimal. πa is the optimal
policy when wᵀµa > wᵀµb and wᵀµa > wᵀµc, which
is the intersection of the half-spaces wᵀ(−1, 1 + δ) > 0
and wᵀ(1 + δ,−1) > 0. Similarly, we can reason about
the regions where πb and πc are optimal. These regions are
illustrated in Figure 1 for different values of δ. Informally,
as δ is decreased, the lines separating (πa, πc) and (πa, πb)
move closer to each other (as shown for δ = 0.25), while
as δ is increased, these lines move away from each other
(as shown for δ = 10). By continuity and symmetry, there
exists δ such that the probability of each of the regions (with
respect to the random noise) is exactly 1/3, showing that the
MDP has the desired property.

To complete the proof of the lemma, we extend the MDP
by adding two more features to the existing two. By set-
ting these new features appropriately (in particular, by cy-
cling the two original features across the arms), we can
show that the two weight vectors w?

a = (vo, vo, 0, 0) and
w?
b = (0, 0, vo, vo) lead to P(w?

a) = ( 1
3 ,

1
3 ,

1
3 ) = P(w?

b ),
even though their corresponding optimal policies are πa and
πb, respectively.

For the next theorem, therefore, we can afford to be “gen-
erous:” we will give the algorithm (which is trying to com-
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Figure 1: Regions of each optimal policy for different values of δ. Blue depicts the region where πa is optimal, orange is where
πb is optimal, and green is where πc is optimal.

pete with πu) access to P(w?), instead of restricting it to
sampled trajectories. Formally, the theorem holds for any al-
gorithm that takes a distribution over policies as input, and
returns a randomized policy.

Theorem 4.3. For every continuous distribution D over R,
if ηik is independently sampled from D for all i ∈ N and
k ∈ [d], then there exists an MDP such that for any algo-
rithmA from distributions over policies to randomized poli-
cies, there exists a ground truth weight vector w? such that
Rw?(A(P(w?)) ≤ Rw?(πu) < Rw?(π?).

In words, the constructed instance is such that, even given
infinite data, no algorithm can outperform the uniform mix-
ture, and, moreover, the reward of the uniform mixture is
bounded away from the optimum. The theorem’s proof is
given in Appendix G.

5 The Inverse Multi-Armed Bandit Problem
In Section 4, we have seen that it is impossible to outperform
the uniform mixture in the worst case, as the optimal policy
is not identifiable. However, it is natural to ask when the
optimal policy is identifiable and how it may be practically
recovered. In this section we give an encouraging answer,
albeit in a restricted setting.

Specifically, we focus on the multi-armed bandit problem,
which is an MDP with a single state. Note that the non-
identifiability result of Lemma 4.2 still holds in this setting,
as the example used in its proof is an MDP with a single
state. Hence, even in this setting of bandits, it is impossible
to outperform the uniform mixture in the worst case. How-
ever, we design an algorithm that can guarantee optimal per-
formance when the problem is identifiable, under some ad-
ditional conditions.

Like the general setting considered earlier, there exists a
ground truth weight vector w?, and for each agent i ∈ N ,
wi = w? + ηi. For this section, we assume the noise vector
ηi to be Gaussian and i.i.d. across agents and coordinates.
In particular, ηi ∼ N (0, σ2Id), and independent across i.

The bandit setting is equivalent to a single-state MDP, and
hence the components S, T , γ and D are moot. Instead,
there are m arms to pull, denoted by A = {1, 2, . . . ,m}.
Similar to our original feature function φ, we now have fea-

tures xj ∈ Rd associated with arm j, for each j ∈ A. Al-
though in standard stochastic bandit problems we have a re-
ward sampled from a distribution when we pull an arm, we
care only about its mean reward in this section. For weight
vector w, the (mean) reward of pulling arm j is given by
rw(j) = wᵀxj . For each agent i (with weight vector wi),
we assume that we observe the optimal arm being played by
this agent, i.e., ãi = argmaxj∈Aw

ᵀ
i xj .

We observe the dataset D = {ã1, ã2, . . . , ãn} which
is the set of optimal arms played by the agents. Define
Q(w?) to be the distribution over optimal arms induced
when the ground truth weight vector is w?. In particular,
ground truth weight vector w? induces a distribution over
the noised weight vector of each agent (via w = w? + η),
which in turn induces a discrete distribution over the op-
timal arm that would be played, which we call Q(w?) —
analogously to the P(w?) of Section 4. Observe that the
dataset D could be rewritten as a distribution over arms,
Q̃ = (Q̃1, Q̃2, . . . , Q̃m), which is the observed distribu-
tion of optimal arms. Moreover, as each agent’s optimal arm
played is an i.i.d. sample from Q(w?), the empirical distri-
bution Q̃ is an unbiased estimate of Q(w?).

The inverse multi-armed bandit problem is to recover w?

given the distribution Q̃, which allows us to identify the op-
timal arm. In order to achieve this, we aim to find w such
that Q(w) = Q̃, or matches it as closely as possible. Ide-
ally, we would want to find w such that Q(w) = Q(w?),3
but since we do not have access to Q(w?), we use the unbi-
ased estimate Q̃ in its place.4 Below, we produce conditions
under which the optimal policy is recoverable, and provide
a practical algorithm that achieves this for all settings that
meet the criteria.

3Note that there might be multiple w such that Q(w) =
Q(w?). However, since we care only about the corresponding op-
timal arm, and identifiability tells us that all weight vectors with
the same Q value have the same optimal arm, we just need to find
one such weight vector.

4In most cases we will have collected sufficient data such that
the optimal arm corresponding to Q̃ coincides with the optimal
arm corresponding to Q(w?). Although they may not coincide,
this probability goes to zero as the size of the dataset D increases.
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5.1 Identifying the Optimal Arm
Since the constraint Q(w) = Q̃ is “far” from being convex
in w, we reformulate the problem such that the new problem
is convex, and all its optimal solutions satisfy the required
constraint (and vice versa). The new objective we use is the
cross entropy loss between Q̃ and Q(w). That is, the opti-
mization problem to solve is

min
w
−
∑
k∈A

Q̃k logQ(w)k. (1)

It is obvious that this objective is optimized at points with
Q(w) = Q̃, if the original problem was feasible. Otherwise,
it finds w whose Q is as close to Q̃ as possible in terms
of cross-entropy. Furthermore, this optimization problem is
convex under a simple condition, which requires the defini-
tion of Xk as an (m − 1) × d matrix with rows of the form
(xk − xj)

ᵀ, for each j ∈ A \ {k}.
Theorem 5.1. Optimization problem (1) is convex if XkX

ᵀ
k

is invertible for each k ∈ A.
The proof of the theorem appears in Appendix H.

