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Abstract 
To efficiently learn and retain motor skills, we can introduce 
contextual interference through interleaved practice. 
Interleaving tasks or stimuli initially hinders performance but 
leads to superior long-term retention. It is not yet clear if 
implicitly learned information also benefits from interleaving 
and how interleaved practice changes the representation of 
skills. The present study used a serial reaction time task where 
participants practiced three 8-item sequences that were either 
interleaved or blocked on Day 1 (training) and Day 2 (testing). 
An explicit recall test allowed us to post-hoc sort participants 
into two groups of learners: implicit learners recalled less items 
than did explicit learners. Significant decreasing monotonic 
trends, indicating successful learning, were observed in both 
training groups and both groups of learners. We found support 
for the benefit of interleaved practice on retention of implicit 
sequence learning, indicating that the benefit of interleaved 
practice does not depend on explicit memory retrieval. A 
Bayesian Sequential Learning model was adopted to model 
human performance. Both empirical and computational results 
suggest that explicit knowledge of the sequence was 
detrimental to retention when the sequences were blocked, but 
not when they were interleaved, suggesting that contextual 
interference may be a protective factor of interference of 
explicit knowledge. Slower learning in the interleaved 
condition may result in better retention and reduced 
interference of explicit knowledge on performance.  

Keywords: Bayesian theory; motor skill learning; sequential 
learning; implicit learning; serial reaction time task  

Introduction 
In everyday life, we perform and demonstrate a variety of 
motor skills that have been acquired gradually through 
practice and interactions with our environment. These 
include the use of smooth coarticulation of finger movements 
into a specific sequence, multi-joint movement synergies, or 
eye-body coordinated actions. Complex and simple skills 
alike rely on motor dexterity, sequence memorization, 
perceptual acuity, and both explicit and implicit learning. 
Given the importance of motor skill learning to quality of life, 
it is essential to investigate an optimal practice schedule for 
greatest long-term retention. Decades of psychology research 

suggests that using contextual interference by interleaving 
tasks or stimuli may lead to enhanced long-term retention of 
motor sequence learning.  

Contextual interference (CI) is the phenomenon in which 
interference during practice is surprisingly beneficial to skill 
learning. In the short term it leads to poorer practice 
performance but superior retention and transfer performance 
in the long term. Interleaving stimuli or tasks is a way to 
introduce contextual interference. In trying to optimize 
learning by decreasing learning difficulty, retention may be 
negatively affected. Introducing “desirable difficulties,” 
enhances learning, rather than impedes it. In addition to 
contextual interference, “desirable difficulties” include 
varying the conditions of learning, spacing study or practice 
sessions, and using tests and retrieval practice as learning 
events (Bjork, 1994). The benefits of contextual interference 
on memory performance were first observed in verbal 
learning and subsequently in motor skill learning (Battig, 
1966; Shea & Morgan, 1979).  

There are multiple hypotheses surrounding the mechanism 
behind the CI effect. The two most popular, the elaboration-
distinctiveness view and the forgetting-reconstruction view, 
are not mutually exclusive. The elaboration-distinctiveness 
view posits that it is easier to focus on the unique aspects of 
each task or stimulus when experiencing them intermixed 
together (Shea & Zimny, 1983; Shea, Hunt, & Zimny, 1985). 
Under high contextual interference during acquisition, 
information about multiple tasks is present in working 
memory and thus more elaboration is required to distinguish 
one task from another, leading to a more durable encoding. 
Originally, this hypothesis was partially informed by 
participants’ recall of motor movements, a measure of 
explicit memory (Shea & Zimny, 1983). 

The forgetting-reconstructive hypothesis attributes the CI 
effect to the process of “refreshing” working memory on 
every trial (Lee & Magill, 1983, 1985). With interleaved 
practice, the learner must “dump” a motor pattern from 
working memory after every trial in order to plan and execute 
subsequent trials (Lee & Simon, 2004). Therefore, the learner 
must retrieve a motor pattern into working memory or 
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construct one on every trial. This lack of forgetting and 
subsequent reconstruction is presumably why blocked 
practice is inferior to interleaved practice for long-term 
retention. In contrast, sequences that are blocked allow a 
sequence pattern to be maintained in working memory across 
trials. This hypothesis may account for the learning and 
performance dissociation often seen in CI research.  

