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ABSTRACT

Federated learning (FL) learns a model jointly from a set of participating devices without
sharing each other’s privately held data. The characteristics of non-i.i.d. data across
the network, low device participation, high communication costs, and the mandate that
data remain private bring challenges in understanding the convergence of FL algorithms,
particularly in regards to how convergence scales with the number of participating devices.
In this paper, we focus on Federated Averaging (FedAvg)—arguably the most popular and
effective FL algorithm class in use today—and provide a unified and comprehensive study
of its convergence rate. Although FedAvg has recently been studied by an emerging line
of literature, it remains open as to how FedAvg’s convergence scales with the number of
participating devices in the fully heterogeneous FL setting—a crucial question whose answer
would shed light on the performance of FedAvg in large FL systems. We fill this gap
by providing a unified analysis that establishes convergence guarantees for FedAvg under
three classes of problems: strongly convex smooth, convex smooth, and overparameterized
strongly convex smooth problems. We show that FedAvg enjoys linear speedup in each
case, although with different convergence rates and communication efficiencies. While
there have been linear speedup results from distributed optimization that assumes full
participation, ours are the first to establish linear speedup for FedAvg under both statistical
and system heterogeneity. For strongly convex and convex problems, we also characterize
the corresponding convergence rates for the Nesterov accelerated FedAvg algorithm, which
are the first linear speedup guarantees for momentum variants of FedAvg in the convex
setting. To provably accelerate FedAvg, we design a new momentum-based FL algorithm
that further improves the convergence rate in overparameterized linear regression problems.
Empirical studies of the algorithms in various settings have supported our theoretical results.

1 INTRODUCTION

Federated learning (FL) is a machine learning paradigm where many clients (e.g., mobile devices
or organizations) collaboratively train a model under the orchestration of a central server (e.g.,
service provider), while keeping the training data decentralized (Smith et al. (2017); Kairouz et al.
(2019)). In recent years, FL has swiftly emerged as an important learning paradigm (McMabhan et al.
(2017); Li et al. (2020a))—one that enjoys widespread success in applications such as personalized
recommendation (Chen et al. (2018)), virtual assistant (Lam et al. (2019)), and keyboard prediction
(Hard et al. (2018)), to name a few—for at least three reasons: First, the rapid proliferation of smart
devices that are equipped with both computing power and data-capturing capabilities provided the
infrastructure core for FL. Second, the rising awareness of privacy and the explosive growth of
computational power in mobile devices have made it increasingly attractive to push the computation
to the edge. Third, the empirical success of communication-efficient FL algorithms has enabled
increasingly larger-scale parallel computing and learning with less communication overhead.

Despite its promise and broad applicability in our current era, the potential value FL delivers is coupled
with the unique challenges it brings forth. In particular, when FL learns a single statistical model
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Table 1: Our convergence results for FedAvg and accelerated FedAvg in this paper. Throughout the paper, N is
the total number of local devices, and K < IV is the maximal number of devices that are accessible to the central
server. 1" is the total number of stochastic updates performed by each local device, E is the local steps between
two consecutive server communications (and hence 7'/ E is the number of communications).  In the linear
regression setting, we have k = k1 for FedAvg and x = /k1k for momentum accelerated FedAvg (FedMaSS),
where k1 and v/ k1K are condition numbers defined in Section J. Since k1 > &, this implies a speedup factor of
\/% for accelerated FedAvg.

using data from across all the devices while keeping each individual device’s data isolated (Kairouz
et al. (2019)), it faces two challenges that are absent in centralized optimization and distributed
(stochastic) optimization (Zhou & Cong (2018); Stich (2019); Khaled et al. (2019); Liang et al.
(2019); Wang & Joshi (2018); Woodworth et al. (2018); Wang et al. (2019); Jiang & Agrawal (2018);
Yu et al. (2019b;a); Khaled et al. (2020); Koloskova et al. (2020); Woodworth et al. (2020b;a)):

1) Data (statistical) heterogeneity: data distributions in devices are different (and data cannot be
shared);

2) System heterogeneity: only a subset of devices may access the central server at each time both
because the communications bandwidth profiles vary across devices and because there is no central
server that has control over when a device is active (the presence of “stragglers”).

To address these challenges, Federated Averaging (FedAvg) McMahan et al. (2017) was proposed
as a particularly effective heuristic, which has enjoyed great empirical success. This success has
since motivated a growing line of research efforts Haddadpour & Mahdavi (2019); Li et al. (2020b);
Karimireddy et al. (2019); Huo et al. (2020) into understanding its theoretical convergence guarantees
in various settings. However, despite these very recent fruitful pioneering efforts into understanding
the theoretical convergence properties of FedAvg, it remains open as to how the number of devices—
particularly the number of devices that participate in the computation—affects the convergence speed.
In particular, is linear speedup of FedAvg a universal phenomenon across different settings and for
any number of devices? What about when FedAvg is accelerated with momentum updates? Does the
presence of both data and system heterogeneity in FL imply different communication complexities
and require technical novelties over results in distributed and decentralized optimization? These
aspects are currently unexplored or underexplored in FL. We fill in the gaps here by providing
affirmative answers.

Our Contributions We provide a comprehensive and unified convergence analysis of FedAvg and its
accelerated variants considering both data and system heterogeneity. Our contributions are threefold.
First, we establish an O(1/KT) convergence rate under FedAvg for strongly convex and smooth
problems and an O(1/v/KT) convergence rate for convex and smooth problems (where K is the
number of participating devices), thereby establishing that FedAvg enjoys the desirable linear speedup
convergence, which improves the best known results Li et al. (2020b); Karimireddy et al. (2019)
(see Section 3). Second, we establish the same convergence rates—O(1/KT) for strongly convex
and smooth problems and O(1/v/KT) for convex and smooth problems—for Nesterov accelerated
FedAvg (see Appendix Section E). Third, we study a subclass of strongly convex smooth problems
where the objective is over-parameterized and establish a faster O (exp(— %)) convergence rate for
FedAvg, in contrast to the O(exp(—ZL)) rate for individual solvers Ma et al. (2018) (see Appendix
Section J). In addition to the theoretical contributions, we also conduct extensive empirical evaluations
demonstrating the linear speedup of FedAvg and accelerated FedAvg under various settings (see
Appendix Section 4).

2 SETUP
In this paper, we study the following federated learning problem:

min {F(w) 2 ij:lkak(w)} , (1)
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where N is the number of local devices (users/nodes/workers) and py, is the k-th device’s weight sat-
isfying p > 0 and Zgil pr = 1. In the k-th local device, there are ny, data points: X}, X7, ..., X"

The local objective F(-) is defined as: Fj(w) £ i Z?ﬁ 14 (W; xfc) where ¢ denotes a user-

specified loss function. Each device only has access to its local data, which gives rise to its own
local objective Fj. Note that we do not make any assumptions on the data distributions of each local
device. The local minimum F}’ = miny, Fj(w) can be far from the global minimum of Eq (1) (data
heterogeneity).

3 LINEAR SPEEDUP ANALYSIS OF FEDAVG

In this section, we provide convergence analyses of FedAvg for convex objectives in the general
setting with both heterogeneous data (statistical heterogeneity) and partial participation (system
heterogeneity). Detailed proofs are deferred to Appendix Section H.

3.1 STRONGLY CONVEX AND SMOOTH OBJECTIVES

We first show that FedAvg has an O(1/KT) convergence rate for p-strongly convex and L-smooth
objectives. The result relies on a technical improvement over the analysis in Li et al. (2020b).
Moreover, it implies a distinction in communication efficiency that guarantees this linear speedup for
FedAvg with full and partial device participation. With full participation, £ can be chosen as large as
O(4/T/N) without degrading the linear speedup in the number of workers. On the other hand, with
partial participation, E must be O(1) to guarantee O(1/KT) convergence.

Theorem 1. Let wp = Zgzl pkwéi in FedAvg, vmax = maxy Npg, and set decaying learning
rates oy = ﬁ with v = max{32k, E} and k = % Then under Assumptions 1 to 4 with full

device participation,

— * HVIQHaxUQ/M H2E2G2//~L
EF(WT)fF (9( NT + T2 ),

and with partial device participation with at most K sampled devices at each communication round,
REPG? /i | Wmaxo®[u  WEG2/p
KT NT T2 '

EF(Wp)—F*=0 (

Linear speedup. We compare our bound with that in Li et al. (2020b), which is (’)(ﬁ + % +E QTG2 )

EG?
. . T . K2E2G?/ .

cannot achieve linear speedup. The improvement of our bound comes from the term ==z, which

now is O(E?/T?) and so is not of leading order. As a result, all leading terms scale with 1/N in the
full device participation setting, and with 1/K in the partial participation setting. This implies that
in both settings, there is a linear speedup in the number of active workers during a communication
round. We also emphasize that the reason one cannot recover the full participation bound by setting
K = N in the partial participation bound is due to the variance generated by sampling.

Communication Complexity. Our bound implies a distinction in the choice of E between the full
and partial participation settings. With full participation, the term involving £, O(E?/T?), is not
of leading order O(1/T), so we can increase E and reduce the number of communication rounds
without degrading the linear speedup in iteration complexity O(1/NT), as long as E = O(,/T/N),
since then O(E?/T?) = O(1/NT) matches the leading term. This corresponds to a communication
complexity of T/E = O(vNT). In contrast, the bound in Li et al. (2020b) does not allow E to

scale with /T to preserve O(1/T) rate, even for full participation. On the other hand, with partial
kE2G?/u

Because the term is also O(1/T') without a dependence on N, for any choice of E their bound

participation, is also a leading term, and so E must be O(1). In this case, our bound
still yields a linear speedup in K, which is also confirmed by experiments. The requirement that
E = O(1) in order to achieve linear speedup in partial participation cannot be removed for our

. E2G? . . . . .
sampling schemes, as the term % comes from variance in the sampling process, which is

O(E?/T?). In Proposition 1 in Section H of the appendix, we provide a problem instance where the
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dependence of the sampling variance on E is tight.

Comparison with related works. To better understand the significance of the obtained bound, we
compare our rates to the best-known results in related settings. Haddadpour & Mahdavi (2019) proves
a linear speedup O(1/KT) result for strongly convex and smooth objectives', with O(K/372/3)
communication complexity with non-i.i.d. data and partial participation. However, their results build
on the bounded gradient diversity assumption, which implies the existence of w* that minimizes
all local objectives (see discussions in Section A and Appendix D), effectively removing statistical
heterogeneity. The bound in Koloskova et al. (2020) matches our bound in the full participation
case, but their framework excludes partial participation (Koloskova et al., 2020, Proposition 1). The
result of Karimireddy et al. (2019) applies to the full FL setting, but only has linear speedup when
K = O(N), i.e. close to full participation, whereas our result has linear speedup for any number of
participating devices. When there is no data heterogeneity, i.e. in the classical distributed optimization
paradigm, communication complexity can be further improved, e.g. Woodworth et al. (2020b;a),
but such results are not directly comparable to ours since we consider the setting where individual
devices have access to different datasets.

3.2 CONVEX SMOOTH OBJECTIVES

Next we provide linear speedup analysis of FedAvg with convex and smooth objectives and show

that the optimality gap is O(1/v/ KT). This result complements the strongly convex case in the
previous part, as well as the non-convex smooth setting in Jiang & Agrawal (2018); Yu et al. (2019b);
Haddadpour & Mahdavi (2019), where O(1/+v/ KT') results are given in terms of averaged gradient
norm, and it also extends the result in Khaled et al. (2020), which has linear speedup in the convex
setting, but only for full participation.

Theorem 2. Under Assumptions 1,3,4 and constant learning rate oy = O(4/ %), FedAvg satisfies

v2..02 NE?’LG?
: F e _ F * — O max
wip F(we) = F(w7) (m T )

with full participation, and with partial device participation with K sampled devices at each commu-

nication round and learning rate oy = O(1/ %),

(u;aXGQ N E2G? N KE2LG2)
VKT VKT T '

The analysis again relies on a recursive bound, but without contraction:

?%I%IF(Wt)—F(W ) =0

1
E|Wii1 — w*|? + oy (F(Wy) — F(w*)) < E|[w, — w*[|* + atQNVglaxU2 + 60 E*LG?

which is then summed over time steps to give the desired bound, with a; = O(4/ %)

Choice of E and linear speedup. With full participation, as long as F = O(T'/*/N?3/%), the con-
vergence rate is O(1/v/NT) with O(N3/4T3/4) communication rounds. In the partial participation
setting, F' must be O(1) in order to achieve linear speedup of O(1/v KT). This is again due to
the fact that the sampling variance E||W, — ¥,;||? = O(a?E?G?) cannot be made independent of
FE, as illustrated by Proposition 1. See also the proof in Section H for how the sampling variance
and the term E2G?/+/ KT are related. Our result again demonstrates the difference in communi-
cation complexities between full and partial participation, and is to our knowledge the first result
on linear speedup in the general federated learning setting with both heterogeneous data and partial
participation for convex objectives.

4 NUMERICAL EXPERIMENTS

In this section, we empirically examine the linear speedup convergence of FedAvg and Nesterov
accelerated FedAvg in various settings, including strongly convex function, convex smooth function,
and overparameterized objectives, as analyzed in previous sections.

!Their result applies to a larger class of non-convex objectives that satisfy the Polyak-Lojasiewicz condition.
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Figure 1: The linear speedup of FedAvg in full participation, partial participation, and the linear
speedup of Nesterov accelerated FedAvg, respectively.

Setup. Following the experimental setting in Stich (2019), we conduct experiments on both synthetic
datasets and real-world dataset w8a Platt (1998) (d = 300, n = 49749). We consider the distributed

objectives F'(w) = Zgﬂ prFr(w), and the objective function on the k-th local device includes

three cases: 1) Strongly convex objective: the regularized binary logistic regression problem,

Frp(w) = Nik Zf&l log(1 + exp(—y*wTx¥) 4+ 2|/w||?. The regularization parameter is set to

A =1/n = 2e — 5. 2) Convex smooth objective: the binary logistic regression problem without
regularization. 3) Overparameterized setting: the linear regression problem without adding noise

to the label, Fi(w) = 5= S0 (wTxF + b — yF)2.

Linear speedup of FedAvg and Nesterov accelerated FedAvg. To verify the linear speedup conver-
gence as shown in Theorems 1 2 3 4, we evaluate the number of iterations needed to reach e-accuracy
in three objectives. We initialize all runs with wy = 04 and measure the number of iterations to
reach the target accuracy e. For each configuration (E, K), we extensively search the learning rate
from min(no, 145 ), where no € {0.1,0.12, 1, 32} according to different problems and ¢ can take

the values ¢ = 2° Vi € Z. As the results shown in Figure 1, the number of iterations decreases as
the number of (active) workers increasing, which is consistent for FedAvg and Nesterov accelerated
FedAvg across all scenarios. For additional experiments on the impact of F, detailed experimental
setup, and hyperparameter setting, please refer to the Appendix Section L.

