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Abstract

To efficiently learn and retain motor skills, we can introduce
contextual interference through interleaved practice.
Interleaving tasks or stimuli initially hinders performance but
leads to superior long-term retention. It is not yet clear if
implicitly learned information also benefits from interleaving
and how interleaved practice changes the representation of
skills. The present study used a serial reaction time task where
participants practiced three 8-item sequences that were either
interleaved or blocked on Day 1 (training) and Day 2 (testing).
An explicit recall test allowed us to post-hoc sort participants
into two groups of learners: implicit learners recalled less items
than did explicit learners. Significant decreasing monotonic
trends, indicating successful learning, were observed in both
training groups and both groups of learners. We found support
for the benefit of interleaved practice on retention of implicit
sequence learning, indicating that the benefit of interleaved
practice does not depend on explicit memory retrieval. A
Bayesian Sequential Learning model was adopted to model
human performance. Both empirical and computational results
suggest that explicit knowledge of the sequence was
detrimental to retention when the sequences were blocked, but
not when they were interleaved, suggesting that contextual
interference may be a protective factor of interference of
explicit knowledge. Slower learning in the interleaved
condition may result in better retention and reduced
interference of explicit knowledge on performance.

Keywords: Bayesian theory; motor skill learning; sequential
learning; implicit learning; serial reaction time task

Introduction

In everyday life, we perform and demonstrate a variety of
motor skills that have been acquired gradually through
practice and interactions with our environment. These
include the use of smooth coarticulation of finger movements
into a specific sequence, multi-joint movement synergies, or
eye-body coordinated actions. Complex and simple skills
alike rely on motor dexterity, sequence memorization,
perceptual acuity, and both explicit and implicit learning.
Given the importance of motor skill learning to quality of life,
it is essential to investigate an optimal practice schedule for
greatest long-term retention. Decades of psychology research

suggests that using contextual interference by interleaving
tasks or stimuli may lead to enhanced long-term retention of
motor sequence learning.

Contextual interference (CI) is the phenomenon in which
interference during practice is surprisingly beneficial to skill
learning. In the short term it leads to poorer practice
performance but superior retention and transfer performance
in the long term. Interleaving stimuli or tasks is a way to
introduce contextual interference. In trying to optimize
learning by decreasing learning difficulty, retention may be
negatively affected. Introducing “desirable difficulties,”
enhances learning, rather than impedes it. In addition to
contextual interference, “desirable difficulties” include
varying the conditions of learning, spacing study or practice
sessions, and using tests and retrieval practice as learning
events (Bjork, 1994). The benefits of contextual interference
on memory performance were first observed in verbal
learning and subsequently in motor skill learning (Battig,
1966; Shea & Morgan, 1979).

There are multiple hypotheses surrounding the mechanism
behind the CI effect. The two most popular, the elaboration-
distinctiveness view and the forgetting-reconstruction view,
are not mutually exclusive. The elaboration-distinctiveness
view posits that it is easier to focus on the unique aspects of
each task or stimulus when experiencing them intermixed
together (Shea & Zimny, 1983; Shea, Hunt, & Zimny, 1985).
Under high contextual interference during acquisition,
information about multiple tasks is present in working
memory and thus more elaboration is required to distinguish
one task from another, leading to a more durable encoding.
Originally, this hypothesis was partially informed by
participants’ recall of motor movements, a measure of
explicit memory (Shea & Zimny, 1983).

The forgetting-reconstructive hypothesis attributes the CI
effect to the process of “refreshing” working memory on
every trial (Lee & Magill, 1983, 1985). With interleaved
practice, the learner must “dump” a motor pattern from
working memory after every trial in order to plan and execute
subsequent trials (Lee & Simon, 2004). Therefore, the learner
must retrieve a motor pattern into working memory or
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construct one on every trial. This lack of forgetting and
subsequent reconstruction is presumably why blocked
practice is inferior to interleaved practice for long-term
retention. In contrast, sequences that are blocked allow a
sequence pattern to be maintained in working memory across
trials. This hypothesis may account for the learning and
performance dissociation often seen in CI research.

