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Abstract

Langevin Monte Carlo (LMC) is an iterative
algorithm used to generate samples from a dis-
tribution that is known only up to a normaliz-
ing constant. The nonasymptotic dependence
of its mixing time on the dimension and target
accuracy is understood mainly in the setting
of smooth (gradient-Lipschitz) log-densities, a
serious limitation for applications in machine
learning. In this paper, we remove this limita-
tion, providing polynomial-time convergence
guarantees for a variant of LMC in the setting
of nonsmooth log-concave distributions. At
a high level, our results follow by leveraging
the implicit smoothing of the log-density that
comes from a small Gaussian perturbation
that we add to the iterates of the algorithm
and controlling the bias and variance that are
induced by this perturbation.

1 Introduction

The problem of generating a sample from a distribution
that is known up to a normalizing constant is a core
problem across the computational and inferential sci-
ences (Robert and Casella, 2013; Kaipio and Somersalo,
2006; Cesa-Bianchi and Lugosi, 2006; Rademacher and
Vempala, 2008; Vempala, 2005; Chen et al., 2018). A
prototypical example involves generating a sample from
a log-concave distribution—a probability distribution
of the following form:

P (x) oc e,

where the function U(x) is convex and is referred to as
the potential function. While generating a sample from
the exact distribution p*(x) is often computationally
intractable, for most applications it suffices to generate
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a sample from a distribution p(x) that is close to p*(x)
in some distance (such as, e.g., total variation distance,
Wasserstein distance, or Kullback-Leibler divergence).

The most commonly used methods for generating a
sample from a log-concave distribution are (i) random
walks (Dyer et al., 1991; Lovéasz and Vempala, 2007),
(ii) different instantiations of Langevin Monte Carlo
(LMC) (Parisi, 1981), and (iii) Hamiltonian Monte
Carlo (HMC) (Neal et al., 2011). These methods trade
off rate of convergence against per-iteration complexity
and applicability: random walks are typically the slow-
est in terms of the total number of iterations, but each
step is fast as it does not require gradients of the log-
density and they are broadly applicable, while HMC is
the fastest in the number of iterations, but each step is
slow as it uses gradients of the log-density and it mainly
applies to distributions with smooth log-densities.

LMC occupies a middle ground between random walk
and HMC. In its standard form, LMC updates its
iterates as:

Xpi1 =Xk — nVU (xz) + \/20€k, (LMC)
where &, ~ N(0, I4xq) are independent Gaussian ran-
dom vectors. The per-iteration complexity is reduced
relative to HMC because it only requires stochastic
gradients of the log-density (Welling and Teh, 2011).
This also increases its range of applicability relative to
HMC. While it is not a reversible Markov chain and
classical theory of MCMC does not apply, it is nonethe-
less amenable to theoretical analysis given that it is
obtained via discretization of an underlying stochastic
differential equation (SDE). There is, however, a funda-
mental difficulty in connecting theory to the promised
wide range of applications in statistical inference. In
particular, the use of techniques from SDEs gener-
ally requires U(x) to have Lipschitz-continuous gradi-
ents. This assumption excludes many natural appli-

cations (Kaipio and Somersalo, 2006; Durmus et al.,
2018; Marie-Caroline et al., 2019; Li et al., 2018).

A prototypical example of sampling problems with
nonsmooth potentials are different instantiations of
sparse Bayesian inference. In this setting, one wants
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to sample from the posterior distribution of the form:
p*(x) o< exp (— f(x) — [|[@x]]D),

where f(x) is the log-likelihood function, ® is a sparsify-
ing dictionary (e.g., a wavelet dictionary), and p € [1, 2].
In the simplest case of Bayesian LASSO (Park and
Casella, 2008), f(x) = |[Ax — b3, ® =1, and p =1,
where A is the measurement matrix, b are the labels,
and I denotes the identity matrix. In general, when
® is the identity or an orthogonal wavelet transform,
proximal maps (i.e., solutions to convex minimization
problems of the form min,cga{[[®x||? + 5x|Ix — 2|3},
where A and z are parameters of the proximal map)
are easily computable and proximal LMC methods
apply (Cai et al., 2018; Price et al., 2018; Durmus
et al., 2019, 2018; Atchadé, 2015). However, in the
so-called analysis-based approaches with overcomplete
dictionaries, ® is non-orthogonal and the existence of
efficient proximal maps becomes unclear (Elad et al.,
2007; Cherkaoui et al., 2018).