5 CONCLUSIONS

This paper provides a comprehensive and unified analysis of the convergence of FedAvg and its
accelerated variants in a general federated learning problem with heterogeneous local data and
partial participation. We show that both Nesterov accelerated FedAvg and FedAvg can achieve linear
speedup convergence for convex smooth problems and strongly convex smooth problems. We further
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prove that FedAvg can achieve geometric convergence for overparameterized strongly convex smooth
problems. Last but not least, extensive empirical evaluations demonstrate the linear speedup of
FedAvg and accelerated FedAvg under various settings.
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A  ASSUMPTIONS

We make the following standard assumptions on the objective function F1, ..., Fy. Assumptions 1
and 2 are commonly satisfied by a range of popular objective functions, such as ¢£2-regularized logistic
regression and cross-entropy loss functions.

Assumption 1 (L-smooth). F,--- , F are all L-smooth: for all v and w, Fj,(v) < Fj,(w)+ (v —
w)TVF(w) + L||v — w|3.
Assumption 2 (Strongly-convex). Fy,--- , Fy are all p -strongly convex: for all v and w, Fj,(v) >

Fip(w) + (v = w)"VE(w) + §lv — w|3

Assumption 3 (Bounded local variance). Let &F be sampled from the k-th device’s local
data uniformly at random. The variance of stochastic gradients in each device is bounded:

E HVFk (Wf,{f) — VF; (Wf) ||2 <o? fork=1,---,N and any wh. Let 0% := fo:lpkoi.
Assumption 4 (Bounded local gradient). The expected squared norm of stochastic gradients is
uniformly bounded. i.e., E HVFk (Wf,ff) H2 <G? forallk=1,...Nandt=0,...,T —1.

Assumptions 3 and 4 have been made in many previous works in federated learning, e.g. Yu
et al. (2019b); Li et al. (2020b); Stich (2019). We provide further justification for their gen-
erality. As model average parameters become closer to w*, the L-smoothness property im-
plies that E||V Fy,(wF, £F)||? and E||V ), (wF, £F) — V E),(wF)||? approach E||V Fy, (w*, £F)||? and
E||VE(w*, &F) — VE,(w*)||?. Therefore, there is no substantial difference between these assump-
tions and assuming the bounds at w* only Koloskova et al. (2020). Furthermore, compared to
assuming bounded gradient diversity as in related work Haddadpour & Mahdavi (2019); Li et al.
(2020a), Assumption 4 is much less restrictive. When the optimality gap converges to zero, bounded
gradient diversity restricts local objectives to have the same minimizer as the global objective, contra-
dicting the heterogeneous data setting. For detailed discussions of our assumptions, please also refer
to Appendix Section D.

B THE FEDERATED AVERAGING (FEDAVG) ALGORITHM

We introduce the standard Federated Averaging (FedAvg) algorithm which was first proposed
by McMabhan et al. (2017). FedAvg updates the model in each device by local Stochastic Gra-
dient Descent (SGD) and sends the latest model to the central server every E steps. The central server
conducts a weighted average over the model parameters received from active devices and broadcasts
the latest averaged model to all devices. Formally, the updates of FedAvg at round ¢ is described as
follows:

vk ift+1¢ I,
Fr=wi wf+1{ ! Pl )

Vigr = Wy — 8k k .
t+ t ) Zk65t+1 q vy, ift+1eTg,

where w is the local model parameter maintained in the k-th device at the t-th iteration and
gix = VFg(wl,&F) is the stochastic gradient based on &F, the data point sampled from k-th
device’s local data uniformly at random. Zp = {F,2FE, ...} is the set of global communication
steps, when local parameters from a set of active devices are averaged and broadcast to all devices.
We use S;+1 to represent the (random) set of active devices at t + 1. gy, is a set of averaging weights
that are specific to the sampling procedure used to obtain the set of active devices Sy 1.

Since federated learning usually involves an enormous amount of local devices, it is often more
realistic to assume only a subset of local devices is active at each communication round (system
heterogeneity). In this work, we consider both the case of full participation where the model
is averaged over all devices at each communication round, in which case qx = py, for all k£ and

Wl = o pevE ift +1 € Zp, and the case of partial participation where S, 1| < N.
With partial participation, we follow Li et al. (2020a); Karimireddy et al. (2019); Li et al. (2020b) and
assume that S; 1 is obtained by one of two types of sampling schemes to simulate practical scenarios.

One scheme establishes S;11 by i.i.d. sampling the devices with probability p; with replacement,
and uses g = %, where K = |St41|, while the other scheme samples S;1 uniformly i.i.d. from

all devices without replacement, and uses g, = pk%. Both schemes guarantee that gradient updates

10
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in FedAvg are unbiased stochastic versions of updates in FedAvg with full participation, which is
important in the theoretical analysis of convergence. Because the original sampling scheme and
weights proposed by McMahan et al. (2017) lacks this nice property, it is not considered in this paper.
For more details on the notations and setup as well as properties of the two sampling schemes, please
refer to Section C in the appendix.

C ADDITIONAL NOTATIONS AND BOUNDS FOR SAMPLING SCHEMES

In this section, we introduce additional notations that are used throughout the proofs. Following com-
mon practice, e.g. Stich (2019); Li et al. (2020b), we define two virtual sequences v; = Zszl pkvi€
and w; = E,szl pkwf , where we recall the FedAvg updates from (2):

Vi ift+1¢ g,

k k k
V. =W, — & = .
t+1 t t8tks  Wipn { k
Zkestﬂ vy, ift+1eZp.

The following observations apply to FedAvg updates, while Nesterov accelerated FedAvg requires
modifications. For full device participation or partial participation with ¢ ¢ Zg, note that v, =

W, = Zgzl prvF. For partial participation with t € Zg, W; # V; since V; = Zf:’:l prvF while
W= kes, qkwf. However, we can use unbiased sampling strategies such that Es, w; = V. Note
that vV is one-step SGD from wy.

Vigl = Wi — 48, (3)
where g; = Zszl Dr8t,k 18 the one-step stochastic gradient averaged over all devices.
gi = VE (wi, &),
Similarly, we denote the expected one-step gradient g, = E¢, [g;] = Zﬁzl PrEer 8t .k, where
Eergir = Vi (w)), 4)

and & = {¢F}Y_| denotes random samples at all devices at time step .

Since in this work we also consider the case of partial participation, the sampling strategy to
approximate the system heterogeneity can also affect the convergence. Here we follow the prior
works Li et al. (2020b) and Li et al. (2020a) and consider two types of sampling schemes that
guarantee Es,W; = V;. The sampling scheme I establishes S;;1 by i.i.d. sampling the devices
according to probabilities p;, with replacement, and setting ¢ = % In this case the upper bound of
expected square norm of w;4; — Vv, is given by (Li et al., 2020b, Lemma 5):

_ _ 4
Es, , [[Wir1 — Vt+1||2 < EQ?E2G2' 5)

The sampling scheme II establishes S by uniformly sampling all devices without replacement and
setting g, = pk%, in which case we have

_ _ 4(N - K
Es, i, [[Wes1 — e |” < Ié(N_liaszGQ. (6)
We summarize these upper bounds as follows:
_ _ 4
Esyy [[Wet1 — Venl? < EO&%EQGQ. (7)

and this bound will be used in the convergence proof of the partial participation result.

D CONNECTIONS WITH DISTRIBUTED AND DECENTRALIZED OPTIMIZATION
AND COMPARISON OF CONVERGENCE RATES WITH RELATED WORKS

Federated learning is closely related to distributed and decentralized optimization, and as such it is
important to discuss connections and distinctions between our work and related results from that
literature. First, when there is neither system heterogeneity, i.e. all devices participate in parameter

11
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averaging during a communication round, nor statistical heterogeneity, i.e. all devices have access to
a common set of stochastic gradients, FedAvg coincides with the “Local SGD” of Stich (2019), which
showed the linear speedup rate O(1/NT) for strongly convex and smooth functions. Woodworth
et al. (2020b) and Woodworth et al. (2020a) further improved the communication complexity that
guarantees the linear speedup rate. When there is only data heterogeneity, some works have continued
to use the term Local SGD to refer to FedAvg, while others subsume it in more general frameworks
that include decentralized model averaging based on a network topology or a mixing matrix. They
have provided linear speedup analyses for strongly convex and convex problems, e.g. Khaled et al.
(2020); Koloskova et al. (2020) as well as non-convex problems, e.g. Jiang & Agrawal (2018); Yu
et al. (2019b); Wang & Joshi (2018). However, these results do not consider system heterogeneity,
i.e. the presence of stragglers in the device network. Even with decentralized model averaging,
the assumptions usually imply that model averages over all devices is the same as decentralized
model averages based on network topology (e.g. Koloskova et al. (2020) Proposition 1), which
precludes system heterogeneity as defined in this paper and prevalent in FL problems. For momentum
accelerated FedAvg, Yu et al. (2019a) provided linear speedup analysis for non-convex problems,
while results for strongly convex and convex settings are entirely lacking, even without system
heterogeneity. Karimireddy et al. (2019) considers both types of heterogeneities for FedAvg, but
their rate implies a linear speedup only when the number of stragglers is negligible. In contrast, our
linear speedup analyses consider both types of heterogeneity present in the full federated learning
setting, and are valid for any number of participating devices. We also highlight a distinction in
communication efficiency when system heterogeneity is present. Moreover, our results for Nesterov
accelerated FedAvg completes the picture for strongly convex and convex problems. For a detailed
comparison with best-known results in the literature, please refer to Table 2.

In Haddadpour & Mahdavi (2019), the authors provide O(1/NT') convergence rate of non-convex
problems under Polyak-t.ojasiewicz (PL) condition, which means their results can directly apply to
the strongly convex problems. However, their assumption is based on bounded gradient diversity,
defined as follows:

_ Pl VEMWIE _
122k oV ER (W)~

This is a more restrictive assumption comparing to assuming bounded gradient under the case of target
accuracy € — 0 and PL condition. To see this, consider the gradient diversity at the global optimal

w)|2 % . . «
w*, e, A(w*) = M—i’;((w))l‘lé. For A(w*) to be bounded, it requires |V Fg(w*)||3 = 0, V k.

This indicates w* is also the minimizer of each local objective, which contradicts to the practical
setting of heterogeneous data. Therefore, their bound is not effective for arbitrary small e-accuracy
under general heterogeneous data while our convergence results still hold in this case.

A(w)

In Karimireddy et al. (2019), the linear speedup convergence rate of FedAvg are provided for strongly
convex, general convex, and non-convex problems under full participation setting. However, their
rate does not enjoy linear speedup for any number of devices while our results apply to any valid
K < N. For example, they provides an optimality gap of O ((1 - %)E /T ) for the strongly convex
case (Karimireddy et al., 2019, Theorem V). With partial participation, and when K = O(1), their
convergence rate is O(F /T) which does not have linear speedup. Under partial participation, the
FedAvg analyses in Karimireddy et al. (2019) requires £ = (O(1). For example, the strongly
convex result O((1 — £)E/T) in Theorem V is O(E/T) when K = O(1) and is O(E/NT) when
K = O(N). In either case, to achieve a O(1/T') convergence rate, it requires £ = O(1) as well.
Similar conclusion also holds for the general convex problem.

E LINEAR SPEEDUP ANALYSIS OF NESTEROV ACCELERATED FEDAVG

A natural extension of the FedAvg algorithm is to use momentum-based local updates instead of local
SGD updates in order to accelerate FedAvg. As we know from stochastic optimization, Nesterov
and other momentum updates fail to provably accelerate over SGD (Liu & Belkin (2020); Kidambi
et al. (2018); Liu et al. (2018); Yuan & Ma (2020)). This is in contrast to the classical acceleration
result of Nesterov-accelerated gradient descent over GD. Thus in the FL setting, the best provable
convergence rate for FedAvg with Nesterov updates is the same as FedAvg with SGD updates.
Nevertheless, Nesterov and other momentum updates are frequently used in practice, in both non-FL

12
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Reference [ C()nveréence rate E [ NonlID [ Participation Extra Assumptions Setting
FedAvgLi et al. (2020b) O( ) O(1) v Partial Bounded gradient Strongly convex
FedAvgHaddadpour & Mahdavi (2019) O( KT ) O(K~ 1/3p2/3 )T s Partial Bounded gradient diversity Strongly convex$
FedAvgKoloskova et al. (2020) O( ﬁ ) o(N—Y/271/2) v Full Bounded gradient Strongly convex
FedAvgKarimireddy et al. (2019) O( ﬁ ) T O(N—1/271/2) i v Partial Bounded gradient dissimilarity Strongly convex
FedAvg/N-FedAvg (our work) O( %) o(N~1t 72pi/2 )i v Partial Bounded gradient Strongly convex
FedAvgKhaled et al. (2020) O(N—3/271/2) v Full Bounded gradient Convex
FedAvgKoloskova et al. (2020) O(N —3/4pl 4) v Full Bounded gradient Convex
FedAvgKarimireddy et al. (2019) o( ﬁ N O(N—3/Ap1/4Ti v Partial Bounded gradient dissimilarity Convex
FedAvg/N-FedAvg (our work) (@) ( 11<T ) O(N _3/4T1/4)1 v Partial Bounded gradient Convex
FedAvg (@] (exp( — gi ) O(Tﬁ ) v Partial Bounded gradient Overparameterized LR
FedMass ] (exp( - — )) O(TB ) v Partial Bounded gradient Overparameterized LR
1

Table 2: A high-level summary of the convergence results in this paper compared to prior state-of-
the-art FL algorithms. This table only highlights the dependence on T' (number of iterations), £/
(the maximal number of local steps), N (the total number of devices), and K < N the number of
participated devices. k is the condition number of the system and 5 € (0, 1). We denote Nesterov
accelerated FedAvg as N-FedAvg in this table.

 This F is obtained under i.i.d. setting.

 This F is obtained under full participation setting.

§ In Haddadpour & Mahdavi (2019), the convergence rate is for non-convex smooth problems with
PL condition, which also applies to strongly convex problems. Therefore, we compare it with our
strongly convex results here.

 The bounded gradient diversity assumption is not applicable for general heterogeneous data when
converging to arbitrarily small e-accuracy (see discussions in Sec D).