An exact characterization of when XkX
ᵀ
k is full rank is

rank(XkX
ᵀ
k ) = rank(Xk) = m − 1, i.e. when Xk is full

row rank. For this to be true, a necessary condition is that
d ≥ m − 1 as rank(Xk) ≤ min(d,m − 1). And under this
condition, the requirement for Xk to to be full row rank is
that the rows (xk − xj)

ᵀ are linearly independent, which is
very likely to be the case, unless the feature vectors were set
up adversarially. One potential scenario where the condition
d ≥ m− 1 would arise is when there are many features but
feature vectors xj are sparse.

As the optimization problem (1) is convex, we can use
gradient descent to find a minimizer. And for this, we need to
be able to compute the gradient accurately, which we show
is possible; the calculation is given in Appendix I.

Importantly, we can also use our procedure to determine
whether the optimal arm is identifiable. Given Q̃, we solve
the optimization problem (1) to first find a wo such that
Q(wo) = Q̃. Let wo have the optimal arm ao ∈ A. Now,
our goal is to check if there exists any other weight w that
hasQ(w) = Q̃ but whose corresponding optimal arm is not
ao. To do this, we can build a set of convex programs, each
with the exact same criterion (taking care of the Q(w) = Q̃
requirement), but with the constraint that arm ai 6= ao is the
optimal arm (or at least beats ao) with respect to w. In partic-
ular, the constraint for program i could be wᵀxi > wᵀxao .5
As this is a simple affine constraint, solving the convex pro-
gram is very similar to running gradient descent as before.
If any of these convex programs outputs an optimal solution
that satisfies Q(w) = Q̃, then the problem is not identifi-
able, as it implies that there exist weight vectors with differ-
ent optimal arms leading to the same Q̃. On the other hand,
if none of them satisfies Q(w) = Q̃, we can conclude that
ao is the desired unique optimal arm.

5The strong inequality can be implemented in the standard way
via wᵀxi ≥ wᵀxao + ε for a sufficiently small ε > 0 that depends
on the program’s bit precision.

5.2 Experiments
We next study the empirical performance of our algorithm
for the inverse multi-armed bandit problem. We focus on in-
stances inspired by the counter-example from Lemma 4.2.
The reason for this is that in randomly generated bandit
problems, the optimal arm a? is very likely to be the mode
of Q(w?), making the mode of Q̃ a very good estimator of
a?.6 By contrast, the counterexample allows us to generate
“hard” instances.

Specifically, the bandit instances we consider have two
features (d = 2) and three arms A = {1, 2, 3}, and their
features are defined as x1 = [1, 1], x2 = [2,−δ] and x3 =
[−δ, 2], where δ > 0 is a positive constant. The ground truth
weight vector is given as w? = [1, 1]. Hence, for any δ > 0,
the optimal arm is arm 1. The noise is η ∼ N (0, σ2). Such
an instance is very similar to the one of Lemma 4.2, except
that the features are not replicated to extend from two to four
features, and hence the problem remains identifiable.

Observe that when the value of δ is small enough, the blue
region of Figure 1 becomes a sliver, capturing a very small
density of the noise η, and causing arm 1 to not be the mode
of Q(w?). Alternatively, for a given value of δ, if σ is large
enough, most of the noise’s density escapes the blue region,
again causing arm 1 to not be the mode of Q(w?). In the
following experiments, we vary both δ and σ, and show that
even when the optimal arm almost never appears in Q(w?),
our algorithm is able to recover it.

Varying parameter δ. In the first set of experiments, we fix
the noise standard deviation σ to 1, generate n = 500 agents
according to the noise η ∼ N (0, σ2), and vary parameter
δ from 0.01 to 3. Figure 2 shows the percentage of times
our algorithm and the mode recover the optimal arm 1. This
graph is averaged over 1000 runs, and error bars depict 95%
confidence intervals.

When δ is extremely close to 0, the optimal arm’s re-
gion almost vanishes. Hence, small differences between Q̃
and Q(w?) could have a substantial effect, and unless w?

is numerically recovered within this sliver, the optimal arm
would not be recovered. As we move to even slightly larger
values of δ, however, the performance of the algorithm im-
proves substantially and it ends up recovering the optimal
arm 100% of the time.

By contrast, as δ is varied from 0 to ∞, the density of
the noise η captured by the blue region increases contin-
uously from 0 to that of the first quadrant. In particular,
there is a point where Q(w?) has probability tied across the
three arms, after which arm 1 is always the mode (i.e. mode
has 100% performance), and before which arms 2 and 3 are
the modes (i.e the mode has 0% performance). This tipping
point is evident from the graph and occurs around δ = 1.7
Observe that the performance of the algorithm rises to 100%

6This is because, for each arm a, the region Ra = {w :
wᵀxa ≥ wᵀxj for each j}, corresponding to where arm a is op-
timal, forms a polytope, and the optimal arm’s region Ra? con-
tains w?. Hence, as long as Ra? has enough volume around w?,
it would capture a majority of the density of the noise η, and a?

would be the mode of the distributionQ(w?).
7The transition in this graph is smoother than a step function
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Figure 3: Performance as σ is varied.

much before this tipping point, serving as evidence that it
can perform well even if the optimal arm barely appears in
the dataset. Appendix J.1 includes similar results when the
parameters are set to σ ∈ {0.5, 2.0} or n ∈ {250, 1000}.
Varying noise parameter σ. Next, we fix the parameter
δ to 1 and generate n = 500 agents according to noise
η ∼ N (0, σ2), while varying the noise parameter σ from
0.01 to 5. Figure 3 shows the percentage of times our algo-
rithm and the mode recover the optimal arm 1. This graph
is also averaged over 1000 runs, and error bars depict 95%
confidence intervals.

The results are similar in spirit to Figure 2. When σ is
extremely large (relative to the ground truth vector w? =
[1, 1]), the weight space becomes less and less distinguish-
able with respect to the corresponding Q values. In partic-
ular, small differences between Q̃ and Q(w?) again have a
substantial effect on the corresponding optimal arms, caus-
ing a suboptimal arm to be recovered. At more reasonable

because we use the empirical mode from Q̃ whose performance
varies smoothly as the distance between probabilities of arms 1
and {2, 3} changes.

levels of noise, however, we can see that the algorithm re-
covers the optimal arm 100% of the time.

