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We present two models of how people form beliefs that are based
on machine learning theory. We illustrate how these models give
insight into observed human phenomena by showing how polar-
ized beliefs can arise even when people are exposed to almost
identical sources of information. In our first model, people form
beliefs that are deterministic functions that best fit their past data
(training sets). In that model, their inability to form probabilis-
tic beliefs can lead people to have opposing views even if their
data are drawn from distributions that only slightly disagree. In
the second model, people pay a cost that is increasing in the
complexity of the function that represents their beliefs. In this sec-
ond model, even with large training sets drawn from exactly the
same distribution, agents can disagree substantially because they
simplify the world along different dimensions. We discuss what
these models of belief formation suggest for improving people’s
accuracy and agreement.

belief polarization | learning theory

n 1998, The Lancet, a medical journal, published a study linking

the MMR (measles, mumps, and rubella) vaccine to autism.
Although this study has since been retracted and its results
refuted, it is still a rallying cry for the modern antivaccination
movement. Periodic outbreaks of measles are often associated
with pockets of resistance to vaccination—like the measles public
health emergency in New York City in April 2019 (1). Research
shows that even though the opinions of Americans about vac-
cines are highly polarized, they are not divided along the usual
political fault lines that typically correspond to disparate sources
of information. Instead, the more political a person is (in either
direction), the more likely one is to think vaccines are unsafe (2).

Divergence in beliefs about vaccines is just one example of
belief polarization, which of course, is not a new phenomenon.
Such polarization is sometimes attributed to people’s exposure
to divergent sources of information—“echo chambers”—which
can exist because people tend to interact with others who share
their background as well as opinions (3, 4). Cable television,
the internet, social media, and other technologically mediated
communication can immerse users in content that is tailored
to their existing preferences and shared by like-minded people
(5-7). In that reality, polarization is a natural outcome; when
different people are exposed to significantly different sources of
information, they can arrive at different conclusions.

However, there is substantial evidence that polarization also
arises even when agents are exposed to the same source of infor-
mation (8-11). A long-standing explanation for this is a tendency
of people to interpret information to confirm what they already
believe (8, 9, 12, 13). Here, we provide a different explanation
for this phenomenon based on foundational models of how peo-
ple learn. We build two such models that are based on machine
learning theory and show that they each can lead to situations in
which people’s beliefs differ substantially, even when faced with
almost identical information.

The models that we propose differ from the standard mod-
els of how people form beliefs. A pair of landmark theorems by
von Neumann and Morgenstern (14) and Savage (15) provided
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a foundation of rational decision making as a Bayesian exer-
cise. Unimpeded, full rationality has become synonymous with
having a prior distribution over possible consequences from dif-
ferent actions and processing any information by updating that
prior distribution according to Bayes’ rule. Although one can
rationalize almost any pattern of beliefs and behaviors as being
Bayesian (16), the priors have to become increasingly convoluted
to explain why whole societies remain systematically polarized
when confronted repeatedly with the same information. More-
over, people’s behavior has failed to exhibit Bayesian updating
along basic dimensions (17). This has led to a variety of models
of bounded rationality or limited observability in which beliefs
are updated by some other adaptive or reinforcement manner
(18-23), are based on some misspecification or misunderstand-
ing (24, 25), or are derived from observations of the actions of
others who may have different preferences (26, 27).
Paradoxically, researchers model people as learning by updat-
ing beliefs via Bayes’ rule or some boundedly rational process,
but then, researchers themselves learn in different ways; they
build models of the world and then discard those models for new
ones when a model no longer sufficiently matches available data.
Methods from regression analysis, nonparametric statistics, and
machine learning involve changing the parameters and even the
basic structure of a model as new data become available, and
sometimes researchers even invent a new class of models when
old ones no longer perform well. That behavior corresponds
more closely to human learning, which can involve coming to a
whole new understanding of how the world works after going
through a novel experience (28). It does not correspond to a
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person who preconceived all possible models and updated a
prior belief over those models as new information became avail-
able. These observations suggest exploring a model of humans
as machine learners: forming belief functions that can com-
pletely change with experience. Such a model can give alternative
explanations for polarization and lead to policy insights.

Our machine learning-based approach can be seen as being
in line with Simon’s (29) description of human decision mak-
ing: listing alternatives and assessing each of their consequences
based on past experiences and other available information. It is
also more in line with a view of bounded rationality as involving
some complexity costs (30, 31). It differs from modeling people
as finite automata—which has been used in the study of repeated
games (32, 33)—in that it provides a paradigm in which the natu-
ral objects are belief functions that make predictions based on
past data, and thus, it offers a direct way of modeling belief
formation.

Below, we provide two models that each generate differences
in the beliefs of two people being exposed to nearly the same
data. In the first, two people each start with their own past
observations that consist of past circumstances and accompany-
ing outcomes, and those two datasets can be perfectly fit using
two different functions that map circumstances into outcomes.
However, these observations are subjective in that they disagree
for some circumstances. When they share their past observations
with each other, there is no longer any (deterministic) function
that fits the combined datasets. If the two people do not com-
pletely share their observations and they are each slightly biased
toward having more of their own observations, then they can end
up having very different optimal predictions of outcomes for the
same circumstances.