T Although the results in Karimireddy et al. (2019) is applicable for partial participation setting,
their results only achieve linear speedup under full participation setting X = NN while we show
linear speedup convergence for K < NN (see discussions in Sec D). The E in the table is obtained
under full participation. Under partial participation, the communication complexity is £ = O(1).

and FL settings, and are observed to perform better empirically. In fact, previous works such as Stich
(2019) on FedAvg with vanilla SGD uses FedAvg with Nesterov or other momentum updates in their
experiments to achieve target accuracy. Because of the popularity of Nesterov and other momentum-
based methods, understanding the linear speedup behavior of FedAvg with such local updates is
important. To our knowledge, the only convergence analyses of FedAvg with momentum-based
stochastic updates focus on the non-convex smooth case Huo et al. (2020); Yu et al. (2019a); Li et al.
(2020a), and no results existed in the convex smooth settings. In this section, we complete the picture
by providing the first O(1/KT) and O(1/v KT) convergence results for Nesterov-accelerated
FedAvg for convex objectives that match the rates for FedAvg with SGD updates. Detailed proofs of
convergence results in this section are deferred to Appendix Section I.

E.1 STRONGLY CONVEX AND SMOOTH OBJECTIVES

The Nesterov Accelerated FedAvg algorithm follows the updates:

Vf—s-l =+ 5t(Vf+1 ) ift+1¢Ip,

k k k
Vig1 = Wy — Wiy = k ko ok iftileT
D okeSips Ik (Vi + Be(vie — vi)] ift+1€Zp,

18t ks

where g; j, 1= VFk(wf, ff) is the stochastic gradient sampled on the k-th device at time ¢, and gy,
again depends on participation and sampling schemes.

Theorem 3. Let Vv Ek 1 pva in Nesterov accelerated FedAvg, and set learning rates

Then under Assumptions 1,2,3,4 with full device

_ 6_1
At = Ly Bi—1 =
participation,

TR PP RS

2 2 2 12 2
JEF(VT)—F*:(Q(“”‘“XU /“+“EG/“),

NT T2
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and with partial device participation with K sampled devices at each communication round,

KU ax02 /1 n KE*G?/u n /{2E2G2/,u) .

EF(VT) —F"=0 ( NT KT T2
Similar to FedAvg, the key step in the proof of this result is a recursive contraction bound, but
different in that it involves three time steps, due to the update format of Nesterov SGD (see Lemma 7
in Appendix I.1). Then we can again use induction and L-smoothness to obtain the desired bound.
To our knowledge, this is the first convergence result for Nesterov accelerated FedAvg in the strongly
convex and smooth setting. The same discussion about linear speedup of FedAvg applies to the
Nesterov accelerated variant. In particular, to achieve O(1/NT) linear speedup, T iterations of the

algorithm require only O(v/ NT') communication rounds with full participation.

E.2 CONVEX SMOOTH OBJECTIVES

We now show that the optimality gap of Nesterov-accelerated FedAvg has O(1/v KT) rate for
convex and smooth objectives. This result complements the strongly convex case in the previous part,
as well as the non-convex smooth setting in Huo et al. (2020); Yu et al. (2019a); Li et al. (2020a),

where a similar O(1/v/ KT) rate is given in terms of averaged gradient norm.

Theorem 4. Set learning rates oy = 5y = O %) Then under Assumptions 1,3,4 Nesterov

accelerated FedAvg with full device participation has rate

(y;i,axa? NE?LG? )
)

min F(vy) — F* =0

t<T

+
VNT T

and with partial device participation with K sampled devices at each communication round,

min F(v,) — F* =0
t<T

+ +
VKT = VKT T

(uﬁ,axz# E%G? KE2LG2)

We emphasize again that in the stochastic optimization setting, the optimal convergence rate that
FedAvg wtih Nesterov udpates can achieve is the same as FedAvg with SGD updates. However, due
to the popularity and superior performance of momentum methods in practice, it is still important
to understand the linear speedup behavior of such FedAvg variants. Our results in this section fill
exactly this gap.

F A HIGH-LEVEL SUMMARY OF FEDAVG ANALYSIS

To facilitate the understanding of our analysis and highlight the improvement of our work comparing
to prior arts, we summarize the general steps used in the proofs across the various settings. In this
section, we take the strongly convex case as an example to illustrate our analysis. The corresponding
proof for general convex functions follows the same framework.

Algorithm 1 FEDAVG: Federated Averaging

1: Server input: initial model wy, initial step size av, local steps E.
2: Client input:

3: for eachround r = 0,1, ..., R, where r =t x I/ do

4:  Sample clients S; C {1,...,N}

5 Broadcast w to all clients k € S;

6:  for eachclient k C S; do
7
8

initialize local model w¥ = w
fort=r+«E+1,...,(r+1)xEdo

9: Wf+1 =wf — A8tk
10: end for
11:  end for
12:  Average the local models at server end: Wy = >, S wy.
13: end for
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One step progress bound
This step establishes the progress of distance (||w; — w*||?) to optimal solution after one step SGD
update (see line 9, Alg 1), as the following equation shows:

E[Wer1 —w'|* < OmeE[W, — w*|* + afo? /N + o B*G?).

The above bound consists of three main ingredients, the distance to optima in previous step (with
n: € (0,1) to obtained a contraction bound), the variance of stochastic gradients in local clients
(second term), the variance across different clients (third term). Notice that the third term in this
bound is the primary source of improvement in the rate. Comparing to the bound in Li et al. (2020b),
we improve the third term from O(a? E?G?) to O(a? E2G?), which enables the linear speedup in
the convergence rate.

Iterative deduction
This step uses the one step progress bound iteratively to connect the the current distance to optimal
solution with the initial distance (|[Wo — w*||?), as follows:

_ . — a2l
E[[Wes1 — w'[* < O(E[[Wo — w HQT)

Then we can use the distance to optima to upper bound the optimality gap (F/(w;) — F* < O(1/T)),
as follows:
E(F(W,) = F* < O(E[%: — w*|]%).

The convergence rate of the optimality gap is equally obtained as the convergence rate of the distance
to optima.

From full participation to partial participation

There are three sources of variances that affect the convergence rate. The first two sources come from
the variances of within local clients and across clients (second and third term in one step progress
bound). The partial participation, which involves a sampling procedure, is the third source of variance.
Therefore, comparing to the rate in full participation, this will add another term of variance into the
convergence rate, where we follow a similar derivation as in Li et al. (2020b).

G TECHNICAL LEMMAS

To facilitate reading, we first summarize some basic properties of L-smooth and p-strongly convex
functions, found in e.g. Rockafellar (1970), which are used in various steps of proofs in the appendix.

Lemma 1. Let F' be a convex L-smooth function. Then we have the following inequalities:
1. Quadratic upper bound: 0 < F(w) — F(w') — (VF(w'),w — w') < L||w — w/||2.
2. Coercivity: 1||VF(w) — VE(wW')||> < (VF(w) — VF(w'),w — w’).

3. Lower bound: F(w) > F(w') + (VF(W'),w — W') + 5 | VF(w) — VF(w')||%. In particular,
IVE(w)|I* < 2L(F(w) — F(w")).

4. Optimality gap: F(w) — F(w*) <(VF(w),w — w*).
Lemma 2. Let F' be a p-strongly convex function. Then

F(w) < F(w)+ (VF(w'),w—w') + iHVF(W) — VF(Ww)|?

F(w) - F(w*) < Qiﬂuwwww

H PROOF OF CONVERGENCE RESULTS FOR FEDAVG

H.1 STRONGLY CONVEX SMOOTH OBJECTIVES
To organize our proofs more effectively and highlight the significance of our results compared to

prior works, we first state the following key lemmas used in proofs of main results and defer their
proofs to later.
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Lemma 3 (One step progress, strongly convex). Let Wt ZkN 1 prWF, and suppose our functions

satisfy Assumptions 1,2,3,4, and set step size oy = (w+t) with v = max{32k, E} and k = e L then
the updates of FedAvg with full participation satisfy
Bt — WP < (1= o) B, — W[ + 02 002,07 + 62 LadGP.

We emphasize that the above lemma is the key step that allows us to obtain a bound that improves
on the convergence result of Li et al. (2020b) with linear speedup. Its proof will make use of the
following two results.

Lemma 4 (Bounding gradient variance (Lemma 2 Li et al. (2020b)) ). Given Assumption 3, the
upper bound of gradient variance is given as follows,

N
Ellg: — glI° < pio.
k=1

Lemma 5 (Bounding the divergence of wf (Lemma 3 Li et al. (2020b)) ). Given Assumption 4,
and assume that o is non-increasing and o, < 2044 g for all t > 0, we have

N
. [zpknwt "
k=1

<4222,

We now restate Theorem 1 from the main text and then prove it using Lemma 3.

Theorem 1. Let W = Z,ICV 1 pkwT in FedAvg, Vm&x = maxy Npy, and set decaying learning
rates oy = u(v-&-t) with v = max{32k, E} and k = <. Then under Assumptions 1,2,3,4 with full

device participation,
2 2 222
EF(wr)— F* =0 (’Wmax@r /1 Lk /H)

NT T2
and with partial device participation with at most K sampled devices at each communication round,

REPG? /i | Wmax0® /0 K2E2G2/p
KT NT T2

EF(Wr)— F* =0 (

Proof. The road map of the proof for full device participation contains three steps. First, we establish
a recursive relationship between E||w; 1 — w*||? and E||wW; — w*||2, upper bounding the progress of

2 2
FedAvg from step ¢ to step ¢ + 1. Second, we show that E||w, — w*||? = O(%zazZ [n 4 E2ng/u2)
by induction using the recursive relationship from the previous step. Third, we use the property of
L-smoothness to bound the optimality gap by E||w; — w*||2.

By Lemma 3, we have the following upper bound for the one step progress:

E[Win — w|* < (1= pa)B[W: — w||* + af ¥pac0” + 6B LaiG?.

I 2 _ Vma.TU /,LL E2LG /IJ' 3 3 3 3 3
We show next that E||w; — w*|? = O(==eg + ) using induction. To simplify the
presentation, we denote C' = 6E?LG? and D = N ,2mma2. Suppose that we have the bound
E|w; — < b (awD + a?C) for some constant b and learning rates «;. Then the one step

progress from Lemma 3 becomes:
E[[Wip1 —w*[? < (b(1 = pay) + ar)aeD + (b(1 = pay) + a)afC

To establish the result at step ¢+ 1, it remains to choose a and b such that (b(1—pay)+a) oy < bayq
and (b(1 — pey) + ay)o? < ba?, . If we let oy = where v = max{FE, 32x} (choice of v

u(t+v)
required to guarantee the one step progress) and set b = ﬁ we have:

4 4 4 4
(bl = pxe) F a)ex, = (b(l - t+7) ’ M(f+7)) M bﬂ(t+v+ - b
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t+v—-2 16 16 9
b(1 — pay) + ag)a? = b <b = ba
( ( H t) f) t ( t+~ )MQ(t+’Y)2 = M2<t+7+ 1)2 t+1
where we have used the following inequalities:
t+7—1< 1 t+7—2< 1 Vo> 1

(t+7)?2 ~ (t+y+1) (t+7)3 = (t+y+1)2
Thus we have established the result at step ¢ 4+ 1 assuming the result is correct at step ¢:
E[Wi1 — w*? <b- (a1 D + a1 C)

Atstep t = 0, we can ensure the following inequality by scaling b with c||wq —w*||2 for a sufficiently
large constant c:

4 16

—wrl2<b- D 2V =b-(—D+ —C
Iwo =W <b- (00D +0FC) = b (--D+ —550)
It follows that
—_ * * 4
E|w, —w*|* < c|wo —w ||2;(Dat +Caj) ®)
forallt > 0.

Finally, the L-smoothness of F' implies

L
E(F(wr)) - F* < E|wr - w'|]

L 4
< §c||w0 —w" “2;(DO¢T + Ca2)
= 2¢||wo — W*||?k(Dag + Ca2)
< 2c||lwo — w*||*k 4 iV,QMJCUQ +6E*LG? - (L)2
mT+v) N w(T +7)

k1 1 K2 1
20772 2, - 7E2G2_7
where in the first line, we use the property of L-smooth function (see Lemma 1), and in the second
line, we use the conclusion in Eq (8).

With partial participation, the update at each communication round is now given by weighted averages
over a subset of sampled devices. Whent + 1 ¢ Zg, Vi11 = W41, while whent + 1 € Zg, we have
EW, 1 = V11 by design of the sampling schemes (Li et al. (2020b), Lemma 4), so that
E[[Wip1 — W |? = E[[Wet1 — Vigr + Vi1 — w2
= E[[Wer1 — Ve |? + El[Vipr — w2
This in particular implies E|[v; — w*||? < E||w; — w*|| for all £. Since v; = S.~_, ppvF always
averages over all devices, the full participation one step progress result Lemma 3 applied to v; implies

1
B[¥is1 — w2 S E(L— pao)[ve — w2 + 6B LadG? + 0?12 0,07

<E(1 — poy)||We — w*||? + 6E*LalG? + af%yfmwaz
The bound for E||W;1 — V1 1]|? for the two sampling schemes we consider is provided in Eq (7),
and applying it we can write the one step progress for partial participation as
E|Wi1 — w||? < (1 — poy)E||w; — w*||* + af%uﬁwajaz + %C@EQGQ +6E?LalG?, (9)
and the same arguments using induction and L-smoothness as the full participation case implies
kU2 02 1 N kE*G?/u N K2E2G2/M)

EF(Wr) - F" = O(=\p KT T2
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H.1.1 DEFERRED PROOFS OF KEY LEMMAS

Here we first rewrite the proofs of lemmas 4 and 5 from Li et al. (2020b) with slight modifications
for the consistency and completeness of this work, since later we will use modified versions of these
results in the convergence proof for Nesterov accelerated FedAvg.

Proof of lemma 4.

N N
Ellg: — glI° = Ellg: — Egil> = > piliges — Bgerl® <> piod
k=1 k=1
0

Proof of lemma 5. Now we bound E Eszl pr|[W¢ — wF||? following Li et al. (2020b). Since com-
munication is done every E steps, for any ¢ > 0, we can find aty < ¢ such thatt —t9 < E — 1 and
Wfo = w, for all k. Moreover, using o is non-increasing and o, < 2ay forany t —tg < E — 1,
we have

N
EY  prlw: — wi|?
k=1
N
ZEZPkHW§ - Wi, — (Wf - Wto)HQ
k=1

N
<EY prlwh -,
k=1

N
=E Y pelwi —wi|®
k=1

N t—1
=E ZPkH - Z aigik?
k=1

i=to

N t—1
<2) "pE Y Eof|lgikl®
k=1

1=to
N
<2 ZpkE%cfoG?
k=1

<4E%alG?
O

Based on the results of Lemma 4, 5, we now prove the upper bound of one step SGD progress. This
proof improves on the previous work Li et al. (2020b) and is the first to reveal the linear speedup of
convergence of FedAvg.