The mode’s performance also has a similar flavor to Fig-
ure 2. For a given value of δ, the regions of Figure 1 are com-
pletely decided. When σ is close to zero, the noise is almost
negligible, and hence the blue region captures most of the
density of the noise η, and the optimal arm is the mode. But
as σ is varied from 0 to∞, the density captured by this re-
gion decreases continuously from 1 to a ratio of the volumes
of the regions. In particular, we again come across a point
whereQ(w?) has probability tied across the three arms, be-
fore which arm 1 is always the mode (i.e. mode has 100%
performance), and after which arms 2 and 3 are the modes
(i.e. the mode has 0% performance). Note that, for σ = 1,
this point is achieved around δ = 1 (Figure 2). Hence, when
we vary σ while fixing δ = 1, the tipping point is expected
to be achieved around σ = 1, which is indeed the case, as
evident from Figure 3. Again, observe that the performance
of the algorithm is still around 100% significantly after this
tipping point. Appendix J.2 includes similar results when the
parameters are set to δ ∈ {0.5, 2.0} or n ∈ {250, 1000}.

6 Discussion
We have shown that it is possible to match the performance
of the uniform mixture πu, or that of the average agent. In
Section 5 we then established that it is possible to learn poli-
cies from demonstrations with superior performance com-
pared to the teacher, albeit under simplifying assumptions.
An obvious challenge is to relax the assumptions, but this
is very difficult, and we do not know of existing work that
can be applied directly to our general setting. Indeed, the
most relevant theoretical work is that of Syed and Schapire
(2008). Their approach can only be applied if the sign of the
reward weight is known for every feature. This is problem-
atic in our setting as some agents may consider a feature to
be positive, while others consider it to be negative. A priori,
it is unclear how the sign can be determined, which crucially
invalidates the algorithm’s theoretical guarantees. Moreover,
it is unclear under which cases the algorithm would produce
a policy with superior performance, or if such cases exist.

We also remark that, although in the general setting we
seek to compete with πu, we are actually doing something
quite different. Indeed, ex post (after the randomness has
been instantiated) the uniform mixture πu simply coincides
with one of the individual policies. By contrast, IRL al-
gorithms pool the feature expectations of the trajectories
τ1, . . . , τn together, and try to recover a policy that approx-
imately matches them. Therefore, we believe that IRL algo-
rithms do a much better job of aggregating the individual
policies than πu does, while giving almost the same opti-
mality guarantees.

Ethics Statement
As mentioned in Section 1, our work can conceivably be
used to align the values of an AI system with those of a
group of people or even those of society. Although such an
application would be far in the future, we acknowledge that
it gives rise to ethical issues. Most notably, in cases where
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the values of the set of agents are not centered around a rea-
sonable moral system, learning from those agents may lead
to undesirable behavior. Thought must be given both to the
choice of appropriate applications as well as to the selection
of agents who serve as teachers.
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Appendix

A IRL Algorithms
In this appendix we identify two well-known algorithms that match feature expectations.

A.1 Apprenticeship Learning
Under the classic Apprenticeship Learning algorithm, designed by Abbeel and Ng (2004), a policy π(0) is selected to begin
with. Its feature expectation µ(π(0)) is computed and added to the bag of feature expectations. At each step,

t(i) = max
w:‖w‖2≤1

min
j∈{0,..,i−1}

wᵀ

(
1

n

n∑
i=1

φ(τi)− µ
(
π(j)

))

is computed along with the weight w(i) that achieved this. When t(i) ≤ ε the algorithm terminates, otherwise the associ-
ated optimal policy π(i) is computed, and its corresponding feature expectation vector µ(π(i)) is added to the bag of feature
expectations. The algorithm provides the following guarantee.
Theorem A.1 (adapted from Abbeel and Ng (2004)). For any ε > 0, the Apprenticeship Learning algorithm terminates with
t(i) ≤ ε after a number of iterations bounded by

T = O

(
d

(1− γ)2ε2
ln

d

(1− γ)ε

)
,

and outputs a mixture over π(1), ..., π(T ) that ε-matches the feature expectations of the observed trajectories.

Note that it is necessary for us to use a randomized policy, in contrast to the case where a single deterministic policy generated
all the trajectory samples, as, in our case, typically there is no single deterministic policy that matches the feature expectations
of the observed trajectories.

A.2 Max Entropy
We next discuss the Max Entropy algorithm of Ziebart et al. (2008), which optimizes the max entropy of the probability
distribution over trajectories subject to the distribution satisfying approximate feature matching. This is done to resolve the
potential ambiguity of there being multiple stochastic policies that satisfy feature matching. Optimizing entropy is equivalent
to maximizing the regularized likelihood L(w) of the observed trajectories. Specifically, the objective is

L(w) = max
w

n∑
i=1

log Pr[τi|w, T ]−
d∑
i=1

ρi‖wi‖1,

with

Pr[τi|w, T ] =
ew

ᵀφ(τi)

Z(w, T )

∏
st,at,st+1∈τi

T (st, at, st+1).

The regularization term is introduced to allow for approximate feature matching since the observed empirical feature expectation
may differ from the true expectation. Let ρ be an upper bound on this difference, i.e., for all k = 1, . . . , d,

ρk ≥

∣∣∣∣∣ 1n
n∑
i=1

φ(τi)k − E

[
1

n

n∑
i=1

φ(τi)k

]∣∣∣∣∣ .
One may then derive that the gradient of L(w) is the difference between the feature expectation induced w and the observed
feature expectation.
Theorem A.2 (adapted from Ziebart et al. (2008)). Let ε > 0, and assume that the Max Entropy algorithm finds w such that
|∇L(w)| < ε, then this w corresponds to a randomized policy that (ε+‖ρ‖1)-matches the feature expectations of the observed
trajectories.

The assumption on the gradient is needed because the above optimization objective is derived only with the approximate
feature matching constraint. MDP dynamics is not explicitly encoded into the optimization. Instead, heuristically, the likelihood
of each trajectory Pr[τi|w, T ] is weighted by the product of the transition probabilities of its steps. The follow-up work of
Ziebart (2010) addresses this by explicitly introducing MDP constraints into the optimization, and optimizing for the causal
entropy, thereby achieving unconditional feature matching.
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B Proof of Theorem 3.2
We need to bound the difference between Rw?(π̃) and Rw? (πu). First, recall that π̃ ε/3−matches the feature expectations of
τ1, . . . , τn. It holds that ∣∣∣∣∣Rw?(π̃)− (w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣ =

∣∣∣∣∣(w?)ᵀ

(
µ(π̃)− 1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣
≤ ‖w?‖2

∥∥∥∥∥µ(π̃)− 1

n

n∑
i=1

φ(τi)

∥∥∥∥∥
2

≤ ε

3
,

(2)

where the second transition follows from the Cauchy-Schwarz inequality, and the last from the assumption that ‖w?‖2 ≤ 1.
Hence, it is sufficient to demonstrate that, with probability at least 1− δ,∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?(πu)

∣∣∣∣∣ ≤ 2ε

3
, (3)

as the theorem would then follow from Equations (2), and (3) by the triangle inequality.
We note that the difference on the left hand side of Equation (3) is due to two sources of noise.