However, neither of these proposed mechanisms 
specifically account for implicit processes, and motor skills 
are often implicitly learned. Research concerning the CI 
effect and implicit motor learning has largely focused on 
gross motor skills like those used when playing sports 
(French et al., 1990; Goode & Magill, 1986; Menayo et al., 
2010). Furthermore, research investigating the CI effect in 
fine motor sequence learning has largely focused on explicit 
memory (Wright et al., 2016). Though research has explored 
the effect of contextual interference in implicit motor 
learning, few specifically investigate fine motor sequence 
learning over a substantial delay and is thus a primary aim of 
this paper (Dang et al., 2019; Sekiya, 2006).  

Mathematical models can help us understand the different 
constraints memory has and how it adaptively functions 
(Anderson & Milson, 1989). For example, Burrell’s 
mathematical model on borrowing books from a library can 
be informative from an information-retrieval systems 
standpoint (1985). Anderson & Milson (1989) suggest from 
Burrell’s model that if use is massed, the intervals between 
successive uses can predict the probability of the item need. 
For example, if one item has been steadily used n times over 
many months (spaced), this item would be more likely to be 
needed when compared to an item that was used n times all 
in one month (massed/blocked). As such, the model would 
predict better memory for spaced items as compared to 
massed items, consistent with empirical research concerning 
the aforementioned contextual interference effect.  

In this paper, we propose an alternate way to model the 
contextual interference effect using a Bayesian theory of 
sequential learning. This model uses prediction errors and 
uncertainty to model how probability distributions of 
parameter weights are updated from trial to trial. As trials go 
on, Bayes’ theorem updates prior beliefs after considering 
new information. Using a Bayesian framework can address 
some shortcomings of sequential learning models. The 
Rescorla-Wagner model is a well-known sequential learning 
model of animal conditioning in which cue-outcome weights 
are updated incrementally at every trial based on prediction 
errors (Rescorla & Wagner, 1972). This model does not 
account for learner uncertainty, so more complex sequential 
learning models have addressed this deficit using a Bayesian 
framework (Dayan & Kakade, 2000; Dayan, Kakade, & 
Montague, 2000). The model we use is an iteration of the 
Bayesian sequential learning model proposed in Lu et al., 
2016). The current paper explores how interleaving and 
blocking three motor sequences affects learning and retention 
of these sequences and how a computational model may help 
us understand how memory strength for these sequences 
differentially fluctuates over time depending on condition.  

Experimental Design & Methods 
To investigate if contextual interference enhances long-term 
retention of motor sequences, we utilized the serial reaction 
time (SRT) task. Participants sat with four fingers of the right 
hand on four keys on a keyboard (U,I,O,P) that corresponded 
to the four outlined, unfilled circles on a blue computer 
screen. One of the circles turned white to act as a cue to press 
the corresponding key (i.e., the first circle on the screen 
corresponds with “U”). After the button press, another circle 
turned white and the first circle reverted to being unfilled. 
Participants received audio feedback if they failed to press a 
button or pressed an incorrect button. Reaction time (RT) and 
accuracy were measured. Participants practiced three 8-item 
sequences that were either interleaved or blocked on Day 1 
(training) and Day 2 (testing). Participants were randomly 
assigned to a training condition. In the blocked condition, 
they received 80 repeated presentations of each sequence 
(i.e., AAA...BBB...CCC). In the interleaved condition, they 
received 3 sequences interleaved for a total of 240 trials (i.e., 
ACBABCBAC....). Day 2 was the same as Day 1, 
participants were randomly assigned to either the blocked or 
the interleaved condition. There were four conditions: 
Interleaved-Interleaved (II), Blocked-Blocked (BB), 
Blocked-Interleaved (BI), and Interleaved-Blocked (IB). The 
sequences were randomized so that no two participants had 
the same sequences. Each participant received the same three 
sequences both days. Critically, the participants were never 
told there were sequences, only to respond to each cue as 
quickly and as accurately as possible. To measure explicit 
learning, a questionnaire was administered after the second 
session comprised of three questions which prompted the 
participants to recall the sequences. 
 