The second model brings complexity costs into play and
is based on a purely objective reality that everyone would
completely agree upon with enough information and no con-
straints on forming beliefs. Instead, in this model the two
people each face a cost of the complexity of their model. As
an example, suppose that 10 dimensions of the circumstance
matter roughly equally in determining an outcome but that it
becomes prohibitively expensive for a person to build a men-
tal model that tracks more than 7 of those dimensions. Dif-
ferent people who have seen even slightly different samples
of circumstances and outcomes can end up finding different
sets of seven dimensions being most effective at explaining
what they have seen. For instance, one person may have seen
more circumstances for which scientific evidence is an impor-
tant variable that helps explain the outcome, while another
individual might have seen more circumstances for which pol-
itics are an important predictor of the outcome. These two
can end up paying attention to different dimensions when
faced with making a prediction for some circumstances and
for example, end up with very different beliefs about climate
change. Slight differences in samples can lead two people to
form significantly different belief functions concerning the same
phenomenon.

After presenting the models and results, we discuss their impli-
cations for improving the accuracy and agreement of people’s
beliefs.

An Overview of Our Approach and Results

To model beliefs, we draw on the discriminative “probably
approximately correct” learning framework of machine learning
theory (34).

An agent has seen past data, referred to as the training set,
in the form of instances from a set X that describe possible cir-
cumstances, together with a label or an outcome from a set )
for each instance. The random draw of the agent’s training set
(instances together with their labels/outcomes) is represented
by a distribution D on X x ), which describes the samples of
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data that the agent is likely to see. Based on the training set,
the agent develops a model in the form of a function f: X' — Y
that maps the input space to the set of labels. This is done by
choosing (from a prespecified class of functions) the one that
performs best according to some objective function that captures
how well the function matches the training set, possibly adjusted
for a cost for how complex the function is. We refer to f as a
belief function.

Let us instantiate the terminology. Consider an example in
which the agent is a doctor forming beliefs about the effective-
ness of different medical treatments. There, an instance z € X
consists of a patient with a set of symptoms and history together
with a treatment that is given (e.g., a 50-y-old male smoker with
hypertension who is given a specific drug to reduce his blood
pressure), and the y would be the doctor’s perception of the
outcome of the treatment (the blood pressure went down by
a certain amount). These observations could be based on per-
sonal experiences of the doctor with her own patients, from
discussions with other doctors, or from reading medical jour-
nals. The belief function f(z) = y then describes what the doctor
best predicts would be the outcome for a patient with the set
of symptoms, history, and treatment described by z. Different
doctors will have seen different training sets—different observa-
tions of pairs (z, y)—over their careers and so, may have arrived
at different functions f. This example also applies to the effects
of medical treatments that have been more polarizing, such as
whether a vaccine would cause autism when given to a child of
a certain age. It also applies to scenarios where a parent, who is
interested in vaccinating their child, forms a decision based on
scientific studies and anecdotal experiences of other vaccinated
children.

In this formulation, people’s beliefs are represented by deter-
ministic functions. These functions can be thought of as expres-
sions of a person’s opinion or plan of action for any situation they
may face. Expressing beliefs instead as probabilities or distribu-
tions requires an accurate expression of probabilistic events that
are known to be difficult for people. By contrast, deterministic
functions are more easily interpreted and explained by humans.
Moreover, modeling beliefs as functions focuses on the forma-
tion of opinion about circumstances, while belief distributions
are further complicated by the need to express the likelihood of
facing circumstances.

To develop intuition for our results, suppose that two agents
see training sets drawn from the same distribution D over
X x ) and that this distribution is realizable [i.e., there is a
deterministic belief function f* such that f*(z) =y for every
(z,y) in the support of D]. In this classic setting, without
any limitations on the complexity of their beliefs and train-
ing sets that grow without bound, agents who form beliefs
to best fit the data will eventually learn belief functions that
almost entirely agree with f* and hence, with each other on the
support of D.

Our two models deviate from this basic setting in fundamen-
tally different ways.

In our first model—the mixed subjective model—agents see
different, yet highly overlapping, labels; in this sense, the agents
each have their own “subjective” views based on differing per-
sonal histories and perspectives. In our medical example, agents
have their own evaluations of treatments based on each agent’s
experience. To formalize this, suppose that two agents are asso-
ciated with two different realizable distributions D, and D> over
X x Y, which have the same marginal over X. Learning from
these two different distributions can naturally give rise to highly
polarized belief functions.