However, neither of these proposed mechanisms
specifically account for implicit processes, and motor skills
are often implicitly learned. Research concerning the CI
effect and implicit motor learning has largely focused on
gross motor skills like those used when playing sports
(French et al., 1990; Goode & Magill, 1986; Menayo et al.,
2010). Furthermore, research investigating the CI effect in
fine motor sequence learning has largely focused on explicit
memory (Wright et al., 2016). Though research has explored
the effect of contextual interference in implicit motor
learning, few specifically investigate fine motor sequence
learning over a substantial delay and is thus a primary aim of
this paper (Dang et al., 2019; Sekiya, 2006).

Mathematical models can help us understand the different
constraints memory has and how it adaptively functions
(Anderson & Milson, 1989). For example, Burrell’s
mathematical model on borrowing books from a library can
be informative from an information-retrieval systems
standpoint (1985). Anderson & Milson (1989) suggest from
Burrell’s model that if use is massed, the intervals between
successive uses can predict the probability of the item need.
For example, if one item has been steadily used » times over
many months (spaced), this item would be more likely to be
needed when compared to an item that was used » times all
in one month (massed/blocked). As such, the model would
predict better memory for spaced items as compared to
massed items, consistent with empirical research concerning
the aforementioned contextual interference effect.

In this paper, we propose an alternate way to model the
contextual interference effect using a Bayesian theory of
sequential learning. This model uses prediction errors and
uncertainty to model how probability distributions of
parameter weights are updated from trial to trial. As trials go
on, Bayes’ theorem updates prior beliefs after considering
new information. Using a Bayesian framework can address
some shortcomings of sequential learning models. The
Rescorla-Wagner model is a well-known sequential learning
model of animal conditioning in which cue-outcome weights
are updated incrementally at every trial based on prediction
errors (Rescorla & Wagner, 1972). This model does not
account for learner uncertainty, so more complex sequential
learning models have addressed this deficit using a Bayesian
framework (Dayan & Kakade, 2000; Dayan, Kakade, &
Montague, 2000). The model we use is an iteration of the
Bayesian sequential learning model proposed in Lu et al.,
2016). The current paper explores how interleaving and
blocking three motor sequences affects learning and retention
of these sequences and how a computational model may help
us understand how memory strength for these sequences
differentially fluctuates over time depending on condition.
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Experimental Design & Methods

To investigate if contextual interference enhances long-term
retention of motor sequences, we utilized the serial reaction
time (SRT) task. Participants sat with four fingers of the right
hand on four keys on a keyboard (U,I,O,P) that corresponded
to the four outlined, unfilled circles on a blue computer
screen. One of the circles turned white to act as a cue to press
the corresponding key (i.e., the first circle on the screen
corresponds with “U”). After the button press, another circle
turned white and the first circle reverted to being unfilled.
Participants received audio feedback if they failed to press a
button or pressed an incorrect button. Reaction time (RT) and
accuracy were measured. Participants practiced three 8-item
sequences that were either interleaved or blocked on Day 1
(training) and Day 2 (testing). Participants were randomly
assigned to a training condition. In the blocked condition,
they received 80 repeated presentations of each sequence
(i.e., AAA...BBB...CCC). In the interleaved condition, they
received 3 sequences interleaved for a total of 240 trials (i.e.,
ACBABCBAC....). Day 2 was the same as Day 1,
participants were randomly assigned to either the blocked or
the interleaved condition. There were four conditions:
Interleaved-Interleaved  (II), Blocked-Blocked (BB),
Blocked-Interleaved (BI), and Interleaved-Blocked (IB). The
sequences were randomized so that no two participants had
the same sequences. Each participant received the same three
sequences both days. Critically, the participants were never
told there were sequences, only to respond to each cue as
quickly and as accurately as possible. To measure explicit
learning, a questionnaire was administered after the second
session comprised of three questions which prompted the
participants to recall the sequences.