Proof of lemma 3. We have
[Wer1 = w|* = [[(Wr — cuge) = W7|* = (W — B, — w*) — on(ge — &)

= |[W, — W* — a8y [|> + 200 (Wi — W* — 8., B, — &) + o7 llge — &1°

A Az Aa
where we denote:
Ay = W — w" — i
Ay =204 (W — W" — 8,8 — 8t)
A = of|g: — &I
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By definition of g; and g, (see Eq (4)), we have EA; = 0. For A3, we have the following upper
bound (see Lemma 4):

N
a7Ellg — gl° < of > pioi
k=1

Next we bound Ay:

[We —w" — gy l|” = [[We — w*[* + 2(F, — w", —ug)) + ||, ||*
and we will show that the third term ||a;g, ||? can be canceled by an upper bound of the second term,
which is one of major improvement comparing to prior art Li et al. (2020b). The upper bound of
second term can be derived as follows, using the strong convexity and L-smoothness of Fj:

- 2at<Wt - W*agt>

N
== 204 Y pp(Wi — w*, VFi(wf))
k=1
N N
=— 204 Zpk<Wt — W VFL(wF) — 204 Zp;&wf —w*, VE,(wF))
k=1 k=1
N N N
< =200 Y (Wi = Wi, VEL(WE)) 4200 > pr(Fr(W™) = Fi(wy)) — agpn Y pgllwy — w*||?
k=1 k=1 k=1
N L N
<204 Y pr {Fk(wf) — F(Wy) + 5||Wt —wl|]? + F(w*) — Fk(wf)} —oppl Y pewf — w*||?
k=1 k=1
N N
= LY il Wy = wi® 4 200 > pi [Fr(W*) — Fi(We)] — [ W, — w||?
k=1 k=1

We record the bound we have obtained so far, as it will also be used in the proof for convex case:

N
E|[Wi1 — w|* <E(1 — pay) Wy — w* > + e LY pi [ — wi |
=1
N N
+200 ) pr [Fi(W*) = Fi(Wo)l + a7 Y pioi +ofgll*  (10)
k=1 k=1

For the term 2c; ZkN:1 pr [Fr(W*) — F.(W)], which is negative, we can ignore it, but this yields a
suboptimal bound that fails to provide the desired linear speedup. Instead, we upper bound it using
the following derivation:

200 ) pi [Fr(w") — Fi(Wy)]
k=1

204 [F(Wig1) — F(Wy)]

L2 B(VF (W), W1 — Wi) +  LE|[ Wiy — Wy |?
= — 20;E(VF (W), &) + o} LE| g

= — 20{E(VF(W;),8;) + oy LE| /g ?

=—af [IVF&)* + 81> — IVF(W,) — 8 lI°] + o LE||g:||?
=—of + o LE|g:|”

IVE®OI? + g l® ~ IVE(We) = > o VE (W)
k

<_a? + o} LE| g,

IVEW)? + llg:l* = Y prl| VE(W) = VE(wi)|?
k
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< —af |IVE®)I + &) = L° Y prlwe — wi?| + ol LE| g
k
< - ofllg)1* + i L? ZPkHwt wi | + of LE||gel|* — of [ VF (W)

where we have used the smoothness of F' twice.

Note that the term —a?||g, || exactly cancels the o?||g, || in the bound in Eq (10), so that plugging

in the bound for —2a; (W; — w*, g,), we have so far proved
N N
E[Wer1 — w> < E(— pan)[[We —w"|* + el pil[we — will* +af Y piok
k=1 k=1
+aiL? Zpkl\Wt wi | + of LE||gel|* — of [ VF ()| (1)

Under Assumption 4, we have E||g;||? < G2. Furthermore, we can check that our choice of oy

satisfies oy is non-increasing and «; < 2ayy g, so we may plug in the bound E Eszl pi||We —
wi||? < 4E%a?G? to the above inequality (see Lemma 5).

Therefore, we can conclude that, with V4, := N - maxy pg and vy, := N - ming pg,
E[Wip1 — w|?
N
<E(1 — poy) [Wy — w*||* + 4E*LafG® + 4E*L*0fG® + o} > _pio} + o LG?
k=1

N
=E(1 — pay) |, — w*||> + 4E2Lai G? + 4E?L2a}G? + o — N Z (pxN)20% + al LG?
k=1

o 1
<E(1 — poy)|[We — w2 + 4E? Lol G? + AE* L0l G? + o2 — Nz Vmaa Zak + &} LG?

9 1
S]E(]' - luat)”Wt *”2 + 6E2LQ?G2 + at N 7211ar02

where in the last inequality we use 02 = Zf;f:l pkaﬁ, and that by construction o satisfies Lay < %
O

22
One may ask whether the dependence on E in the term ”EKiGVT/“ can be removed, or equivalently

whether Y, pi||wF — W||2 = O(1/T?) can be independent of E. We provide a simple counterex-
ample that shows that this is not possible in general.

Proposition 1. There exists a dataset such that if E = O(T?) for any 8 > 0 then Y, pi||wk —
We|]? = Q(ﬁ) .

Proof. Suppose that we have an even number of devices and each Fj(w) = nik Zyi 1 (x?C —w)?

contains data points ch = w*¥ with n;, = n. Moreover, the w**’s come in pairs around the origin.
As aresult, the global objective F is minimized at w* = 0. Moreover, if we start from Wy = 0, then
by design of the dataset the updates in local steps exactly cancel each other at each iteration, resulting
in w; = 0 for all . On the other hand, if E = T, then starting from any ¢ = O(T") with constant
step size O(%) after I iterations of local steps, the local parameters are updated towards w** with

[wi gl = QTP - £)?) = Q(754=7). This implies that

Y oulwiip — Weesll® = Y pillwl gl
k

k
|
= m=3p)
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which is at a slower rate than - for any 8 > 0. Thus the sampling variance E||W;y 1 — Viy1]|? =
Q> eE[ Wi — Wi1]|?) decays at a slower rate than iz, resulting in a convergence rate slower
than O(#) with partial participation. O

H.2 CONVEX SMOOTH OBJECTIVES

In this section we provide the proof of the convergence result for FedAvg with convex and smooth
objectives. The key step is a one step progress result analogous to that in the strongly convex case,
and their proofs share identical components as well.

Lemma 6 (One step progress, convex case). Let w; = Zszl prWF in FedAvg. Under assump-
tions 1,3,4, the following bound holds for all t:

E[Wii1 —w'[|? + ae(F(W,) — F(w")) < E[[w; — w*|2 o? + 60} B* LG

+ at N Vmax

Proof. The first part of the proof follows directly from Eq (10) in the proof of Lemma 3. Setting
1 = 01in Eq (10) (since we are in the convex setting instead of strongly convex), we obtain

N
W1 = w2 < [0 = w2 oL Y pul — w2
k=1

N
200 Y pi [Fe(w®) = Fu()] + o2 [gll” + a2 3 o
k=1 k=1

The difference of this bound with that in the strongly convex case is that we no longer have a
contraction factor of 1 — uat in front of |[W; — w*||2. In the strongly convex case, we were able to

cancel a2||g,||2 with 20 30 w—1 Dk [Fe(Ww*) — Fj,(W;)] and obtain only lower order terms. In the

convex case, we use a different strategy and preserve Zszl i [Fx(W*) — Fi,(W;)] in order to obtain
the desired optimality gap.

‘We have
(=R szevl%(vvml2

—| ZkaFk (wh) ZkaFk (Wi) + ZkaFk (Wo)lI?
<2 ZkaFk w) ZkaFk )2 +2| ZkaFk COIE
< 2L22pkllwt - w|? +2||ZkaFk (w)|”
k k
=21 pillwi =Wl + 2| VE(w,)|?

k

using VF(w*) = 0. Now using the L smoothness of F, we have |VF(w,)|* < 2L(F(w;) —
F(w*)), so that

W1 — w2

N N
<IWe =W+ @l Yy pel|We = wil|® 4 200 Y pr [Fe(w”) = Fio(W)]

k=1 k=1
+2atLQZpkHwt _Wt||2+4atL(F( ) —F "‘O‘t Zpkak
N
=W — w*|” + (2071 + ou L) > pil[We — W[|* + oy Zpk [Fr (W) — Fi(W,)]
k=1 k=1
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N

+a} Y piog + a(1 — 4y L)(F(w*) — F(Wy))
k=1

Since F(w*) < F(W;), as long as 4oL < 1, we can ignore the last term, and rearrange the
inequality to obtain

[Wer1 = W[ + e (F (W) = F(w"))

N
<[ — w2 + (207L% + L) 3 il — wfu2+at2pkak
k=1

N
_ . 3 _
<[|w; — w*|* + §athZ_lpkHwt —wr|? 4+ a2 Zpk%
The same argument as before yields E Y p_, pi[W; — wF||2 < 4E2a2G? which gives

N
[Wer1 — w*[* + ar(F(We) — F(w")) < |[We — w*[|* +af Y pioi + 60 E*LG?
k=1

91
S HWt - W*||2 + at N’jmaxJ + 6atE2LG2
O

With the one step progress result, we can now prove the convergence result in the convex setting,
which we restate below.

Theorem 2. Under assumptions 1,3,4 and constant learning rate oy = O(4/ %) FedAvg satisfies

min F(%,) — F(w*) = O (

Vmax 02 n NE?LG?
t<T

VNT T
with full participation, and with partial device participation with K sampled devices at each commu-

nication round and learning rate oy = O(1/ %),

min F(W,) — F(w*) = O (

umax02 E2G? KEQLG2
t<T

VKT VKT T
Proof. We first prove the bound for full participation. Applying Lemma 6, we have
J— * — * — * ]‘
W41 = W%+ o (F (W) = F(w) < [[W0 = w* + af ¥axo™ + 60 ELG?

Summing the inequalities from ¢ = 0 to ¢ = T, we obtain

T
>~ aulF(W) — F(w")) < |wo - *H2+Zaf o LYol 6ELG
t=0

t=0
so that

min F(w;) — F(w") < <||w0 — w2 —i—Zat V2 o0 —l—Zat 6E2LG2>

= Zt 0 N t=0
By setting the constant learning rate oy = %, we have

1 1 N 1 1 | N

inF(w;,) — F(w") < —"- — WPt =T = - —12,. 0%+ —=T(y/ = )*6E*LG>

12’61%11{1 (Wt) (W )— NT HWO w || +\/ﬁ T Nymd.XU +\/ﬁ ( T)
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1 N 1 N
< el — WP+ T rfe® + FOELGE
1 N
2 2 2 2
— — + —6FE°LG
— (w0 = WP+ Vo) o+
_ (VglaX02+NE2LG2)
-V UNT T

For partial participation, the one step progress bound in Lemma 6 is updated in a similar manner as
the strongly convex case in (9) to incorporate the sampling variance. More precisely, with partial
participation,

E[Wii1 — W'* = E[[Wip1 — Vi1 + Vi1 — w2
= El[Wes1 — Vear P + B[V — wP,
where Ew,,; = V4 for all ¢, by the unbiasedness of our sampling schemes. Since v, =

Zévzl prVvF always averages over all devices, the full participation one step progress bound in
Lemma 6 applied to v; implies

1
B[¥er — W + au(F(¥0) = F(w") < B¥e = w'|[? + 0} 12,,0% + 60f B LG?

< ]E”Wt >k||2 + at N IIlaXU + 60&3E2LG2

The bound for E||W;,1 — ¥V, 1]|? for the two sampling schemes we consider is provided in Eq (7),
and applying it to the above bound we can write the one step progress for partial participation as

1
B[ — |+ au(F(§%,) — P(w")) < B, — w2+ 03(102,,0% + C) + 6E*La}G2
where C = # E2G? or =% £ E2G? depending on the sampling scheme.

Summing up the one-step progress over ,

lgréi%l F(w;) — F(w*) < Z <||w0 — w2+ Zat : z/maxa +C)+ Z o - 6E2LG2>
= t=0 @ t=0

so that with a; = we have

K
T

2 2072 27 (12
min F(W,) — F(w") = O(l/maxo E°G KE LG

t<T VKT * \/7 T )

I PROOF OF CONVERGENCE RESULTS FOR NESTEROV ACCELERATED
FEDAVG

I.1 STRONGLY CONVEX SMOOTH OBJECTIVES

Recall that the Nesterov accelerated FedAvg follows the updates

k k k .
k k k Vi + BV — i) ift+1¢7Zp,
Vi = WP — ik, Wi = : ) .
o t o {Zk65t+1 ar [V + Bi(vip = vi)] ift+1 €T

The proofs of convergence results for Nesterov Accelerated FedAvg consists of components that are
direct analogues of the FedAvg case. We first state these analogue results before proving the main
theorem. Like before, the proofs of the lemmas are deferred to after the main proof.
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Lemma 7 (One step progress, Nesterov). Let v, = Zgzl peVF in Nesterov accelerated FedAvg,

and suppose our functions satisfy Assumptions 1,2,3,4, and set step sizes a; = %ﬁ Bi_1 =
3 . _ _L

14(t+7) (1= g7) max{u,1} with v = max{32x, E} and k = i, the updates of Nesterov accelerated

FedAvg satisfy

E[Vir = w[? SEQ — pae) (1 + Be-1)?[[Ve — W*|* + 20E*LagG? + (1 — awpt) 571 | (V-1 —

1 — * - *
+ 0F 5 Vimax® + 2801 (1+ Bioa) (L= agn) [9 = W' - [Vis = W'

The one step progress result makes use of the same bound on the gradient variance in Lemma 4, as
well as a divergence bound analogous to Lemma 5, which we state below.

Lemma 8 (Bounding the divergence of wf, Nesterov). Given Assumption 4, and assume that o is

non-increasing, oy < 2044, and 232 1 +2a3 < 1/2 forallt > 0, Wy = Z]kvzl prWF in Nesterov
accelerated FedAvg satisfies

N
E | pelw —Wfﬂ < 16(E —1)22G>.

k=1
Theorem 3 Let v = Zk 1 pva in Nesterov accelerated FedAvg and set learning rates
_ 6 _
o= 4 t+'v Bi_1 = 14(t+7)(1_m)max{ﬂ - Then under Assumptions 1,2,3,4 with full device

participation,

2 2122
EF(VT)—F*z(’)(Wm“U /”+'€EG/“>,

NT T2

and with partial device participation with K sampled devices at each communication round,

KVmax02/ 1t n KE%*G?/u n K2E*G?/u
NT KT T2 '

EF(Vy) — F* =0 (

Proof. We first prove the result for full participation. Applying the one step progress bound in
Lemma 7, we have

El[Viir = w*[? SE(L = pag)(1+ Bi—1)?[[Ve — w*[|? + 20E° L G? + (1 — ) B || (V41 —
1 — * — *
+ 0 Jpvmaco® + 2811 (14 B (L= ) [Ve = W - [y = w7

Recall that we require ay, < 20y foranyt —to < E—1, Loy < %, and 2% | +2a? < 1/2in order
for Lemmas 8 and 7 to hold, which we can check by definition of a; and S;.