1. The finite number of samples of trajectories which, in our setting, originates from multiple policies.
2. The truncated trajectories τi which are limited to L steps.

Formally, let τ ′i denote the infinite trajectory for each i, then the difference can be written as∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?(πu)

∣∣∣∣∣ ≤
∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣
+

∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw? (πu)

∣∣∣∣∣
Bounding finite sample noise. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw? (πu)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
(

n∑
i=1

(w?)ᵀ(φ(τ ′i)− µ(πi))

)∣∣∣∣∣ . (4)

Define random variable Zi = (w?)ᵀ(φ(τ ′i) − µ(πi)). Then the right-hand side of Equation (4) may be expressed as
| 1n
∑n
i=1 Zi|. Furthermore, Zi is such that E[φ(τ ′i)k] = µ(πi)k for all k = 1, . . . , d. This is because a policy πi defines a

distribution over trajectories, and τ ′i is a draw from this distribution. Using the linearity of expectation, it follows that

E[Zi] = (w?)ᵀE[φ(τ ′i)− µ(πi)] = 0.

Moreover,

|Zi| ≤ ‖w?‖2‖φ(τ ′i)‖2 + ‖w?‖2‖µ(πi)‖2 ≤
2
√
d

1− γ
,

since ‖φ(s, ·)‖∞ = 1. Thus, using Hoeffding’s inequality, we conclude that

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Zi

∣∣∣∣∣ > ε

3

]
≤ 2exp

−2n
(
ε
3

)2
( 4
√
d

1−γ )2

 ≤ δ,
where the last transition holds by our choice of n.

Bounding bias due to truncated trajectories. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ .
For each trajectory τi, truncating after L steps incurs a reward difference of:

|(w?)ᵀφ(τ ′i)− (w?)ᵀφ(τi)| =

∣∣∣∣∣(w?)ᵀ
∞∑
t=L

γtφ(τ ′i(st), τ
′
i(at))

∣∣∣∣∣
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≤
∞∑
t=L

γt‖w?‖2‖φ(τ ′i(st), τ
′
i(at))‖2 ≤ γL

√
d

1− γ
≤ ε

3
,

where the third transition holds because ‖φ(τi(st), τi(at))‖2 ≤
√
d, and the last transition follows from our choice of L. Hence,

we obtain ∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|(w?)ᵀφ(τi)− (w?)ᵀφ(τ ′i)| ≤
ε

3
.

C Proof of Theorem 4.1
We require a key property of sub-exponential random variables, which is captured by the following well known tail inequality;
its proof can be found, for example, in Chapter 2 of Wainwright (2019).

Lemma C.1. Let X1, . . . , Xm be independent sub-exponential random variables with parameters (ν, b). Then

Pr

 1

m

m∑
j=1

(Xj − uj) ≥ t

 ≤ {exp
(
−mt

2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
−mt2b

)
for t > ν2

b

,

where uj = E[Xj ].

Turning to the theorem’s proof, as πu is a uniform distribution over the policies π1, . . . , πn, its expected reward is given by

Rw?(πu) =
1

n

n∑
i=1

Rw?(πi). (5)

Observe that Rw?(πi) is a random variable which is i.i.d. across i, as the corresponding noise ηi is i.i.d. as well. We analyze
the expectation of the difference with respect to Rw?(π?).

First, note that for a weight vector w and policy π,

Rw(π) =

∞∑
t=0

γt
∑
s∈S

Pπ(s, t)wᵀφ(s, π(s)), (6)

where Pπ(s, t) denotes the probability of being in state s on executing policy π from the start. Hence, for each i ∈ N , we have

Rw?(π?)−Rw?(πi)

=
∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(w?)ᵀφ(s, π?(s))− Pπi(s, t)(w?)ᵀφ(s, πi(s))

]
=
∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(wi − ηi)

ᵀφ(s, π?(s))− Pπi(s, t)(wi − ηi)
ᵀφ(s, πi(s))

]
= Rwi(π?)−Rwi(πi) +

∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀ

i φ(s, π?(s)) + Pπi(s, t)η
ᵀ
i φ(s, πi(s))

]
≤
∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀ

i φ(s, π?(s)) + Pπi(s, t)η
ᵀ
i φ(s, πi(s))

]

=
d∑
k=1

ηik

[ ∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k

]]

:=
d∑
k=1

ηikαik, (7)

where the inequality holds since Rwi(πi) ≥ Rwi(π?), which, in turn, holds because πi is optimal under wi.
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Using the assumption that ‖φ(s, a)‖∞ ≤ 1, it holds that
∣∣∑

s∈S Pπ(s, t)φ(s, a)k
∣∣ ≤ 1 for any policy π. We can therefore

bound |αik| as follows.

|αik| ≤
∞∑
t=0

γt

∣∣∣∣∣∑
s∈S

[−Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k]

∣∣∣∣∣
≤
∞∑
t=0

γt

[∣∣∣∣∣∑
s∈S

Pπ?(s, t)φ(s, π?(s))k

∣∣∣∣∣+

∣∣∣∣∣∑
s∈S

Pπi(s, t)φ(s, πi(s))k

∣∣∣∣∣
]

≤ 2

1− γ
.

Therefore, it holds that

‖αi‖2 =

√√√√ d∑
k=1

α2
ik ≤

√√√√ d∑
k=1

(
2

1− γ

)2

=
2
√
d

(1− γ)
.