Analysis

We summed the 8 key presses in the accurate sequences only
for a mean sequence RT. We took an average of mean
sequence RTs of the last ten trials per sequence (A,B,C) for
the blocked training condition, for a total of thirty trials. For
the interleaved training condition, we took an average of
mean sequence RTs of the last thirty trials. For the blocked
testing condition, we used the same procedure but looked at
the first ten trials of each sequence, for a total of thirty trials.
Similarly, for the interleaved testing condition, we studied the
first thirty trials. To measure retention, we computed
difference scores by subtracting the mean sequence RTs of
the last thirty trials from Day 1 from the RTs of the first thirty
trials from Day 2. We also assessed learning over time by
looking at mean sequence reaction time every twenty trials
on Day 1 using a Mann-Kendall trend test, a nonparametric
test for monotonic trends, where Kendall’s Tau (7) is a
measure of the strength and direction of the trend. To measure
explicit representation of motor sequences, we compared
subjects’ recall of sequences to the actual sequences and
computed a score. For example, if a participant correctly
recalled half of one sequence and two items of another, their
score would be an average of (0.5+0.25+0)/3 for a score of
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0.25. To determine chance performance a priori, we ran a
Monte Carlo simulation in which we compared three
randomized “test” sequences to 1,000,000 randomized
sequences. We found that on average, they matched around
two of the eight items just by chance. The implicit-explicit
memory distinction may lie on a continuum, with participants
having varying amounts of explicit knowledge. However,
since we were interested in purely implicit learners, we
dichotomized our sample and post-hoc sorted participants
based off of the Monte Carlo cutoff determined a priori. This
allowed us to examine fully implicit learners separately from
those who may have some explicit sequence knowledge.
Implicit learners were participants who recalled on average,
0-3 items per sequence (at chance) while explicit learners
recalled 4 or more items per sequence (above chance).

Participants

We collected data from 100 UCLA undergraduates, who
received course credit for participation. A total of 17
participants were excluded for low accuracy (i.e., 80% or
lower; n=8), computer error (n=5), or failing to complete the
experiment (n=4). Our final subject pool consisted of 83
right-handed young adults. (n=22; ngs=19; nr =21; ns= 21,
ages 18-43, M=20.6, SD=3.2). Participants were sorted into
two groups based on their explicit recall score: implicit
(n=40) and explicit (n=43). Thus, our four groups were
divided into eight groups to account for both types of learners
in all four conditions (implicit learners: ni=14; ngsg=7; nip=9;
ngr=10; explicit learners: ni=8; nps=12; np=12; np~=11).

Experimental Results

On Day 1, participants who practiced interleaved sequences
were significantly less accurate (M=92.34, SD=4.38) than
participants who practiced blocked sequences (1=94.22,
SD=4.13; #(81)=2.013, p=.047). However, on Day 2, a Mann-
Whitney test indicated that there was no significant
difference in accuracy between those who performed
interleaved sequences (M=94.02, SD=4.27) and those who
performed blocked sequences (M=95.59, SD=2.51;
U=992.50, p=.229). Those who were tested on interleaved
sequences either received blocked or interleaved training the
day before, however training condition did not impact
accuracy on Day 2 (Mp=93.34, SDi=4.44; Mp=94.74,
SDpr=4.06; #(41)=1.08, p=.287). Similarly, training condition
did not impact accuracy on Day 2 for those who were tested
on blocked sequences (Mps=95.67, SDpp=2.32; M15=95.52,
SD=2.72; #(38)=0.18, p=.859).

Participants who received blocked practice explicitly
recalled on average more items per sequence (M=4.18,
SD=2.48) than those who had received interleaved practice
(M=3.17, SD=2.13; #81)=-1.996, p=.049).