Now suppose that, perhaps with the aim of finding com-
mon ground, the two agents share some of their training
sets, leading them both to observe biased mixtures of the two
distributions. Specifically, let agent 1 train on data drawn from

Haghtalab et al.
Belief polarization in a complex world: A learning theory perspective


https://doi.org/10.1073/pnas.2010144118

Downloaded at Harvard Library on May 3, 2021

(1/2+¢€)D1 + (1/2 — €)D,, while agent 2 trains on data from
(1/2—€)D1 + (1/2 + €) Dy, for some small € > 0. We show that,
even when mixing to almost even proportions, the two agents will
still learn substantially different belief functions. After interact-
ing, even in the extreme case in which two agents give almost
equal weight to the two sources, if each has slightly more exam-
ples from their own source, then they could end up with very
different best-fitting views.

In our second model—the complex objective model—we go
back to the “objective” setting in which the distribution from
which agents’ training sets are drawn is the same: an objec-
tive truth. Moreover, let this be a realizable distribution D over
X x Y so that there is an associated deterministic f such that
f(z)=y for every z,y in the support of D. So, for example,
with sufficient research and knowledge, agents would agree and
be correct in a deterministic prediction. In this model, we con-
sider agents who pay a cost for the complexity of the function
f that they fit. Agents’ belief functions are those that minimize a
weighted average of the number of errors they make and the cost
of the complexity of the function (similar to a Lagrangian expres-
sion of a Lasso [least absolute shrinkage and selection operator]
regression).

The complex objective model gives rise to realizable distribu-
tions D, such that having a nontrivial cost of complexity leads
agents to learn belief functions that result in substantial dis-
agreement, even as the number of observed examples goes to
infinity. The basic structure of such instances is that they have
many dimensions or variables that actually matter, more or less
equally, and need to be accounted for to recover the common
target belief function f: X — ). Any cost function that results
in simplifying the fitted belief function leads to a selection of
some dimensions that are paid more attention to, and then, slight
differences in the training set lead to a different selections of
dimensions.

In this model, it is important that at some high-enough level,
the complexity of a belief function makes it prohibitively costly
for a person to learn or even express it. This is in line with well-
known cognitive limits such as Miller’s Law (35), which asserts
that the average person only holds about seven features in work-
ing memory, as well as a recent study of the interpretability of
machine learning models that found evidence that the average
person finds it just as difficult to simulate a function of eight
or more features as to simulate an opaque “black box” (36). It
is natural for agents to form beliefs that achieve a good trade-
off between accuracy and simplicity. We show that this trade-off
can give rise to significant differences in predictions by learned
belief functions even when all of the observed data and the
objective reality can be perfectly described by a deterministic
function.

We emphasize that settings that lead to disagreement in the
complex objective model are not artificial constructs but actually
appear in practice. A striking example is the American Hous-
ing Survey dataset considered by Mullainathan and Spiess (ref.
37, figure 2). It illustrates this phenomenon precisely in the con-
text of a Lasso selection of variables, which is shown to vary
dramatically based on a random sampling of the data.

We also show that in the complex objective model, a distribu-
tion that leads to complexity cost-based polarization can be per-
turbed in some direction such that if agents observe large-enough
training sets, then with high probability their learned belief func-
tions will differ only slightly. This suggests that providing some
particular information can help refocus agents’ selection of vari-
ables and lead to consensus. Not any perturbation will do, and
the bias needs to be introduced judiciously.

Together, the subjective and objective models provide a foun-
dation for understanding how different sorts of biases in beliefs
can arise directly from some constraints or complexity costs in
learning.
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Background Definitions

For ease of exposition, for the remainder of the paper we let
the set of labels be ) ={—1,+1}. The results extend to more
general spaces simply by embedding this space in any other that
has at least two labels.

Distributions and Distances. We consider distributions D over
X x Y and denote by D] X the marginal distribution of D on X.
For any two distributions P and P’ over a domain X, we denote
their total variation distance by

TV (P,P’) := sup |P(X)—P'(X)|.

XCx

For ease of exposition, we work with the L; distance between
these distributions that is known to satisfy [P —P'||1 =
2TV (P,P’). For any two distributions D and D’ over X x ),
we say that D’ matches the conditional label distributions of
D if for all (but a measure zero under D and D) z€ X,
Pris,y)y~p[y | 2] = Pr(s,y)~p’[y | ]. When D’ matches the condi-
tional label distributions of D, we use ||D —D’|| and ||D{X —
D'} X|| interchangeably.

Belief Functions, Polarization, and Errors. We consider a belief
function class F of functions f : X — ).

For any belief function f, the error of f on D is described by
errp(f) := Pr(ay)~olf () # yl.

We say that D is realizable if there exists f € F such that
errp(f)=0.

For a training set S of m labeled input points, S =
{(2",¥") }scim)> we denote the empirical error of f by

eres (f) = i)ﬂ (r@H#y').

For any f, f’ € F, we denote the disagreement of f and f’ on
distribution D by

Ap(f.f')= Pr [f(z)#[ ()]

z~DLX

For any set of belief functions H, we define the diameter of H,
denoted by
diamp(H) := max Ap(f,f),
' en

as the largest disagreement between two belief functions in this
class. Note that the disagreement between two belief functions
and the diameter of a belief function class do not depend on the
labels of distribution D. Therefore, with a slight abuse of nota-
tion, we use D in place of DX in these notations or suppress the
distribution in the notation for diameter and disagreement when
it is clear from context.