In this work, we tackle this problem head-on and pose
the following question:

Is it possible to obtain nonasymptotic convergence
results for LMC with a nonsmooth potential?

Here, we focus on standard LMC (allowing only minor
modifications) and the general case in which proximal
maps are not efficiently computable. We answer this
question positively through a series of results that in-
volve transformations of the basic stochastic dynamics
in (LMC). In contrast to previous work that considered
nonsmooth potentials (e.g., Atchadé, 2015; Durmus
et al., 2018; Hsieh et al., 2018; Durmus et al., 2019),
the transformations we consider are simple (such as per-
turbing a gradient query point by a Gaussian), they do
not require strong assumptions such as the existence of
proximal maps, they can apply directly to nonsmooth
Lipschitz potentials without any additional structure
(such as composite structure in Atchadé (2015); Dur-
mus et al. (2018) or strong convexity in Hsieh et al.
(2018)), and the guarantee we provide is on the dis-
tribution of the last iterate of LMC as opposed to an
average of distributions over a sequence of iterates of
LMC in Durmus et al. (2019).

Our main theorem is based on a Gaussian smoothing
result summarized in the following theorem.

Main Theorem (Informal). Let p*(x) oc exp(—U(x))
be a probability distribution, where U(x) = U(x) +
P(x), U(+) is a convex subdifferentiable function whose

subgradients VU (-) satisfy
IVU(x) = VU(y)ll2 < LIx = y[l5, Vx,y€RY,

for some L < oo, a € [0,1], and ¥(-) is A-strongly
convex and m-smooth. There exists an algorithm—

Perturbed Langevin Monte Carlo (P-LMC)—uwhose
iterations have the same computational complex-
ity as (LMC) and that requires no more than
(5(d5_230 /61%1) iterations to generate a sample that

is e-close to p* in 2-Wasserstein distance.

Further, if the goal is to sample from p*(x)
exp(—U(x)), a variant of (P-LMC) takes poly(d/e)
iterations to generate a sample from a distribution that
is e-close to p* in total variation distance.

This informal version of the theorem displays only the
dependence on the dimension d and accuracy . A
detailed statement is provided in Theorems 3.4 and 3.6,
and Corollary 4.1.

Our assumption on the subgradients of U from the
statement of the Main Theorem is known as Holder-
continuity, or (L, «)-weak smoothness of the function.
It interpolates between Lipschitz gradients (smooth
functions, when o = 1) and bounded gradients (nons-
mooth Lipschitz functions, when oo = 0). In Bayesian
inference, the general (L, a)-weakly smooth potentials
arise in the Bayesian analog of “bridge regression,”
which interpolates between LASSO and ridge regres-
sion (see, e.g., Park and Casella, 2008) . To the best of
our knowledge, our work is the first to consider the con-
vergence of LMC in this general weakly-smooth model
of the potentials — previous work only considered its
extreme cases obtained for « =0 and a = 1.

To understand the behavior of LMC on weakly smooth
(including nonsmooth) potentials, we leverage results
from the optimization literature. First, by using the
fact that a weakly smooth function can be approxi-
mated by a smooth function—a result that has been
exploited in the optimization literature to obtain meth-
ods with optimal convergence rates (Nesterov, 2015;
Devolder et al., 2014)—we show that even the basic
version of LMC can generate a sample in polynomial
time, as long as U is “not too nonsmooth” (namely, as
long as 1/« can be treated as a constant).

The main impediment to the convergence analysis of
LMC when treating a weakly smooth function U as an
inexact version of a nearby smooth function is that a
constant bias is induced on the gradients, as discussed
in Section 3.1. To circumvent this issue, in Section 3.2
we argue that an LMC algorithm can be analyzed as
a different LMC run on a Gaussian-smoothed version
of the potential using unbiased stochastic estimates of
the gradient.! Building on this reduction, we define a
Perturbed Langevin Monte Carlo (P-LMC) algorithm

! A similar idea was used in Kleinberg et al. (2018) to
view expected iterates of stochastic gradient descent as
gradient descent on a smoothed version of the objective.
Stochastic smoothing has also been used to lower the parallel
complexity of nonsmooth minimization (Duchi et al., 2012).
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that reduces the additional variance that arises in the
gradients from the reduction.