Analysis  
 

We summed the 8 key presses in the accurate sequences only 
for a mean sequence RT. We took an average of mean 
sequence RTs of the last ten trials per sequence (A,B,C) for 
the blocked training condition, for a total of thirty trials. For 
the interleaved training condition, we took an average of 
mean sequence RTs of the last thirty trials. For the blocked 
testing condition, we used the same procedure but looked at 
the first ten trials of each sequence, for a total of thirty trials. 
Similarly, for the interleaved testing condition, we studied the 
first thirty trials. To measure retention, we computed 
difference scores by subtracting the mean sequence RTs of 
the last thirty trials from Day 1 from the RTs of the first thirty 
trials from Day 2. We also assessed learning over time by 
looking at mean sequence reaction time every twenty trials 
on Day 1 using a Mann-Kendall trend test, a nonparametric 
test for monotonic trends, where Kendall’s Tau (t) is a 
measure of the strength and direction of the trend. To measure 
explicit representation of motor sequences, we compared 
subjects’ recall of sequences to the actual sequences and 
computed a score. For example, if a participant correctly 
recalled half of one sequence and two items of another, their 
score would be an average of (0.5+0.25+0)/3 for a score of 
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0.25. To determine chance performance a priori, we ran a 
Monte Carlo simulation in which we compared three 
randomized “test” sequences to 1,000,000 randomized 
sequences. We found that on average, they matched around 
two of the eight items just by chance. The implicit-explicit 
memory distinction may lie on a continuum, with participants 
having varying amounts of explicit knowledge. However, 
since we were interested in purely implicit learners, we 
dichotomized our sample and post-hoc sorted participants 
based off of the Monte Carlo cutoff determined a priori. This 
allowed us to examine fully implicit learners separately from 
those who may have some explicit sequence knowledge.  
Implicit learners were participants who recalled on average, 
0-3 items per sequence (at chance) while explicit learners 
recalled 4 or more items per sequence (above chance).   
 
Participants 
We collected data from 100 UCLA undergraduates, who 
received course credit for participation. A total of 17 
participants were excluded for low accuracy (i.e., 80% or 
lower; n=8), computer error (n=5), or failing to complete the 
experiment (n=4). Our final subject pool consisted of 83 
right-handed young adults. (nII=22; nBB=19; nI =21; nBI= 21; 
ages 18-43, M=20.6, SD=3.2). Participants were sorted into 
two groups based on their explicit recall score: implicit 
(n=40) and explicit (n=43). Thus, our four groups were 
divided into eight groups to account for both types of learners 
in all four conditions (implicit learners: nII=14; nBB=7; nIB=9; 
nBI=10; explicit learners: nII=8;  nBB=12;  nIB=12;  nBI=11).  

Experimental Results 
On Day 1, participants who practiced interleaved sequences 
were significantly less accurate (M=92.34, SD=4.38) than 
participants who practiced blocked sequences (M=94.22, 
SD=4.13; t(81)=2.013, p=.047). However, on Day 2, a Mann-
Whitney test indicated that there was no significant 
difference in accuracy between those who performed 
interleaved sequences (M=94.02, SD=4.27) and those who 
performed blocked sequences (M=95.59, SD=2.51; 
U=992.50, p=.229). Those who were tested on interleaved 
sequences either received blocked or interleaved training the 
day before, however training condition did not impact 
accuracy on Day 2 (MII=93.34, SDII=4.44; MBI=94.74, 
SDBI=4.06; t(41)=1.08, p=.287). Similarly, training condition 
did not impact accuracy on Day 2 for those who were tested 
on blocked sequences (MBB=95.67, SDBB=2.32; MIB=95.52, 
SDIB=2.72; t(38)=0.18, p=.859). 

Participants who received blocked practice explicitly 
recalled on average more items per sequence (M=4.18, 
SD=2.48) than those who had received interleaved practice 
(M=3.17, SD=2.13;  t(81)=-1.996, p=.049).  