2 2 2 2 2
We show next that E||v, — w*||2 = O(Xmaz?/tt 4 ETLG7/1T) by induction. Assume that we have
shown

E|v: — w*||* < b(Cai + Day)

for all iterations until ¢, where C' = 20E2LG2, D = L1252 and b is some constant to be chosen

N Ymazx
later. For step sizes recall that we choose oix = Qm and ;1 = 7 T3 (= 3 Ve (1] where
t+v ’
~v = max{32k, E'}, so that 8;_1 < a; and
6 3
(I—po)1+1481) < (1= —)A+ ——5 )
t+ t+71 - =)
6 3 3
t+vy t+vo t+ 2

Moreover, E|[v;_1 — w*|> < b(Ca?_; + Day—1) < 4b(Ca? + Day) with the chosen step sizes.
Therefore the bound for E|[V;;; — w*||? can be further simplified with

28;-1(1 + Be—1) (1 — app)E[|[ve — W || - [[Vem1 — W || <481 (1 + Bi—1)(1 — agp) - b(Caf + Day)

24

w2

Ll



ICLR 2021 - Workshop on Distributed and Private Machine Learning (DPML)

and
(1 = ) B7 1 E| (Vo1 — wH)||* < 4(1 = aup) B - b(Caf + Day)
so that
El[Vipr = w*[? < (1= pag) (14 Be-1)? +481(1+ By—1) +4B87_1) - b(Cai + Dawy)
+20E%LalG? + af%umaxﬁ

1
<E(1 — pay)(1+148;—1) - b(Cozf + Day) + 20E2LafG2 + afﬁllmaxaz

<b(1-— %)(C’at2 + Day) + Cail + Da?

= (b1 =51 + a)a?C + (61 - B4 + a)au D

and so it remains to choose b such that

(b(l — %) + Oét)Oét S bOét+1

(b1 = 551 + ar)a? < ba?y,

from which we can conclude E|[v1 — w*||? < of ,C' + ay 1 D.

With b = %, we have

oy 3 6 6
b(1 — =ty 4 = (b(1 — +
t+v—3 6 6
= (b )
t+y  pt+y) p+9)
t+v—1 6
<b
( t+ )u(t+v)
6
<b——=b
= M(t+’y+1) Qg1
thy—1 1
where we have used G J:v)g <
Similarly
o 9 3 6 6 9
b(l ——) 4+ az)a; = (b(1 — +
01 =554 + agat = (0L~ (7) + ) o)
t+~v—3 6 6 9
=(b
( t+y u(t+7))(u(t+’v))

t+v—2 6
)
t+y T ult+)
36
<b——" —pa?
=Py

= b( )?

t+v—2 1
where we have used ) < (SR

Finally, to ensure ||[vo — w*||? < b(Ca? + Dayg), we can rescale b by c||[vg — w*||? for some c. It
follows that E||v; — w*||?> < b(Ca? + Day) for all t > 0. Using the L-smooothness of F,
E(F(vr)) — F* = E(F(vr) - F(w"))
L L 6
< SE[¥r - w|* < Sclvo = W~ (Dar + Ca)
2 2 "
= 3c|[vo — w*||?k(Dar + Ca2)
6 1
wT+v) N

6

S BCHVO - W*HZK/ VmaX0'2 + 2OE2LG2 . (m

)2
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With partial participation, the same argument with an added term for sampling error yields
KlVmax T2/ 14 n kE*G?/u n KQEQGz/u)
NT KT T2

EF(Wr) — F* = O(

1.1.1 DEFERRED PROOFS OF KEY LEMMAS

Proof of lemma 8. The proof of bound for E chvzl pr|[W¢ — wF||? in the Nesterov accelerated
FedAvg follows a similar logic as in Lemma 5, but requires extra reasoning. Since communication is
done every FE steps, for any ¢ > 0, we can find a tg < t such thatt —ty < E — 1 and wfo = w,, for
all k. Moreover, using o is non-increasing, o, < 2y, and 8; < oy forany ¢t —to < £ — 1, we have

N N
B pellwe = will> =B prllwf — Wi, — (Wi — W)
k=1 k=1

N

<EY prllwt =W, |
k=1

= EZpkHWt - WtOHZ

k=1
k|| Z Bi(vi — Z aiginl

= i=to i=to

kEZ -1) 2||gzk||2+22pk]EZ —DBF(vE — v

= i=to i=to

IA ||
‘MZ |M2

N
<2 Z kEZ @ ([lgik* + 11 (Vi = vOI?)
=1 1=to
N
Z kEZ 2G2
k=1 i=to

<4(E-1)%a; G* < 16(F — 1)%a;G?

where we have used E||vF — vF_||2 < G2. To see this identity for appropriate ay, 3;, note the
recursion

k k k k
Vit1 = Ve =Wy =Wy g — (8l — 4 18t—1,k)

k k k k
Wii] — W, = —u8ek + 5t(Vt+1 - Vt)
so that
k k __ k k
Vil — Vi =~ 181k + Bi—1(Vi — Vi) — (8 k — i—181—1,k)

= 5t71(vf - qu) — 048tk
Since the identity vF,; — v = B;_1(vF — vi_|) — aug: » implies
k 2 2 2
Ellvii, — vy FlI? <287 Ellvi - viy|? 4 207G
as long as ay, B;_1 satisfy 282 ;| + 2a? < 1/2, we can guarantee that E[|vF — vF_,||2 < G2 for all
k by induction. This together with Jensen’s inequality also gives E||v; — v;_1]|? < G% forall t. [

Now we are ready to prove the one step progress result for Nesterov accelerated FedAvg. The first
part of the proof is identical to that of the FedAvg case, while the main recursion takes a different
form.
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Proof of lemma 7. We again have
Vi1 —w*|? = [|(W: — augr) — w2

and using exactly the same derivation as the FedAvg case, we can obtain the following bound (same
as Eq (11) in the proof of Lemma 3):

N N
E|[Wer1 — W[ S E(1 — par) |We = w*[> + L Y prelWe = will> +af Y pioi
k=1 k=1

N
+afL?Y pullWe — wi|® + of LE|lg:|* — of |V (we) |
k=1

Different from the FedAvg case, we no longer have w; = Vv;. Instead,
W = w*|1? = [[Ve + Be-1(Ve = Ve1) — W[
= (1 + B1) (Ve = W") = Bi1 (Vi1 — W)
= (14 Be-1)? 90 = W ? = 281 (L + Bom1) (Ve = W, Voot = W) + 574 | (Ve1 — w)1?
< 1+ Be—1)* 9 = W2 + 281 (L4 Be— ) IFe = W] - [Femr = W[ + B | (Fe1 — w12

which gives a recursion involving both v, and v;_;:

N
st — w2 < (1= ae) (1+ Bro1)?[¥e — w*|2 + 21 — au) Bro1 (1 + Be—) Ve — W™ || - [Femr — w*|| + 02 Y pio?
k=1

N
+ 671 (1= ap)|(Vemr = WP + L Y pil[We = wil* + af L2 prlwi — wi* + of LG?
k=1 k
and we will using this recursive relation to obtain the desired bound.

We can check that our choice of a; and S, satisfy a; is non-increasing, oy < 204 g, and 26752_1 +

202 < 1/2forall t > 0, so that we can apply the bound from Lemma 8 on E ijyzl pr||[We — wh||?
to conclude that, with v, .x := N - maxy pg,

B[ — w2 <E(1 — pow) (1 + Beo1)?|[¥r — w*||> + 16 E? Lo G? + 16 E? L2t G? + o LG?
N
+ (1= a) B | (Ve = W) + a7 > piok + 281 (1 + Bi1) (1 — aup) [V — W - [V — w7 |
k=1
S E(L = pag)(1+ Bi—1)* [V — w12 + 20E2LaG? + (1 — aupt) B4 [| (V-1 — w™) |

1 — * - *
+ 0F 5 Vimax® + 2801 (1+ Bioa) (L= agn) [9 = w' |- |01 = W'

where we have used 02 = > k pko,%, and by construction our a satisfies Lay < % ]

1.2 CONVEX SMOOTH OBJECTIVES

In this section we provide proof of the convergence result for Nesterov accelerated FedAvg with
convex and smooth objectives. Unlike with the FedAvg algorithm, where convex and strongly convex
results share identical components, the proof for the convergence result in the convex setting for
Nesterov FedAvg uses a change of variables, although the general ideas are in the same vein: we
have a one step progress bound for E||W;1 — w*||> + n.(F(W;) — F(w*)), which is then used to
form a telescoping sum that gives an upper bound on min,<p F'(w;) — F(w*).

Lemma 9 (One step progress, convex case, Nesterov). Let w; = Z,ivzl pkwéc in Nesterov accel-
erated FedAvg, and define 1y, = 13‘;% . Under assumptions 1,3,4, the following bound holds for all
t:

* — % 1 2
E|Wis1 — wW*|? + ne(F (W) — F(w*)) < E[W, — w*||> + 32LE*a;n:G” + 0} vmax 0> + 21 i G?

N 1—p
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Theorem 4. Set learning rates oy = B = O(4/ %) Then under Assumptions 1,3,4 Nesterov
accelerated FedAvg with full device participation has rate

. _ " Vmax0?  NE?LG?
?%I%F(Wt)—F _O<\/ﬁ+ T >,

and with partial device participation with K sampled devices at each communication round,
Vinax0> n E2G? KE2LG2>
VKT 'VET = T

Proof. Applying the bound from Lemma 9, with n, = 1ftﬁt we have

min F(w,) — F* =0 <
t<T

. . _ . _ . 1 57
E|Wir1 — wW*|? + ne(F(wWe) — F(w*)) < E[[wy — w*||* + 32LE*a;n; G* + ntQVmaxNU + 2m1 tﬁ G?

Summing the inequalities from ¢ = 0 to ¢ = 7', we obtain

T
— * * 1
D mF() ~ F(w) < fwo — w1 +§n3 N Vmax? +Zwt 32LE*G? +Z2m g

t=0 — b
so that
min F'(w;) — F(w*) < lwo — w*||* + Z n; - VmaXO' + Z nio? - 32LE*G? + Z 277t B G?
=T Zt o't t=0 — Bt
N
By setting the constant learning rates oy = % and B; = ¢ % so that n; = 1?’[’3‘ = 17TN <
% % —/%
2,/ &, we have

1 2 N 1 1 | N 2 N
< : ||W0 - W*||2 + T —- *Vmaxo—2 + 7T( ?)332LE2G2 + 7T( 7)3G2

2V/NT VNT T N VNT VNT N T
1 ) , 1 N ) )

= (Z[|wo — W*[|? + 20max0?) —— + — (32LE2G? + 2G
(5 lIwo I+ 2Vmax0”) s + 75 ( +26G7)

Similarly, for partial participation, we have

rtréi:rrlF(Wt)—F(w*) Z <||w0—w ||2+Zat z/maxo +0O) +Zat 6E2LG2>
= t=0% t=0

where C' = 2 E2G? or T=£ L E2G?, so that with oy, = /£ and 8; = ¢/ &, we have

Umax02  E2G? KEQLGQ‘

min F (W) — F(w") = O( VKT + \/7 T )

t<T

1.2.1 DEFERRED PROOFS OF KEY LEMMAS
2
t

Proof of lemma 9. Define p, := 1?—‘& Wi —Wi_1 + aig—1] = 16&

for t = 0. We can check that

(V¢ —Vy—q1) fort > 1 and 0O
Wit1 +ﬁt+1 =W +P;—

™
1*5tgt
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Now we define z; := W; + p, and 1y = 1?& for all ¢, so that we have the recursive relation

Zi11 = Z¢ — N8t

Now
[Zerr — w1 = |2 — mege) — w1
= |z — nigy — w*) — ne(ge — 8)II”
=A1 + As + A3
where

Ar = |2 - w" =08,
Ao =2m(Zy — W" — 1748, 8 — 8t)
Az =} |lg — &l?
where again EA; = 0 and EA3 < n? >, pio;. For A; we have
2 —w* —ng > = |2 — w*||* + 2z — w*, ~:8,) + |08,
Using the convexity and L-smoothness of F},

—2n(2Zy — W, 8y)

N
= =20 Y pr(@ — W, VEL(w}))
k=1
N N
= =2 Y pi(Z — Wi, VE(Wf)) = 200 Y pr(wf — w*, Vi (wf))
k=1 k=1

N N N
= =200 Y pi(@ — Wi, VEL(WE)) = 200 Y pi(Wi — Wi, VE(W))) = 20, ) pr(wy — w*, VEL(w)))

k=1 k=1 k=1
N N N
< =200 > pi(Z — Wi, VE(WE)) = 200 Y pi(We — Wi, VE(WE)) + 20> pr(Fe(w”™) — Fi(wp))
k=1 k=1 k=1
al L
<2 Yo | Fulwh) = ) + I - wh + Filw) = Fu(wd)]
k=1
N
— 2 Zpk-@t — Wy, VEj(wf))
k=1
N N N
=LY el W = WEI” 4 20> pr [Fr(W*) = Fi(Wo)] — 200 Y pie(#e — Wi, Vi (wY))
k=1 k=1 k=1

which results in
N N

E|[Wer1 — W[ SEIWe — w*|* + L) pullWe — W[+ 20 ) i [Fr(W") — Fi(wo)]
k=1 k=1

N N
+ 2l l® +nf > pio — 2m Y pr(Z — Wi, VEe(W)))
k=1 k=1

As before, ||g,[|> < 2L2 Y, pil|wl — W||? + 4L(F (W) — F(w*)), so that

N
PN+ me Y ok [Fr(W™) — Fr(We)] < 20707 > pil|wf — W ||” + me (1 — 4, L) (F(w*) — F(W¢))
k=1

k
<2707 pillwf — W
k
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for 7, < 1/4L. Using S"r_, pi[[We — wh||> < 16 E2a2G? and 31, pR07 < vinax 02, it follows
that

N
E[Wip1 — W' |* + m(F(W,) = F(w")) < El[W, = w*|* + (0L +2L707) Y piel|We — wi||* + Zpk%

— 20 Y pi(Z — Wi, VE(W]))

1
< EIWs — W + B2LEaEnG? + 1t o

N

— 2 Zpk'<2t — W, VE (W)
=1

if g, < i It remains to bound Ezgzlpk@t — Wi, VF(wF)). Recall that z; — W; =

2

25 W Wi g = —ftﬁt (Ve — V1) and EB|[v; — v, _1||? < G2, E[|VE(wf)||> < G
Cauchy-Schwarz gives

N

EY  pi(z — Wi, VE(W))) Zpk B[z — W[[* -/ BV EFy (w2
k=1
S ﬁtz G2
1—p
Thus
E|[Weir = w|* + 0o (F(W1) = F(w)) < E[W, = w||? + 82LE* 00 G? + 0 vmax 107 + 20 tﬁ G?
O

J GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED
SETTING

Overparameterization is a prevalent machine learning setting where the statistical model has much
more parameters than the number of training samples and the existence of parameter choices with zero
training loss is ensured Allen-Zhu et al. (2018); Zhang et al. (2016). Due to the property of automatic
variance reduction in overparameterization, a line of recent works proved that SGD and accelerated
methods achieve geometric convergence Ma et al. (2018); Moulines & Bach (2011); Needell et al.
(2014); Schmidt & Roux (2013); Strohmer & Vershynin (2009). A natural question is whether such
a result still holds in the federated learning setting. In this section, we provide the first geometric
convergence rate of FedAvg for the overparameterized strongly convex and smooth problems, and
show that it preserves linear speedup at the same time. We then sharpen this result in the special case
of linear regression. Inspired by recent advances in accelerating SGD Liu et al. (2020); Jain et al.
(2017), we further propose a novel momentum-based FedAvg algorithm, which enjoys an improved
convergence rate over FedAvg. Detailed proofs are deferred to Appendix Section K. In particular, we
do not need Assumptions 3 and 4 and use modified versions of Assumptions 1 and 2 detailed in this
section.