Using this bound along with Equation (7), we obtain

Rw?(π?)−Rw?(πi) ≤
d∑
k=1

ηikαik ≤ ‖ηi‖2‖αi‖2 ≤
2
√
d

(1− γ)

√√√√ d∑
k=1

η2ik

=
2d

(1− γ)

√√√√1

d

d∑
k=1

η2ik. (8)

Denote u = E[ 1d
∑d
k=1 η

2
ik]. To compute the expected value of the previous expression (with respect to the randomness of

the noise ηi), we analyze

E


√√√√1

d

d∑
k=1

η2ik

 =

∫ ∞
0

Pr


√√√√1

d

d∑
k=1

η2ik ≥ x

 dx =

∫ ∞
0

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

=

∫ √u
0

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx+

∫ ∞
√
u

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

≤
∫ √u
0

1 dx+

∫ ∞
√
u

Pr

[
1

d

d∑
k=1

η2ik ≥ x2
]
dx

=
√
u+

∫ ∞
0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
1

2
√
u+ t

dt

≤
√
u+

1

2
√
u

∫ ∞
0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
dt,

where the fourth transition is obtained by changing the variable using x =
√
u+ t. But since each η2ik is sub-exponential with

parameters (ν, b), from Lemma C.1 we have

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
≤

{
exp

(
− dt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
− dt

2b

)
for t > ν2

b

.

Plugging this into the upper bound for the expected value gives us

E


√√√√1

d

d∑
k=1

η2ik

 ≤ √u+
1

2
√
u

∫ ∞
0

Pr

[
1

d

d∑
k=1

η2ik ≥ u+ t

]
dt

≤
√
u+

1

2
√
u

[∫ ν2

b

0

exp

(
− dt

2

2ν2

)
dt+

∫ ∞
ν2

b

exp

(
−dt

2b

)
dt

]
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=
√
u+

1

2
√
u

[∫ ν
√
d
b

0

exp

(
−z

2

2

)
ν√
d
dz +

(
−2b

d

)
exp

(
−dt

2b

) ∣∣∣∣∞
ν2

b

]

=
√
u+

1

2
√
u

[√
2π

d
ν

∫ ν
√
d
b

0

1√
2π

exp

(
−z

2

2

)
dz +

2b

d
exp

(
−dν

2

2b2

)]

=
√
u+

1

2
√
u

[√
2π

d
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

2b

d
exp

(
−dν

2

2b2

)]

=
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)
, (9)

where the transition in the third line is obtained by changing the variable using t = v√
d
z, and Φ denotes the CDF of a standard

normal distribution. Hence, taking an expected value for Equation (8) and plugging in Equation (9), we obtain

E
[
Rw?(π?)−Rw?(πi)

]
≤ 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.

Rearranging this equation, we have

E
[
Rw?(πi)

]
≥ Rw?(π?)− 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.

Taking an expectation over Equation (5) gives us E
[
Rw?(πu)

]
= E

[
Rw?(πi)

]
, and the theorem directly follows.

We remark that Theorem 4.1 can easily be strengthened to obtain a high probability result (at the cost of complicating its
statement). Indeed, the reward of the uniform mixture Rw?(πu) is the average of the individual policy rewards Rw?(πi), which
are i.i.d. Further, each of these rewards is bounded, because of the constraints on w? and φ. Hence, Hoeffding’s inequality
would show that Rw?(πu) strongly concentrates around its mean.

D Example for the Tightness of Theorem 4.1
Assume ηik ∼ N (0, σ2) with σ ≤ 2/d (to avoid violating the constraint ‖φ(s, a)‖∞ ≤ 1). Suppose the MDP has just one
state and 2d−1 + 1 actions. One action has feature vector (dσ/2, 0, . . . , 0), and for each subset S ⊆ {2, . . . , d}, there is an
action aS with a binary feature vector such that it is 1 for coordinates in S and 0 everywhere else. Let w? = (1, 0, ..., 0). The
optimal policy is to pick the first action which has cumulative reward of dσ

2(1−γ) . As ηik ∼ N (0, σ2) for each k, with constant
probability, roughly d/2 of the coordinates of the noised vector reward wi will deviate by roughly +σ and the first coordinate
will not increase too much. In this case, the action corresponding to the coordinates with positive deviations will have reward
on the order of dσ/2, beating action 1 to become optimal. Hence, this would lead to πi picking this action and having 0 reward
under w?. As this occurs with constant probability for a policy in the data, and πu is simply a mean of their rewards, its expected
value would deviate from the optimum by at least a constant fraction of dσ/2.

E Empirical Results for the MDP setting
As we have seen in Section 4.1, the gap between Rw?(π?) and Rw?(πu) is upper bounded by O(d

√
u + ν

√
d/u + b/

√
u)

when η2ik is sub-exponential, or O(dσ) when ηik is Gaussian. Further, Section 3 shows that a policy π̃ that matches feature
expectations of the observed trajectories is very close to πu in terms of cumulative rewardRw? . In this appendix, we empirically
examine the gaps between π̃ (obtained by a “feature matching” IRL algorithm), πu and π?.

E.1 Methodology
As our IRL algorithm we use Apprenticeship Learning, which guarantees the feature-matching property (see Section 3 and
Appendix A). By Theorem 3.2 we may safely assume that any IRL algorithm that matches feature expectations would have
essentially identical rewards, and therefore would show very similar behavior in our experiments.

We perform our experiments in the following two domains.

Grab a Milk. We adapt the “Grab a Milk” MDP, a route planning RL domain (Wu and Lin 2018), to our setting. The MDP is
defined by a 10 by 10 grid room, where the agent starts at (0, 0) and has to reach a bottle of milk positioned at (9, 9). There
are also 16 babies in the room, 5 of which are crying for attention. When the agent crosses a crying baby, they can help soothe
the baby, but on crossing a non-crying baby, the agent disturbs the baby. Hence, the goal of this task is to minimize the number
of steps to the milk, while at the same time soothing as many crying babies as possible along the way and avoiding crossing

13



0 2 4 6 8 10
Sigma

4

6

8

10

12

14

16

18

Cu
m

ul
at

iv
e 

Re
wa

rd

IRL
uniform mixture
optimal policy
random policy

Figure 4: Performance on the Sailing MDP. Error bars show
95% confidence intervals.
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Figure 5: Performance on the Grab a Milk MDP. Error bars
show 95% confidence intervals.

non-crying babies. This MDP is adapted to our setting, by defining each state (or grid square) to have three features φ(s).8
The first feature captures the reward of taking a step, and is set to −1 if the state is non-terminal, whereas it is set to 5 for the
terminal state (9, 9). The second is a boolean feature depicting whether there is a crying baby in the particular grid square, and
similarly the third is a boolean feature depicting whether there is a non-crying baby in the particular grid square. The rewards
in the MDP are then defined as rw

?

(s) = (w?)ᵀφ(s) where the ground truth weight vector is given by w? = [1, 0.5,−0.5].
Intuitively, this weight vector w? can be interpreted as the weights for different ethical factors, and each member of society has
a noised version of this weight.