To obtain our main theorem, we couple a result about
convergence of LMC with stochastic gradient estimates
in Wasserstein distance (Durmus et al., 2019) with
carefully combined applications of inequalities relating
Kullback-Leibler divergence, Wasserstein distance, and
total variation distance. Also useful are structural prop-
erties of the weakly smooth potentials and their Gaus-
sian smoothing. As a byproduct of our techniques, we
obtain a nonasymptotic result for convergence in total
variation distance for (standard) LMC with stochastic
gradients, which, to the best of our knowledge, was not
known prior to our work.

1.1 Related work

Starting with the work of Dalalyan (Dalalyan, 2017), a
variety of theoretical results have established mixing
time results for LMC (Durmus and Moulines, 2016;
Raginsky et al., 2017; Zhang et al., 2017; Cheng and
Bartlett, 2018; Cheng et al., 2018b; Dalalyan and Karag-
ulyan, 2019; Xu et al., 2018; Lee et al., 2018) and
closely related methods, such as Metropolis-Adjusted
LMC (Dwivedi et al., 2018) and HMC (Mangoubi and
Smith, 2017; Bou-Rabee et al., 2018; Mangoubi and
Vishnoi, 2018; Cheng et al., 2018a). These results ap-
ply to sampling from well-behaved distributions whose
potential function U is smooth (Lipschitz gradients)
and (usually) strongly convex. For standard (LMC)
with smooth and strongly convex potentials, the tight-
est upper bounds for the mixing time are O(d/e?).
They were obtained in Dalalyan (2017); Durmus and
Moulines (2016) for convergence in total variation (with
a warm start; without a warm start the total variation
result scales as 6(?—;)) and in 2-Wasserstein distance.

When it comes to using (LMC) with nonsmooth poten-
tial functions, there are far fewer results. In particular,
there are two main approaches: relying on the use of
proximal maps (Atchadé, 2015; Durmus et al., 2018,
2019) and relying on averaging of the distributions
over iterates of LMC (Durmus et al., 2019, SSGLD).
Methods relying on the use of proximal maps require
a composite structure of the potential (namely, that
the potential is a sum of a smooth and a nonsmooth
function) and that the proximal maps can be computed
efficiently. Note that this is a very strong assumption.
In fact, when the composite structure exists in convex
optimization and proximal maps are efficiently com-
putable, it is possible to solve nonsmooth optimization
problems with the same iteration complexity as if the
objective were smooth (see, e.g., Beck and Teboulle,
2009). Thus, while the methods from Durmus et al.
(2018, 2019) have a lower iteration complexity than

our approach, the use of proximal maps increases their
per-iteration complexity (each iteration needs to solve
a convex optimization problem). It is also unclear how
the performance of the methods degrades when the
proximal maps are computed only approximately. Fi-
nally, unlike our work, Atchadé (2015); Durmus et al.
(2018) and Durmus et al. (2019, SGLD) do not han-
dle potentials that are purely nonsmooth, without a
composite structure.

The only method that we are aware of and that is
directly applicable to nonsmooth potentials is (Durmus
et al., 2019, SSGLD). On a technical level, Durmus
et al. (2019) interprets LMC as a gradient flow in the
space of measures and leverages techniques from convex
optimization to analyze its convergence. The conver-
gence guarantees are obtained for a weighted average
of distributions of individual iterates of LMC, which,
roughly speaking, maps the standard convergence anal-
ysis of the average iterate of projected gradient descent
or stochastic gradient descent to the setting of sampling
methods. While the iteration complexity for the aver-
age distribution (Durmus et al., 2019) is much lower
than ours, their bounds for individual iterates of LMC
are uninformative. By contrast, our results are for the
last iterate of perturbed LMC (P-LMC). Note that in
the related setting of convex optimization, last-iterate
convergence is generally more challenging to analyze
and has been the subject of recent research (Shamir
and Zhang, 2013; Jain et al., 2019).

It is also worth mentioning that there exist approaches
such as the Mirrored Langevin Algorithm (Hsieh et al.,
2018) that can be used to efficiently sample from struc-
tured nonsmooth distributions such as the Dirichlet
posterior. However, this algorithm’s applicability to
general nonsmooth densities is unclear.

1.2 Outline

Section 2 provides the notation and background. Sec-
tion 3 provides our main theorems, stated for deter-
ministic and stochastic approximations of the potential
(negative log-density) and composite structure of the
potential. Section 4 extends the result of Section 3 to
non-composite potentials. We conclude in Section 5.