J.1 GEOMETRIC CONVERGENCE OF FEDAVG IN THE OVERPARAMETERIZED SETTING

Recall the FL problem min,, chv 1 PeFr(w) with Fi(w) = = Z"" £(w;x7). In this section, we
consider the standard Empirical Risk Minimization (ERM) settmg where { is non-negative, [-smooth,
and convex, and as before, each F,(w) is L-smooth and p-strongly convex. Note that [ > L. This
setup includes many important problems in practice. In the overparametenzed setting, there exists
w* € argmin, Y.r_, prFi(W) such that £(w* Xk) = 0 for all xj,. We first show that FedAvg
achieves geometric convergence with linear speedup in the number of workers.
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Theorem 5. In the overparameterized setting, FedAvg with communication every E iterations and
constant step size @ = O(% %) has geometric convergence:

L " NT
EF <Z(1-a)|wo—w*P=0(L —= . —-w*?).
(wr) < 2( a)’ ||lwo — w¥|| < CXp( Eleax+L(N—Vmin)> [lwo — w™||

Linear speedup and Communication Complexity The linear speedup factor is on the order of
O(N/E) for N < O(+), i.e. FedAvg with N workers and communication every E iterations

provides a geometric convergence speedup factor of O(N/E), for N < O(+). When N is above
this threshold, however, the speedup is almost constant in the number of workers. This matches the
findings in Ma et al. (2018). Our result also illustrates that E can be taken O(T?) for any 3 < 1
to achieve geometric convergence, achieving better communication efficiency than the standard FL
setting. We emphasize again that compared to the single-server results in Ma et al. (2018), the
difference of our result lies in the factor of NV in the speedup, which cannot be obtained if one simply
applied the single-server result to each device in our problem.

J.2  OVERPARAMETERIZED LINEAR REGRESSION PROBLEMS

We now turn to quadratic problems and show that the bound in Theorem 5 can be improved to
O(exp(—ELmt)) for a larger range of N. We then propose a variant of FedAvg that has provable
acceleration over FedAvg with SGD updates. The local device objectives are now given by the
sum of squares Fi(w) = 51— 3%, (w'xj, — 2/)?, and there exists w* such that F'(w*) = 0. Two
notions of condition number are important in our results: s, which is based on local Hessians, and
K, which is termed the statistical condition number Liu & Belkin (2020); Jain et al. (2017). For
their detailed definitions, please refer to Appendix Section K. Here we use the fact £ < k1. Recall

Vmax = maxg prp N and vy, = ming ppN.
Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every

. . . . — _ i . .
E iterations with constant step size @ = O( {7 g o' Nfumn,)) has geometric convergence:

NT
E(Vmaxfil + (N - Vmin))

BF(wr) < O (Lexn(- wo — w1

When N = O(ky), the convergence rate is O((1 — EA;; )Ty = O(exp(—]{;\%)), which exhibits
linear speedup in the number of workers, as well as a 1/x1 dependence on the condition number 1.

Inspired by Liu & Belkin (2020), we propose the MaSS accelerated FedAvg algorithm (FedMaSS):

wh uf —nhg ift+1¢7Zg,
t+1 ZkeStH [uiC —nfgtyk] ift+1¢€lg,
k k k(o k k k
wiy = wig + (Wi — W) + 158k
When 1% = 0, this algorithm reduces to the Nesterov accelerated FedAvg algorithm. In the next
theorem, we demonstrate that FedMaSS improves the convergence to O(exp(——-—)). To our

EvEi1R
knowledge, this is the first acceleration result of FedAvg with momentum updates over SIGD updates.

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

1
. . . = _ 1 N = _ W1(1_%) =~ _ VELR
every I iterations and constant step sizes 1, = O(Em)’ e = 127 =

1+ ——
NG +,/n1re

has geometric convergence:
NT
(Vmax\/ 51/23 + (N - Vmin))

BF(wr) < O (Lex(— liwo - w°[).

Speedup of FedMaSS over FedAvg To better understand the significance of the above result, we
briefly discuss related works on accelerating SGD. Nesterov and Heavy Ball updates are known
to fail to accelerate over SGD in both the overparameterized and convex settings Liu & Belkin
(2020); Kidambi et al. (2018); Liu et al. (2018); Yuan et al. (2016). Thus in general one cannot
hope to obtain acceleration results for the FedAvg algorithm with Nesterov and Heavy Ball updates.
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Luckily, recent works in SGD Jain et al. (2017); Liu & Belkin (2020) introduced an additional
compensation term to the Nesterov updates to address the non-acceleration issue. Surprisingly, we
show the same approach can effectively improve the rate of FedAvg. Comparing the convergence rate
of FedMass (Theorem 7) and FedAvg (Theorem 6), when N = O(\/ k1K), the convergence rate is
o1 - E\;\LT{)T) = O(exp(—E%)) as opposed to O(exp(—% )) Since k1 > R, this implies
a speedup factor of \/'%1 for FedMaSS. On the other hand, the same llnear speedup in the number of
workers holds for N in a smaller range of values.

K PROOF OF GEOMETRIC CONVERGENCE RESULTS FOR
OVERPARAMETERIZED PROBLEMS

K.1 GEOMETRIC CONVERGENCE OF FEDAVG FOR GENERAL STRONGLY CONVEX AND
SMOOTH OBJECTIVES

Theorem 5. For the overparameterized setting with general strongly convex and smooth objectives,
FedAvg with local SGD updates and communication every E iterations with constant step size

a=5s T L(N—om) 8ives the exponential convergence guarantee
L N

2F Wax + L(N — Umin

EF(W,) < & (1 — @)’ [wo — w'[[> = Ofesp(~ 1) Iwo =)

Proof. To illustrate the main ideas of the proof, we first present the proof for £ = 2. Lett — 1 be a
communication round, so that w¥ | = W;_;. We show that

[Wiesr — wHI> < (1 — aup) (1 — 1) [Wemy — w[|?

for appropriately chosen constant step sizes o, ciy—1. We have

[Werr — W) = [|(We — auge) — w*|?
= [we — w1 = 200(W, — w", &) + o lg)?
and the cross term can be bounded as usual using p-convexity and L-smoothness of Fj:
— 20y By (W — W™, )
N

= 204 ZPk(Wt -w", VFk(Wf»
k=1

= 24 Zpk(Wt —wF VEL(wF)) — 20, Zpﬂwf —w*, VE.(wh))

k=1
N N N
< =20, Y pr(Wi — WE, VE(WE)) + 200 > pi(Fi(w*) = Fi(wf)) — aupe Y pllwi — w*|>
k=1 k=1 k=1
al L
< 204 ;pk {Fk(wf) — Fu(W0) + 5 190 = wi[[? + Fr(w?) = Fi(w} } — ap| Zpk -
N N
= LY pellWi — wi® + 200 Y pie [Fe(W") = Fi(Wy)] — agp [ W, — w|?
k=1 k=1
N N
= LY il W — Wil = 200> prFi(Wi) — gt Wy — wo|?
k=1 k=1
and so
N
E[[Wis1 — w*|? S E(1 — o) [We — W ||> = 200 F (W) + of [l gel|* + euL > pi|[we — w|?
k=1
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Applying this recursive relation to |[W; — w*||? and using ||Ww;_; — wF_||? = 0, we further obtain

E[Wi1 — w*|? <E(1L = ag) (1= ar1)[Weo1 = W2 = 2041 F(Wio1) + a7y [lge—1[|)
N
— 200 F(Wy) + ofllge|” + n LY piel[we — wi||?
k=1

Now instead of bounding Zivzl pi|[W¢ — wF||? using the arguments in the general convex case, we
follow Ma et al. (2018) and use the fact that in the overparameterized setting, w* is a minimizer of

each {(w, z7) and that each ¢ is [-smooth to obtain ||V Fy(W;_1,&8 1)||? < 20(F)(Wi—1,EF 1) —
Fy(w*,€F 1)), where recall Fy(w,&F () = £(w,&F 1), so that

N N
Zpk”Wt —wil]® = Zpk”wtfl — 181 — Wi+ aagi-1l
k=1 k=1
N
= Zpka%—ngt—l — g1k
k=1

N
= a1y pr(llge-1kl® = lgeal®)
k=1

N
= a7y Y okl VE(W 1, EE)IP = af g |)?

k=1
N
<aj Zpk2l(Fk(Wt—1,§f—1) = Fu(w*, &) — af i llgea
k=1
again using W, ; = wF ;. Taking expectation with respect to £F ;’s and using the fact that
F(w*) =0, we have
N N
Eeo1 Y pillWe = wil® < 2l0f 1 ) peFr(We1) — af_yllge—a |1
k=1 k=1

=200} F(We-1) — of 4 [lge—lf?

Note also that

N
lge—1ll® = | ZkaFk(Wt—la &l
k=1

while

N N N
lgell? = 1D peVE(WE €I < 21D peVE(, E)IP + 201 > pu(VE(W1, &) — VE(wr, &)I?

N N
<2 pkVE (W, )17 + 2 prl? Wy — wi|?
k=1 k=1

Substituting these into the bound for ||W;; — w*||?, we have

E[[Wei1 —w||? E(1 = agp) (1 = arm1p0) [Wim1 = W*[|? = 201 F(We—1) + af_y [|ge—1]%)
N
— 20, F(Wy) + 207 | Y pe VE (Wi, &) |1* + (21207107 + awai (L) (2LF (Wi—1) — ||ge-1]|®)
k=1
=E(1 - ap)(1 — ap1p)[Wey — w2
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N
— 200 (F(W1) — | D ok VER(W1, €5)]1%)
k=1

lag_1(20%a2 L
a1 (1— aup) <(1_ a1 (2a; + L)

1—aip

N
JE(Wio1) = =2 ZkaFk<wt1,£fl)l2>

k=1
from which we can conclude that
E[Wir1 — wi < (1 —ap)(1 — ar 1 p)El[w, 1 — w*|?

if we can choose o, aiy—1 to guarantee

N
E(F(W) — el Y pe V(W 68)[1) = 0
k=1
lay 1 (21202 + L), . — ko2
E((1- o VE (W) — 5 I ZPkVFk(Wtflagtfl)” >0
k=1

Note that

N N N
Bl > ppVE(We, )P = B> prVER(We, &), Y pe VR (We, &F))
k=1 k=1 k=1

=

N

=Y BIEIVE(Wi EOIP + DD pipkB(V (Wi, &), VE; (Wi, &)

k=1 k=1 j#k

N
PREIVER (Wi, EI1P + DD pipw(VE(W:), V(W)

I
Mz

k=1 k=1 j £k
N N N

= PREIVE(WL N+ DD pipn(VE(W), VE; (W) — > pil VEu(Wy)
k=1 j=1 k=1

1

PRENVE(We €7 + 1 Y oo VE(Wo)|* —  Vmin > eV E(W)|?
k k

Mz M 7

1 _
PRE| V(W &) + (1~ Vi) [VE ()|

k=1
and so following Ma et al. (2018) if we let o, = min{ 2l?»mx’ 2L(1iiy )} foraq € [0,1] to be
optimized later, we have
N
E(F(Wi) — aul| Y eV (Wi, €)|1%)
k=1
N N 1
> Ey ;kak(Wt) -y ;piEtHVFk(Wtﬁf)Hz +(1— Nl/min)HvF(Wt)Hz
a 1 1
>Ee Y pr(aFu(W, &) — atﬁumaxHVFk(Wt,ff)llz) + (1= @) F (W) — (1 — Nl/min)HVF(Wt)Hz)
k=1
al 1 1
> B S (B, ) — o IV EL (W0 €6)) + (1= ) (F(W0) — 5 [VE(w) )
k=1

>0
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again using w* optimizes Fy (w, &) with Fj,(w*, £F) = 0.