Sailing. The other domain we use is a modified version of the “Sailing” MDP (Kocsis and Szepesvári 2006). The Sailing MDP
is also a gridworld domain (we use the same size of 10 by 10), where there is a sailboat starting at (0, 0) and navigating the
grid under fluctuating wind conditions. The goal of the MDP is to reach a specified grid square as quickly as possible. We adapt
this domain to our setting by removing the terminal state, and instead adding features for each grid square.9 Now, the goal of
the agent is not to reach a certain point as quickly as possible, but to navigate this grid while maximizing (or minimizing) the
weighted sum of these features. We use 10 features for each grid square, and these are independently sampled from a uniform
distribution over (−1, 1). The ground truth weight vector w?, which defines the weights of these features for the net reward, is
also randomly sampled from independent Unif(−1, 1) for each coordinate. As before, this weight vector w? can be interpreted
as the weights for different bounties, and each member has a noised version of this weight.

Being gridworld domains, in both the MDPs, the agent has four actions to choose from at each state (one for each direction).
The transition dynamics are as follows: On taking a particular action from a given state, the agent moves in that direction with
probability 0.95, but with a probability of 0.05 it moves in a different direction uniformly at random. We use a discount factor
of 0.95 in both domains.

We generate the trajectories {τ1, . . . , τn} as described in Section 3, and use a Gaussian distribution for the noise. That is,
ηi ∼ N (0, σ2Id). We generate a total of n = 50 trajectories, each of length L = 30. IRL is then performed on this data and
we analyze its reward as σ is varied. A learning rate of 0.001 is used for the Apprenticeship Learning algorithm.

E.2 Results
Figures 4 and 5 show the performance of πu and the IRL algorithm as σ is varied. We also include the performance of π? and
a purely random policy πr (which picks a uniformly random action at each step), as references. Each point in these graphs is
averaged over 50 runs (of data generation).

For both domains, the first thing to note is that the uniform mixture πu and the IRL algorithm have nearly identical rewards,
which is why the green IRL curve is almost invisible. This confirms that matching feature expectations leads to performance
approximating the uniform mixture.

Next, as expected, one can observe that as σ increases, the gap between R?(π?) and R?(πu) also increases. Further, for both
domains, this gap saturates around σ = 10 and the R?(πu) curve flattens from there (hence, we do not include larger values of

8For these MDPs, the rewards depend only on the states and not state-action pairs, and hence the reward function can be defined as
rw(s, a) = rw(s) = wᵀφ(s).

9Intuitively, these features could represent aspects like “abundance of fish” in that grid square for fishing, “amount of trash” in that square
that could be cleaned up, “possible treasure” for treasure hunting, etc.
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σ in either graph). Note that, in both domains, the ground truth weight vector w? is generated such that ‖w?‖∞ ≤ 1. Hence,
a standard deviation of 10 in the noise overshadows the true weight vector w?, leading to the large gap shown in both graphs.
Looking at more reasonable levels of noise (with respect to the norm of the weights), like σ ∈ [0, 1], we can see that R?(πu)
drops approximately linearly, as suggested by Theorem 4.1. In particular, it is 14.27 at σ = 0.5 and 9.84 at σ = 1.0 for Sailing,
and it is 3.93 at σ = 0.5 and 0.39 at σ = 1.0 for Grab a Milk.

Finally, we compare the performance of πu with that of the purely random policy πr. As σ becomes very large, each wi is
distributed almost identically across the coordinates. Nevertheless, because of the structure of the Grab a Milk MDP, R?(πu)
still does significantly better than R?(πr). By contrast, Sailing has features that are sampled i.i.d. from Unif(−1, 1) for each
state, which leads the two policies, πu and πr, to perform similarly for large values of σ.

F Proof of Lemma 4.2
Before proving the lemma, we look at a relatively simple example that we will use later to complete the proof.

F.1 Simpler Example
Consider an MDP with a single state s, and three actions {a, b, c}. Since s is the only state, T (s, a, s) = T (s, b, s) =
T (s, c, s) = 1, and D is degenerate at s. This implies that there are only three possible policies, denoted by πa, πb, πc (which
take actions a, b, c respectively from s). Let the feature expectations be

φ(s, a) = [0.5, 0.5],

φ(s, b) = [1,−δ/2],

φ(s, c) = [−δ/2, 1],

where δ > 0 is a parameter. Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1],

µb =
1

2(1− γ)
[2,−δ],

µc =
1

2(1− γ)
[−δ, 2].

Let the ground truth weight vector be w? = (vo, vo), where vo is a “large enough” positive constant. In particular, vo is such
that the noised weight vector w = w?+η has probability strictly more than 1/3 of lying in the first quadrant. For concreteness,
set vo to be such that Pr(w > 0) = 1/2. Such a point always exists for any noise distribution (that is continuous and i.i.d.
across coordinates). Specifically, it is attained at vo = −F−1(1− 1√

2
), where F−1 is the inverse CDF of each coordinate of the

noise distribution. This is because at this value of vo,

Pr(w > 0) = Pr((vo, vo) + (η1, η2) > 0) = Pr(vo + η1 > 0)2

= Pr(η1 > −vo)2 = (1− F (−vo))2 =

(
1√
2

)2

=
1

2
.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are optimal. πa is the optimal policy when
wᵀµa > wᵀµb and wᵀµa > wᵀµc, which is the intersection of the half-spaces wᵀ(−1, 1 + δ) > 0 and wᵀ(1 + δ,−1) > 0.
On the other hand, πb is optimal when wᵀµb > wᵀµa and wᵀµb > wᵀµc, which is the intersection of the half-spaces
wᵀ(−1, 1 + δ) < 0 and wᵀ(1,−1) > 0. Finally, πc is optimal when wᵀµc > wᵀµa and wᵀµc > wᵀµb, which is the
intersection of the half-spaces wᵀ(1 + δ,−1) < 0 and wᵀ(1,−1) < 0. These regions are illustrated in Figure 1 for different
values of δ. Informally, as δ is decreased, the lines separating (πa, πc) and (πa, πb) move closer to each other (as shown for
δ = 0.25), while as δ is increased, these lines move away from each other (as shown for δ = 10).

Formally, let Rδ denote the region of w for which πa is optimal (i.e. the blue region in the figures), that is,

Rδ =

{
w :

w1

1 + δ
< w2 < w1(1 + δ)

}
.