Before categorizing participants into implicit or explicit
learners, we conducted a two-way ANCOVA to control for
recall score. We found a significant main effect of training
condition (F(1,78)=38.06, p<.001), a significant main effect
of testing condition (F(1,78)=10.895, p=.001), and a
significant interaction after controlling for recall score
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(F(1,78)=11.565, p=.001). The covariate was not
significantly related to performance, indicating that a
participants’ knowledge about the sequence had little impact
on performance and the benefit of interleaved practice
(F(1,78)=3.02, p=.086). Since our original interest was
implicit motor sequence learning, we then separated groups
based on a cutoff score denoting chance performance.

All groups learned over Day 1, as evidenced by significant
decreasing trends in mean sequence RT. Significant
decreasing monotonic trends were observed in both the
blocked training group (7= -.442, p <.0001) and interleaved
training group (7=-.242, p <.0001) in explicit learners (Fig.
1). In implicit learners, there was also a significant decreasing
monotonic trend for both the blocked training group (7 = -
.336, p=.001) and the interleaved training group (7= -.272,
p<.0001) (Fig. 1).
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Figure 1. Learning over Day 1.

We then examined mean difference scores in all four
groups separated by explicit and implicit learners. Difference
scores were calculated by subtracting the mean sequence
reaction time of the last thirty trials on Day 1 from the mean
of the first thirty trials on Day 2. A positive difference score
indicates poorer performance on Day 2, a negative difference
score indicates improvement on Day 2, while a difference
score of zero indicates retention. A three-way ANOVA was
conducted to examine the effect of training condition, testing
condition, and learner type (explicit, implicit) on mean RT
difference scores (Fig. 2). There was a significant main effect
of training condition on difference scores, (F(1, 75)=39.539,
p <.001, n*=0.274), with less forgetting from Day 1 to Day 2
for participants who had received interleaved training.
Participants who trained in the interleaved condition had a
negative difference score, indicating improved performance
(M=-0.313, SD=0.554). Participants who trained in the
blocked condition instead showed a positive difference score,
indicating forgetting from Day 1 to Day 2 (M=0.726,
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S§D=0.938). There was also a significant main effect of testing
condition, (F(1, 75)=9.538, p=.003, n?=0.066), with greater
forgetting for participants who received interleaved testing on
Day 2. Participants who received interleaved testing had a
mean positive difference score (M=0.408, SD=1.017), while
participants who tested with blocked sequences had a
negative mean difference score (M=-0.049, SD=0.748).
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Figure 2. Mean difference scores to measure sequence
retention. Higher scores indicate greater forgetting.

These main effects were qualified by two statistically
significant interactions. We observed an interaction between
the effects of training condition and testing condition on
difference scores, F(1,75)=11.948, p<.001, 1?>=0.083. An
analysis of simple effects showed that testing condition did
not significantly affect difference scores when participants
were trained in the interleaved condition (#(1,75)=0.027,
p=.870). However, testing condition did significantly affect
the difference scores when participants were trained in the
blocked condition (F(1,75)=20.056, p<.001). Participants
who trained with interleaved sequences were able to retain or
improve performance regardless of testing condition, while
participants who trained with blocked sequences did worse
when tested with interleaved sequences.

Additionally, we observed an interaction between the
effects of training condition and learner type on difference
scores, F(1, 75)=4.915, p=.03, n?=0.034. Simple effects
analysis showed that learner type did affect difference scores
when subjects practiced blocked sequences (£(1,75)=4.529,
p=.037), but not when subjects practiced interleaved
sequences (F(1,75)=1.082, p=.302). Explicit learners in the
blocked training condition had higher difference scores than
implicit learners, suggesting that explicit learning of the
sequences might hinder subsequent learning, especially when
these sequences are practiced in a blocked fashion.