We think of a learning setting as being polarizing if agents
learn functions whose disagreement is disproportionately larger
than the difference between the distributions to which they were
exposed. We focus on settings where two agents learn func-
tions f; and f> from distributions D; and D; that have the same
marginal distribution D and either the same or very similar con-
ditional label distribution, yet Ap(fi, f2) is large. In this view,
polarization is the lack of consensus between agents’ beliefs
independently of how inaccurate these beliefs may be.

Sample Complexity. Let VCD(F) denote the Vapnik—
Chervonenkis dimension (VC dimension) of a belief function
class F. That is, VCD(F) is the cardinality of the largest set of
input points X C X on which functions in F can produce all
of the 2/%! possible labeling. For any ¢ > 0, and & >0, there is
me,s € O (e7? (VCD(F) +1n (}))) such that for any distribution
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D and with probability 1 — ¢ over the choice of set S of at least
me,s independent and identically distributed (i.i.d.) samples,
for all f € F, we have |errp(f) —errs(f)| <e. When D satisfies
certain properties, one may be able to learn the optimal belief
function using fewer samples than presented above. When D is
realizable,

o (e oo (2 ()

is sufficient so that with probability 1 — ¢, any belief function f
with empirical error errg(f) =0 satisfies errp(f) <e. Even for
distributions that are nonrealizable, one can obtain faster learn-
ing rates if the Bayes optimal classifier is in F. This property
is known as the Massart condition. The statistical and compu-
tational aspects of distributions satisfying it have long been of
interest (38-41). In particular, if f%**(z) :=argmax, Pr[y|z] €
F and for all z € X, | Prly|z] — Pr[—y|z]| > f5, then

mPye0 (é (VCD(]—‘) In (é)+ln G))) [1]

samples are sufficient so that with probability 1 — § the empirical
error minimizer f € argmin, rerrs(f) also satisfies errp(f) —

eer(fBayes) <e.

The Mixed Subjective Model

In our first model, the mixed subjective model, we represent
two world views through two realizable distributions D, and D,
over X x ), which are consistent with belief functions f; and
for that is, errp, (fi) =errp, (f2) =0. We consider two agents
that, perhaps through communication, end up observing train-
ing sets from almost identical mixtures of these two distributions
and learn belief functions f; and f.; we ask whether these belief
functions can be in significant disagreement.

Specifically, consider two agents who start with different distri-
butions D; and D, that are consistent with two belief functions
fi and f> with large disagreement Ap(fi,f2) (where D is the
shared marginal distribution of D; and D;). Assume that each
agent attempts to see the world from the other’s perspective;
the two agents observe training sets S; and S» from distribu-
tions D;:=(1—a)D1+aD2 and Dy :=(1—«a)Ds2 + D1, for
a < 1/2, respectively. Furthermore, assume that these agents
choose belief functions f; and f> that achieve optimal accuracy

on training sets S1 and Sz. Is it possible that oo = 0.49999 and the
two agents, who are learning from almost identical distributions
D, and D2, would reach very different conclusions?

The following theorem shows that this is not just possible
but that they will each stick close to their original belief func-
tions whenever « < 1/2: that is, whenever each agent has more
weight on their own distribution and the realizable beliefs differ
between the two distributions.

Theorem 1. Let distributions D1 and D2 on X x Y be two realiz-
able distributions with respect to F with the same marginal distribu-
tion (so we can omit the subscript from A below). Let Dy := (1 —
a)D1 + aD; and D2 := (1 — a)Da + oDy, for o< 1/2. Then, in
the limit as the number of samples grows, the agents’ optimal belief
functions will converge to the original beliefs and will differ from
each other by as much as the originals. That is, for any € >0 and
6 >0, there is

me o <(;_1a)2€ (VCD(f) In (é)—l—ln (;)))

such that if sample sets Sl,~Sg, 51, qzzd So of size at least m
are sampled from D1, D2, D1, and Da, respectively, then with
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probability at least 1—6, A(fi, f2) > AR, f) —&, A(fl,ﬁ)
/4, and A(fz,fg) < /4, where f; € argmin; rerrs, (f) and fe

argming ¢ rerrg (f) for i € {1,2}.

The proof of Theorem 1 is given in SI Appendix, section A.
At a high level, the reason for this phenomenon is that belief
functions f; and f> remain the optimal belief functions for distri-
butions D; and D. This is due to the fact that for any (z, y) ~ D;,
(z, y) appears with higher probability than (z, —y) in D;. So, the
optimal classifier for D should label z just as the perfect belief
function would label it on D;. The dependence of the sample
size m on ¢ and « shows that the more instances the agents
observe, the more certain they become of their original belief
functions. The sample complexity bounds used in this theorem
are nearly tight. This means that the more observations agents
have, the more likely it is for them to polarize since their sam-

ples match D; and D; more, respectively. Perhaps paradoxically,
in this model as people gain more information—for instance,
with technological advances—they become more likely to
polarize.