... . qN 1—q _ IWmax
Maximizing o = min{gl"—, 2L(1—§umin)} over g € [0, 1], we see that ¢ = P 6y
results in the fastest convergence, and this translates to a; = %W Next we claim that

N

Qp_q = c%m also guarantees
lag—1(21%02 + L), 1 ol — k 2
E(1 — o VE(Wi—1) — 5 I Zpk-VFk(Wt—hﬁt_ﬂH >0
k=1
2 2
Note that by scaling a;_1 by a constant ¢ < 1 if necessary, we can guarantee W < %,
and so the condition is equivalent to
N
F(Wi1) — aal| Y peVE(Wi—1, & )7 >0
k=1
. . 1 N
which was shown to hold with ;1 < 5 7——pigm—s.
For the proof of general £ > 2, we use the following two identities:
N N
lgel® < 21> PV E(We )7 +2) pil®(w, — wi||?
k=1 k=1
N N
EY  pillw, — wil* <E2(1+2%a7 1) Y pillWeo1 — Wiy |* +8af_1F(Wi1) — 207 [|gi—1 |
k=1 k=1

where the first inequality has been established before. To establish the second inequality, note that

N

N
S ol W — WP =D pellWiot — qumigior — Wiy + am1gi— il
k=1 k=1

N
<2 pi (IWe1 — Wi + low-1ge1 — au1ge 1.l
k=1

and

> ooellgik —gal® = prllge1l® — lgal®)
k k
= Pl VE(Fe1, &) + VE(WE 1,65 1) = VE(Wi-1. 65 1)1? — g |l
k

<2 pk (IVFe(Wi1, )17 + Pllwi_y — Wi |?) — llgeaf?
k

so that using the /-smoothness of /,

N
EY  pilw: — wi|?
k=1
N
<E2(1+ 2120‘?71) ZPkHWtfl - W:’Ll”Q + 46@71 ZpkHVFk(Wt—l,gfq)HQ - 20‘?—1”&71“2
k

=
—

<E2(1+ 2027 1) Y pellWe1 — wiy|? + 4at2—12lzpk(Fk(Wt—1,§f—1) — F(w*,&80)) — 207 [lge |l

k

M= I

= E2(1+20%a7_) Y pel[We1 — Wiy [|? + 8] IF (Wi 1) — 207, [|ge—1 |1?

b
I

1
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Using the first inequality, we have

E[Wi1 —w'[? < E(1 - awp)[w; — w*|?
N

k=1

N
+ (2071 + oy L) Y piel| Wi — wE||?
k=1

and we choose a; and oy such that E(F(W;) — || S p_y &V Fx (W1, €5)[|?) > 0 and (2212 +
;L) < (1 —app)(207_11% + a1 L) /3. This gives

N
E[Wit1 — W SE( — ap)[(1 = arm1p)[Wimt = W |* = 2001 F(Weo1) + 2074 | ) ok VER(Wem1, 601
k=1
N N
+2af 1P+ a1 L)Y ol Wimr — Wil P+ D pallwe — wi|?)/3]
k=1 k=1
Using the second inequality
N N

Zpk”Wt —wi|? <E2(1 4 21%a7,) ZPkHWt—l —wi [P +8a7 IF(Wi1) — 2074 [|ge |
k=1 k=1

and that 2(1 + 2%a?_;) < 3,2a? 11> + ay_1L < 1, we have
E[Wir1 — w*I” <E(1 - amp)[(1 — ayap) [Wioy — W
N

=204 1 F(Wi1) + 207 4[| Y peVE(We1, 6801 + 807, 1F (W, 1)
k=1

N
+ (207 12+ o1 L) 2 pil Wit — wi[1?)]
k=1

and if ;1 is chosen such that

N

(F(Wi—1) = doq 1 1F(Wi-1)) — v | Y peVE(Wi—1, 65 1)[* > 0
k=1

and
(202 >+ oy 1 L)(1 — 1) < (202 ,51% + oy _oL)/3

we again have

N
E[Witr —w* SE(1 - ayp)(1 = arm1p)[[Wim1 = w*|* + 2ai_ol® + araLl) - (2 prlWim1 — Wity [*)/3]

k=1
Applying the above derivation iteratively 7 < E times, we have
E[Wes1 - w[? S E(L— ) (1 - arpi ) [(1 = o) [Wemr — w2
N
— 20y F(Wir) + 203 | Y VLW, 1|2 + 870 1P (W, )
k=1

N
+ (207 + o L) (T +1) Y pul[ Wiy — Wi [|?)]
k=1
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as long as the step sizes a;_, are chosen such that the following inequalities hold
(202 1> +ay L)1 — o rp) < (202 1P +a;_,1L)/3
2(1+20%a% ) <3
2a3_7l2 +o_ L <1

N

(F(Wi—r) — 4T F(Wy—7)) — || ZkaFk(Wt—Tagtk—q—)HZ >0
k=1

We can check that setting o, for some small constant ¢ satisfies the

requirements.

=c 1 N
= Y741 lWmax+L(N—vmin)

Since communication is done every E iterations, Wy, = wfo for some ty >t — I, from which we
can conclude that

t—to—1
Elw, - w*|? < ( [] (- narr))we, - w|?
=1
N
<(1-ck )10 lwy, — w2

- B CE leax + L(N - Vmin)

and applying this inequality to iterations between each communication round,

o p N .
EHWt_W ”2 < (I_CEZV + L(N — vy ))tHWO_W ||2
I N "
= O(exp(Z t))llwo — w*||?

E lvmax + L(N — Viin)

With partial participation, we note that
E|Wis1 — W |? = E[Wes1 — Veg1 + Vg — w'|?
= E[[Wer1 — Ve | + El[Visr — w2

1 _ _
=7 > nE[why = Wi | + B[V — wt?
k

and so the recursive identity becomes

E[Wi1 —w? SE(L = agp) -+ (1 = ap g1 p)[(1 = @t o) [ Wy — w2
N
— 204 F(Wir) + 207 || Y ok VL (Wi, €5 )|° + 8707 IF (Wi )
k=1

N
1
+ (207 + oy L+ (T +1) ;pkllwt—f —wi_|*)]

which requires
1 1
(20[?77_12 —+ at,TL + K)(l — Oét,T/L) S (20(1527771# + Oét,TflL + ?)/3
2(1+21%a% ) <3

1
202 1> +ay_ L+ T <1

N
(F(Wi—r) — 4104 oI F(Wi—r)) — || ZPkVFk(Wtfnféir”F >0

k=1
to hold. Again setting ay_, = ¢+~ ———""—— for a possibly different constant from before

) - T+1 Wmax+L(N—vmin)
satisfies the requirements.
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Finally, using the L-smoothness of F’,
I3 N
E leax + L(N - Vmin)

L
F(wr) - F(w") < SE|[Wr — w'||* = O(L exp(~ T)wo — w*||*

O

K.2 GEOMETRIC CONVERGENCE OF FEDAVG FOR OVERPARAMETERIZED LINEAR
REGRESSION

We first provide details on quantities used in the proof of results on linear regression in Section J. The

local device objectives are now given by the sum of squares Fj(w) = 271% ok J(whx] —27)?, and
there exists w* such that F'(w*) = 0. Define the local Hessian matrix as H* := nlk Z;L; L xn(x)T

and the stochastic Hessian matrix as HY := ¢¥ (€)', where £F is the stochastic sample on the kth
device at time ¢. Define [ to be the smallest positive number such that E||¢F||2¢5(¢F)T < [H* for all

k. Note that I < maxy, ; ||x{C |2. Let L and p be lower and upper bounds of non-zero eigenvalues of
HF. Define 1 :=[/pand k := L/p.

Following Liu & Belkin (2020); Jain et al. (2017), we deﬁI}e the statistical condition number & as the
smallest positive real number such that E Y, p, HYH'H} < #H. The condition numbers #; and
F are important in the characterization of convergence rates for FedAvg algorithms. Note that k1 > &
and K1 > K.

LetH =", px HP”. In general H has zero eigenvalues. However, because the null space of H and
range of H are orthogonal, in our subsequence analysis it suffices to project Wy — w* onto the range
of H, thus we may restrict to the non-zero eigenvalue of H.

A useful observation is that we can use w*7 x], — zi = 0 to rewrite the local objectives as Fj(w) =

%(w —w* HF (w — w*)) = %HW — W*H%{ki

1 & . 1 & .
Fi(w) = 5— (Wi j — 205 — (WTxij — 215))° = e D ((w—w) Ty )
AL e
1 * * 1 *
= §<W—W aHk(W—W ) = §||W—W ||%1k-
so that F(w) = 1|lw — w*||%.

Finally, note that EH} = L "7 x7 (x])T = H* and g; ), = VF,(wF,&F) = Hf (wF — w*)

ny L~j=1

while g, = S0 prVEL(wh, &F) = S0 prBF(wF — w*) and g, = ), peHF (w) — w*)

Theorem 6. For the overparamterized linear regression problem, FedAvg with communication every
E iterations with constant step size @ = O( ) has geometric convergence:

wo —w[?).

1

E ll’max“’/"f(NfVmin)
NT

E(Vmaxlfl + (N - Vmin))

EF(wr) <O <L exp(—

Proof. We again show the result first when £ = 2 and ¢ — 1 is a communication round. We have
[Wer1 — W) = [|(We — auge) — w|?
= [we — W[ = 200(W, — w", &) + o lge)?
and

— 204 Ey (W — W™, g1)

N

= =204 Y pi(Wi — W*, VF(w}))
k=1
N N

= 20y Zpk<Wt — Wi VE(wF)) - 2a; Zpk<wf —w*, VF,(wF))
k=1 k=1
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N N
— 20, 3 p(Wi — wh, VEL(w])) — 200 3 piwl — w, HF (wh — w))
k=1 k=1

N N
= 20y Zpk<Wt — W VFL(wF)) — 4oy Zkak(wf)
k=1

k=1
N I N
< 200 Y pr(Bu(wf) = Fu(W0) + 5% = wh[?) — da; Y prFi(w)
k=1 k=1
N N N
=L Zpk”Wt —wh|]? - 204 Zkak(Wt) — 20 Zkak(wf)
k=1 k=1 k=1

N N N
= atLZpkHWt —wh]? — oy Zpk<(Wt —w*),H*(W; — w")) — 24 Zkak(Wf)
k=1 k=1 k=1
and

N
lgell* = 1Y prHE (wy — w)||?
k=1

N N
= 1> pe (W —w) + > pHE(wf — W)
k=1 k=1

N N
<2 > peHEW — w20 Y peHE (W) — W)
k=1 k=1
which gives
N N
E[Witr —w* SE[W, — w*|> = ) oW, — W' H' W, —w7) + 207 Y pHE (W — w7
k=1 k=1

N N N
+ ol S prlw — w4 2020 S pe R (wE = )12 = 200 3 prFi(wh)
k=1

k=1 k=1
following Ma et al. (2018) we first prove that
N N }
El[w; — w*|” — o Y (W — w*), B (W, — w")) + 207 > peHE (W, — w*)||?
k=1 k=1
N — *
<(1- )E|[w;, — w*|?

S(Vmaxh‘ll + (N - Vmin))
@ )

with appropriately chosen a;. Compared to the rate O(; +£{>[V—u . )) =0(5 g ——
for general strongly convex and smooth objectives, this is an improvement as linear speedup is now
available for a larger range of V.

We have
N

Eo|| Y pHi (W, — w")|?
k=1

N N
=B () peHE (W — w"), Y peHf (Wi — w™))
k=1 k=1
N ~ N ~ .
D BB JHF (W = w)P + >0 pipE(H (W — w*), HY (W, — w"))

k=1 k=1 j#k
N

N
D PRENHEE (W — w7+ )Y pipkE(HN (W, — W), B (W, — W)
k=1 k=1 j£k
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2

N N N
= S RENEE W, - w2+ 303 ppi B (HE (W, — w), Y (W — w*)) — S p2 [ EE ( — )
k=1

k=1 k=1j=1

=

N
= D DREHEF (We — w2+ || D peHN W —w) P = Y pR [ HF (W, — w)||?
k=1

1 k

WE

Tk (= * — * 1 — *
PRENHE (W, — w*)|* + || Y peH (W, — w7 —  Vin | > peHN W, - wh)|?
k

k=1 k
1 a 1
< 7 Vmax ZpkEtHH (Wi =W + (1 - Nymin)” Zpka(Wt —wh)|?
k=1 k
1 _ N 1 _ N
< NVmWXlZpk Wi — Hk(wt —w*)) 4+ (1 — NVmin)H Zk:Pka(Wt - W )H2
1

1
= —Unmaxl{(Wy — W*), H(W; — w")) + (1 — —Vpmin) (Wt — W*,Hz(Wt —w"))
N N
using || HF|| < 1.
Now we have

N
E|W, - w*||* = ) pi (W — w"), HY (W, — w")) + 207 ZpkH W —w)|* =
k=1

maxl N_ min — *
(Wt—w*,(I—atH+2af(VN H+ ]\;/ H?))(W; — w"))

and it remains to bound the maximum eigenvalue of
Vmaxl N — Vmin
(I — aH + 20 ( v H+ —F H?))
and we bound this following Ma et al. (2018). If we choose oy <
Vmaxl N — Vmin
—a; H + 207 ( v H+ — H?) <0

and the convergence rate is given by the maximum of 1 — a; A + 207 ( mgxd A  X=bmin \2) maximized
over the non-zero eigenvalues A\ of H. To select the step size «; that gives the smallest upper bound,
we then minimize over oy, resulting in

N
S F(N—vmm L) » then

. . 2 Vmaxl N — Vmin |2
un A>O:%Ir1)l?i-)1(v:Av {1 at)\ + 2at ( N A + N A )}

N
O < S oman I F(N=vmim) L)

Since the objective is quadratic in ), the maximum is achieved at either the largest eigenvalue \p,ax
of H or the smallest non-zero eigenvalue \;, of H.

When N < % + 4Vpmin, i.e. when N = O(I/A\pin) = O(k1), the optimal objective value is
achieved at \,;,, and the optimal step size is given by oy =

N .
4(vmxl+(N—uman)>\mir.)' The optimal

convergence rate (i.e. the optimal objective value) is equal to 1 — 8 - (]X//\";“ o =1
1 N

S o (N =) This implies that when N = O(k1), the optimal convergence rate has a
linear speedup in N. When N is larger, this step size is no longer optimal, but we still have
j— as an upper bound on the convergence rate.

8 (demeN Vmin))
Now we have proved
1 N

E”WtJrl _W*HQ < (1_§(l/ /$1+(ny . )))]E”Wt_W*HQ
N N
+ar Ly prl[we —wi | + 207 ZpkH ~Wo)lI? =200 ) prFi(wf)
k=1 k=1
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Next we bound terms in the second line using a similar argument as the general case. We have

N
20| ZpkH ~w)I? < 2032 pellwr — wh?
k=1
and
N N
B pulw - wh|? < B2(1+ 2263 )Y pillWeo1 — wh 1P + 807 LF(Wi-1)

k=1
=407 1w — W H(W — wh))
and if oy, a1 satisfy
N

1
L+2a?<(1-= 1L+2a2_,)/3
(677 + Qp = ( ] (Vmax’fl + (N 7 Vmin)))(at 1 + atfl)/

2(1+20%a? ) <3

a; L+ 2at <1
we have
E[Wiq —w*|?
1 N al
<(1-Z= Ellw, 1 — (2 W — w.HwW, 1 — w* 22 I:Ik—
0 T o B )
N
+(aa L4207 1) -2 prl Wit — wisy||* +4af_ {(Wey — W H(We — W)
k=1

and again by choosing oy = ¢ for a small constant ¢, we can guarantee that

N
8(Vmax!+(N—Vmin) Amin)

E|W:—1 — W*”2 -y (W — W HW, — W)

N
1207 | S L (Wemy — WP+ dad (W — W H(W - W)
k=1
N

16(l/maxl + (N - Vmin))\min)

<(I-c JE[[We—1 —w*|?
For general E, we have the recursive relation

N ).-.(1701 N

— * 1 *
El[Wer1 —w*[? SE(1 - I?