Before categorizing participants into implicit or explicit 
learners, we conducted a two-way ANCOVA to control for 
recall score. We found a significant main effect of training 
condition (F(1,78)=38.06, p<.001), a significant main effect 
of testing condition (F(1,78)=10.895, p=.001), and a 
significant interaction after controlling for recall score 

(F(1,78)=11.565, p=.001). The covariate was not 
significantly related to performance, indicating that a 
participants’ knowledge about the sequence had little impact 
on performance and the benefit of interleaved practice 
(F(1,78)=3.02, p=.086). Since our original interest was 
implicit motor sequence learning, we then separated groups 
based on a cutoff score denoting chance performance. 

All groups learned over Day 1, as evidenced by significant 
decreasing trends in mean sequence RT. Significant 
decreasing monotonic trends were observed in both the 
blocked training group (t = -.442, p < .0001) and interleaved 
training group (t = -.242, p < .0001) in explicit learners (Fig. 
1). In implicit learners, there was also a significant decreasing 
monotonic trend for both the blocked training group (t = -
.336, p=.001) and the interleaved training group (t = -.272, 
p< .0001) (Fig. 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Learning over Day 1. 

 
We then examined mean difference scores in all four 

groups separated by explicit and implicit learners. Difference 
scores were calculated by subtracting the mean sequence 
reaction time of the last thirty trials on Day 1 from the mean 
of the first thirty trials on Day 2. A positive difference score 
indicates poorer performance on Day 2, a negative difference 
score indicates improvement on Day 2, while a difference 
score of zero indicates retention. A three-way ANOVA was 
conducted to examine the effect of training condition, testing 
condition, and learner type (explicit, implicit) on mean RT 
difference scores (Fig. 2). There was a significant main effect 
of training condition on difference scores, (F(1, 75)=39.539, 
p <.001, h2=0.274), with less forgetting from Day 1 to Day 2 
for participants who had received interleaved training. 
Participants who trained in the interleaved condition had a 
negative difference score, indicating improved performance 
(M=-0.313, SD=0.554). Participants who trained in the 
blocked condition instead showed a positive difference score, 
indicating forgetting from Day 1 to Day 2 (M=0.726, 
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SD=0.938). There was also a significant main effect of testing 
condition, (F(1, 75)=9.538, p=.003, h2=0.066), with greater 
forgetting for participants who received interleaved testing on 
Day 2. Participants who received interleaved testing had a 
mean positive difference score (M=0.408, SD=1.017), while 
participants who tested with blocked sequences had a 
negative mean difference score (M=-0.049, SD=0.748). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Mean difference scores to measure sequence 
retention. Higher scores indicate greater forgetting.  
 

These main effects were qualified by two statistically 
significant interactions. We observed an interaction between 
the effects of training condition and testing condition on 
difference scores, F(1,75)=11.948, p<.001, h2=0.083. An 
analysis of simple effects showed that testing condition did 
not significantly affect difference scores when participants 
were trained in the interleaved condition (F(1,75)=0.027, 
p=.870). However, testing condition did significantly affect 
the difference scores when participants were trained in the 
blocked condition (F(1,75)=20.056, p<.001). Participants 
who trained with interleaved sequences were able to retain or 
improve performance regardless of testing condition, while 
participants who trained with blocked sequences did worse 
when tested with interleaved sequences.  

Additionally, we observed an interaction between the 
effects of training condition and learner type on difference 
scores, F(1, 75)=4.915, p=.03, h2=0.034. Simple effects 
analysis showed that learner type did affect difference scores 
when subjects practiced blocked sequences (F(1,75)=4.529, 
p=.037), but not when subjects practiced interleaved 
sequences (F(1,75)=1.082, p=.302). Explicit learners in the 
blocked training condition had higher difference scores than 
implicit learners, suggesting that explicit learning of the 
sequences might hinder subsequent learning, especially when 
these sequences are practiced in a blocked fashion. 