We note that f; and f> could also be found as being the most

likely functions to explain data from distributions Dy and Do,
respectively, if one started with a (uniform) prior over belief
functions. More generally, any “consistent” learning method—
that chooses functions with as little error as possible—leads to
the conclusion of Theorem 1.

The theorem applies to situations in which the two agents see
different labeling for the same inputs. Even if the distributions
they see are nearly the same, slight differences in the frequen-
cies of labels that they end up observing for the same inputs are
enough to allow them to reach different conclusions in terms of
the error-minimizing belief functions that they adopt. It is in this
sense that even people who strive to communicate and find com-
mon ground with others can form polarized opinions. This gives
one possible explanation for polarization in beliefs, predicated
upon differences in experiences.

An important aspect of Theorem 1 is that the distributions that
the agents see, D1 and D, agree. This effectively means that they
are examining the same issues. If these were instead disjoint—
for instance, with one agent being an expert on a topic related
to chemistry and the other on a topic related to linguistics, with
no knowledge of the other topic—then when they communicated
they would then simply adopt the other’s belief function on the
other’s topic. The interest in Theorem 1 comes from the fact that
the agents are exchanging information about a topic on which
they both have previous information and beliefs.

We next explore a different explanation for how agents can
arrive at very different belief functions despite a large overlap in
information.

The Complex Objective Model

In this section, we turn our attention to the complex objec-
tive model, where the common world view is represented by a
realizable distribution D that is consistent with some belief func-
tion f* € F. In this case, any agent who observes a sufficiently
large number of labeled samples from D and adopts the belief
function that minimizes error on these samples learns a belief
that is in almost full agreement with f*. Therefore, all error-
minimizing agents will arrive at belief functions that are almost
in full agreement with each other.

However, when the error-minimizing belief functions are very
complex, the agent may face difficulty learning or interpret-
ing them. Therefore, rather than considering error-minimizing
agents, we consider agents who attempt to find a belief function
that strikes a balance between accuracy and complexity. We first
show that when there is a complexity associated with learning
functions, it is entirely possible that two agents receiving two i.i.d.
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training sets from D would learn belief functions f; and fo that
are in large disagreement. We then discuss how this can be dealt
with by changing the original distribution D slightly to help the
two agents arrive at belief functions that are mostly in agreement.

Setup and Initial Observations. Before we proceed, we require
some notation.

F is accompanied by a complexity cost ¢(-), such that for any
f €F, &(f) determines how complex the belief function f is and
how much that costs the decision maker. Some examples of such
complexity costs include monotonic functions of the number of
features in a Boolean function or the depth of a decision list.

For a distribution D and a training set S, we denote the over-
all cost incurred by a belief function f € F through its error and
complexity cost as

costp(f) :=errp(f) + ¢(f) and costs(f) :=errs(f)+ ¢(f).

We first demonstrate the phenomenon described above by
providing a simple example in which there are at least two
optimal belief functions fi, f> € argmin, . zcostp (f) that have a
nontrivial disagreement with each other.

Example I: Let X :=R%, and let F be the class of homoge-
neous linear separators: that is, 7 := {fy(x) =sign(w-x) },cpd,
where sign(z) =+1 for z >0 and —1 otherwise. Let D be the
simple distribution that labels positive unit vectors by +1 and
negative unit vectors by —1, with equal weight on each. That
is, D has weight 55 on each of (e;,+1) and (—e;, —1) for all
i€{l,...,d}, where e; is the ith unit vector.

Let the complexity cost be ¢(fy) :=h (||w]|,) for A such that
h(0)=0, k(1) <55, and h(d)> 3. It then follows that there
exists at least one k € {1, ..., d — 1} for which all of the functions
with k£ dimensions are optimal:

{wE{O,l}d | ||w\|0:k}§ argmin costp (fw)- [2]
weRd

To see that Eq. 2 holds, first note that for any w € R¢, round-
ing w; >0to 1 and w; < 0 to —1 does not change its error or cost.
Furthermore, for any 1, if w; = 1, then f labels both (e;, +1) and
(—ei, —1) correctly; if w; = 0, then f, labels (e;, +1) correctly and
(—e;, —1) incorrectly, and if w; = —1, then £, labels both (e;, +1)
and (—e;, —1) incorrectly. Thus, we can restrict our attention to
w e {0, 1}%. Given that setting w; = 1 instead of w; = 0 decreases
the error by exactly 5, it follows that if ||w|lo = ||w[|o, then

®(fw) = ¢(fw). The facts that h(0) =0, h(1) < 55, and h(d) > %
imply that the overall cost of w with a single nonzero feature is
at most that of setting w to be the vector of all zeros or all ones.
Therefore, [2] holds for at least one k € {1,...,d —1}.