MWe—r —w

8 (Vmax'%l + (N - Vmin)) g (Vmax"fl + (N - Vmin))
N
— @ (Wi =W HW —W") + 20‘?—7—“ Zpka—r(Wt—‘r - W*)HQ
k=1
+4ra? (UWi_ 1 —w  H(W,_1 — w"))
N
+ (207 P+ a L) (T +1) ) prlWeer = Wi [)]
k=1
as long as the step sizes are chosen oy = ¢ pes p— 1{;\:,, o) v such that the following inequal-
ities hold
(202 1 +a; L)< (1 —oprp)(207 1P +a; 7 1L)/3
2(1+2%a7 ) <3
207 P+o; L<1
and

||Wt—7' - VV*H2 - O‘t—T<Wt—T - W*, HWt—T - W*>
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N
202 | S B (W - w2+ drald(wio - w' HW - w))
k=1
N
8(7 + 1) (Vmaxk1 + (N — Vmin))

<(1-c E[[W:—, — w2

which gives

! N
Elw, — w2 < (1 — c— o — w2
[We I# < 8E (Vmaxk1 + (N — ,/min))) [wo |
1 N
=0 E ) llwyg — w* 2
(exp( E (Vmaxk1 + (N — vmin)) Nliwo |
and with partial participation, the same bound holds with a possibly different choice of c. O

K.3 GEOMETRIC CONVERGENCE OF FEDMASS FOR OVERPARAMETERIZED LINEAR
REGRESSION

Theorem 7. For the overparamterized linear regression problem, FedMaSS with communication

: : e 1 N — _ m(-1)
everyE iterations and Constantstep sizes 771 = O(Em), 7]2 = 1+

K1R

77: 1+

1
K1R

1
T
has geometric convergence:
NT
(Vmax V Kl'% + (N - Vmin))

BF(wr) <O (Lewp(— liwo = w[* ).

Proof. The proof is based on results in Liu & Belkin (2020) which originally proposed the MaSS
algorithm. Note that the update can equivalently be written as

k kY K kok _ sk
vipr = (1= a)vi +a’uy — 6 g

Wk . uf 77]kgt7k ift+1 ¢IE
1= N .
o Zk:lpk [llffC _nkgt,k] ift+1elp
k bk 1 k
u, =——vi, +t——w
t+1 1 4 Oék t+1 1 i O(k t+1
k k sk
where there is a bijection between the parameters };g: =* 0k =t nljriaaké = n%, and we

further introduce an auxiliary parameter v¥, which is initialized at v&. We also note that when
ok = Z—: the update reduces to the Nesterov accelerated SGD. This version of the FedAvg algorithm
with local MaSS updates is used for analyzing the geometric convergence.

As before, define the virtual sequences W, = Y n_, ppwh, ¥, = SO0 ppvE, @, = YO0 prul, and
8 = Y5, peEgr . Wehave Egy = &, and Wiy = Uy — 10481, Vo1 = (1—aF)¥; +arw, — g,
and U4 = 1kaVt+1 + 1+lakwt+1.

We first prove the theorem with ¥ = 2 and ¢ — 1 being a communication round. We have
[Ves1 — W[ F
=1 - a)v +am — 6y pHf(uf —w*) — w*[|F

k

= (1 = @)Vi + oty — w7l + %) D peHF (uf — W)
k

—20() _peHf (uf = w*), (1 — )V, + ol — w*)g
k

< (1 = @)ve + amy = wE[fo + 287 Y peHE(@ — W) |F-0 +26% Y prHE (T — uf)[f-
A k k
B
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_25<Zpkﬂf(ﬁt -w'),(1-a)vy+ ot —w)g—
k

C
— 25<Zpk1:1f(uf — ﬁt), (1 — O[)Vt + aﬁt — W*>H—1
k

Following the proof in Liu & Belkin (2020),
EA <E(1—a)|[ve — W' + eflty — w3

_ |
< E(1 - o) ¥~ W+ I~ W

using the convexity of the norm || - ||gg-1 and that y is the smallest non-zero eigenvalue of H.
Now
1. N —uvyy - N
EB < 252(VmaxNK' + Tmm)”(ut - W )”%—I

using the folowing bound:
E (Zpkm“) H' <Z pkﬁ,’:> =EY piHHHY + Y pup,HIHH]
k k k k#j
L k- 1¥7k Epr—1974
= VmaxN]E ;pkHtH Ht + gpkaH H 1H]
J

1 - o )
= VmaxN]Ezk:PkHtH 'HY + ;pkij’“H 'HY — zk:piH’“H 'HF
»J

PN

1 rhryr—11rk 1 kry—1y7k
ymaXN]E;pkHtH Hf +H - Numm;pkH H'H

PN

1 1k —117k 1 k —1 k
umaxNJEijpkHtH H/ +H—Numin(zkjpkH JH (%jpkH)

_ 1 hpp—lepk DY~ Vmin
= VmaxN]E ;pkHtH Ht + TH
N — Vmin

H
N

1
j VmaxNFCH +

where we have used E )", py, fIfH_lfIff < kH by definition of < and the operator convexity of the
mapping W — WH™WW.

Finally,

EC = —E2§<2pkﬁf(ﬁt —w"), (1 — )V + oty — W )g—1
k
=—260)  peH (W — W), (1 = )V, + 0Ty — W)
k
==20{(u; —w"), (1 — @)¥; + oty — w")
-«
= _25<(ﬁt — W*),ﬁt —w* + T(ﬁt —Wt)>

—

1
— 20|, — w*|* + |

S(I[wy —w*||* — [[ae — w*||? — [|w; — w||?)
l—o_, l—a_,
319 — w2 P

<

where we have used

(1—-a)v+au,
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=(1-a)((1+a)u —w)/a+ou;

1_ 1—-a__
= —u; — Wy

and the identity that —2(a, b) = ||a||? + ||b||* — ||a + b||*.
It follows that
E[[Vit1 — w*|[F-

11—«

< (1= )9 — W R+ 5w, — w2

N — Vmin

a l—a_ N 1 _ y
O[T = w[[* + 26% (anax 158 + =) | (@ = W)

e

+28%) > peHE (W, — uf)|[F-

k
— 260> _peHf(uf W), (1 — a)V; + ol — W )g
k

On the other hand,
E|[Wip1 —w*|* = El@, — w* —n Y ppHf (@ — w*)||?
k
= EBl[u, — w*||* = 2nl[w, — w*|| % + 77l > peHE (W — w)|?
k
— * — % 1 N_Vmin — *
< B[t — w1 = 20T — w3 + 7 s + L) i — w7

where we use the following bound:
e (Cnt) (St
k k
=EY piH{H} + > pep,HIH]
k k#j
1 -~ .
= VmaxNE ZpkaHf + ZpkaHkHj
k k#j
1 o )
= Vmax 1 E zk: pEFE + > " pep HFHY =~ piHFHF

k,j k

1 = 1
j l/maxNE Z:pkaHf&C —+ H2 — Nljmin ZpkaHk
k k

1 - 1
j VmaxNE Ek:pkaHf + H2 - Nme(zk:pka)(%:pka)

N — Vmin

H2
N

1 o
— ymaXNE ;pkaHf +

N — Vmin
N

again using that W — W2 is operator convex and that EHFH* < [H* by definition of [.

1
j VmaxﬁlH+ L H

Combining the bounds for E|[W;41 — w*||? and E[|[ Vi1 — w*||5-1,

0, __ —
B[ Wen = Wl + (9001 — wl[E-

l1—«

= * — * a - *
< (1= a)[Fe = wf- + ollwy —w H2+(;—5)I\Ut—w I
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1 N — min 1 N — min — *
(202 (R + ) = 200/ 720 (Va7 L) f) [ — w2
+28%) ) peHE (@ — uf) |l
k
+ 0L pill(@ — uf)f-
k
Following Liu & Belkin (2020) if we choose step sizes so that
2 s5<o0
I
1 ~ N — Vmin 1 N — Vmin
252(1/maxﬁn + T) —2nd0/a + n25(umaxﬁl + LT)/Q <0
or equivalently
/6 < p
1 N — Vmin 1 N — Vmin
gl Tmin il o Tmuny <
20[(5(1/maxN/€ + N )+ n(n(ymale +L N )—2)<0

the second and third terms are negative. To optimize the step sizes, note that the two inequalities
imply
1 N — Vmin 1 ~ N — Vmin
a® <n(2— W(Vmaxﬁl + LT))M/Q(VmaxNH + T>

and maximizing the right hand side with respect to 7, which is quadratic, we see that = 1/ (Vmax 71+
L%) maximizes the right hand side, with

1
o=
\/2(Vmax%/€1 + 5%)(Vmax%l~i + N*]\annn)
0= g - 1 ~77 N —vmi
B a(Vmax R+ Spmin)
Note that o = ~ 1 = O(\/%%) when N = O(min{&, x1/x}).

V2 Vima 2 1+ ) (10 & ot X fpin )
Finally, to deal with the terms 262 | Yok prHF (U — uf)||%{_1 +0L Y, pell (T — u?)”%—l—l, we can
use Jensen

28%)1 > puHE (W — uf)|[F-1 + 0L pull(@ — uf) [l
k k

< (20%2 +6L) Y pellm — uf 3o
k

o g 1

1
— (20%12 + 6L 3 W, — B2,
( + )Zk:pk||1+th+1+OZWt (1+avt+1+awt)||H1
272 @ \2¢2 I 199 7k (12
< (2071 +5L)(2(1_~_7a) 4 +2(m) U] )Ek:pk”Htfl(utfl —w)l

(67

1
< 272 2¢2 2. 2\12) (= _ * (|12
< 80 + SL) A2 + 2P (G — W)

which can be combined with the terms with || (T;_; — w*)]|?

W2+ 9 = W[

in the recursive expansion of E% W —

0, __ —
B[ = w7l + 90 = wllE -

_ N l—a_, N a _ "
L T L LR
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1 N — Vmin

1 N — v
2 1. _ 2 L min T
+ (26 (l/maan—i— ~ )—2nd/a+n 6(umale—|—L ~ )/ o) a1 — W

and the step sizes can be chosen so that the resulting coefficients are negative. Therefore, we have
shown that

El[We1 — w'* < (1 - )?[Weo1 — w2

1 N
where a = = 0 =
\/Q(Vmax %Ii1+li N*]'\’]min )(Vmax ﬁ’%"’_ Nf]‘\’]min ) ( VmaxV K1 K+N —Vmin

O(min{&, k1/K}).

) when N =

For general £ > 1, choosing 1) = ¢/ E(Vmax 3| + LA=4=i2) for some small constant c results in

1 .
a=0( ) and this guarantees that
B/ (vmax & 51+ X000 ) (v & o 2 min)

E[w, —w|* < (1 - a)'[lwo — w*||?

for all ¢.

L DETAILS ON EXPERIMENTS AND ADDITIONAL RESULTS

We describe the precise procedure to reproduce the results in this paper. As we mentioned in
Section 4, we empirically verified the linear speed up on various convex settings for both FedAvg
and its accelerated variants. For all the results, we set random seeds as 0, 1,2 and report the best
convergence rate across the three folds. For each run, we initialize wy = 0 and measure the number
of iteration to reach the target accuracy €. We use the small-scale dataset w8a Platt (1998), which
consists of n = 49749 samples with feature dimension d = 300. The label is either positive one or
negative one. The dataset has sparse binary features in {0, 1}. Each sample has 11.15 non-zero feature
values out of 300 features on average. We set the batch size equal to four across all experiments. In
the next following subsections, we introduce parameter searching in each objective separately.

L.1 STRONGLY CONVEX OBJECTIVES

We first consider the strongly convex objective function, where we use a regularized binary logistic
regression with regularization A = 1/n ~ 2e — 5. We evenly distributed on 1,2, 4, 8,16, 32 devices
and report the number of iterations/rounds needed to converge to e—accuracy, where ¢ = 0.005.
The optimal objective function value f* is set as f* = 0.126433176216545. This is determined
numerically and we follow the setting in Stich (2019). The learning rate is decayed as the 7, =
min(7o, 145 ), where we extensively search the best learning rate ¢ € {27 teg,272¢y, co, 2¢0, 2%¢o }-

In this case, we search the initial learning rate 79 € {1,32} and ¢y = 1/8.

L.2 CONVEX SMOOTH OBJECTIVES

We also use binary logistic regression without regularization. The setting is almost same as its
regularized counter part. We also evenly distributed all the samples on 1,2,4, 8,16, 32 devices. The
figure shows the number of iterations needed to converge to e—accuracy, where e = 0.02. The
optiaml objective function value is set as f* = 0.11379089057514849, determined numerically. The
learning rate is decayed as the 1; = min(7q, 1"—_&), where we extensively search the best learning rate
c € {27 eg,27%¢y, co, 2co, 2%¢co }. In this case, we search the initial learning rate 179 € {1, 32} and
Co = 1/8.

L.3 LINEAR REGRESSION

For linear regression, we use the same feature vectors from w8a dataset and generate ground truth
[w*, b*] from a multivariate normal distribution with zero mean and standard deviation one. Then we
generate label based on y; = xiw* +b*. This procedure will ensure we satisfy the over-parameterized
setting as required in our theorems. We also evenly distributed all the samples on 1,2,4, 8,16, 32
devices. The figure shows the number of iterations needed to converge to e—accuracy, where ¢ = 0.02.
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Figure 2: The convergence of FedAvg w.r.t the number of local steps E.

The optiaml objective function value is f* = 0. The learning rate is decayed as the 7; = min(1, 1"—43),

where we extensively search the best learning rate ¢ € {27 ¢, 272¢y, ¢, 2¢0, 2%¢o}. In this case,
we search the initial learning rate o € {0.1,0.12} and ¢y = 1/256.

L.4 PARTIAL PARTICIPATION

To examine the linear speedup of FedAvg in partial participation setting, we evenly distributed data
on 4,8, 16,32, 64, 128 devices and uniformly sample 50% devices without replacement. All other
hyperparameters are the same as previous sections.

L.5 NESTEROV ACCELERATED FEDAVG

The experiments of Nesterov accelerated FedAvg (the update formula is given as follows) uses the
same setting as previous three sections for vanilia FedAvg.

E o _ ok
Yit1 = Wy — 8k

wk o — yir + By — yr) ift+1¢7Zg
t+1 Zk65t+1 (nyrl + Bt(yﬁrl - yf)) if +1€ IE

We set 5; = 0.1 and search «; in the same way as 7; in FedAvg.

L.6 THE IMPACT OF F.

In this subsection, we further examine how does the number of local steps (F) affect convergence. As
shown in Figure 2, the number of iterations increases as E increase, which slow down the convergence
in terms of gradient computation. However, it can save communication costs as the number of rounds
decreased when the F increases. This showcase that we need a proper choice of E to trade-off the
communication cost and convergence speed.
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