With one sample t-tests, we found there was a significant 
slowing of performance across the delay for subjects who 
were trained using blocked sequences and tested using 
interleaved sequences, regardless of whether they gained 
explicit knowledge of the sequences (t(10)=5.757, p=.0001, 

for explicit learners; t(9)=3.255, p=.0099 for implicit 
learners). For subjects who practiced interleaved sequences, 
there was significantly faster performance when the 
sequences were blocked if they had some explicit knowledge 
of the sequences, perhaps reflecting facilitated performance 
of blocked sequences (t(11)=-4.849, p=.0005).  
 Interestingly, the participants who practiced interleaved 
sequences and gained no awareness of the sequences showed 
faster performance after the delay when tested on interleaved 
sequences (t(13)=-3.633, p=.003). Subjects who practiced 
and were tested using blocked sequences had similar levels 
of performance across the delay regardless of awareness. 
Subjects who gained some awareness of the sequences 
showed no forgetting if trained and tested using interleaved 
sequences, and subjects without awareness showed similar 
performance pre and post delay if they practiced interleaved 
sequences and tested with blocked sequences (p’s >.1). 

Bayesian Theory of Sequential Learning 
To understand how memory strength for each sequence 
evolves in both the interleaved and blocked conditions, we 
used a sequential Bayesian learning model. The 
implementation is based on particle filtering which has been 
widely used to model learning, such as conditioning (Daw, & 
Courville, 2008), category learning (Sanborn et al., 2010), 
causal learning (Lu et al., 2016). It is a general probabilistic 
approach for estimating and updating probability 
distributions of hidden variables by recursively applying two 
computational steps described below (Ho & Lee, 1964; 
Meinhold & Singpurwalla,1983). Though there are many 
iterations of this type of model, the current paper adopts the 
model proposed by Lu, Rojas, Beckers & Yuille (2016) as it 
introduces a learning mechanism and accounts for trial order 
effects. The prediction step uses past observations to predict 
the states of hidden variables. Specifically, the distribution of 
hidden variables x (i.e., memory strength in our application) 
at time point k can be predicted using observations Z in the 
past. In our study, x represents the memory strength for each 
of the three sequences, k corresponds to trials, and Z 
represents performed motor sequences. The prediction step 
can be defined as: 
 
𝒑(𝒙𝒌|𝒁𝒌"𝟏) = 	∫ 𝒑 (𝒙𝒌|𝒙𝒌"𝟏)𝒑(𝒙𝒌"𝟏|𝒁𝒌"𝟏)𝒅𝒙𝒌"𝟏    (1) 

 
in which the first term is a temporal prior following a 
Gaussian distribution with the mean as the memory strength 
in the past trial 𝒙𝒌−𝟏, and standard deviation as a temporal 
smoothness parameter α. The temporal prior allows memory 
strength to vary while still maintaining similar values for 
neighboring trials. When α is small (i.e., close to 0), the 
memory strength would not change too much from trial to 
trial; while larger values of α allow for significant changes in 
memory strength from one trial to the next. The temporal 
smoothness parameter can be viewed as controlling the rate 
of learning. Larger values indicate fast learning, and smaller 
values correspond to slow learning.  

The model then applies the Bayes rule to update the 

2046



posterior distribution of memory strength using the 
observations in the current trial k and predictive distribution 
derived in the prediction step:  

 
𝒑(𝒙𝒌|𝒁𝒌) =

𝒑&𝒁𝒌'𝒙𝒌(𝒑&𝒙𝒌'𝒁𝒌"𝟏(
𝒑&𝒁𝒌'𝒁𝒌"𝟏(

        (2) 
 

The sequential model iteratively performs the two steps to 
update the distribution of the memory strength associated 
with each of the motor sequences. This model is ideal for the 
SRT task because it does not require perfect memory of all 
preceding trials and is sensitive to the order of data 
presentation. The learning of the memory strength is driven 
by the discrepancy between what is predicted to happen and 
what is actually observed. If the Bayesian sequential model 
provided a good approximation to an internal cognitive 
model for the SRT task, we would expect that the model 
could qualitatively account for human performance. 