2 Preliminaries

The goal is to generate samples from a distribution
p* oc exp(—U(x)), where x € R%. We equip R? with
the standard Euclidean norm || - || = || - |2 and use (-, -)
to denote inner products. We assume the following for
the potential (negative log-density) U:

(A1) U is convex and subdifferentiable. Namely, for all
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x € R?, there exists a subgradient of U, VU (x) €
OU(x), such that Yy € R? :

Uly) > U(x) + (VU(x),y —x).

(A2) There exist L < oo and a € [0,1] such that
Vx,y € R%, we have

IVU(x) = VU(y)l2 < LiIx —yllz,  (2.1)

where VU (x) denotes an arbitrary subgradient
of U at x.

(A3) The distribution p* has a finite fourth moment:
/ e = x5 - p* (x)dx = My < oo,
x€eRd

where x* € argmin, cps U(x) is an arbitrary min-
imizer of U.

Assumption (A2) is known as the (L, a)-weak smooth-
ness or Holder continuity of the (sub)gradients of U.
When a = 1, it corresponds to the standard smooth-
ness (Lipschitz continuity of the gradients), while at the
other extreme, when o = 0, U is (possibly) non-smooth
and Lipschitz-continuous.

Properties of weakly smooth functions. A prop-
erty that follows directly from (2.1) is that ¥x,y € R%:

Uly) <U(x) +(VU(x),y —x)
L 1+a (22)
gy =1
One of the most useful properties of weakly smooth
functions that has been exploited in optimization is
that they can be approximated by smooth functions to
an arbitrary accuracy, at the cost of increasing their
smoothness parameter Nesterov (2015); Devolder et al.
(2014). This was shown in (Nesterov, 2015, Lemma
1) and is summarized in the following lemma for the
special case of the unconstrained Euclidean setting.

Lemma 2.1. Let U : R? — R be a convex function

that satisfies (2.1) for some L < oo and o € [0,1].
e

Then, for any 6 > 0 and M = (%)mLI%, we have

that, Vx,y € R? :

Uly) <U(x) +(VU(x),y — %)

My x4 2 =
2 Y 2

Furthermore, it is not hard to show that Eq. (2.3)
implies (see Devolder et al., 2014, Section 2.2):

IVU(x) = VU(y)ll2 < M|jx = yll2 +2V6M  (2.4)

l-a
where M = (1) . L¥(1+%) a5 in Lemma 2.1.

Gaussian smoothing. Given p > 0, define the
Gaussian smoothing U,, of U as:

Uuly) = EeU(y + p8)],

where &€ ~ N (0, I;x4). The reason for considering the
Gaussian smoothing U, instead of U is that it generally
enjoys better smoothness properties. In particular, U,
is smooth even if U is not. Here we review some
basic properties of U,, most of which can be found
in (Nesterov and Spokoiny, 2017, Section 2) for non-
smooth Lipschitz functions. We generalize some of
these results to weakly smooth functions. While the
results can be obtained for arbitrary normed spaces,
here we state all the results for the space (RY, || - ||2),
which is the only setting considered in this paper.

The following lemma is a simple extension of the results
from (Nesterov and Spokoiny, 2017, Section 2) and it
establishes certain regularity conditions for Gaussian
smoothing that will be used in our analysis.

Lemma 2.2. Let U : R — R be a convex function
that satisfies Eq. (2.1) for some L < oo and a € [0,1].
Then:

(i) For all x € R%:

Up(x) = U(x)| = Up(x) —
(i) For allx,y € R%:

IVUL(y) = VU()ll2 < jr=tfpay==ly — x|2-

Additionally, we show that Gaussian smoothing pre-
serves strong convexity, stated in the following (simple)
lemma. Recall that a differentiable function v is A-
strongly convex if, Vx, y € R? :

Uy) = () + (Ve y —x) + 2y~ xIB.

Lemma 2.3. Let ¢ : RY — R be A-strongly conver.
Then 1, is also \-strongly convez.

Composite potentials and regularization. To
prove convergence of the continuous-time process
(which requires strong convexity), we work with poten-
tials that have the following composite form:

U(x) = U(x) + (x), (2.5)
where v¥(+) is m-smooth and A-strongly convex. For
obtaining guarantees in terms of convergence to p*
e~Y, we do not need Assumption (A3), which bounds
the fourth moment of the target distribution—this is

only needed in establishing the results for p* oc e~ V.
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If the goal is to sample from a distribution p*(x) o
e~Y®) (instead of p*(x) o e"U ™)), then we need to
ensure that the distributions p* and p* are sufficiently
close to each other. This can be achieved by choosing
¥(x) = 3||x — x'||3, where A and ||x’ — x*||» are suffi-
ciently small, for an arbitrary x* € argmin, s U(x)
(see Corollary 4.1 for precise details).