This is bounded below by the line w1 = (1 + δ)w2, which makes an angle of θδ = Tan−1( 1
1+δ ) with the x-axis, and bounded

above by the line w2 = (1+δ)w1, which makes an angle of θδ with the y-axis. We first show that for any value of δ, the regions
of πb and πc have the exact same probability. The probability that πb is optimal is the probability of the orange region which is

Pr(πb is optimal) =

∫ 0

−∞

∫ w1

−∞
Pr(w)dw2dw1 +

∫ ∞
0

∫ w1
(1+δ)

−∞
Pr(w)dw2dw1
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=

∫ 0

−∞

∫ t2

−∞
Pr(t2, t1)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t2, t1)dt1dt2

=

∫ 0

−∞

∫ t2

−∞
Pr(t1, t2)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t1, t2)dt1dt2

= Pr(πc is optimal),

where the second equality holds by changing the variables as t1 = w2 and t2 = w1, and the third one holds because the noise
distribution is i.i.d. across the coordinates. Hence, we have

Pr(πb is optimal) = Pr(πc is optimal) =
1− Pr(Rδ)

2
,

as Rδ denotes the region where πa is optimal.
Finally, we show that there exists a value of δ such that Pr(Rδ) = 1/3. Observe that as δ → 0, the lines bounding the region

Rδ make angles that approach Tan−1(1) = π/4 and the two lines touch, causing the region to have zero probability. On the
other hand, as δ → ∞, the angles these lines make approach Tan−1(0) = 0, so the region coincides with the first quadrant
in the limit. Based on our selection of vo, the probability of this region is exactly 1/2. Hence, as δ varies from 0 to ∞, the
probability of the region Rδ changes from 0 to 1/2. Next, note that as θδ = Tan−1( 1

1+δ ), this angle changes continuously as
δ changes, and hence does the region Rδ . Finally, as the noise distribution is continuous, the probability of this region Rδ also
changes continuously as δ is varied. That is, limε→0 Pr(Rδ+ε) = Pr(Rδ). Coupling this with the fact that Pr(Rδ) changes
from 0 to 1/2 as δ changes from 0 to∞, it follows that there exists a value of δ in between such that Pr(Rδ) is exactly 1/3.
Denote this value of δ by δo.

We conclude that for w? = (vo, vo) and our MDP construction with δ = δo, P(w?) = ( 1
3 ,

1
3 ,

1
3 ).

F.2 Completing the Proof
Consider the same MDP as in Section F.1. However, for this example, let the feature expectations be

φ(s, a) = [0.5, 0.5 , −δo/2, 1],

φ(s, b) = [1,−δo/2, 0.5, 0.5],

φ(s, c) = [−δo/2, 1, 1,−δo/2],

where δo is as defined in Section F.1. Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2],

µb =
1

2(1− γ)
[2,−δo, 1, 1],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo].

Consider two weight vectors w?
a = (vo, vo, 0, 0) and w?

b = (0, 0, vo, vo), where vo is as defined in Section F.1. Since w?
a

completely discards the last two coordinates, it immediately follows from the example of Section F.1 that P(w?
a) = ( 1

3 ,
1
3 ,

1
3 ).

Similarly, the same analysis on the last two coordinates shows that P(w?
b ) = ( 1

3 ,
1
3 ,

1
3 ) as well. On the other hand, the optimal

policy according to w?
a is πa while the optimal policy according to w?

b is πb. Hence, π?a 6= π?b , but we still have P(w?
a) =

P(w?
b ), leading to non-identifiability.

G Proof of Theorem 4.3
The proof of this theorem strongly relies on Lemma 4.2 and the example used to prove it. Consider the MDP as in Section F.2,
but now with 6 features instead of just 4. In particular, let the feature expectations of the three policies be

φ(s, a) = [0.5, 0.5 , −δo/2, 1, 1,−δo/2],

φ(s, b) = [1,−δo/2, 0.5, 0.5 , −δo/2, 1],

φ(s, c) = [−δo/2, 1, 1,−δo/2, 0.5, 0.5 ].

Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2, 2,−δo],
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µb =
1

2(1− γ)
[2,−δo, 1, 1 ,−δo, 2],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo, 1, 1 ].

Consider three weight vectors

w?
a = (vo, vo, 0, 0, 0, 0),

w?
b = (0, 0, vo, vo, 0, 0),

w?
c = (0, 0, 0, 0, vo, vo).

Since w?
a completely discards the last four coordinates, the example of Section F.1 shows thatP(w?

a) = ( 1
3 ,

1
3 ,

1
3 ). Similarly, the

same analysis on the middle two and last two coordinates shows that P(w?
b ) = ( 1

3 ,
1
3 ,

1
3 ) and P(w?

c ) = ( 1
3 ,

1
3 ,

1
3 ), respectively.

However, the optimal policy according to w?
a is πa, according to w?

b it is πb, and according to w?
c it is πc.

Now, consider an arbitrary algorithmA, which takes as input a distribution over policies and outputs a (possibly randomized)
policy. Look at the randomized policyA( 1

3 ,
1
3 ,

1
3 ) returned byAwhen the input is ( 1

3 ,
1
3 ,

1
3 ), and let pa, pb, pc be the probabilities

it assigns to playing πa, πb and πc. Let pi (where i ∈ {a, b, c}) denote the smallest probability among the three. Then, pi ≤ 1/3.
Pick the ground truth weight vector to be w?

i . As P(w?
a) = P(w?

b ) = P(w?
c ), the data generated by w?

i follows the distribution(
1
3 ,

1
3 ,

1
3

)
, and the policy distribution chosen by A is simply (pa, pb, pc).

Now, with probability pi ≤ 1/3, the policy played is πi leading to a reward of w?
i
ᵀµi = vo

(1−γ) , and with probability (1−pi),

the policy played is some πj (where j 6= i) leading to a reward of w?
i
ᵀµj = (2−δo)

2
vo

(1−γ) (which is independent of the value of
j).10 Hence, the expected reward of algorithm A in this case is

pi ·
vo

(1− γ)
+ (1− pi) ·

(2− δo)
2

vo
(1− γ)

=
(2− δo)

2

vo
(1− γ)

+ pi ·
δo
2

vo
(1− γ)

≤ (2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
.

Observe that the uniform mixture πu in this case is just the input distribution ( 1
3 ,

1
3 ,

1
3 ). Whatever be the chosen w?

i , the expected
reward of this distribution is exactly

1

3
· vo

(1− γ)
+

2

3
· (2− δo)

2

vo
(1− γ)

=
(2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
,

which is nothing but the upper bound on the expected reward of A. Hence, for any algorithm A there exists a ground truth
weight vector w?

i such that A has an expected reward at most that of πu (which in turn is strictly suboptimal).