Model Simulation Results 
We conducted model simulations for both training groups 
(Interleaved, Blocked) and for both groups of learners 
(Implicit, Explicit). The model predicts “memory strength” 
measured in arbitrary units. “Memory strength” is assumed 
to be the inverse of human reaction time, as reaction time will 
decrease when participants memorize the sequence better 
with higher memory strength. In the blocked condition, 
sequences were blocked into 80 trial presentations as in the 
experimental design. The standard deviation for likelihood 
was set to 10 in the simulation. To determine the temporal 
smoothness parameter α (analogous to learning rate) for 
implicit and explicit learners, we performed a grid search 
from 0-1 with a step size of .1. We found that α=.5 provides 
the best fit between estimated memory strength with human 
RT for implicit learners (r=-.653), and α=1 showed the best 
fit for explicit learners (r=-.928).  These two parameters 
control learning rate and thus were altered for the two 
different groups of learners. This model was run 1,000 times 
and memory strength was averaged across runs. Model 
parameters for the interleaved condition were the same 
except the input sequences were intermixed for 240 trials 
rather than three blocks of 80 trials. 

As higher memory strength corresponds to a faster reaction 
time, we added a non-linear transformation to memory 
strength, 𝑒(*"+.*∗./0123	562/7869), to show the change of 
inversed memory strength as a function of training trials in 
Figure 3. The model’s Day 1 performance is similar to 
experimental data for both explicit and implicit learners (Fig. 
3). The model results with α=1 exhibited significant 
decreasing monotonic trends in the blocked training group (t 
=-.392) and interleaved training group (t =-.537) just as 
explicit learners. This was also the case for the model results 
with α=.5 in the blocked (t =-.432) and interleaved (t =-.889) 
training groups as did implicit learners (all p’s <.0001). 
Importantly, model results with α=1 for explicit learners 
showed a larger difference between blocked training and 
interleaved training, than did α = .5 for implicit learners.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Inversed memory strength for both groups of 
learners during Day 1 training.  
 

To directly compare model predictions and human 
performance, we found a strong negative correlation in the 
blocked training group in explicit learners for the memory 
strength predicted by the model and human RT in 
experimental data (r=-0.78, p<0.0001). We found a weak 
negative correlation in the interleaved training group in 
explicit learners (r=-0.33, p<0.0001). In implicit learners, we 
found a strong negative correlation between the model and 
experimental results in the blocked training group (r=-0.78, 
p<0.0001) and a moderate correlation in the interleaved 
training group (r=-0.44, p<0.0001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Model predictions of memory strength difference 
score. Higher scores indicate greater forgetting. 

 
To model memory retention, we simulated Day 2 data to 

calculate difference scores. We modelled Day 2 similarly to 
Day 1, except that the prior was the posterior distribution of 
memory strength at the end of Day 1. Qualitatively, the model 
mimics the pattern observed in the experimental data (Fig. 4).  

The model predicts more forgetting in the blocked training 
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condition, and less forgetting in the interleaved training 
condition, consistent with experimental results. The model 
also shows large positive differences in the BB conditions, 
for both types of learners. However, the large positive 
difference score for the BB groups is inconsistent with our 
experimental results. In the experimental data, these groups 
had much smaller difference scores and thus better retention 
than the model predicted. Though the model “forgets” from 
Day 1 to Day 2, participants still retain procedural memory.  

Discussion 
The benefits of interleaving are well-documented and span 
multiple diverse domains (Brady, 1998). Research regarding 
contextual interference in motor skill learning has primarily 
focused on explicit sequence learning or gross motor learning 
(e.g., sports). However, it is as of yet unclear if the benefits 
of interleaving extend to implicit fine motor sequence 
memory after a substantial delay. Our study investigated the 
benefits of introducing contextual interference in a popular 
implicit motor learning task, the SRT task. Sequences were 
either blocked or interleaved in a two-day experiment. 
Explicit recall was probed at the end of the experiment. 

We aimed to investigate the CI effect in purely implicit 
learners and set a recall score cut-off based on a Monte Carlo 
simulation that determined chance performance. Using this 
criterion many participants gained some explicit sequence 
knowledge. As we were interested in whether the CI effect 
persists in the absence of explicit knowledge, we 
dichotomized our sample. Dichotomizing resulted in a loss of 
power and small sample sizes, so our results should be 
cautiously interpreted, and it is possible that explicit 
knowledge could lead to greater benefits of CI in the SRT 
task. Future work could examine the effects of CI when 
learning is more clearly implicit, such as learning with a 
concurrent task or a more complex probabilistic sequence. 