Next, note that any two belief functions that separate on dif-
ferent dimensions and both have the optimal overall number
of dimensions £ must have a minimal distance between them.
Specifically, if w,w’ € {0, 1}% are such that ||w||o = |w'||o = k and
w#W, then & < Ap(fy, fu).

We emphasize that although the example is special in the sym-
metry of D, that is not necessary. One could have very different
gains from classifying correctly on some dimensions. What is
necessary is that there is more than one choice for feature sub-
sets that have the same complexity cost and the same predictive
power. This can happen when the marginal predictive power of
including an additional feature is the same for multiple features.
A good example of this situation, where the marginal benefit
of different features in a classifier is nearly the same, is seen in
practice by Mullainathan and Spiess (37).

Example 1 implies that there are situations in which it is
likely that two agents would learn belief functions that disagree
substantially, as shown in the following theorem.
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Theorem 2. There is a distribution D over X x Y that is real-
izable with respect to a belief function class F and a complexity
cost function h, such that for any m and two sets of m iid.
samples, S1 and Sa, with probability at least %, there are f; €
argmin, . zcosts, (f) for i € {1, 2} such that Ap(fi, f2) > 5.

Proof of Theorem 2: We use the setting of Example 1 and let
h(k) = £ . Note that if S1 has at most a - fraction of its samples
on (—e;, —1), then there is a cost-minimizing fi that has w; =0
and w; =1 otherwise. Similarly, if S, has at least a 55 fraction
of its samples on (—e;, —1), then there is a cost-minimizing f>
that has w; =1 and w; = 0 otherwise. Using well-known proper-
ties of binomial distributions (42), it follows that the probability
that fi(—e;) # f2(—e;) is at least 1/2. [Note that using specific
fi € argmin, . zcosts, (f) allows us to break ties in a way that is
convenient for us. This is purely for ease of exposition; we could
formulate the theorem for any cost-minimizing f;, using slightly
messier probability calculations. ]

Let Z be the random variable whose value is the number of
coordinates j € [d] such that fi (—e;) # fo(—e;). It holds that Z <
d, and E[Z] > d/2. Therefore, it must be the case that Pr[Z <
d/3] <3/4: that is, Pr[Z > d /3] > 1/4. Hence, with probability
at least 1/4, Ap(f1, f2) > 1/6. O

Proof of Theorem 2 uses a specific linear complexity cost that
makes the probability statement clean and the proof straight-
forward. However, it is extends to much more general cost
functions. For example, instead of having a linear cost function
where the cost of each additional dimension exactly balances the
expected benefit of separation, we can work with any complexity
cost function & that makes it optimal to choose some dimension
ke{l,...,d—1}, such as in Example 1. In that more general
case, there is still a probability bounded away from zero that the
two optimal functions would be different. Indeed, in SI Appendix,
section D, Theorem 5, we show that Ap(fi, f2) > 55 with prob-
ability at least 5/12 (for any training set size and d > 3; we also
show that the probability goes to 1 as d increases).

The setting of Example 1 and Proof of Theorem 2 is con-
structed to most directly demonstrate how accounting for costs
provides an explanation for polarization. The intuition behind
the example and theorem makes it clear that polarization is
something that can easily arise after the setting involves many
dimensions and complexity leads people to choose some subset.
The chance that they coordinate on exactly the same dimen-
sions is only high if those dimensions do much better than
other dimensions. Whenever there are multiple dimensions that
have similar importance in determining outcomes, different
observers can easily favor different dimensions in their belief
functions. Again, we note that nontrivial levels of disagree-
ment between learned models have been observed in practice
when there are many potential variables to include in finding a
good classifier.

A possible explanation for why polarization occurs even under
“natural” distributions is that perturbing the polarizing distribu-
tions by some unbiased noise does not alleviate the problem (e.g.,
ref. 43). That is, adding unbiased (but realizable) noise to the
above example, such as adding a uniform distribution over the
domain that is labeled by the optimal belief function, still leads
to the same outcome. This is best observed by noting that distri-
bution D of Example 1 is uniform over its support, so noise that
does not introduce bias toward specific subsets of the support
does not change the distribution at all. Our next result builds on
this intuition.

Introducing Bias to Prevent Polarization. We argue that for any
problematic distribution D as in Theorem 2, one can carefully

design D that is close to D in its marginal distribution and is

still realizable with respect to F, such that D does not suffer
from the same problem. That is, it is always possible to prevent
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polarization (of the type studied here) by introducing a slight bias
into the information selection process. Formally, we prove the
following theorem.

Theorem 3. Consider a function class F, a distribution D over
X x Y labeled by an f* € F, an o € (0, 1], and a maximum level
of disagreement v > 0. Then, there is a distribution D labeled by f*
such that |D — D||1 < a, and there is

me 0 (f‘*a*“’ (VCD(]-‘) +1In (%)))

such that if two sets S1 and S» of size at least m are sampled from D,
then with probability at least 1 — 0, any two cost-minimizing belief
functions f; € argmin, . zcosts, (f) for i € {1,2}:

1) have at most ~ disagreement over D [i.e., Ap ()N‘l , jN‘z) <~]and
2) have a cost that is optimal up to 3o on D: that is, costp(fi) <
argmin, . zcostp (f) + 3a.