Note that by the triangle inequality, we have that:

IVU(x) = VU(y)l2
<IVU(x) = VU(y)ll2 + IV (x) = Vib(y)l2

< Llix=yllz +mlx—yl2. (2.6)

Thus, by (2.4), we have the following (deterministic)
Lipschitz approximation of the gradients of U: Vx,y €
R? any 6 > 0, and M = M (§) (as in Lemma 2.1):

IVU(x) = VU ()ll2

(2.7)
<M|x—yll2+m|x—yl2+2ViM.

On the other hand, for Gaussian-smoothed composite
potentials, using Lemma 2.2, we have:

||Vﬁu(x) - VUIJ«(y)H?

Ld=* (2.8)
< W+m x —yll2-

Distances between probability
Given any two probability measures P and ) on
(R4, B(RY)), where B(R?) is the Borel o-field of R9,
the total variation distance between them is defined as

[P =Qllrv := sup [P(A) —Q(A)].

AEB(RY)

The Kullback-Leibler divergence between P and @ is
defined as:

KL(P|Q) = Ep [mg (jgﬂ ,

where dP/dQ is the Radon-Nikodym derivative of P
with respect to Q.

Define a transference plan (, a distribution on (R? x

R?, B(R? x R?)) such that (A x R?) = P(A) and
C(RY x A) = Q(A) for any A € B(R?). Let T'(P,Q)
denote the set of all such transference plans. Then the
2-Wasserstein distance is defined as:

W2(P7 Q)

1/2
= inf x — y||2d¢(x, > .
(coify [ Jx=vlzaccey)

3 Sampling for composite potentials

In this section, we consider the setting of composite
potentials of the form U(x) = U(x) + ¢ (x), where U(+)

measures.

is (L, «)-weakly smooth (possibly with o = 0, in which
case U is nonsmooth and Lipschitz) and (-) is m-
smooth and A-strongly convex. We provide results for
mixing times? of different variants of overdamped LMC
in both 2-Wasserstein and total variation distance.

We first consider the deterministic smooth approxi-
mation of U, which follows from Lemma 2.1. This
approach does not require making any changes to the
standard overdamped LMC. However, it leads to a
polynomial dependence of the mixing time on d and
1/e only when « is bounded away from zero (namely,
when 1/« can be treated as a constant).

We then consider another approach that relies on a
Gaussian smoothing of U and that leads to a poly-
nomial dependence of the mixing time on d and 1/¢
for all values of «. In particular, the approach leads
to the mixing time for 2-Wasserstein distance that
matches the best known mixing time of overdamped
LMC when U is smooth (o = 1) — O(d/e?), and pre-
serves polynomial-time dependence on d and 1/¢ even
if U is nonsmooth (o = 0), in which case the mixing
time scales as (’3(d§ /e*). The analysis requires us to
consider a minor modification to standard LMC in
which we perturb by a Gaussian random variable the
points at which VU is queried. Note that it is unclear
whether it is possible to obtain such bounds for (LMC)
without this modification (see Appendix D).

3.1 First attempt: Deterministic
approximation by a smooth function

In the optimization literature, deterministic smooth
approximations of weakly smooth functions (as in
Lemma 2.1) are generally useful for obtaining meth-
ods with optimal convergence rates (Nesterov, 2015;
Devolder et al., 2014). A natural question is whether
the same type of approximation is useful for bounding
the mixing times of the Langevin Monte Carlo method
invoked for potentials that are weakly smooth.

We note that it is not obvious that such a deterministic
approximation would be useful, as the deterministic
error introduced by the smooth approximation causes
an adversarial bias 24/6M (0) in the Lipschitz approxi-
mation of the gradients (see Eq. (2.4)). While this bias
can be made arbitrarily small for values of « that are
bounded away from zero, when o = 0, M (§) = L?/4,
and the induced bias is constant for any value of §.