We found a main effect of practice schedule on retention, 
with interleaved practice leading to better retention of 
practice over the delay. However, this effect was qualified by 
an interaction between practice and test conditions: when 
sequences were tested in blocks, there was no effect of 
practice schedule, retention was good regardless of how 
sequences were practiced. However, there were large 
differences when the practiced sequences were interleaved at 
test. Participants who received interleaved practice showed 
excellent retention, and even consolidation of sequence 
knowledge at test. In contrast, participants who practiced the 
sequences in a blocked fashion showed substantial forgetting 
when tested in the interleaved condition. It appeared that 
blocked practice left participants unprepared for performance 
of interleaved sequences. 

Finally, we found an interaction between training condition 
and learner type. When subjects trained with interleaved 
sequences, retention was similar for both implicit and explicit 
learners. However, subjects who trained with blocked 
sequences showed worse performance on Day 2, especially 
explicit learners. This was not the case for explicit learners in 
the interleaved group, suggesting that explicit knowledge of 

the sequences may hinder learning only when sequences are 
presented in a blocked fashion. Our results suggest that the 
benefits of interleaving do not require explicit retrieval. 

The transfer-appropriate processing (TAP) principle refers 
to the phenomenon where task performance is best when the 
practice and test conditions are the same (Morris et al., 1977). 
Our results do not fully conform to the TAP framework, since 
participants with explicit knowledge who practiced 
interleaved sequences do better when tested with blocked 
sequences. However, implicit learners who practiced 
interleaved sequences perform better with interleaved 
sequences at test.  Alternative TAP frameworks attempt to 
account for the differences in implicit and explicit learning 
by distinguishing between perceptual and conceptual 
processes, or between integrative and elaborative processes 
(Graf & Ryan, 1990; Roediger & McDermott, 1993). 
However, these proposed processes are mostly founded on 
perceptual priming research, so future research should aim to 
explain how the TAP principle differs in implicit and explicit 
motor learning, and how this may change with contextual 
interference. 

We used the Bayesian Sequential Learning model and 
manipulated the temporal smoothness prior to model implicit 
and explicit learners. We altered this parameter because it 
relates to the rate of learning.  In the motor learning literature, 
a multiple-process framework has been proposed where 
explicit processes correspond to “fast” learning and rapid 
forgetting, while implicit processes resemble “slow” learning 
and slow forgetting (McDougle et al., 2015; Smith et al., 
2006). The model was mostly successful in qualitatively 
predicting the human data, as we found significant negative 
correlations when comparing the model results (‘memory 
strength’) to the experimental data (RT). However, though 
the model replicated the general pattern of retention results, 
it attributed poorer retention to both BB groups, which was 
not observed in our experimental data. Our model did not aim 
to provide a quantitative fit to the learning curves (RT), but 
rather a qualitative account of the differences observed in the 
interleaved and blocked conditions. In addition to not 
knowing the exact transformation from memory strength to 
RT, it is evident that the model has clear differences from 
human learning. First, the model doesn’t consider any motor 
or perceptual uncertainty, though human participants may 
need practice trials to get familiar with how the visual cues 
correspond to the key presses. Furthermore, the model 
doesn’t include other factors like spontaneous rehearsal, 
fatigue, and accuracy. Overall, the model predicts more 
forgetting when sequences were blocked on Day 1, as 
compared to interleaved sequences, which conforms to our 
main experimental finding. 

Given the limitations of small sample sizes and a lack of 
experimental manipulation of explicit knowledge, our results 
do not offer definitive conclusions about the contextual 
interference effect in implicit motor sequence learning and 
long-term retention. However, our experimental and 
computational results suggest that contextual interference 
may protect against interference of explicit knowledge. We 
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observed a contextual interference effect in implicit learners, 
as subjects who were trained in the interleaved condition 
showed less forgetting and subjects who were trained in the 
blocked condition were left unprepared for interleaved 
testing, indicating that they may have learned a sequence-
specific rather than a general rule. 
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