Theorem 3 states that even if D is a polarizing distribution,
there is a nearby distribution D that is not polarizing. We can

think of D as an intervention. As an example, D could corre-
spond the choices of news articles curated by a news agency or
the social media posts that appear on a person’s news feed. An
intervention in this case refers to a (small) increase in the fre-
quency of some types of content, which leads to a less polarizing

distribution D that is still close to D. As mentioned earlier, this
intervention has to be carefully chosen so that it removes the
symmetries in D that can cause samples from the distribution
to differ in ways that lead to significantly differently belief func-
tions. After such symmetries are eliminated, large samples are
likely to lead to the same belief function.

The proof of Theorem 3 is relegated to SI Appendix, section A.
Here, we provide an overview of this proof.
Sketch of the proof of Theorem 3. First, to assist with examin-
ing disagreement between cost-minimizing belief functions, we
introduce some additional notation. For any € and D, let

FP.= {fe]—'

costp(f) < argmin costp (f') +¢ .
fleF

This definition is loosely related to the concept of Rashomon sets
from statistics (44).

If diam(FZ) <« is small, then polarization is not an issue (i.e.,
two agents with sufficiently many samples from D will learn belief
functions with disagreement of at most ). This follows from the
next lemma (with D =D’), whose proof appears in ST Appendix,
section B.

Lemma 1. Consider two distributions D and D', such that

diamp (}'ED /) <~. Then, there is

meo (6—2 (VCD(f) +in (%)))

such that for two sample sets S1 and Sz of size at least m from
distribution D', with probability 1 — 9, if f; € argmin, rcosts, (f)
for i €{1,2Y, it holds that fi, f» € FL' and Ap(fi, f2) <.

Unfortunately, diamp(FZC) can be large even for small
values of e—see Example 1, where diamp(Fj )= 4. This
makes polarization unavoidable when two agents learn from
distribution D.

However, we show that for any D such that diamp(FZ) is
large, there is a distribution D close to D with a much smaller

diaunp(}',z5 ). This implies that learning over the distribution D
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aligns the learning process of the two agents and leads to mod-
els that have small disagreement. More details are in the next
lemma, whose proof appears in SI Appendix, section B.

Lemma 2. Let D be a distribution over X x 'Y that is realizable
with respect to F [i.e., there is f* € F such that errp(f*)=0].
Assume that for some >0, diamp (FZ)>2R for some R €
[0, 0.5]. Then, there is a distribution P with errp (f*) =0, such that
forany a>0and D= (1 —a)D + P, diamp (]—"ED) < e

At a high level, the proof of Lemma 2 follows by designing
a distribution D that biases D toward a specific belief function
f. An interesting aspect of this f is that it is one of the least
complex among the belief functions that have near-optimal cost,
FP. This biases the agents’ learning process toward less complex
but also, less accurate models. In SI Appendix, section B.1, we
provide more insights on the choice off and show that such a
trade-off between simplicity and accuracy is unavoidable when
we aim to reduce polarization.

Lastly, the proof of Theorem 3 follows from the above lem-
mas. At a high level, if diamp (F2) is sufficiently small, then by
Lemma 1, D is not a polarizing distribution. On the other hand,
if diamp (FT) is large, then by Lemma 2 there is D close to D
such that diamp (FZ) is small. Using Lemma 1, two agents who
sample from D learn belief functions that are in close agreement

on D. Moreover, D is close to D, so these belief functions are
almost optimal with respect to D.

Lower Bound. As we observed in Theorem 3, for any desired max-
imum level of disagreement between two agents, -, and any
desired level of intervention, «, every distribution D can be
changed to a nearby distribution D’ at distance «, such that
agents who receive a large-enough number of samples from
D' have disagreement of less than ~. Theorem 3 shows that
the number of samples needed for this to work is at most
O (y*a >VCD(F)). We next provide a lower bound that shows
that the number of samples needed for the agents to avoid
polarization indeed has to increase with £ and %. That is, we
succeed at having smaller disagreement between agents and
making only small change to the distribution only if agents form
their belief functions after having acquired a large number of
observations.

Theorem 4. Let m(«, 7y, d, 0) be as follows. For any distribution
D on domain X and any belief function class F C Y~ with VC
dimension d and any cost function ¢ over F, there exists D’ such
that ||D — D'||1 < o, D and D' have the same conditional label dis-
tributions, and for any m > m(a, 7y, d, ), with probability 1 — 6,
Ap(fi, d2) <y, where f; € argmin, zcosts, (f) and S and S> are
two i.i.d. sample sets of size m from D’. Then, for any o < %, v < %,
and d > 1/, we have that

m ((ngy7 d, E)EQ (%ln (%))

The proof of Theorem 4 appears in SI Appendix, section C. We
remark that there is a gap in terms of the dependence on parame-
ter % between the upper bound (7heorem 3) and the lower bound
(Theorem 4). This is perhaps good news. After all, we may be
able to avoid polarization with a significantly smaller number of
samples than that prescribed by Theorem 3. In SI Appendix, sec-
tion D, we discuss in more detail the source of this gap between
the upper and lower bounds and present a possible path forward
toward an improved upper bound.