We show that it is possible to bound the mixing times
of LMC when the potential is “not too nonsmooth”.
In particular, we show that the upper bound on the

2Mizing time is defined as the number of iterations
needed to reach an e accuracy in either 2-Wasserstein or
total variation distance.
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mixing time of LMC when applied to an (L, a)-weakly
smooth potential scales with poly(()*/*) in both the
2-Wasserstein and total variation distance, which is
polynomial in 1/¢ for a bounded away from zero. Al-
though we do not prove any lower bounds on the mixing
time in this case, the obtained result aligns well with
our observation that the deterministic bias cannot be
controlled for the deterministic smooth approximation
of a nonsmooth Lipschitz function, as explained above.

Technical details are deferred to Appendix C.

3.2 Gaussian smoothing

The main idea is summarized as follows. Recall that
LMC with respect to the potential U can be stated as:

X1 = xx — VU (xk) + 1/20&y,

where & ~ N(0, I4xq) are independent Gaussian ran-
dom vectors. This method corresponds to the Euler-
Mayurama discretization of the Langevin diffusion.

Consider a modification of (LMC) in which we add
another Gaussian term:

Xgp+1 = Xi — UVU(Xk) + 4/ 277£k + pwg,

where wy, ~ N (0, I xq) and is independent of &;. Ob-
serve that (3.1) is simply another (LMC) with a slightly
higher level of noise—+/2n€y + pwy instead of +/2n&.
Let yi := x3 — pwi—1. Then:

(LMC)

(3.1)

Yi+1 =Yk — U[VU(}% + pwp—1) — %wkq}

+ /20

Taking expectations on both sides with respect to wy_1:

By [Yi+1] = y& — nVUL(yE) + V/20&k,

where Uu is the Gaussian smoothing of U, as defined
in Section 2. Thus, we can view the sequence {y}
in Eq. (S-LMC) as obtained by simply transforming
the standard LMC chain to another LMC chain using
stochastic estimates VU (yi, + pwp_1) — %wk,l of the
gradients. However, the variance of this gradient esti-
mate is too high to handle nonsmooth functions, and,
as before, our bound on the mixing time of this chain
blows up as « | 0 (see Appendix D).

(S-LMC)

Thus, instead of working with the algorithm defined
in (S-LMC), we correct for the extra induced variance
and consider the sequence of iterates defined by:

Y1 = Yk — VU (yr + pwr—1)
+ \/ 277€k-

This sequence will have a sufficiently small bound on
the variance to obtain the desired results.

(P-LMC)

Lemma 3.1. For any x € R?, and z ~ N(0, Ijxq),
let G(x,2) := VU (x + uz) denote a stochastic gradient
of U,. Then G(x,z) is an unbiased estimator of VU,
whose (normalized) variance satisfies:

E, [ V0.0 - G(x, )]

d
S 4da71'u2aL2 +4[,L2m2.

g =

Remark 3.2. The variance from Lemma 3.1 can be
lowered by using multiple independent samples to esti-
mate VU, (instead of a single sample as in (P-LMC)).
However, unlike in the case of nonsmooth optimiza-
tion (Duchi et al., 2012), such a strategy will not reduce
the mixing times reported here. This is because the
variance from Lemma 3.1 is already low enough to not
be a limiting factor in the mixing time bounds.

Let the distribution of the k" iterate y; be denoted
by P, and let py, o exp(—U,) be the distribution with
Uu as the potential. Our overall strategy for proving
our main result is as follows. First, we show that the
Gaussian smoothing does not change the target dis-
tribution significantly with respect to the Wasserstein
distance, by bounding Wa(p*, p;,) (Lemma 3.3). Using
Lemma 3.1, we then invoke a result on mixing times
of Langevin diffusion with stochastic gradients, which
allows us to bound Wz (px, p;;). Finally, using the tri-
angle inequality and choosing a suitable step size 7,
smoothing radius p, and number of steps K so that
Wa(p*,py,) + Wa(pPK,P),) < €, we establish our final
bound on the mixing time of (P-LMC) in Theorem 3.4.

Lemma 3.3. Let p* and pj, be the distributions corre-
sponding to the potentials U and U# respectively. Then:

Wa(p*, pp,) §§ (g + glog (M)y/z

(B4 [ Buf2),

1+a lta 2
where ﬁ“ = Blt(d7Lvva‘) = L}f/g(lioj + m’ﬁ d.

Our main result is stated in the following theorem.