With one sample t-tests, we found there was a significant
slowing of performance across the delay for subjects who
were trained using blocked sequences and tested using
interleaved sequences, regardless of whether they gained
explicit knowledge of the sequences (#(10)=5.757, p=.0001,
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for explicit learners; #(9)=3.255, p=.0099 for implicit
learners). For subjects who practiced interleaved sequences,
there was significantly faster performance when the
sequences were blocked if they had some explicit knowledge
of the sequences, perhaps reflecting facilitated performance

of blocked sequences (#(11)=-4.849, p=.0005).

Interestingly, the participants who practiced interleaved
sequences and gained no awareness of the sequences showed
faster performance after the delay when tested on interleaved
sequences (#(13)=-3.633, p=.003). Subjects who practiced
and were tested using blocked sequences had similar levels
of performance across the delay regardless of awareness.
Subjects who gained some awareness of the sequences
showed no forgetting if trained and tested using interleaved
sequences, and subjects without awareness showed similar
performance pre and post delay if they practiced interleaved
sequences and tested with blocked sequences (p’s >.1).

Bayesian Theory of Sequential Learning

To understand how memory strength for each sequence
evolves in both the interleaved and blocked conditions, we
used a sequential Bayesian learning model. The
implementation is based on particle filtering which has been
widely used to model learning, such as conditioning (Daw, &
Courville, 2008), category learning (Sanborn et al., 2010),
causal learning (Lu et al., 2016). It is a general probabilistic
approach for estimating and updating probability
distributions of hidden variables by recursively applying two
computational steps described below (Ho & Lee, 1964;
Meinhold & Singpurwalla,1983). Though there are many
iterations of this type of model, the current paper adopts the
model proposed by Lu, Rojas, Beckers & Yuille (2016) as it
introduces a learning mechanism and accounts for trial order
effects. The prediction step uses past observations to predict
the states of hidden variables. Specifically, the distribution of
hidden variables x (i.e., memory strength in our application)
at time point & can be predicted using observations Z in the
past. In our study, x represents the memory strength for each
of the three sequences, k corresponds to trials, and Z
represents performed motor sequences. The prediction step
can be defined as:

PXplZy—1) = [P Xl X0 )P (K11 Zp)dxs—y (1)

in which the first term is a temporal prior following a
Gaussian distribution with the mean as the memory strength
in the past trial xj_4, and standard deviation as a temporal
smoothness parameter a. The temporal prior allows memory
strength to vary while still maintaining similar values for
neighboring trials. When o is small (i.e., close to 0), the
memory strength would not change too much from trial to
trial; while larger values of o allow for significant changes in
memory strength from one trial to the next. The temporal
smoothness parameter can be viewed as controlling the rate
of learning. Larger values indicate fast learning, and smaller
values correspond to slow learning.

The model then applies the Bayes rule to update the
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posterior distribution of memory strength using the
observations in the current trial k£ and predictive distribution
derived in the prediction step:

_ p(ZilXi)p(Xk|Zx—1)
p(xklzk) - p(Zklzk—l) (2)

The sequential model iteratively performs the two steps to
update the distribution of the memory strength associated
with each of the motor sequences. This model is ideal for the
SRT task because it does not require perfect memory of all
preceding trials and is sensitive to the order of data
presentation. The learning of the memory strength is driven
by the discrepancy between what is predicted to happen and
what is actually observed. If the Bayesian sequential model
provided a good approximation to an internal cognitive
model for the SRT task, we would expect that the model
could qualitatively account for human performance.