Discussion

Our results show that polarization that arises from differences
in subjective opinion is unlike polarization that arises from
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difficulty in processing objective information. Indeed, the mixed
subjective model is pessimistic in that polarization can be
inevitable. By contrast, in the complex objective model, our result
(Theorem 3) is more positive; even though polarization arises, we
can always introduce a slight bias into the information selection
process (i.e., perturb the distribution) in a way that leads to con-
sensus. While our model is admittedly a stylized abstraction of
reality, the conceptual message is appealing; in some situations,
small interventions can eliminate polarization.

More generally, the world may have aspects of both the sub-
jective and objective models. People may develop models over
some complex intersection that are also optimal in describing
past experiences that are more idiosyncratic. The dimensions
that they focus on when faced with some overlapping com-
mon and objective data may have been heavily influenced by
their own personal experiences outside of that domain. This
suggests that to get people to incorporate common dimensions
may require providing them with data that explicitly shows them
the value of incorporating those dimensions into their beliefs.
Convincing someone that the climate is changing may be more
reliably accomplished by showing them the value of science in
some other domain and getting them to trust science as an
explanatory factor, rather than showing them more data on
climate.

We note that although our agents polarize when considering
similar data, both subjectively or objectively, they end up with
functions that are equally optimal. Thus, the reason for want-
ing consensus in our settings does not come from correcting
some agents who are suboptimal. The motivation for consensus
comes from the fact that polarization in beliefs leads agents to
prefer different actions or policies, which can give rise to dis-
agreement and even conflict in politics and collective decision
making. There is evidence that various divisions and forms of
polarization lead to lower growth and other forms of inefficien-
cies (45-47). Therefore, reaching a consensus can be valuable
in and of itself.

One may wonder whether Bayesian models can extend to
our setting. Indeed, some of the results from our mixed sub-
jective model remain the same if the learner starts from a
uniform prior on F and picks the most likely function to explain
the observed data. However, this approach does not naturally
accommodate the complexity cost of learning functions. In addi-
tion, our approach differs from a Bayesian approach on at least
two conceptual levels. First, a Bayesian model begins with a full
specification of the world, refines it, and cannot make predic-
tions outside of its conceived possibilities. By contrast, an aspect
of a learning-theoretic model for human learning is that it allows
people to “generalize”—that is, form beliefs for new situations
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that they encounter that go beyond their previous conception. In
other words, our model naturally allows for a person to learn
across different experiences and to form opinions f(z) about
unseen instances z solely based on prior experience; essentially
reasoning by analogy from their experiences, the function can
make predictions for specific instances that they have not expe-
rienced or conceived of based on reasoning from instances that
they have seen. For instance, if F is a class of linear functions and
one had not previously conceived that certain combinations of =
values are possible, one can still choose a new function from that
class that best fits the expanded observations. If those are out-
side of the prior distribution and one is Bayesian, then there is no
prediction. Second, on a more descriptive side, as we discussed
earlier, in our approach if a person is faced with new data, they
can change their world view to extend their class of belief func-
tions (for instance, linear ones) to fit over a larger domain and
adopt a completely new belief function f that best matches the
new data. Thus, learning can involve completely changing one’s
model of the world, and there is ample evidence from devel-
opmental psychology, for instance, that children develop a new
understanding of the world as they grow. By contrast, Bayesian
modeling would posit that people are born with prior distri-
butions over all possible models of the world that they refine
throughout their lifetimes.

Our results have limitations. Our negative result for the mixed
subjective model (Theorem 1) relies on the assumption that
agents choose a deterministic belief function, rather than a prob-
abilistic belief. Although it is clear that a qualitatively similar
result would hold when agents’ beliefs are “close” to being deter-
ministic, it is unclear how the result generalizes to probabilistic
beliefs. In addition, recall that our positive result for the com-
plex objective model (Theorem 3) provides an intervention that
is valid even in the worst case. A shortcoming of Theorem 3, espe-
cially in terms of making this message more practical, is that
the intervention needs to be tailored to the setting. It requires
knowledge of the belief function class, the cost function, and
the composition of the set 2. An important open question,
therefore, is whether it is possible to design this intervention
through a simple and tractable algorithm that does not explicitly
construct FP.

As a closing remark, in recent years social scientists have
started to embrace machine learning. The theory developed here
shows that machine learning not only provides a set of methods
for empirical work but can also provide a foundation for model-
ing human belief formation and decision making and developing
insights into things like polarization.
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