Theorem 3.4. Let the initial iterate yo be drawn from
a probability distribution py. If the step size n satisfies
n<2/(M+m+\), then:

Wo (B, ) < (1 — M) > Wa(po, 1) + Wa(p", 575)
2(M +m) 1/2 (1+n)nd
+ ( ) ”d> N
where
Ld>"

2<4da71 2aL2 4 2,2 M =
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. - 52/1,170‘)\ |
= 1000(L + m)d*z*
eTe min{ AT+, 1}/300

VA (ym + L) [10 + dlog (e=2(m + L)d/\)]

’[L:

)

and Wa(p*, py,) is bounded as in Lemma 3.5.

Further, if, for e € (0,d"/*), we choose

3Wa(po, D;;
K> 1log( 2(Po pu)> ’
An €

then Wa(pr,p*) < e.

Remark 3.5. Treating L, m, A\ as constants and using
the fact that Wa(po,p;,) = O(poly(d/e)) (see, Cheng
et al., 2018b, Lemma 13, by choosing the initial dis-
tribution py appropriately), we find that Theorem 3.4
yields a bound of K = 1) (ds_‘fa /61‘%’) When o =1
(the Lipschitz gradient case), we recover the known
mixing time of K = O(d/e?), while at the other ex-
treme when o = 0 (the nonsmooth Lipschitz potential
case), we find that K = O(d3 /e%).

The choice of the smoothing radius g is made such
that it is large enough to ensure that the smoothed
distribution p,, is sufficiently smooth, but not too large
so as to ensure that the bias, Wa(p*, p,.), is controlled.

Proof of Theorem 3.4. By the triangle inequality,

Wa(pre, p*) < Walpre, b)) + Wa(p*,p). (3.2)

To bound the first term, W2 (pr, py,), we invoke (Dur-
mus et al., 2019, Theorem 21) (see Theorem A.4 in
Appendix A). Recall that U, is continuously differen-

11—«
tiable, (M +m)-smooth (with M = %), and
A-strongly convex. Additionally, the sequence of points
{yr < | can be viewed as a sequence of iterates of over-
damped LMC with respect to the potential specified
by U, 1, Where the iterates are updated using unbiased

stochastic estimates of U, - Thus we have:
_ % K/2 — _x
Wa(pr,py,) < (1= An)™'* Wa(po,pj,) (3.3)

N \/2(M;m)nd+g\/(l +/\n)nd7

and by Lemma 3.1, 02 < 4d® ' u2*L? + 4u2m?2.

The last piece we need is control over the distance
between p* and pj,. This is established above in
Lemma 3.3 . Thus, combining Eqgs. (3.2) and (3.3)
with Lemma 3.3, the first part of the theorem follows.

It is straightforward to verify that our choice of p
ensures that Wa(p*, pj;) < €/3. The choice of 7 ensures

that (2(M + m)nd/\)*/? < £/6 and the choice of K

ensures that the initial error contracts exponentially to
/3 (see the proof of Theorem 3.6 in Appendix E for a
similar calculation). This yields the second claim. [

Further, we show that this result can be generalized to
total variation distance.
Theorem 3.6. Let the initial iterate yo be drawn from

a probability distribution py. If we choose the step size

such that n < 2/(M +m + X), then:
Lul+ad(1+a)/2 )‘/1'2d
14+« 2

+ \/ KL(pKvﬁZ)v
where KL(pr,py,) is bounded by Wa(pr,p,) in
Eq. (3.4), and Wa(pxk,p;;) is bounded as in Eq. (3.3).

oK — P*|lrv <

Further, if, for € € (0, 1], we choose

min{ 51%& 1/ eA }
: dmax{1, LT+=}d1/2’ V 2m2d |’

2

€
dmax{(M +m)(v/2d/X + 2][x*[3 + 2| x*[|3), 1}
then choosing the step size n and number of steps K as

5 log(2Wa(po, p},)/€)
A K > B
NS Sl m) M K= Y ’

g:

we have ||px — p*||Tv < €.