Model Simulation Results

We conducted model simulations for both training groups
(Interleaved, Blocked) and for both groups of learners
(Implicit, Explicit). The model predicts “memory strength”
measured in arbitrary units. “Memory strength” is assumed
to be the inverse of human reaction time, as reaction time will
decrease when participants memorize the sequence better
with higher memory strength. In the blocked condition,
sequences were blocked into 80 trial presentations as in the
experimental design. The standard deviation for likelihood
was set to 10 in the simulation. To determine the temporal
smoothness parameter o (analogous to learning rate) for
implicit and explicit learners, we performed a grid search
from 0-1 with a step size of .1. We found that o=.5 provides
the best fit between estimated memory strength with human
RT for implicit learners (7=-.653), and a=1 showed the best
fit for explicit learners (+=-.928). These two parameters
control learning rate and thus were altered for the two
different groups of learners. This model was run 1,000 times
and memory strength was averaged across runs. Model
parameters for the interleaved condition were the same
except the input sequences were intermixed for 240 trials
rather than three blocks of 80 trials.

As higher memory strength corresponds to a faster reaction
time, we added a non-linear transformation to memory
strength, e(1-0-1*MemoryStrength) = to show the change of
inversed memory strength as a function of training trials in
Figure 3. The model’s Day 1 performance is similar to
experimental data for both explicit and implicit learners (Fig.
3). The model results with o=1 exhibited significant
decreasing monotonic trends in the blocked training group (7
=-392) and interleaved training group (7 =-.537) just as
explicit learners. This was also the case for the model results
with o=.5 in the blocked (7=-.432) and interleaved (7=-.889)
training groups as did implicit learners (all p’s <.0001).
Importantly, model results with a=1 for explicit learners
showed a larger difference between blocked training and
interleaved training, than did o = .5 for implicit learners.
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Figure 3. Inversed memory strength for both groups of
learners during Day 1 training.

To directly compare model predictions and human
performance, we found a strong negative correlation in the
blocked training group in explicit learners for the memory
strength predicted by the model and human RT in
experimental data (+=-0.78, p<0.0001). We found a weak
negative correlation in the interleaved training group in
explicit learners (7=-0.33, p<0.0001). In implicit learners, we
found a strong negative correlation between the model and
experimental results in the blocked training group (r=-0.78,
p<0.0001) and a moderate correlation in the interleaved
training group (r=-0.44, p<0.0001).

Explicit Learners Implicit Learners

Memory Strength Difference Score

Blocked Interleaved Blocked

Training Condition

T
Interleaved

Testing Condition M Interleaved M Blocked

Figure 4. Model predictions of memory strength difference
score. Higher scores indicate greater forgetting.

To model memory retention, we simulated Day 2 data to
calculate difference scores. We modelled Day 2 similarly to
Day 1, except that the prior was the posterior distribution of
memory strength at the end of Day 1. Qualitatively, the model
mimics the pattern observed in the experimental data (Fig. 4).

The model predicts more forgetting in the blocked training
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condition, and less forgetting in the interleaved training
condition, consistent with experimental results. The model
also shows large positive differences in the BB conditions,
for both types of learners. However, the large positive
difference score for the BB groups is inconsistent with our
experimental results. In the experimental data, these groups
had much smaller difference scores and thus better retention
than the model predicted. Though the model “forgets” from
Day 1 to Day 2, participants still retain procedural memory.

Discussion

The benefits of interleaving are well-documented and span
multiple diverse domains (Brady, 1998). Research regarding
contextual interference in motor skill learning has primarily
focused on explicit sequence learning or gross motor learning
(e.g., sports). However, it is as of yet unclear if the benefits
of interleaving extend to implicit fine motor sequence
memory after a substantial delay. Our study investigated the
benefits of introducing contextual interference in a popular
implicit motor learning task, the SRT task. Sequences were
either blocked or interleaved in a two-day experiment.
Explicit recall was probed at the end of the experiment.

We aimed to investigate the CI effect in purely implicit
learners and set a recall score cut-off based on a Monte Carlo
simulation that determined chance performance. Using this
criterion many participants gained some explicit sequence
knowledge. As we were interested in whether the CI effect
persists in the absence of explicit knowledge, we
dichotomized our sample. Dichotomizing resulted in a loss of
power and small sample sizes, so our results should be
cautiously interpreted, and it is possible that explicit
knowledge could lead to greater benefits of CI in the SRT
task. Future work could examine the effects of CI when
learning is more clearly implicit, such as learning with a
concurrent task or a more complex probabilistic sequence.