H Proof of Theorem 5.1
To see that this problem is convex, let us analyze the distribution Q(w).

Q(w)k = Pr(Arm k is optimal under weight (w + η))

= Pr((w + η)ᵀxk ≥ (w + η)ᵀxj for all j)
= Pr((w + η)ᵀ(xk − xj) ≥ 0 for all j)
= Pr(Xk(w + η) ≥ 0)

= Pr(−Xkη ≤ Xkw). (10)

Since η ∼ N (0, σ2Id), we have
−Xkη ∼ N (0, σ2XkX

ᵀ
k ).

And sinceXkX
ᵀ
k is invertible, this distribution is non-degenerate and has a PDF. Let us use Fk to denote its CDF. Equation (10)

then reduces to Q(w)k = Fk(Xkw). Plugging this back into our optimization problem (1), we have

min
w
−
∑
k∈A

Q̃k logFk(Xkw). (11)

As Fk corresponds to a (multivariate) Gaussian which has a log-concave PDF, this CDF is also log-concave. Hence,
logFk(Xkw) is concave in w for each k, and therefore (11) is a convex optimization problem.

10An interesting point to note is that by carefully selecting vo, one could get the corresponding δo to be arbitrarily large, thereby causing
the optimal and suboptimal policies to have a much larger gap (equally affecting the uniform mixture πu as well).
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I Gradient Calculation
From Equation (11), we know that the objective function of problem (1) can be rewritten as f(w) = −

∑
k∈A Q̃k logFk(Xkw).

Taking the gradient with respect to w, we have

∇wf(w) = −
∑
k∈A

Q̃k∇w logFk(Xkw)

= −
∑
k∈A

Q̃k
Fk(Xkw)

∇wFk(Xkw)

= −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

· ∇w(Xkw)i

]

= −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

·X(i)
k

]
, (12)

where the third equality holds as Fk(z) has multidimensional input and we’re taking the total derivative. Hence, we need to
compute ∂Fk(z)

∂zi
. Writing CDF Fk in terms of its PDF pk (which exists as XkX

ᵀ
k is invertible), we have

Fk(z) =

∫ z1

−∞
· · ·
∫ zm−1

−∞
pk(x1, . . . , xm−1)dx1 . . . dxm−1.

We compute partial derivative w.r.t. z1 first, for simplicity, and generalize it after. In particular,

∂Fk(z)

∂z1
=

∫ z2

−∞
· · ·
∫ zm−1

−∞

∂

∂z1

[∫ z1

−∞
pk(x1, . . . , xm−1)dx1

]
dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk(z1, . . . , xm−1)dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)pk,1(z1)dx2 . . . dxm−1

= pk,1(z1)

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)dx2 . . . dxm−1

= pk,1(z1) · Prk(Z2 ≤ z2, . . . , Zm−1 ≤ zm−1|Z1 = z1)

= pk,1(z1) · Fk,Z−1|Z1=z1(z−1),

where Fk,Z−1|Z1=z1 is the conditional CDF of the distribution Fk given the first coordinate is z1, pk,1 is the marginal distribution
PDF of this first coordinate, and pk,−1 is the PDF of the rest. This derivation holds for the partial derivative w.r.t. any zi, even
though it was derived for z1. Plugging this into Equation (12), the gradient therefore becomes

∇wf(w) = −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
.

Note that the conditional distribution Fk,Z−i|Zi=zi is also a Gaussian distribution with known parameters, and hence it can
be estimated efficiently. We conclude that we can use gradient descent updates defined by

w+ = w + α
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
,

where α is a suitable step size, to find an optimal solution of (1).

J Additional Empirical Results for Inverse Bandits
J.1 Varying parameter δ
Here, we present the experimental results as δ is varied for additional values of σ and n. All graphs in this section have also
been averaged over 1000 runs, and error bars depict 95% confidence intervals. Figure 6 shows how the performance varies as δ
is varied from 0.01 to 3, when σ is set to 0.5 and 2.0 (while n is still 500). As expected, one can observe that the tipping point
(where the mode switches to the blue region corresponding to arm 1) occurs much earlier when σ = 0.5, and much later when
σ = 2.
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Figure 6: Performance as δ is varied, when σ is fixed to 0.5 and 2.
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Figure 7: Performance as δ is varied, when the number of agents is 250 and 1000.

Figure 7 shows how the performance varies as δ is varied from 0.01 to 3, when the number of agents n is 250 and 1000
(while σ is still set to 1). First, note that the tipping point (for the mode switch) only depends on the value of δ and σ, and
indeed, we can see from the graphs that the tipping point continues to be around δ = 1 irrespective of the number of the agents.
But, the number of agents defines how close Q̃ is toQ(w?), and hence determines the sharpness of the transition. In particular,
for a larger number of agents, the empirical mode (obtained from Q̃) is more likely to match the true mode (ofQ(w?)). Hence,
we can see that when n = 1000, the transition of the mode’s performance is sharper across the tipping point (because of less
noise), while when n = 250, the transition is smoother across this tipping point (because of more noise).

J.2 Varying noise parameter σ
Next, we present the experimental results as σ is varied, for additional values of δ and n. All graphs in this section have also
been averaged over 1000 runs, and error bars depict 95% confidence intervals. Figure 8 shows how the performance varies as σ
is varied from 0.01 to 5, when δ is set to 0.5 and 2.0 (while n is still 500). As expected, we can see that the tipping point (where
the mode switches out of the blue region corresponding to arm 1) occurs earlier when δ = 0.5, and much later when δ = 2.
Further, at high values of σ, the algorithm’s performance is more robust when δ = 2, as the blue region is larger.

Finally, Figure 9 shows how the performance varies as σ is varied from 0.01 to 5, when number of agents n is 250 and
1000 (while δ is still set to 1). Again, note that the tipping point of the mode switch occurs at the same point (around σ = 1)
irrespective of the number of agents. And, as Section J.1, when n = 1000, the transition of the mode’s performance is sharper
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Figure 8: Performance as σ is varied, when δ is fixed to 0.5 and 2.
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Figure 9: Performance as σ is varied, when the number of agents is 250 and 1000.

across the tipping point, while when n = 250, the transition is smoother across it. Further, at high values of σ, n = 1000 has
a much better algorithm performance compared to n = 500 (which in turn outperforms that at n = 250), showing that even at
such high levels of noise, if Q̃ coincides with Q(w?), the algorithm is still able to recover the optimal arm 1.
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