Remark 3.7. Treating L, i, A, ||x*| as constants and
using the fact that Wa(po, p};) = O(poly(g)) (by Cheng
et al., 2018b, Lemma 13, along with an appropriate
choice for the initial distribution), Theorem 3.6 gives a
bound on the mixing time K = O(d?~3% /eT+& ). When
o = 1 (Lipschitz gradients), we have K = O(d2?/e%),
while when o = 0 (nonsmooth Lipschitz potential) we
have K = O(d® /7). While the bound for the smooth
case (Lipschitz gradients, a = 1) is looser than the best
known bound for LMC with a warm start (Dalalyan,
2017), we conjecture that it is improvable. The main
loss is incurred when relating Ws to KL distance, using
an inequality from Polyanskiy and Wu (2016) (see Ap-
pendix A). If tighter inequalities were obtained, either
relating W5 and KL, or W5 and TV, this result would
immediately improve as a consequence. The results
for LMC with non-Lipschitz gradients (o € [0,1)) are
novel. Finally, as a byproduct of our approach, we
obtain the first bound for stochastic gradient LMC in
TV distance (see Remark E.1 in Appendix E).

4 Sampling for regularized potentials

Consider now the case in which we are interested in
sampling from a distribution p* o< exp(—U). As men-
tioned in Section 2, we can use the same analysis as in
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R MR 3+ 2Rk ) o
KL(px|p;,) < + M| 2 ) Wa(prc. )

2

the previous section, by running (P-LMC) with a regu-
larized potential U = U + A||x —x'||3/2, where x’ € R?.
To obtain the desired result, the only missing piece is
bounding the distance between p* oc exp(—U) and p*,
leading to the following corollary of Theorem 3.6.

Corollary 4.1. Let the initial iterate yo satisfy yo ~
Po, for some distribution py and let px denote the
distribution of yi. If we choose the step-size n such
that n < 2/(M + 2)), then:

AV My
2

lpx — p*llrv < |[px — P"|lTv +

Allx" = x*|3

+ 5 )

where ||prx — p*||Tv is bounded as in Theorem 3.6 and
My is the fourth moment of p*.

Further, if, for & € (0,1], we choose A =
4¢’ ; _
Ve resF— and all other parameters as in Theo

rem 3.6 for e = €'/2, then, we have ||px — p*|Trv < €’.

Proof. By the triangle inequality,
P —p*lltv < IpPKx — P*[ITv + [[p* = D" |lTV-

Applying Lemma A.1 from the appendix,

-2

(o)
;(2 [ (Glx=x18) 9" (x)ax

)\ * 712 2 * 1/2
2 [ (G- xIB) eoax)

Thus, using Assumption (A3), we get

iy < ([ w60 -0 o)

IN

~ A Alx! — x*||2
"~ 5l < 5/ + X

The rest of the proof follows by Theorem 3.6. U

Remark 4.2. Treating L,|x*[2,||x" — x*||2 as con-
stants, the upper bound on the mixing time is K =

2 d5 3 A, 32
O( T0f+4a
e 1o

O(d2/\2743/2 ), while when aa =0, K = 6(‘15/;41%3/2).

). Thus, when a = 1, we have K =

: (3.4)

5 Discussion

We obtained polynomial-time theoretical guarantees
for a variant of LMC—(P-LMC)—that uses Gaussian
smoothing and applies to target distributions with
nonsmooth log-densities. The smoothing we apply is
tantamount to perturbing the gradient query points in
LMC by a Gaussian random variable, which is a minor
modification to the standard method.

Beyond its applicability to sampling from more general
weakly smooth and nonsmooth target distributions, our
work also has some interesting implications. For exam-
ple, we believe our results can be extended to sampling
from structured distributions with nonsmooth and non-
convex negative log-densities, following an argument
from, e.g., Cheng et al. (2018a). It should also be pos-
sible to work with stochastic gradients instead of exact
gradients by coupling our arguments with the bounds
in Dalalyan and Karagulyan (2019) or Durmus et al.
(2019). Further, it seems plausible that coupling our
results with the results for derivative-free LMC (Shen
et al., 2019, which only applies to distributions with
smooth and strongly convex log-densities) would lead
to a more broadly applicable derivative-free LMC.

Several other interesting directions for future research
remain. For example, as discussed in Remark 3.7 and
Remark E.1 (Appendix E), we conjecture that the
asymptotic dependence on d and € in our bounds on
the mixing times for total variation distance (Theo-
rem 3.6) can be improved to match those obtained for
the 2-Wasserstein distance (Theorem 3.4). Further,
in standard settings of LMC with the exact gradients,
Metropolis filter is often used to improve the conver-
gence properties of LMC and it leads to lower mixing
times (see, e.g., Dwivedi et al., 2018). However, the
performance of Metropolis-adjusted LMC becomes un-
clear once the gradients are stochastic (as is the case
for (P-LMC)). It is an interesting question whether a
Metropolis adjustment can speed up (P-LMC).
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