We found a main effect of practice schedule on retention,
with interleaved practice leading to better retention of
practice over the delay. However, this effect was qualified by
an interaction between practice and test conditions: when
sequences were tested in blocks, there was no effect of
practice schedule, retention was good regardless of how
sequences were practiced. However, there were large
differences when the practiced sequences were interleaved at
test. Participants who received interleaved practice showed
excellent retention, and even consolidation of sequence
knowledge at test. In contrast, participants who practiced the
sequences in a blocked fashion showed substantial forgetting
when tested in the interleaved condition. It appeared that
blocked practice left participants unprepared for performance
of interleaved sequences.

Finally, we found an interaction between training condition
and learner type. When subjects trained with interleaved
sequences, retention was similar for both implicit and explicit
learners. However, subjects who trained with blocked
sequences showed worse performance on Day 2, especially
explicit learners. This was not the case for explicit learners in
the interleaved group, suggesting that explicit knowledge of
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the sequences may hinder learning only when sequences are
presented in a blocked fashion. Our results suggest that the
benefits of interleaving do not require explicit retrieval.

The transfer-appropriate processing (TAP) principle refers
to the phenomenon where task performance is best when the
practice and test conditions are the same (Morris et al., 1977).
Our results do not fully conform to the TAP framework, since
participants with explicit knowledge who practiced
interleaved sequences do better when tested with blocked
sequences. However, implicit learners who practiced
interleaved sequences perform better with interleaved
sequences at test. Alternative TAP frameworks attempt to
account for the differences in implicit and explicit learning
by distinguishing between perceptual and conceptual
processes, or between integrative and elaborative processes
(Graf & Ryan, 1990; Roediger & McDermott, 1993).
However, these proposed processes are mostly founded on
perceptual priming research, so future research should aim to
explain how the TAP principle differs in implicit and explicit
motor learning, and how this may change with contextual
interference.

We used the Bayesian Sequential Learning model and
manipulated the temporal smoothness prior to model implicit
and explicit learners. We altered this parameter because it
relates to the rate of learning. In the motor learning literature,
a multiple-process framework has been proposed where
explicit processes correspond to “fast” learning and rapid
forgetting, while implicit processes resemble “slow” learning
and slow forgetting (McDougle et al., 2015; Smith et al.,
2006). The model was mostly successful in qualitatively
predicting the human data, as we found significant negative
correlations when comparing the model results (‘memory
strength’) to the experimental data (RT). However, though
the model replicated the general pattern of retention results,
it attributed poorer retention to both BB groups, which was
not observed in our experimental data. Our model did not aim
to provide a quantitative fit to the learning curves (RT), but
rather a qualitative account of the differences observed in the
interleaved and blocked conditions. In addition to not
knowing the exact transformation from memory strength to
RT, it is evident that the model has clear differences from
human learning. First, the model doesn’t consider any motor
or perceptual uncertainty, though human participants may
need practice trials to get familiar with how the visual cues
correspond to the key presses. Furthermore, the model
doesn’t include other factors like spontaneous rehearsal,
fatigue, and accuracy. Overall, the model predicts more
forgetting when sequences were blocked on Day 1, as
compared to interleaved sequences, which conforms to our
main experimental finding.

Given the limitations of small sample sizes and a lack of
experimental manipulation of explicit knowledge, our results
do not offer definitive conclusions about the contextual
interference effect in implicit motor sequence learning and
long-term retention. However, our experimental and
computational results suggest that contextual interference
may protect against interference of explicit knowledge. We
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observed a contextual interference effect in implicit learners,
as subjects who were trained in the interleaved condition
showed less forgetting and subjects who were trained in the
blocked condition were left unprepared for interleaved
testing, indicating that they may have learned a sequence-
specific rather than a general rule.
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